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Abstract 

Over the years, many proposals have been 

made to incorporate assorted types of feature in 

language models. However, discrepancies 

between training sets, evaluation criteria, 

algorithms, and hardware environments make it 

difficult to compare the models objectively. In 

this paper, we take an information theoretic 

approach to select feature types in a systematic 

manner. We describe a quantitative analysis of 

the information gain and the information 

redundancy for various combinations of feature 

types inspired by both dependency structure and 

bigram structure, using a Chinese treebank and 

taking word prediction as the object. The 

experiments yield several conclusions on the 

predictive value of several feature types and 

feature types combinations for word prediction, 

which are expected to provide guidelines for 

feature type selection in language modeling. 

1 Introduction 

There are many types of features that a 

language model can use to predict a word in a 

sentence. Standard n-gram models use the 

immediately preceding words. Other fixed 

physical distance feature types may inspect word 

classes or parts of speech. Grammatically-based 

feature types may also be used, such as the 
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incident syntactic and semantic relations or the 

other words involved in those relations. Our 

ultimate aim is to determine which combination 

of feature types is optimal for language 

modeling. Unfortunately, the state of knowledge 

in this regard is very limited. Many language 

models have been published inspired by one or 
more of these feature types I11121131141151, but 

discrepancies between training sets, evaluation 

criteria, algorithms, and hardware environments 

make it difficult, if not impossible, to compare 

the models objectively. The paper uses an 

information theoretic approach to select feature 

types for language modeling in a systematic 

manner. We are concerned with quantitative 

analysis of the information quantity, information 

gain and the information redundancy for various 

feature type combinations in both dependency 

grammar structure and adjacent bigram structure. 

The experiments yield a number of conclusions 

on the predictive value of various feature types 

and the combinations thereof, which can provide 

useful information on what level of performance 

gain can be expected in principle from a bigram 

model augmented with long distance 

dependency features. The results are expected to 

provide a reliable reference for feature type 

selection in language modeling. 

We have used Chinese data for the 

experiments in this paper. Strictly speaking, our 
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conclusions apply only to Chinese. However, we 

actually expect very similar results on English, 

and all our preliminary experiments on English 

data do bear this out I61. We believe the general 

methodology as well as many of the specific 

conclusions apply tO a wide range of languages. 

We will begin by introducing an information 

theoretic framework for feature type selection 

and analysis. We then describe the experimental 

setup. Finally, we discuss a number of claims 

deriving from the eXperimental evidence. 

2 Framework 

2.1 Features for Language Models 

A language model predicts a given word 

based on its history. By the laws of conditional 

probabilities, a language model can be 

represented in left-to-right fashion as 

P(S) = P(wo )P(w I [ hl ) . . .  P (w  i I hi)...P(wn [ h,) 

where S denotes a sequence of words w0, w~ . . . . .  

w,, and ha denotes the history of w~ (0 < i _< n). 

In order to construct a language model, the 

individual probabilities p(wilhi) should be 

estimated from the training set. Since there are 

too many possible histories but not enough 

evidence in the training set, several feature types 

must be used to divide the space of possible 

histories into equivalence classes via the 

m a p ~  :h i fl,fx, '",fK )[hi ] to make the model 

feasible in the implementation. In speech 

recognition, these feature types are most often 

fixed physical position based features, as in N- 

gram models. The feature types can be the words 

before the predicted word or the part-of-speech 

of the words before the predicted word. In order 

to remedy the linguistic implausibility and 

inefficient usage of the training set of N-gram 

models, we would like to incorporate 

grammatically-based feature types into the 

language model, which could incorporate the 

predictive power of words that lie outside of N- 

gram range tvHSl. However, we would like to do so 

without sacrificing the known performance 

advantages of N-gram models t91. We follow the 

general approach of the aforementioned authors 

in taking dependency grammar as a framework, 

since it extends N-gram models more naturally 

than stochastic context-free grammars. 

The feature types studied in this paper are 

combinations of the fixed physical distance 

features and grammatically based features listed 

in Table 1 and graphically depicted in Figure 1. 

