
Practical Bootstrapping of Morphological Analyzers

Kemal Oflazer 1,~
1Department of Computer Engineering

Bilkent University
Bilkent, Ankara, 06533,Turkey

k o @ c r l , nmsu. edu

Sergei Nirenburg ~
2Computing Research'Laboratory

New Mexico State University
Las Cruces, NM, 88003
s e r g e i @ c r l , nmsu. edu

Abstract
This paper presents a semi-automatic technique for
developing broad-coverage finite-state morphological
analyzers for any language. It consists of three
components-elicitation of linguistic information from
humans, a machine learning bootstrapping scheme and
a testing environment. The three components are ap-
plied iteratively until a threshold of output quality is
attained. The initial application of this technique is
for morphology of low-density languages in the context
of the Expedition project at NMSU CRL. This elicit-
build-test technique compiles lexical and inflectional
information elicited from a human into a finite state
transducer lexicon and combines this with a sequence
of morphographemic rewrite rules that is induced us-
ing transformation-based learning from the elicited ex-
amples. The resulting morphological analyzer is then
tested against a test suite, and any corrections are fed
back into the learning procedure that builds an im-
proved analyzer.

Introduct ion
The Expedition project is devoted to fast "ramp-up"
of machine translation systems from less studied,
so-called "low-density" languages into English. One
of the components that must be acquired and built
during this process is a morphological analyzer for
the source low-density language. Since we expect
that the source language informant will not be
well-versed in computational linguistics in general
or in recent approaches to building morphological
analyzers (e.g., [Koskenniemi, 1983], [Antworth. 1990],
[Karttunen et al., 1992], [Karttunen, 1994]) and the
operation of state-of-the-art finite state tools (e.g.,
[Karttunen. 1993], [Karttunen and Beesley, 1992],
[Karttunen et al., 1996]) in particular, the generation
of the morphological analyzer component has to be
accomplished almost semi-automatically. The user
must be guided through a knowledge elicitation proce-
dure for the knowledge required for the morphological

analyzer. This is accomplished using the elicitation
component of Expedition, the Boas system. As this
task is not easy, we expect that the development of
the morphological analyzer will be an iterative process,
whereby the human informant will revise and/or
refine the information previously elicited based on the
feedback from a test runs of the nascent analyzer.

The work reported in this paper describes the use
of machine learning in the process of building and re-
fining morphological analyzers. The main use of ma-
chine learning in our current approach is in the au-
tomatic learning of formal rewrite or replace rules for
morphographemic changes from the examples, provided
by the informant. This subtask of accounting for such
phenomena is perhaps one of the more complicated as-
pects of building an analyzer and by automating it we
expect to gain a certain improvement in productivity.

There have been a number of studies on induc-
ing morphographemic rules from a list of inflected
words and a root word list. Johnson [1984] presents
a scheme for inducing phonological rules from surface
data, mainly in the context of studying certain aspects
of language acquisition. The premise is that languages
have a finite number of alternations to be handled by
morphographemic rules and a fixed number of contexts
in which they appear; so if there is enough data, phono-
logical rewrite rules can be generated to account for
the data. Rules are ordered by some notion of "'surfaci-
ness", and at each stage the nmst surfacy rule -- the rule
with the most transparent context is selected. Golding
and Thompson[1985] describe an approach for inducing
rules of English word formation from a given corpus
of root forms and the corresponding inflected forms.
The procedure described there generates a sequence of
transformation rules, l each specifying how to perform
a particular inflection.

More recently, Theron and Cloete [1997] have pre-

1Not in the sense it is used in transformation-based learn-
ing [Brill, 1995].

14

sented a scheme for obtaining two-level morphology
rules from a set of aligned segmented and surface pairs.
They use the notion of string edit sequences assum-
ing that only insertions and deletions are applied to a
root form to get the inflected form. They determine
the root form associated with an inflected form (and
consequently the suffixes and prefixes) by exhaustively
matching against all root words. The motivation is that
"real" suffixes and prefixes will appear often enough in
the corpus of inflected forms, so that, once frequently
occurring suffixes and prefixes are identified, one can
then determine the segmentation for a given inflected
word by choosing the segmentation with the most fre-
quently occurring affix segments and considering the
remainder to be the root. While this procedure seems
to be reasonable for a small root word list, the potential
for "noisy" or incorrect alignments is quite high when
the corpus of inflected forms is large and the proce-
dure is not given any prior knowledge of possible seg-
mentations. As a result, selecting the "correct" seg-
mentation automatically becomes quite nontrivial. An
additional complication is that allomorphs show up as
distinct affixes and their counts in segmentations are
not accumulated, which might lead to actual segmen-
tations being missed due to fragmentation. The rule
induction is not via a learning scheme: aligned pairs
are compressed into a special data structure and traver-
sals over this data structure generate morphographemic
rules. Theron and Cloete have experimented with plu-
ralization in Afrikaans, and the resulting system has
shown about 94% accuracy on unseen words.

