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Abstract  
This paper  is concerned with  using a se- 
mant ic  hierarchy to es t imate  the frequency 
with which a word sense appears  as a given 
argument  of a verb, assuming the  da ta  is 
not sense disambiguated.  The  s tandard  ap- 
proach is to split the  count for any noun ap- 
pearing in the da t a  equally among  the al- 
ternat ive senses of the noun. This can lead 
to inaccurate  estimates.  We describe a re- 
es t imation process which uses the accumu- 
lated counts of hypernyms of the al ternat ive 
senses in order to redis t r ibute  the count. In 
order to choose a hypernym for each alter- 
native sense, we employ a novel technique 
which uses a X 2 test to measure the homo- 
geneity of sets of concepts in the hierarchy. 

1 Introduction 
Knowledge of the constraints  a verb places 
on the semantic types of its a rguments  (var- 
iously called selectional restrictions, selec- 
t ional preferences, selectional constraints) is 
of use in many areas of na tura l  language pro- 
cessing, par t icular ly s t ructural  disambigua- 
tion. Recent t rea tments  of selectional re- 
s t r ic t ions  have been probabilistic in na ture  
(Resnik, 1993), (Li and Abe, 1998), (Ribas, 
1995), (McCarthy, 1997), and est imat ion 
of the relevant probabilit ies has required 
corpus-based counts of the number  of t imes 
word senses, or concepts, appear  in the dif- 
ferent a rgument  positions of verbs. A dif- 
ficulty arises due to the absence of a large 
volume of sense d isambiguated  data,  as the 
counts have to be es t imated from the nouns 
which appear  in the corpus, most  of which 
will have more than  one sense. The tech- 

niques in Resnik (1993), Li and Abe (1998) 
and Ribas (1995) simply dis t r ibute  the count 
equally among  the al ternat ive senses of a 
noun. Abney and Light (1998) have at- 
t empted  to obtain  selectional preferences us- 
ing the Expecta t ion  Maximizat ion a lgor i thm 
by encoding WordNet  as a h idden Markov 
model  and using a modified form of the 
forward-backward algori thm to es t imate  the 
parameters .  

The  approach proposed in this paper  is to 
use a re-est imat ion process which relies on 
counts being passed up a semantic  hierar- 
chy, from the senses of nouns appear ing  in 
the data.  We make use of the semant ic  hier- 
archy in WordNet  (Fellbaum, 1998), which 
consists of word senses, or concepts, 1 related 
by the 'is-a' or ' is-a-kind-of' relation. If c' is 
a kind of c, then c is a hypernym of c', and c' 
a hyponym of c. Counts for any concept  are 
t r ansmi t t ed  up the hierarchy to all of the 
concept 's  hypernyms.  Thus if eat chicken 
appears  in the corpus, the count is t ransmit -  
ted up to < m e a t  > ,  < :food>, and all the 
other  hypernyms of tha t  sense of chicken? 
The problem is how to dist inguish the cor- 
rect sense of chicken in this case from incor- 
rect senses such as <wimp>. 3 We utilise the 

1We use the words sense and concept interchange- 
ably to refer to a node in the semantic hierarchy. 

eWe use italics when referring to words, and an- 
gled brackets when referring to concepts or senses. 
This notation does not always pick out a concept 
uniquely, but the particular concept being referred 
to should be clear from the context. 

3The example used here is adapted from Mc- 
Carthy (1997). There are in fact four senses of 
chicken in WordNet 1.6, but for ease of exposi- 
tion we consider only two. The hypernyms of the 
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fact that whilst splitting the count equally 
can lead to inaccurate estimates, counts do 
tend to accumulate in the right places. Thus 
counts will appear under <:food>, for the 
object of eat, but not under <person>,  in- 
dicating that the object position of eat is 
more strongly associated with the set of con- 
cepts dominated by <:food> than with the 
set of concepts dominated by < person >. 
By choosing a hypernym for each alternative 
sense of chicken and comparing how strongly 
the sets dominated by these hypernyms as- 
sociate with eat, we can give more count in 
subsequent iterations to the food sense of 
chicken than to the wimp sense. 