To understand the feature types, consider the 

task of predicting "{~[1~ (zuo4 ye4, assignment)" 

in the example sentence shown in Figure 2. We 

denote this word by O, which stands for 

"observed". The word bigram feature B is the 

nearest preceding word of O, in this case "~3~ 

(yingl wen2, English)". The nearest word 

modifying O is denoted by M, and is also "~:3~5 

(yingl wen2, English)" in this case. Conversely, 

the nearest preceding word modified by O is 

denoted by R, "4~ (zuo4, do)" here. BP is the 

part of speech of ":9~:3~5 (yingl wen2, English)", 

in this case "n(noun)". Similarly, MP is the POS 

of "~3~:(yingl wen2, English)", and RP is the 

POS "v(verb)" for "~i~ (zuo4, do)". The 

modifying type or dependency relation between 

" ~ :  (yingl wen2, English)" and "{~IJL (zuo4 
ye4, assignment)" is denoted by MT, in this case 

"np(noun phrase)". RT is the modifying type 

between "~(zuo4, do)" and "{~ ~(zuo4 ye4, 
assignment)", here "vp(verb phrase)". 

Faced with so many feature types, one of the 

dilemmas for language modeling is which 

feature types, or feature type combinations, 

should be used. The experience has shown that 

the feature types should not be selected by 

intuition. 
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Table 1: The feature types used in the training set 
Nearest preceding word BP POS of B 
Nearest preceding word MP POS of M MT Modifying type between M and 

modifying O O 
Nearest preceding word RP POS of R RT Modifying type between R and 

modified by O O 

feature type : R 

feature type : M 

feature type : R+B 

feature type : RT+B 

Figure-l: 

feature type : RT 

feature type : MT 

feature type:M+B 

feature type:MT+B 

feature type: R+RT 

feature type:M+MT 

feature type: R+M 

feature type:RT+MT 

/ R T ~  

Some models using the combination of the bigram features 
and dependency-grrammar-based features 

zuo2 tianl xia4 wu3 di4 di4 zaii4 
yesterday afternoon brother in 

Figure 2: An example sentence to 

In order to obtain a more reliable reference to 

guide the addition of structural features to a 

stochastic language model, our objective is to 

establish in principle the amount of information 

available from various long distance dependency 

features and feature combinations. This can be 

regarded as an upper bound on the improvement 

that could be obtained by augmenting a language 

jiao4 shi4 zuo4 yingl wen2 zuo4 ye4 
classroom do English assignment 

R M,B 0 

describe each feature type listed in Table 2 

model with the corresponding features. We 

evaluate the informativeness of several feature 

types in bigram and dependency grammatical 

structure from the viewpoint of  information 

theory. The experiments draw some conclusions 

on which feature types should be selected or 

should not be selected given specific baseline 

assumptions, and provide a ranking of the 
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feature types according to their importance from 

this viewpoint. 

2.2 Information-based Model for Feature 
Type  Analysis 

We now introduce some relevant concepts 
r 

from information theory that we adopt as a 

foundation for analyzing feature types. 

Information quantity (IQ). The information 

quantity of a feature type F to the predicted word 

O is defined using the standard definition of 
• [ 1 0 ]  average mutual ififormatmn ; we define IQ as 

the average mutual information between F and O. 

IQ(F;O) = Ep(F°)[ l°g p(F~p(o)Jp(FO) 1 

Information gain (IG). The information gain of 

adding F 2 on top Of a baseline model that already 

employs Fi for predicting word O is defined as 

the average mutual information between the 

predicted word O and feature type F 2, given that 

feature type F~ is known. 

I p(FzOI E1 ) 1 
IG(F2;O I El) = Ee(FiF20) log p(F2 i F1)P(Oi F~)J 

Information redundancy (IR). The above two 

definitions lead naturally to a complementary 

concept of information redundancy. IR(F1,Fz;O) 

denotes the redundant information between Fi 

and F2 in predicting O, which is defined as the 

difference between IQ(F2;O) and IG(Fz;OIF1), or 

the difference between IQ(F~ ;O) and IG(F~ ;OIF2). 

IR( F l , Fz;O) 

= IQ(Fz;O)-IG(F2;OI F1) 

= IQ(Fi;O)-IG(F];OI F2) 

We shall use IG to select the feature type 

series, and use IR to analyze the overlapped 
i 

degree between the variant and the baseline. 