Goldsmith [1998] has used an unsupervised learning
method based on the minimum description length prin-
ciple to learn the "morphology" of a number of lan-
guages. What is learned is a set of "root" words and
affixes, and common inflectional pattern classes. The
system requires just a corpus of words in a language. In
the absence of any root word list to use as a scaffolding,
the shortest forms that appear frequently are assumed
to be roots, and observed surface forms are then either
generated by concatenative affixation of suffixes or by
rewrite rules. 2 Since the system has no notion of what
the roots and their part of speech values really are, and
what morphological information is encoded by the af-
fixes, these need to be retrofitted manually by a human
(if one is building a morphological analyzer) who would
have to weed through a large number of noisy rules. We
feel that this approach, while quite novel, can be used
to build real-world morphological analyzers only after
substantial modifications are made.

ZSome of which may" not make sense, but are necessary-
to account for the data: for instance a rule like insert a word
final y after the root "eas". is used to generate easy.

15

This paper is organized as follows: The next section
very briefly describes the Boas project of which this
work is a part. The subsequent sections describe the
details of the approach, the morphological analyzer ar-
chitecture, and the induction of morphographemic rules
along with explanatory examples. Finally, we provide
some conclusions and ideas for future work.

T h e B O A S P r o j e c t

Boas [Nirenburg, 1998, Nirenburg and Raskin, 1998] is
a semi-automatic knowledge elicitation system that
guides a team of two people through tile process of de~
veloping the static knowledge sources for a moderate-
quality, broad-coverage MT system from any "low-
density" language into English. Boas contains knowl-
edge about human language and means of realization of
its phenomena in a number of specific languages and is,
thus, a kind of a "linguist in the box" that helps non-
professional acquirers with the task. In the spirit of tile
goal-driven, "demand-side" approach to computational
applications of language processing [Nirenburg, 1996],
the process of acquiring this knowledge has been split
into two steps: (i) acquiring the descriptive, declarative
knowledge about a language and, (ii) deriving opera-
tional knowledge (content for the processing engines)
from this descriptive knowledge. A typical elicitation
interaction screen of Boas is shown in Figure 1.

An important aspect that we strive to achieve regard-
ing these descriptive and operational pieces of informa-
tion, be it elicited from human informants or acquired
via machine learning is that they should be transpar-
ent and h u m a n readable, and where necessary human
maintainable and extendable, contrary to opaque and
uninterpretable representations acquired by various sta-
tistical learning paradigms.

Before proceeding any further we would also like to
state the aims and limitations of our approach. Our
main goal is to significantly expedite the deveIopment
of a morphological analyzer. It is clear that for inflec-
tional languages where each root word can be associated
with a finite number of word forms, one can, with a lot
of work, generate a list of word forms with associated
morphological features encoded, and use this as a look-
up table to analyze word forms in input texts. This is,
however, something we would like to avoid, as it is time
consuming, expensive and error-prone. We would prefer
attempting to capture general morphophonological and
morphographemic phenomena, and lexicon abstractions
(say as inflectional paradigms) using an example driven
technique, and essentially reduce the acquisition pro-
cess to one of just assigning root or c i ta t ion forms to
one of these lexicon abstractions, with the automatic
generation process to be described, doing the rest of

,. ~ I~

; [] l l l m l r ~"

ii '

• " I I II I I'1 II I" I, I ~

• ~'i-:" ~:I~T~': ,~-~,,~.. ~ ,,,~1~.. ~ . , .~, . " - n i r~ "~

, ~ .-.- ~ .- : " ~ 4--],~i! i~i! ~ ~ ,.*~,- ,...--i~,"~ i~-": .~;.~ - ' " : ' ~ ,.,,..,. " " ' . "~ : . " ~ ,,,•. ' " .' !i ~ = ~ ' ~ ~ : ~ *, *"" "

• • I .t.",'l" "'" " - ~.'" "-:
.... !..L~ ~ .! ~ .',.~4._~..: ~:-,'.'~- I

i i . "." -.....'.. ~-..~.,'~r. "....,:_ .~'.~.~W**.'~.';~, '.d.[..: ! "~'7.. "'.* ,." . . . •

• i ~.~i; ~~ ~¢4~I • ~-..........~ .:,. ,.~. :.--. . . ! .~
~ • .I, -. ,!..~:.-:~," s.-~.

I'- -..I: .:~.~ ,-.:-,~.>-.~.'. ,';,~,

,,-,,,F,.~. ';*':3 :" " '" -i ,;'; ..!.lj-.j.~'~.~...,:"
• - i -'~, s i,,.~ .,.i'i :,,~::,:..,'~' .~ :"-~ . ,~ .