A problem arises because these two senses 
of chicken each have a number of hypernyms, 
so which two should be compared? The cho- 
sen hypernyms have to be high enough in 
the hierarchy for adequate counts to have 
accumulated, but not so high that the alter- 
native senses cannot be distinguished. For 
example, a hypernym of the food sense of 
chicken is < p o u l t r y > ,  and a hypernym of 
the wimp sense is <weakl ing>.  However, 
these concepts may not be high enough in 
the hierarchy for the accumulated counts to 
indicate that eat is much more strongly as- 
sociated with the set of concepts dominated 
by <poul t ry> than with the set dominated 
by <weakling>. At the other extreme, if 
we were to choose < e n t i t y > ,  which is high 
in the hierarchy, as the hypernym of both 
senses, then clearly we would have no way of 
distinguishing between the two senses. 

We have developed a technique, using a 
X 2 test, for choosing a suitable hypernym 
for each alternative sense. The technique is 
based on the observation that a chosen hy- 
pernym is too high in the hierarchy if the set 
consisting of the children of the hypernym is 
not sufficiently homogeneous with respect to 
the given verb and argument position. Using 
the previous example, < e n t i t y >  is too high 
to represent either sense of chicken because 

food sense are <poultry>, <bird>, <meat>, 
< foodstuff >, < food >, < substance >, < 
object >, < entity >. The hypernyms of the 
wimp sense are < weakling >, < person >, < 
life_form>, <entity>. 

the children of < e n t i t y >  are not all associ- 
ated in the same way with eat. The set con- 
sisting of the children of <meat>, however, is 
homogeneous with respect to the object po- 
sition of eat, and so <meat> is not too high 
a level of representation. The measure of ho- 
mogeneity we use is detailed in Section 5. 

2 The Input Data and 
Semantic Hierarchy 

The input data used to estimate frequencies 
and probabilities over the semantic hierarchy 
has been obtained from the shallow parser 
described in Briscoe and Carroll (1997). The 
data consists of a multiset of 'co-occurrence 
triples', each triple consisting of a noun 
lemma, verb lemma, and argument position. 
We refer to the data as follows: let the uni- 
verse of verbs, argument positions and nouns 
that can appear in the input data be denoted 

= {Vl, . . .  ,Vkv }, 1Z---- { r l , . . .  , rkn}  and 
Af = { n l , . . .  , nk~¢ }, respectively. Note that 
in our treatment of selectional restrictions, 
we do not at tempt to distinguish between 
alternative senses of verbs. We also assume 
that each instance of a noun in the data 
refers to one, and only one, concept. 

We use the noun hypernym taxonomy of 
WordNet, version 1.6, as our semantic hier- 
archy. 4 Let C = {Cl,. . . ,Ckc } be the set 
of concepts in WordNet. There are approx- 
imately 66,000 different concepts. A con- 
cept is represented in WordNet by a 'syn- 
onym set' (or 'synset'), which is a set of 
synonymous words which can be used to de- 
note that concept. For example, the con- 
cept 'nut', as in a crazy person, is repre- 
sented by the following synset: {crackpot, 
crank, nut, nutcase, fruitcake, screwball}. 
Let syn(c) C Af be the synset for the con- 
cept c, and let an(n) = { c In 6 syn(c) } be 
the set of concepts that can be denoted by 
the noun n. The fact that some nouns are 
ambiguous means that the synsets are not 
necessarily disjoint. 

4There are other taxonomies in WordNet, but we 
only use the noun taxonomy. Hence, from now on, 
when we talk of concepts in WordNet, we mean con- 
cepts in the noun taxonomy only. 
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The hierarchy has the structure of a di- 
rected acyclic graph, 5 with the isa C C xC re- 
lation connecting nodes in the graph, where 
(d ,c)  • isa implies d is a kind of c. Let 
isa* C C x C be the transitive, reflexive clo- 
sure of isa; and let 

~ =  { c' l (d ,c  ) • isa* } 

be the set consisting of the concept c and all 
of its hyponyms. The set <:food> contains 
all the  concepts which are kinds of food, in- 
eluding <food>.  