3 The Corpus Used in the Experiments 

The training corpus used in our experiments is 

a treebank consisting of Chinese primary school 

texts mjt12]. The basic statistics characterizing the 

training set are summarized in Table 2. 

Table 2: Statistics of the training corpus 
Corpus Size (words) 

Total Sentences(sentences) 
Average Sentence Length (words) 

Vocabulary Size(words) 
POS Tags 

Phrase Types 

52,609 
4,139 
12.711 
5,319 

26 
14 

In the experiments, we use 80% of the above 

corpus as a training set for estimating the 

various co-occurrence probabilities, while 10% 

of the corpus is used as a testing set to compute 

the information gain, information quantity, and 

information redundancy. The feature types we 

used in the experiments are those shown in 

Table 1. 

4 Experimental Results and Analysis 

Our experiments aim to quantitatively 

establish the amount of information intrinsically 

present in each feature type, and the information 

gain of each feature type on the top of various 

baselines. We were led to a number of 

conclusions on the predictive power of various 

feature types and feature types combinations, 

some in support of traditional linguistic intuition 

and some more surprising. These observations 

provide guidelines for language modeling. 

Below, we warm up with a well-known 

observation, and then move on to more focussed 

analysis. 

4.1 Grammatically motivated feature 
types do not easily yield as much 
predictive information as simple bigrams. 

From a traditional linguistics viewpoint, R (the 

nearest preceding word modified by the 
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qiang2 sheuTg4 l gua4 zheO di4 tu2 
wall on hang aspectual marker map 

Figure 3: The dependency grammatical structure of Chinese sentence "JC~/qiang2/wall _lJshang4/on ~-~/gua4/hang 
~/zheO/(aspectual marker) ~d~[]/di4 tu2/map." (There is a map hanging on the wall.) 

vp 

tal cong2 gongl yuan2 zou3 
he from garden walk 

~J ~ 
dao4 hai3 bianl 

to seaside 

Figure 4: The dependency grammatical structure of Chinese sentence '"ft~/ta 1/he ,,~hJcong2/from ~ [] 
/gonglyuan2/garden ~.P_/zou3/walk ~lJ/dao4/to ~J~_/hai3 bianl/seaside. (He walks from the garden to the seaside.) 

predicted word O) should be more significant for 

word prediction than the bigram predictor B (the 

nearest preceding word of the predicted word O). 

Consider the sentence showed in Figure 3, 

where O is " ~  []/di4tu2/map", B is the 

aspectual marker " 7 / z h e O " ,  and R is " 

/gua41hang". It seems somehow obvious that R 

("~/gua4/hang") should be more predictive for 

0 ( "~  [] /di4tu2/map ") than B (the aspectual 

marker "~/zheO"). However, as is well known 

in speech recognition and statistical NLP 

research, the opposite turns out to be true. This 

is corroborated by the empirical information 

quantities shown in Table 3, which shows that B 

has the largest information quantity in all of the 

feature types. That bigram features outperform 

the grammatically-based features is commonly 

attributed to the predictive power of lexical 

association. 

Table 3: Evidence for 4.1 (See text) 
IQ(B;O)=3.826 IQ(MT;O)=0.971 
IQ(M;O)=2.237 IQ(RT;O)=0.954 
IQ(R;O)= 1 . 5 8 1  IQ(MP;O)=0.818 

IQ(BP;O)= 1 . 4 9 3  IQ(RP;O)=0.663 

Similarly, M (the nearest preceding word 

modifying the predicted word O) should be more 

significant for word prediction than B (the 

nearest preceding word of the predicted word O). 

For example, consider the sentence showed in 

Figure 4, where O is "~/zou3/walk", then B is " 

[] /gong lyuan2/garden" and M is " 

/cong2/from". Again, it seems that M (",hJk 

/cong2/from") ought to be more predictive to O 

(" j~ /zou3/walk") than B (" ~_~ []  

/gonglyuan2/garden"), but from Table 3 we see 

that the opposite is true. 

From a linguistic viewpoint, the explanation 

for the fact that R (IQ(R;O)=l.581) is less 

predictive than B (IQ(B;O)=3.826) may be as 

follows. Within a sentence, every word has 
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exactly one B and one R feature. But on one 

hand, the B feature always lies to the left of O 

since it is by definition the preceding word, 

while on the other hand, R generally lies to the 

right of O in Chinese sentences (with a few 

notable except!ons such as prepositional 

phrases). When R is not in the history preceding 

O, it cannot be used to predict O. 