", ".. "," "" .~.,r, • .'~ ~,--I.'~.~,, ,." " .' :" ~ "" ~~i- i "-',-",--, *~-~..- x ,,~..~I ~-.~ • , I :lj .~...! r-, d,~.'L~,, .~|~ ,"
• °

. I~,.I~I~!-,'..~,...~I," :~ ,~.~J ,.~ , ~, ~...... :..:.. !:.,.

~" j. .. ::~.d,, ,,.
, ("" i "",,i ;~B','.; ;,',"

• i." ;: .>~ ",'~ ":"::: ".7

'I """!"" "~:~:":"" /~]~, - r "~ i "~ : '

~.i~ ~ _ ~ .I ° .

IIIII

Figure 1: .~ sample Boas elicitation screen

16

the work. This process will still be imperfect, as we ex-
pect human informants to err in making their paradigm
abstractions, and overlook details or exceptions. So, the
whole process will be an iterative one, with convergence
to a wide-coverage analyzer coming slowly at the be-
ginning (where morphological phenomena and lexicon
abstractions are being defined and tested), but signifi-
cantly speeding up once wholesale root form acquisition
starts. Since the generation of the operation content
(data files to be used by the morphological analyzer en-
gine) from the elicited descriptions, is expected to take
a few minutes, feedback on operational performance can
be provided very fast. There are also ways to utilize a
partially acquired morphological analyzer to aid in the
acquisition of open class root or citation forms.

Human languages have many diverse morphological
phenomena and it is not our intent at this point to have
a universal architecture that can accommodate any and
all phenomena. Rather, we propose a modular and ex-
tensible architecture that can accommodate additional
functionality in future incarnations of Boas. We also
intend to limit the morphological processing to process-
ing single tokens and deal with multi-token phenomena
such as partial or full word reduplications with addi-
tional machinery that we do not discuss here.

The Elicit-Build-Test Paradigm
In this paper we concentrate on operational content in
the context of building a morphological analyzer. To
determine this content, we integrate the information
provided by the informant with automatically derived
information. The whole process is an iterative one as il-
lustrated in Figure 2, whereby the information elicited
is transformed into operational data required by the
generic morphological analyzer engine s and the result-
ing analyzer is tested on a test corpus. 4 Any discrep-
ancies between the output of the analyzer and the test
corpus are then analyzed and potential sources of er-
rors are given as feedback to the elicitation process.
Currently, this feedback is limited to morphographemic
processes.

The box in Figure 2 labeled Morphological Ana-
lyzer Generation is the main component which takes
in the information elicited and generates a series
of regular expressions for describing the morpholog-
ical lexicon and morphographemic rules. The mor-
phographemic rules describing changes in spelling as a
result of affixation operations, are induced from the ex-

3We currently use XRCE finite state tools as our target
environment [Karttunen et al., 1996].

4Also independently elicited from either the human in-
formant or compiled from any on-line resources for the lan-
guage in question.

amples provided, by using transformation-based learn-
ing [Brill, 1995, Satta and Henderson, 1997]. The re-
sult is an ordered set of contextual replace oz" rewrite
rules, much like those used in phonology. We then use
error-tolerant finite state recognition [Oflazer, 1996] to
perform "reverse spelling correction" for identifying the
erroneous words the finite state analyzer accepts that
are (very) close to the correct words in the test corpus
that it rejects. The resulting pairs are then aligned, and
the resulting mismatches are identified and logged for
feedback purposes.

M o r p h o l o g i c a l A n a l y z e r A r c h i t e c t u r e

We adopt the general approach advocated by Kart-
tunen [1994] and build the morphological analyzer as
the combination of several finite state transducers some
of which are constructed directly from the elicited in-
formation while others are constructed from the output
of the machine learning stage. Since the combination of
the transducers is computed at compile time, there are
no run time overheads. The basic architecture of the
morphological analyzer is depicted in Figure 3. The
components of this generic architecture are as follows:
The analyzer consists of the union of transducers each
of which implements the morphological ealalysis process
for one paradigm. Each such transducer is the compo-
sition of a number of components. These components
are (from bottom to top) described below:

1. The bottom component is an ordered sequence
of morphographemic rules that are learned via
transformation-based learning from the examples for
the inflectional paradigm provided by the human in-
formant. The rules are then composed into one finite
state transducer [Kaplan and Kay, 1994].

2. The root and morpheme lexicon contains the root
words and the affixes. We currently assume that
all affixation is concatenative and that the lexi-
con is described by a regular expression of the sort
[Affixes]* [R o o t s] [Suffixes]*.5

3. The morpheme to surfacy]eature mapping essentially
maps morphemes to feature names but retains some
encoding of the surface morpheme. Thus, allomorphs
that encode the same feature would be mapped to
different "surfacy" features.