Note tha t  words in our da ta  can appear 
in synsets anywhere in the hierarchy. Even 
concepts such as < e n t i t y > ,  which appear 
near the root of the hierarchy, have synsets 
containing words which may appear in the 
data.  The synset for < e n t i t y >  is {entity, 
something},  and the words entity and some- 
thing may well appear in the argument  po- 
sitions of verbs in the corpus. Furthermore,  
for a concept c, we distinguish between the 
set of words tha t  can be used to denote  c 
(the synset of c), and the set of words tha t  
can be used to denote concepts in L 6 

3 The Measure of Assoc iat ion  
We measure the association between argu- 
ment  positions of verbs and sets of concepts 
using the a s s o c i a t i o n  n o r m  (Abe and Li, 
1996). 7 For C C C, v E V a n d r  E 7~, the 
association norm is defined as follows: 

A(C, v, r) - p ( C I v '  r) 
p(CI ) 

For example, the association between the ob- 
ject position of eat and the set of concepts 
denot ing kinds of food is expressed as fol- 
lows: A(<food>,  eat, object). Note that ,  for 

5The number of nodes in the graph with more 
than one parent is only around one percent of the 
total. 

6Note that Resnik (1993) uses rather non- 
standard terminology by refering to this second set 
as the synsets of c. 

7This work restricts itself to verbs, but can be ex- 
tended to other kinds of predicates that take nouns 
as arguments, such as adjectives. 

C c C, p(C]v,r) is just  the probability of 
the disjunction of the concepts in C; that  is, 

= Zp(clv ,  r) 
cEC 

In order to see how p(clv ,r) relates to the 
input  data,  note tha t  given a concept c, 
verb v and argument  position r, a noun can 
be generated according to the distr ibution 
p(n[c, v, r), where 

p(nlc, v, r) = 1 
nEsyn(c) 

Now we have a model  for the input data: 

p(n, v, r) = p(v ,r)p(niv  ,r) 

= p(v ,r)   p(clv, rlp(ntc, v,r) 
cecn(n) 

Note tha t  for c ¢ cn(n),  p(nlc, v, r) = O. 
The association norm (and similar mea- 

sures such as the  mutual  information score) 
have been criticised (Dunning, 1993) because 
these scores can be greatly over-estimated 
when frequency counts are low. This prob- 
lem is overcome to some extent  in the scheme 
presented below since, generally speaking, 
we only calculate the association norms for 
concepts that  have accumulated a significant 
count. 

The association norm can be est imated 
using maximum likelihood estimates of the 
probabilities as follows. 

£ ( c , v , r )  _ P(cI  v , r  ) 
 (Clr) 

4 Est imat ing  Frequencies 
Let freq(c, v,r) ,  for a particular c, v and r, 
be the number  of (n, v, r) triples in the data  
in which n is being used to denote c, and 
let freq(v, r) be the number  of t imes verb v 
appears with something in position r in the 
data; then the relevant maximum likelihood 
estimates, for c E C, v E 12, r E 7~, are as 
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follows. 

freq(~, v, r) 

freq(v, r) 

~ e e e  freq(g, v, r) 

freq(v, r) 

if(Fir) = Evevfreq(c' v'r) 
~ , e v  freq(v, r) 

_ Ever 
~ , e v  freq(v, r) 

Since we do not have sense disambiguated 
data, we cannot obtain freq(c, v, r) by sim- 
ply counting senses. The standard approach 
is to estimate freq(c, v, r) by distributing 
the count for each noun n in syn(c) evenly 
among all senses of the noun as follows: 

freq(n, v, r) 
freq(c, v, r) = ~ I cn(n)l 

nEsyn(c)  

where freq(n, v, r) is the number times the 
triple (n,v,r)  appears in the data, and 
[ cn(n)] is the cardinality of an(n). 