Similarly, a possible factor in the fact that M 

(IQ(M;O)=2.237) is less predictive than B is that 

M sometimes lies to the right of O. Another 

factor in the cas'e of M is that none of the leaf 

nodes in a dependency tree have an M. 

4.2 A l t h o u g h  R (the word  modi f ied  by the 
predicted word)  is less effective t h a n  M 

(the word  modi fy ing  the  p red ic ted  word)  

when they are used individual ly  for  w o r d  

predic t ion ,  R is more effective t h a n  M if 

they are used On top  of  a s t a n d a r d  b i g r a m  

mode l  ( the fea ture  B). 

Consider the' following measurements from 

our experiments': IQ(R;O)=l.581 bits which is 

less than IQ(M;O)=2.237 bits, whereas 

IG(R;OIB)=0.683 bits which is greater than 

IG(M;OIB)=0.541 bits. That is, given a baseline 

bigram model employing only B features, 

augmenting thei model with R features brings 

more information than augmenting it with M 

features. Therefore, in principle, the language 

model which incorporates bigram and feature 

type R can achieve higher performance than the 

model which incorporates bigram and M. 

We believe: this because there is more 

information redundancy between M and B than 

between R and'B. From the above data, we see 

that there exists large information redundancy 

both between B and R (IR(B,R;O)=0.898) and 

between B and M (IR(B,M;O)=l.696). One 

explanation is that often B and M are in fact the 

same word, where the nearest preceding word 

modifies the predicted word. For example, 

consider the sentence in Figure 5, where "{~lk 

/zuo4ye4/assignment" is the predicted O, and B 

and M are the same word " ~ 3~2 

/ying4wen2/English ". 
It is also possible that B and R are the same 

word, where the nearest preceding word is 

modified by the predicted word. For example, 

the dependency grammatical structure of the 

phrase "~/zai4/in ~/jiao4shi4/classroom" is 

showed in Figure 6. Here, " ~l~ 

/jiao4shi4/classroom" is the predicted O, and B 

and R are the same word ":i~E/zai4/in". 
In Chinese (as well as in English), the head 

word typically lies at the end of the phrase. This 

makes B more likely to be M than R, so the 

information redundancy between B and M is 

larger than that between B and R. 

4.3 If M (the nearest preceding word 
modi fy ing  the predicted word  O) is one of  

the feature types of the baseline, M T  (the 

modi fy ing  type  be tween  M and  O) will 

bring less information gain  for  word  

predic t ion .  

We are interested in knowing how much non- 

redundant information is present in MT if M is 

included in the baseline. To assess this, we 

conducted the following experiment, which 

focuses directly on the relationship between MT 

and the two words involved. 
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zuo2 tianl xia4 wu3 di4 di4 zai4 jiao4 shi4 zuo4 
yesterday afternoon brother in classroom do 

/f°P  
yingl wen2 

E n g l is h __.as.signment...._. I_..____....___ I 

M , B  0 

Figure 5: The dependency grammatical structure of "~SC/yinglwen2/English ~'~31klzuo4ye4/assignment " 

I~, T~- .~.~ 
zuo2 tianl xia4 wu3 di4 di4 
yesterday afternoon brother 

zai4 jiao4 shi4 
in classroom 

R,B 0 

zuo4 yingl wen2 zuo4 ye4 
do English assignment 

Figure 6: The dependency structure of "~/zai4/in ~Jjiao4shi4/classroom" 

MT 

zuo2 tianl xia4 wu3 
yesterday afternoon 

M , B  0 

di4 di4 zai4 jiao4 shi4 zuo4 yingl wen2 zuo4 ye4 
brother in classroom do English assignment 

Figure 7: The dependency structure of the phrase "~7~,./zuo2tian l/yesterday -ff ~/xia4wu3/aftemoon" 

xue2 sheng3 men2 zheng4 zaii4 jiao4 shi4 
student (plural marker) (-ing) in classroom 

RT 
...j-vp--...~ 

xie3 lun4 wen2 
write paper 

R,B 0 

f e vt • Figure 8: The dependency structure o th phrase ~/xle3/write -~3~/lun4wen2/paper" 