4. The lexical and surfacy constraints specify any con-
ditions to constrain the possibly overgenerating mor-
photactics of the root and morpheme lexicon. These

5%Ve currently assume that we have at most one prefix
and at most one suffix, but this is not a fundamental limita-
tion. On the other hand, elicitation of complex morphotac-
tics for an agglutinative language like Turkish or Finnish,
requires a more sophisticated elicitation machinery.

17

!

.

.

I Corpus
CompilationJ

Test
Corpus

Start

1
Human Elicitation Process /.

./

Description of Morphology
(paradigms, examples, exceptions, etc.)

1
I Morphological Analyzer Generation

1
I Content for Morphological Analyzer Engine

(lexicons, morphographemic rules)

1

Lrco_o.w. c. Erroo J
" l (MA Engine, TestEngine) Omissions

Figure 2: The Elicit-Build-Test Paradigm for Bootstrapping a Morphological Analyzer

constraints can be encoded using the root morphemes
and the surfacy features generated by the previous
mapping. The use of surfacy features enables refer-
ence to zero morphemes which otherwise could not
have been used. For instance, if in some paradigm a
certain prefix does not co-occur with a certain suffix,
or always occurs with some other suffix, or if a certain
root/lemma of that paradigm has exceptional behav-
ior with respect to one or more of the affixes, or if the
allomorph that goes with a certain root depends on
the properties of the root, these are encoded at this
level as a finite state constraint.

The surfacy feature to feature mapping module maps
the surfacy representation of the affixes to symbolic
feature names; as a result, no surface information
remains except for the lemma or the root word. Thus,
for instance, allomorphs that encode the same feature
and map to different surfacy features, now map to the
same feature symbol.

The feature constraints specify ant' constraints
among the symbolic features. This is an alternative
functionality to that provided by lexical and surfacy
constraints to constrain morphotactics, but at this
level one refers to and constrains features as opposed
to surfacy features. This may provide a more natu-
ral or convenient abstraction, especially for languages
with long distance morphotactic constraints.

These six finite state transducers are composed to yield
the transducer for the paradigm, and the union of
the resulting transducers produces one (possibly large)
transducer for morphological analysis where surface
strings applied at the lower side produce all possible
analyses at the upper side.

I n f o r m a t i o n E l i c i t e d f r o m H u m a n
I n f o r m a n t s

The Boas environment elicits morphological informa-
tion by asking the informant a series of questions about
the paradigms of inflection. A paradigm abstracts to-
gether lemmas (or root words) that essentially behave
the same with respect to inflection, and captures infor-
mation about the morphological features encoded and
forms realizing these features, from which additional in-
formation can be extracted. It is assumed that all lem-
mas that belong to the same paradigm take the same
set of inflectional affixes. It is expected that the roots
and/or the affixes may undergo systematic or idiosyn-
cratic morphographemic changes. It is also assumed
that certain lemmas in a given paradigm mat" behave
in some exceptional way (for instance, contrary to all
other lemmas, a given lemma may not have one of the
inflected forms]) A paradigm description also provides
the full inflectional patterns for one characteristic or
distinguished lemma belonging to the paradigm, and
additional examples for any other lemmas whose inflec-
tional forms undergo nonstandard morphographemic

18

Lemma+.Morpholo~al Featmes (e.g,, hapl~+Adj+Super)

. . - ~ . . .

i[F tssm~C~s ii
o t

.o . ~ . . - . .

I

S~ric?-ti-FeitureMIplPinl] i

o

o
IMl~lMmme- , o - S I I d . . l ~ F li U ' ' * U : o t

, - - - - - - , - l))[
; -; , o , (

i ,)J li i . • .. -" .,

o !

T
Surface Form (e.g. bappiest)

Figure 3: General Architecture of the Morphological Analyzer

changes. If necessary, any lexical and feature con-
straints can be encoded. Currently the provisions we
have for such constraints are limited to writing regular
expressions (albeit at a much higher level), but captur-
ing such constraints using a more natural language (e.g.,
[Ranta, 1998]) can be stipulated for future versions.

Preprocessing ~'

The information elicited from the human informant is
captured as a text file. The root word and the in-
flection examples for the distinguished lemma are pro-
cessed with an alignment algorithm to determine how
the given root word aligns with each inflected form so
that the edit distance is minimum. Once such align-
ments are performed, the segments in the inflected form
that are before and after the root alignment points
are considered to be the prefixes and suffixes of the
paradigm. These are then associated with the features
given with the inflected form.