Although this approach can give inaccu- 
rate estimates, the counts given to the incor- 
rect senses will disperse randomly through- 
out the hierarchy as noise, and by accu- 
mulating counts up the hierarchy we will 
tend to gather counts from the correct senses 
of related words (Yarowsky, 1992; Resnik, 
1993). To see why, consider two instances 
of possible triples in the data, drink wine 
and drink water. (This example is adapted 
from Resnik (1993).) The word water is a 
member of seven synsets in WordNet 1.6, 
and wine is a member of two synsets. Thus 
each sense of water will be incremented by 
0.14 counts, and each sense of wine will be 
incremented by 0.5 counts. Now although 
the incorrect senses of these words will re- 
ceive counts, those concepts in the hierarchy 
which dominate more than one of the senses, 
such as <beverage>, will accumulate more 
substantial counts. 

However, although counts tend to accu- 
mulate in the right places, counts can be 

greatly underestimated. In the previous ex- 
ample, freq(<beverage>,drink, object) is in- 
cremented by only 0.64 counts from the two 
data instances, rather than the correct value 
of 2. 

The approach explored here is to use 
the accumulated counts in the following re- 
estimation procedure. Given some verb v 
and position r, for each concept c we have 
the following initial estimate, in which the 
counts for a noun are distributed evenly 
among all of its senses: 

^ 0 freq(n,v,r)  
freq (c, v, r) ---- 

Icn(n) l 
nEsyn(c)  

Given the assumption that  counts from 
the related senses of words that  can fill po- 
sition r of verb v will accumulate at hyper- 
nyms of c, let top(c, v, r) be the hypernym 
of c (or possibly c itself) that  most accu- 
rately represents this set of related senses. In 
other words, top(c, v, r) will be an approxi- 
mation of the set of concepts related to c that  
fill position r of verb v. Rather than split- 
ting the counts for a noun n evenly among 
each of its senses c E cn(n), we distribute 
the counts for n on the basis of the accumu- 
lated counts at top(c, v, r) for each c E cn(n). 
In the next section we discuss a method for 
finding top(c, v, r), but first we complete the 
description of how the re-estimation process 
uses the accumulated counts at top(c, v, r). 

Given a concept c, verb v and position r, 
in the following formula we use [c, v, r] to de- 
note the set of concepts top(c, v, r). The re- 

_ ̂  r n + l .  
estimated frequency treq (c, v, r) is given 
as follows. 

f r  r n + l .  eq (c, v, r) = 

freq(n,v,r) Am([c'~%r]'v'r) 
 m(F, v, rl, v,r) 

d e c n ( n )  

Note that  only nouns n in syn(c) con- 
tribute to the count for c. The count 
freq(n, v, r) is split among all concepts in 
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<milk> 

<meal> 

<course> 

<dish> 

<delicacy> 

^ 0 

freq (~, eat, obj) 

0.0 (0.6) 
8.5 (5.6) 
1.3 (1.7) 
5.3 (5.7) 
0.3 (1.8) 
15.4 

^ 0 

freq (~,obj)-  
^ 0 

freq (~, eat, obj) 

9.0 (8.4) 
78.0 (80.9) 
24.7 (24.3) 
82.3 (81.9) 
27.4 (25.9) 
221.4 

^ 0 

freq (~ ,obj )=  
^ 

Ev~v freq°(~, v,obj) 

9.0 
86.5 
26.0 
87.6 
27.7 
236.8 

Table 1: Contingency table for children of <nutr iment> 

cn(n) according to the ratio 

£m([c,v,r],v,r) 
5L~¢.(.) £ re(Iv, ~, r], ~, r) 

For a set of concepts C, 

hm(C,v,r) =15m(CI v'r) 
~m(Clr) 

where 

pm(Clv, r ) = freqm(c, v, r) 
fr~q(~, ~) 

ism(Clr) = ~vev freqm( C, v, r) 

~ v e v  freq(v, r) 

freqm(C, v, r) = Z freqm(c, v, r) 
cEC 

5 Determining top(c,v,r) 
The technique for calculating top(c, v, r) is 
based on the assumption that  a hypernym 
d of c is too high in the hierarchy to be 
top(e, v, r ) i f  the children of e' are not suf- 
ficiently homogeneous with respect to v and 
r. A set of concepts, C, is taken to be ho- 
mogeneous with respect to a given v E 
and r 6 7~, ifp(vl~ , r) has a similar value for 
each c 6 C. Note that  this is equivalent to 
comparing association norms since 

p(vlC, r) _ p ( C v ,  r) , , , p ~  p(vr) 

= A ( c , v , r ) p ( v l r )  
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and, as we are considering homogeneity for 
a given verb and argument position, p(vlr ) 
is a constant. 