We measured the information gain of MT 

over M to be only IG(MT;OIM)=0.110 bits, 

while the information redundancy of MT and M 

is a much larger IR(MT, M;O)=0.861 bits. This 

means that the prediction information for O in M 

(which at IQ(M;O)=2.237 bits is much larger, 

incidentally, than that in MT at IQ(MT;O)=0.971 

bits) contains almost all the prediction 

information for O in MT. The corresponding 
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Table4: Information gain measurements in a greedy search 

Baseline 
null 
B 
B,R 
B,R,M 
B,R,M,RT 
B,R,M,RT, MT 
B R,M,RT, MT, BP 
B,R,M,RT, MT, BP, RP 

Information Gain of the Variants 
B 

3.826 1.581 
0 . 6 8 3  

M 
2.237 
0.541 
0.388 

RT 
0.954 
0.585 
0.093 
0 .084  

MT BP 
0.971 1.493 
0.533 0.108 
0.381 0.089 
0.061 0.063 
0.059 0.052 

- -  0 . 0 4 6  

RP 
0.663 
0.499 
0.033 
0.031 
0.009 
0.008 
0 .007  

MP 
0.818 
0.473 
0.331 
0.014 
0.011 
0.007 
0.003 
0 .002  

linguistic explanation may be as follows. The 

lexical identities of the predicted word O and its 

modifying word M involved in a dependency 

relation determine to a large extent the type of 

modification relation MT that holds between O 

and its modifying Word M. 

Consider the sentence in Figure 7. In the 

phrase " @ :N. /zuo2tianl/yesterday -V 

/xia4wu3/afternooW', just knowing the identity 

of the two words "@~/zuo2t ian l /yes te rday"  

and " -It ~/xia4v~u3/afternoon" is enough to 

predict with near certainty that the relation 

between them is time phrase (tp), thus giving the 

following dependency structure as Figure 7. 

4.4 If R (the nearest preceding word 
modified by the predicted word O) is one 
of the feature types of the baseline, RT 
(the modifying type between R and O) 
will bring less information gain for word 
prediction. 

This simply mirrors the immediately 

preceding point, except that R is the modified 

word (parent) instead of the modifying word 

(child). In this case, we measured the 

information gain iof RT over R to be only 

IG(RT;OIR)=0.271 bits, while the information 

redundancy of R T and R is a much larger 

IR(RT, R;O)=0.683: bits. This means that the 

information in R (IQ(R;O)=I.581 bits) contains 

almost all the information in MT 

(IQ(RT;O)=0.954 bits). The corresponding 

linguistic explanation is as follows. The lexical 

identities of the words (R, O) involved in a 

dependency relation determine to a large extent 

the type of modification relation RT that holds 

between O and the word it modifies, R. 

Consider the sentence in Figure 8, the 

identity of the words "~/xie3/write" and "J,~3~: 

/lun4wen2/paper" determine with near certainty 

that their relationship is verb phrase (vp): 

4.5 Among the feature types in {B, BP, M,  

MP,  MT, R, RP, RT}, the preference order 
for selecting feature types is B, R, M, RT, 
MT,  BP, RP,  MP.  

We used the metric IG to obtain a ranking for 

feature types according to their predictiveness. 

This ranking only considers information gain; it 

ignores complexity (for a practical application, 

we would also consider the complexity of the 

model at the same time.). To obtain this order, 

we performed a greedy search where at each 

step we selected the next most informative 

feature type (i.e., the feature type that has the 

largest information gain). The empirical 

information gain measurements in each search 

step is shown in Table 4, where the feature 

which has the boldface IG in each column is the 

feature type selected in that step, and 

IG(F;O[NulI)=IQ(F;O). 

This preference ordering can serve as a 

guideline for selecting feature type combinations 

in a language model. That is to say, given the 
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= ~ ~ - - ~ -  • _ 

g 4 1  ~ - -  

il 2 - -  ~ ~.~ ~ - -  
........... 

B R M RT MT BP RP MP 

feature type 

Figure 9: Cumulative information quantity of selected feature type combinations with 1-8 feature types 

feature type set {B, BP, M, MP, MT, R, RP, RT}, 

if a language model uses only one feature type, 

feature type B should be used; if a language 

model uses two feature types, the feature type 

combination {B, R} should be used, and so on. 