Let us provide a simple example from a Russian verb
inflection paradigm. The following information about
the distinguished lemma in the paradigm is provided: 6

ROOT rez Verb LEMMA rezat'
FORM rezat' Inf FORM reZ' Impsg
FORM. reZ'te Imppl FORM reZu Preslsg
FORM feZeS Pres2sg FORM reZet Pres3sg
FORM reZem Preslpl FORM reZete Pres2p1
FORM reZut Pres3pl FORM. rezali PastPl
FORM rezalo PastNsg FORM rezala PastFsg
FORM rezal PastMsg

The alignment produces the following suffix feature

6Upper case characters and the single quote symbol en-
code specific Russian characters. The transliteration is not
conventional.

pairs for the suffix lexicon and morpheme to feature
mapping transduction:

+at'-> +Inf
+u -> +Preslsg
+em -> +Preslpl
+all -> +PastPl
+al -> +PastMs E

+' -> +Impsg
+eS -> +Pres2sg
+ete -> +Pres2pl
+alo -> +PastNsg

+'te -> +Imppl
+'et -> +Pres3sg
+ut -> +Pres3pl
+ala -> +PastFsg

We then produce the following segmentations to be
used by the learning stage discussed in the next section.
It should be noted we (can) use the lemma form as the
morphological stem, so that the analysis we generate
will have the lemma. Thus, some of the rules learned
later will need to deal with this.

(rezat'+at', rezat')
(rezat'+'te, reZ'te)
(rezat'+et, reZet)
(rezat'+ete, reZete)
(rezat'+ali, rezali)
(rezat'+ala, rezala)

(rezat '÷t, reZ')
(rezat'+eS, reZeS)
(rezat'+em, reZem)
(rezat'+ut, reZut)
(rezat'+alo, rezalo)
(rezat'+al, rezal)

L e a r n i n g S e g m e n t a t i o n a n d
M o r p h o g r a p h e m i c R u l e s

The lemma and suffix information elicited and ex-
tracted as summarized above are used to c~mstruct
regular expressions for the lexicon component of each
paradigm. 7 The example segmentations like those
above are fed into the learning module to induce mor-
phographemic rules.

~The result of this process is a script for the XRCE finite
state tool xfst. Large scale lexicons can be more efficiently
compiled ~, the XRCE tool lexc. We currently do not gen-
erate lerc scripts, but it is trivial to do so.

19

Fiwms 1
":o-:" I I " " !

~ T r a n s r . r .,.d,m ~

Figure 4: Transformation-based learning of mor-
phographemic rules

G e n e r a t i n g C a n d i d a t e R u l e s f r o m E x a m p l e s
The preprocessing stage yields a list of pairs of seg-
mented lexical forms, and surface]orms. The seg-
mented forms have the roots/ lemmas and affixes, and
the affix boundaries are marked by the + symbol. This
list is then processed by a transformation-based learn-
ing paradigm[Brill, 1995, Sat ta and Henderson, 1997]
as illustrated in Figure 4. The basic idea is that we con-
sider the list of segmented words as our input and find
transformation rules (expressed as contextual rewrite
rules) to incrementally transform it into the list of sur-
face forms. The transformation we choose at every iter-
ation is the one that makes the list of segmented forms
closest to the list of surface forms.

The first step in the learning process is an initial
alignment of pairs using a standard dynamic program-
ming scheme. The only constraints in the alignment are
that a + in the segmented lexical form is always aligned
with an empty string on the surface side (notated by a
0), and that a consonant (vowel) on one side is aligned
with a consonant (vowel) or 0 on the other side. The
alignment is also constrained by the fact that it should
correspond to the minimum edit distance between the
original lexical and surface forms, s ~,From this point on,
we will use a simple example from English to clarify our
points.

We assume that we have the pairs (un+happy+est ,
unhappiest) and (shop+ed, shopped) in our example
base. We align these and determine the total number of
"errors" in the segmented forms that we have to fix to
make all match the corresponding surface forms. The
initial alignment produces the aligned pairs:

un+happy+es*c shop0+ed
un0happi0est shopp0ed

with a total of 5 errors. From each segmented pair we
generate rewrite rules of the sort 9

SWe choose one if there are multiple legitimate align-
ments.

9V~re u s e the XRCE Finite State Tools regular expression
syntax [Karttunen et al., 1996]. For the sake of readability.
we will ignore the escape symbol (Z) that should precede
any special characters (e.g., +) used in these rules.

20

u -> 1 [] LeftContext _ RightContext ;

where u(pper) is a symbol in the segmented form,
l(ower) is a symbol in the surface form. Rules are
generated only from those aligned symbol pairs which
are different. LeftContext and RightContext are sim-
ple regular expressions describing contexts in the seg-
mented side (up to some small length) taking into ac-
count also the word boundaries. For instance, from the
first aligned-pair example, this procedure would gener-
ate rules such as (depending on the amount of left and
right context allowed)

y -> i]1 p _ y -> i II p _ ÷ e
y - > i l l p _ + e s y - > i l l p _ + e s t
y - > i l l p _ + e s t # y - > i l l p p _ + e

• " i +->01 # u n _ +->011 #un _ h a p

+ - > 0 1 1 _ e s t
• ,

+ - > 0 l i _ e s t # . . .