To determine whether a set of concepts 
is homogeneous, we apply a X 2 test to a 
contingency table of frequency counts. Ta- 
ble 1 shows frequencies for the children of 
<nu t r imen t>  in the object position of eat, 
and the figures in brackets are the expected 
values, based on the marginal totals in the 
table. 

Notice that  we use the freq0 counts in the 
table. A more precise method, that  we in- 
tend to explore, would involve creating a new 
table for each freqm , m > 0, and recalculat- 
ing top(c, v, r) after each iteration. A more 
significant problem of this approach is that  
by considering p(v]~, r), we are not taking 
into account the possibility that  some con- 
cepts are associated with more verbs than 
others. In further work, we plan to consider 
alternative ways of comparing levels of asso- 
ciation. 

The null hypothesis of the test is that  
p(vl~ , r) is the same for each c in the table. 
For example, in Table 1 the null hypothesis 
is that  for every concept c that  is a child of 
<nutriment>, the probability of some con- 
cept d 6 ~ being eaten, given that  it is the 
object of some verb, is the same. For the 
experiments described in Section 6, we used 
0.05 as the level of significance. Further work 
will investigate the effect that  different lev- 
els of significance have on the estimated fre- 
quencies. 

The X 2 statistic corresponding to Table 1 



(v, c) Hypernyms of c 

( eat, <hotdog> ) 

( drink, <cof f  ee> ) 

( see, <movie> ) 

( hear, <speaker> ) 

(kiss, <Soc ra t e  s> ) 

<sandwich> <snack_food> . . .  
<NUTRIMENT> <food> <substance> <entity> 

<BEVEKAGE> <food> <substance> <entity> 

<SHOW> <communication> <social_relation> 
<relation> <abstraction> 

<communicator> <person> <life_form> <ENTITY> 

<philosopher> <intellect> <person> <LIFE_FOKM> <entity> 

Table 2: How log-likelihood X 2 chooses top(c, v, r) 

is 4.8. We use the log-likelihood X ~ statis- 
tic, ra ther  than  the Pearson's  X 2 statistic,  
as this is thought  to be more appropria te  
when the counts in the contingency table 
are low (Dunning,  1993). 8 For a significance 
level of 0.05, with 4 degrees of freedom, the 
critical value is 9.49 (Howell, 1997). Thus in 
this case, the null hypothesis ( that  the chil- 
dren of < n u t r i m e n t >  are homogeneous with  
respect to eat) would not be rejected. 

Given a verb v and position r ,  we com- 
pute top(c ,v ,r)  for each c by de termining  
the homogenei ty  of the children of the hy- 
pernyms of c. Initially, we let top(c, v, r) be 
the concept  c itself. We work from c up the 
hierarchy reassigning top(c, v, r) to be suc- 
cessive hypernyms of c until  we reach a hy- 
pernym whose children are not  sufficiently 
homogeneous.  In situations where a concept  
has more than  one parent,  we consider the 
parent  which results in the lowest X 2 value 
as this indicates the highest level of homo- 
geneity. 

6 Experimental  Results  
In order to evaluate the re-est imation pro- 
cedure, we took triples from approximate ly  
two million words of parsed text  from the 

SLow counts tend to occur in the table when the 
test is being applied to a set of concepts near the 
foot of the hierarchy. A further extension of this 
work will be to use Fisher's exact test for the tables 
with particularly low counts. 

BNC corpus using the shallow parser devel- 
oped by Briscoe and Carroll  (1997). For this 
work we only considered triples for which r = 
obj. Table 2 shows some examples of how 
the log-likelihood X 2 test chooses top(c, v, r) 
for various v 6 V and c 6 C. 9 In giving 
the list of hypernyms the selected concept 
top(c, v, obj) is shown in upper  case. 