However, we can see from Figure 9 that the 

additional information gain falls off rapidly 

when more than three feature types are selected. 

5 .  C o n c l u s i o n  

We have described a series of corpus-based 

analyses that take a Chinese treebank and 

quantify the information gain and the 

information redundancy for various feature types 

combinations involving both dependency and 

bigram feature types. The analysis yields several 

interesting conclusions that explain linguistic 

observations from an information theoretic point 

of view, and in addition will find practical use in 

the design of language models. Although 

perhaps we have been aware of some of the 

observations to varying extents, here we 

introduce a methodology that uses concrete 

evidence drawn from real contexts in order to 

give more reliable and objective results. 

We have already begun conducting similar 

experiments on an English training corpus [61, 

which so far yield the same types of behavior 

described in this paper. We aim to discover 

which, if any, claims about the information 

present in dependency based features are 

peculiar to Chinese language, which are peculiar 

to English, and which are common across 

multiple languages. 

Based on the analysis, we will design, 

construct, and incrementally refine new 

language models for written and spoken English 

and Chinese that incorporate varying levels of 

linguistic structure. These models will aim to 

capture regularities that arise from long-distance 

dependencies, which n-gram models cannot 

represent. At the same time, we will retain as 

many of the n-gram parameters as needed to 

capture important lexical dependencies. 

R e f e r e n c e s  

[1] A. Stolcke, C. Chelba, D. Engle, V. Jimenez, L. 

Mangu, H. Printz, E. Ristad, R. Rosenfeld, D. Wu, E 

Jelinek and S. Khudanpur, "Dependency language 

modeling", 1996 Large Vocabulary Continuous 

Speech Recognition Summer Research Workshop 

Technical Report. Research Note 24, Center for 

Language and Speech Processing, Johns Hopkins 

University, Baltimore, MD, April 1997. 

146 



[2] Della Pietra, S. and V. Della Pietra, "Inducing 

features of random fields", IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 19(4), 

April 1997, pp.380-;393. 

[3] Ciprian Chelba', David Engle, Frederick Jelinek, 

Victor Jimenex, Sanjeev Khudanpur, Lidia Mangu, 

Harry Printz, Eric Ristad, Ronald Rosenfeld, Andreas 

Stolcke, Dekai Wu i "Structure and performance of a 

dependency langu~age model", Proceedings of 
i 

Eurospeech'97, 1997. 

[4] Ney, Hermann., "On structuring probabilistic 

dependency in stochastic language modeling", 

Computer Speech & Language 8: 1-38, 1994. 

[5] John Lafferty, Daniel Sleator, Davy Temperley, 

"Grammatical trigrams: A probabilistic model of link 

grammar", Proceedings of the 1992 AAAI Fall 

Symposium on Probabilistic Approaches to Natural 

Language, Cambridge, MA, 1992. 

[6] Dekai WU, SUI Zhifang, ZHAO Jun, "An 

information-based method for selecting feature types 

for word prediction", to appear in Proceeding of 

Eurospeech'99, 1999. 

[7] Michael John Collins, "A new statistical parser 

based on bigram lexical dependencies", in: 

Proceedings of the 34rd Annual Meeting of the 

Association for Computational Linguistics, 1996. 

[8] Michael Collins, "Three generative, lexicalised 

models for statistical parsing", in: Proceedings of the 

35rd Annual Meeting of the Association for 

Computational Linguistics, 1997. 

[9] S. Della Pietra, V. Della Pietra, J. Gillett, J. 

Lafferty, H. Printz, L. Ures, "Inference and estimation 

of a long-range trigram model", 1994. 

[10] Cover T. M., Thomas J. A., Elements of 

Information Theory, Wiley., New York, 1991. 

[11] ZHOU Qiang, Phrase Bracketing and 

Annotating on Chinese Language Corpus, 

Dissertation for Doctor Degree [Peking University], 

Beijing, China, 1996. 

[12] YU Shiwen, ZHOU Qiang, ZHANG Wei, 

ZHANG Yunyun, ZHAN Weidong, CHANG Baobao, 

SUI Zhifang, "Tagged Singapore Chinese primary 

school text", Communications of COLIPS 5, 1995. 

147 