+ - > 0 I I p p y _ e s t #

The # symbol denotes a word boundary, to capture
any word initial and final phenomena. The segmenta-
tion rules (+ -> 0) require at least some minimal left
or right context (usually longer than the minimal con-
text for other rules for more accurate segmentation de-
cisions). We also disallow contexts that consist only
of a morpheme boundary, as such contexts are usu-
ally not informative. It should also be noted that these
are rules that transform a segmented form into a sur-
face form (contrary to what may be expected for anal-
ysis.) This lets us capture situations where multiple
segmented forms may map to the same surface form,
which would be the case when the language has mor-
phological ambiguity. Thus, in a reverse look-up a given
surface form may be interpreted in multiple wa~'s if ap-
plicable.10

Since we have many examples of aligned pairs, it is
likely that a given rule will be generated from many
pairs. For instance, if the pairs (s top+ed , s topped)
and (t r i p + e d , t r i p p e d) were also in the list. the gem-
ination ru le0 -> p]l p _ + e d, (along with certain
others) will also be generated from these examples. We
count how many times a rule is generated and associate
this number with the rule as its promzse, meaning that
it promises to fix this many "errors" if it is selected to
apply to the current list of segmented forms.

G e n e r a l i z i n g R u l e s If information regarding
phoneme/grapheme classes in addition to consonant
and vowel classes, such as SIBILANTS = {s,x.z}, LABIAL
= {b,m, . . . } HIfiHWOVELS = { u, i . . .) . etc., it is

l°However, the learning procedure may fail to fix all er-
rors, if among the examples there are cases where the same
segmented form maps to two different surface forms (gener-
ation ambiguity).

possible to generate more general rules. Such rules can
cover more cases and the number of rules induced will
typically be smaller and cover more unseen cases. For
instance, in addition to arule like 0 -> p II p _ +
e, the rules

o -> p II
0 -> p I I

0 -> p I I

0 -> p I I

C O N S O N A N T S _ e

p _ VOWELS

L A B I A L S _ e

C O N S O N A N T S _ VOWELS

can be generated where symbols such as CONSONANTS
or LABIALS stand for regular expressions denoting the
union of relevant symbols in the alphabet. The promise
scores of the generalized rules are found by adding the
promise scores of the original rules generating them. It
should also be noted that generalization will increase
substantially the number of candidate rules to be con-
sidered during each iteration, but this is hardly a serious
issue, as the number of examples one would have per
paradigm would be quite small. The rules learned in
the process would be the most general set of rules that
do not conflict with the evidence in the examples.

Selecting Rules At each iteration all the rules along
with their promise scores are generated from the cur-
rent state of the example pairs. The rules generated
are then ranked based on their promise scores with the
top rule having the highest promise. Among rules with
the same promise score, we rank more general rules
higher with generality being based on context subsump-
tion. However, all the segmentation rules go to the
bottom of the list, though within this group rules are
still ranked based on decreasing promise and context
generality. The reasoning for treating the segmenta-
tion rules separately and later in the process, is that
affixation boundaries consti tute contexts for any mor-
phographemic changes and they should not be elimi-
nated if there are any (more) morphographemic phe-
nomena to process.

Star t ing with the top ranked rule we test each rule on
the segmented component of the pairs using the finite
s ta te engine, to see how much the segmented forms are
• 'fixed". The first rule tha t fixes as many "errors" as it
promises to fix, gets selected and is added to the list of
rules generated, in order. H

The complete procedure for rule learning can now be
given as follows:

- Align surface and segmented forms;
- Compute total Error;
- uhile(Error > O) {

-Generate all possible revrite rules

i l Note that a rule may actually clobber other places, since
context checking is done only on the segmented form side
and what it delivers ma.v be different than what it promises.
as promise scores are also dependent on the surface side.

21

(subject to context size limits);

-Rank R u l e s ;

-while (there are more rules and

a rule has not yet been selected) {

- Select the next rule;

- Tentatively apply rule to

all the segmented forms;

Re-align the resulting segmented
forms with the corresponding
surface forms to see
how many ''errors'' have

been f~xed;

- If the number fixed is equal to
what the rules promised to fix

select this rule;
)

-Commit the changes with the changes
performed by the rule and
save alignments;

-Reduce Error by the promise
score of the selected rule;

)

This procedure eventually generates all ordered se-
quence of two groups of rewrite rules. The first group of
rules are for any morphographemic phenomena in the
given set of examples, and the second group of rules
handle segmentation. All these rules are composed in
the order generated to construct the Morphographemic
Rules t ransducer at the bo t tom of each paradigm (see
Figure 3).