Table 3 shows how frequency est imates 
change, during the re-est imation process, for 
various v E ~,  c E C, and r = obj. The fig- 
ures in Table 3 show tha t  the estimates ap- 
pear to be converging after around 10 itera- 
tions. The  first column gives the frequency 
est imates using the technique of split t ing the 
count equally among  al ternat ive senses of a 
noun appearing in the data.  The figures for 
eat and drink suggest tha t  these initial es- 
t imates  can be greatly underes t imated  (and 
also overest imated for cases where the argu- 
ment  strongly violates the selectional prefer- 
ences of the verb, such as eat < l o c a t i o n > ) .  
The final column gives an upper  bound on 
the re-est imated frequencies. It shows how 
many nouns in the data ,  in the object po- 
sition of the given verb, tha t  could possibly 
be denot ing one of the concepts in ~, for each 
v and ~ in the table. For example, 95 is the 
number  of t imes a noun which could possibly 

9Notice that < hotdog > is classified at the 
<nu t r imen t>  level rather than <food>.  This is 
presumably due to the fact that beverage is classed 
as a food, making the set of concepts <food> het- 
erogenous with respect to the object position of eat. 
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(v, ~) 

( eat, <f ood>) 

( drink,.<beverage>) 

( eat, <location>) 

(see, Gobj>) 

( hear, <person> ) 

(enjoy, <amusement>) 
( measure, <abstract ion>) 

m = 0  

60.8 

10.5 

2.0 

237.1 

90.8 

2.9 

19.1 

freq '~ (~, v, obj) 
m = l  I m = 5  

85.0 89.6 

22.7 23.5 

1.2 1.1 

235.7 240.2 

85.5 85.5 

3.1 3.3 

21.7 23.3 

m = 1 0  

89.8 

23.4 

1.1 

240.3 

85.5 

3.3 

23.4 

Limit 

95 

26 

6 

568 

130 

5 

31 

Table 3: Example of re-estimated frequencies 

be denoting a concept dominated by ( food>  
appeared in the object position of eat. Since 
eat selects so strongly for its object, we 
would expect freq(<food>,eat, obj) (i.e., the 
true figure) to be close to 95. Similarly, since 
drink selects so strongly for its object, we 
would expect freq(< beverage >,drink, obj) 
to be close to 26. We would also expect 
freq(<location>,eat, obj) to be close to 0. 
As can be seen from Table 3, our estimates 
converge quite closely to these values. 

It is noticeable that  the frequency counts 
for weakly selecting verbs do not change as 
much as for strongly selecting verbs. Thus, 
the benefit we achieve compared to the stan- 
dard approach of distributing counts evenly 
is reduced in these cases. In order to investi- 
gate the extent to which our technique may 
be helping, for each triple in the data we 
calculated how the distribution of the count 
changed due to our re-estimation technique. 
We estimated the extent to which the distri- 
bution had changed by calculating the per- 
centage increase in the count for the most 
favoured sense after 10 iterations. Table 4 
shows the results we obtained. The pro- 
portions given in the second column are of 
the triples in the data containing nouns with 
more than one sense. 1° We can see from the 

1°17% of the data involved nouns with only one 
sense in W0rdNet. 

table that  for 43% of the triples our tech- 
nique is having little effect, but for 23% the 
count is at least doubled. 

7 C o n c l u s i o n s  

We have shown that  the standard technique 
for estimating frequencies over a semantic 
hierarchy can lead to inaccurate estimates. 
We have described a re-estimation proce- 
dure which uses an existing measure of se- 
lectional preference and which employs a 
novel way of selecting a hypernym of a con- 
cept. Our experiments indicate that  the re- 
estimation procedure gives more accurate es- 
timates than the standard technique, par- 
ticularly for strongly selecting verbs. This 
could prove particularly useful when using 
selectional restrictions, for example in struc- 
tural disambiguation. 
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Percentage Increase 
0-10 
10-50 
50-100 
100- 

Proportion of data 
43% 
18% 
16% 
23% 

Table 4: How the distribution of counts change 
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