I d e n t i f y i n g E r r o r s a n d P r o v i d i n g F e e d b a c k

Once the MoTThographemic Rules t ransducers are com-
piled and composed with the lexicon t ransducer that is
generated automatical ly fl'om the elicited information,
we obtain the analyzer as the union of the individual
transducers for each paradigm. I t is now possible to
test this t ransducer against a test corpus and to see if
there are any surface forms in the test corpus that are
not recognized by the generated analyzer. Our inten-
tion is to identify and provide feedback abou t any minor
problems tha t are due to a lack of examples that cover
certain morphographemic phenomena, or to an error in
associating a given lemma with a paradigm.

Our approach here is as follows: we use the result-
ing morphological analyzer with an error- tolerant finite
s tate recognizer engine [Oflazer. 1996]. For any (cor-
rect) word in the test corpus that is not recognized
we try to find words recognized by the analyzer that
are (very) close to the rejected word. by error-tolerant
recognition, performing essentially a reverse spelling
correction. If the rejection is due a snmll number (1

or 2) of errors, the erroneous words recognized by the
recognizer are aligned with the corresponding correct
words from the test corpus. These aligned pairs can
then be analyzed to see what the problems may be.

A n E x a m p l e

The examples generated from the above Russian
paradigm will induce the following rules coded using
XRCE notation and composed with . o. operator. ([..]
indicates empty string.): 12

[t -> [. . 1 II _ ' +] .o.
C a - > C . .] II _ " +] . o .
[z - > [. .] I I _ ' +] . o .

[' - > z I I _ + a] . o .
[' -> Z I I _ + e] . o .
[' -> Z II + u] .o.
[' -> [. .] ~1 _ + '] .o.
[. .] -> Z 11 + '] . o .

[' -> [..] II 7- + _ e] .o.
[+ - > [. .] I I _ ' #] . o .
[+ - > [. .] I I _ u #] . o .
[+ - > [. .] I I _ e S #] . o .
[+ - > [. .] I I _ a 1 #] . o .
[+ - > [. .] I I _ e r a #] . o .
[+ - > [. .] I I _ e t #] . o .
[+ - > [. . 3 I I _ u t #] . o .
C+ - > [. .] I I _ a t ' #] . o .
[+ - > [. .] I I _ ' t e #] . o .
[+ - > [. .] I I _ a 1 a #] . o .
[+ - > [. .] I I _ a 1 i #] . o .
[+ -> [. .] I I _ a 1 o #] . o .
[+ - > [. •] I I _ e t e #]

Note that since we require that the analyses contain
the verbal lemmas, a number of rules deal with the
lemma marker +a t ' . These rules when composed with
tile lexicon, will. for example, output

rezat'+Verb Par2 +Impsg
in response to input reZu. Now, pisat' is a verb
that was included in this paradigm, and running the
corpus containing inflected forms of pisat' through
the error-tolerant analyzer and subsequent alignment
would raise the following flags (among others):

Morp.-> pisZut pisZete pisZte piszali piszalo
File -> piSOut piSOete piSOte pisOali pisOalo

which indicate a consistent problem due either to a
wrong paradigm selection for this verb or the lack of
examples that would describe the s --~ S alternation.
Since only examples from one verb were given, some of
the rules were specialized to fixing the phenomena in
those examples, which explains the spurious z/Z in the
inflected forms of p i s a t ' . Adding such examples for
the verb to the example base or defining a new paradigm
for this other verb in the next round solves these prob-
lems.

t~This example does not involve rule generalization.

22

Per formance Issues The process of generating a
morphological analyzer once the descriptive data is
given, is very fast. Each paradigm can be processed
within seconds on a fast workstation, including the few
dozens of iterations of rule learning from the examples.
A new version of the analyzer ca,, be generated within
minutes and tested very rapidly on any test data. Thus,
none of the processes described in this paper constitutes
a bottleneck in the elicitation process.

S u m m a r y a n d C o n c l u s i o n s

We have presented the highlights of our approach for
automatically generating finite state morphological an-
alyzers from information elicited from human infor-
mants. Our approach uses transformation-based learn-
ing to induce morphographemic rules from examples
and combines these rules with the lexicon information
elicited to compile the morphological analyzer. There
are other opportunities for using machine learning in
this process. For instance, one of the important issues
in wholesale acquisition of open class items is that of de-
termining which paradigm a given lemma or root word
belongs to. From the examples given during the acqui-
sition phase it is possible to induce a classifier that can
perform this selection to aid the informant.

We believe that this approach to machine learning of
a natural language processor that involves a 1/uman in-
formant in an elicit-generate-test loop and uses scaffold-
ing provided by the human informant in machine learn-
ing, is a very viable approach that avoids the noise and
opaqueness of other induction schemes. Our current
work involves using similar principles to induce (light)
syntactic parsers in the Boas framework.

A c k n o w l e d g e m e n t s

This research was supported ill part by Contract
MDA904-97-C-3976 from the US Department of De-
fense. We also thank XRCE for providing the finite
state tools.

R e f e r e n c e s

[Antworth, 1990] Evan L. Antworth. PC-KIMMO: A
two-level processor for Morphological Analysis. Sum-
mer Institute of Linguistics, Dallas, Texas, 1990.

[Brill, 1995] Eric Brill. Transformation-based error-
driven learning and natural language processing: A
case study in part-of-speech tagging. Computational
Linguistics, 21(4):543-566, December 1995.

[Golding and Thompson, 1985] Andrew Golding and
Henry S. Thompson. A morphology component for
language programs. Linguistics. 23. 1985.

[Goldsmith. 1998] John Goldsnfith. Unsupervised
learning of the morphology of a natural lan-
guage. Unpublished Manuscript, available at
h t t p : / / h u m a n i t i e s .uchicago. edu] f a c u l t y /
gold-~mith/index, html, 1998.

[Johnson, 1984] Mark Johnson. A discovery proce-
dure for certain phonological rules. In Proceedings
o[lOth International Conference on Computational
Linguistics-COLING'84, 1984.

[Kaplan and Kay, 1994] Ronald M. Kaplan and Martin
Kay. Regular models of phonological rule systems.
Computational Linguistics, 20(3):331-378, Septem-
ber 1994.

[Karttunen and Beesley, 1992] Lauri Karttunen and
Kenneth. R. Beesley. Two-level rule compiler. Tech-
nical Report, XEROX Palo Alto Research Center,
1992.

[Karttunen et al., 1992] Lauri Karttunen, Ronald M.
Kaptan, and Annie Zaenen. Two-level morphology
with composition. In Proceedings of the 15 th Interna-
tional ConJerence on Computational Linguistics, vol-
ume 1, pages 141-148, Nantes, France, 1992. Inter-
national Committee on Computational Linguistics.

[Karttunen et a/., 1996] Lauri Karttunen, Jean-Pierre
Chanod, Gregory Grefenstette, and Anne Schiller.
Regular expressions for language engineering. Nat-
ural Language Engineering, 2(4):305-328, 1996.

[Karttunen, 1993] Lauri Karttunen. Finite-state lexi-
con compiler. XEROX, Palo Alto Research Center-
Technical Report, April 1993.

[Karttunen, 1994] Lauri Karttunen. Constructing lex-
ical transducers. In Proceedings of the 16 th Inter-
national Conference on Computational Linguistics,
volume 1, pages 406-411, Kyoto, Japan, 1994. Inter-
national Committee on Computational Linguistics.

[Koskenniemi, 1983] Kimmo Koskenniemi. Two-level
morphology: A general computational model for
word form recognition and production. Publication
No: 11. Department of General Linguistics, Univer-
sity of Helsinki, 1983.

[Nirenburg and Raskin, 1998] Sergei Nirenburg and
Victor Raskin. Universal grammar and lexis for quick
ramp-up of MT systems. In Proceedings of First In-
ternational Con[erence on Language Resources and
Evaluation, 1998.

[Nirenburg, 1996] Sergei Nirenburg. Supply-side and
demand-side lexical semantics. In Proceedings of the

23

Workshop on Breadth and Depth of Semantic Lexi-
cons at the 34th Annual Meeting of the Association
for Computational Linguistics, 1996.

[Nirenburg, 1998] Sergei Nirenburg. Project Boas: "A
Linguist in a Box" as a multi-purpose language re-
source. In Proceedings of COLING'98, 1998.

[Oflazer, 1996] Kemal Oflazer. Error-tolerant finite-
state recognition with applications to morphological
analysis and spelling correction. Computational Lin-
guistics, 22(1):73-90, March 1996.

[Ranta, 1998] Aarne Ranta. A multilingual natural lan-
guage interface to regular expressions. In Lauri Kart-
tunen and Kemal Oflazer, editors, Proceedings of
International Workshop on Finite State Methods in
Natural Language Processing, FSMNLP'98, 1998.

[Satta and Henderson, 1997] Giorgio Satta and
Jolm C. Henderson. String transformation learning.
In Proceedings of ACL/EACL 'gz 1997.

[Theron and Cloete, 1997] Pieter Theron and Ian
Cloete. Automatic acquisition of two-level morpho-
logical rules. In Proceedings of 5th Conference on
Applied Natural Language Processing, 1997.

