
Unsupervised Models for Named Entity Classification

Michael Collins and Yoram Singer
AT&T Labs-Research ,

180 Park Avenue, Florham Park, NJ 07932
{mcollins, singer}@research, att. com

Abstract

This paper discusses the use of unlabeled examples
for the problem of named entity classification. A
large number of rules is needed for coverage of the
domain, suggesting that a fairly large number of la-
beled examples should be required to train a classi-
fier. However, we show that the use of unlabeled
data can reduce the requirements for supervision
to just 7 simple "seed" rules. The approach gains
leverage from natural redundancy in the data: for
many named-entity instances both the spelling of
the name and the context inwhich it appears are
sufficient to determine its type.

We present two algorithms. The first method uses
a similar algorithm to that of (Yarowsky 95), with
modifications motivated by (Blum and Mitchell 98).
The second algorithm extends ideas from boosting
algorithms, designed for supervised learning tasks,
to the framework suggested by (Blum and Mitchell
98).

1 Introduction

Many statistical or machine-learning approaches for
natural language problems require a relatively large
amount of supervision, in the form of labeled train-
ing examples. Recent results (e.g., (Yarowsky 95;
Brill 95; Blum and Mitchell 98)) have suggested
that unlabeled data can be used quite profitably in
reducing the need for supervision. This paper dis-
cusses the use of unlabeled examples for the prob-
lem of named entity classification.

The task is to learn a function from an in-
put string (proper name) to its type, which we
will assume to be one of the categories P e r s o n ,
Organization, o r Location. For example, a
good classifier would identify Mrs. Frank as a per-
son, Steptoe & Johnson as a company, and Hon-
duras as a location. The approach uses both spelling
and contextual rules. A spelling rule might be a sim-
ple look-up for the string (e.g., a rule that Honduras
is a location) or a rule that looks at words within a
string (e.g., a rule that any string containing Mr. is

a person). A contextual rule considers words sur-
rounding the string in the sentence in which it ap-
pears (e.g., a rule that any proper name modified by
an appositive whose head is president is a person).
The task can be considered to be one component
of the MUC (MUC-6, 1995) named entity task (the
other task is that of segmentation, i.e., pulling pos-
sible people, places and locations from text before
sending them to the classifier). Supervised meth-
ods have been applied quite successfully to the full
MUC named-entity task (Bikel et el. 97).

At first glance, the problem seems quite com-
plex: a large number of rules is needed to cover the
domain, suggesting that a large number of labeled
examples is required to train an accurate classifier.
But we will show that the use of unlabeled data can
drastically reduce the need for supervision. Given
around 90,000 unlabeled examples, the methods de-
scribed in this paper classify names with over 91%
accuracy. The only supervision is in the form of 7
seed rules (namely, that New York, California and
U.S. are locations; that any name containing Mr. is
a person; that any name containing Incorporated is
an organization; and that LB.M. and Microsoft are
organizations).

The key to the methods we describe is redun-
dancy in the unlabeled data. In many cases, inspec-
tion of either the spelling or context alone is suffi-
cient to classify an example. For example, in

.., says Mr. Cooper, a vice president of ..

both a spelling feature (that the string contains Mr.)
and a contextual feature (that president modifies the
string) are strong indications that Mr. Cooper is
of type P e r s o n . Even if an example like this is
not labeled, it can be interpreted as a "hint" that Mr.
and president imply the same category. The unla-
beled data gives many such "hints" that two features
should predict the same label, and these hints turn
out to be surprisingly useful when building a classi-
fier.

We present two algorithms. The first method
builds on results from (Yarowsky 95) and (Blum and

100

I

Mitchell 98). (Yarowsky 95) describes an algorithm
for word-sense disambiguation that exploits redun-
dancy in contextual features, and gives impressive
performance. Unfortunately, Yarowsky's method is
not well understood from a theoretical viewpoint:
we would like to formalize the notion of redun-
dancy in unlabeled data, and set up the learning
task as optimization of some appropriate objective
function. (Blum and Mitchell 98) offer a promis-
ing formulation of redundancy, also prove some re-
sults about how the use of unlabeled examples can
help classification, and suggest an objective func-
tion when training :with unlabeled examples. Our
first algorithm is similar to Yarowsky's, but with
some important modifications motivated by (Blum
and Mitchell 98). The algorithm can be viewed as
heuristically optimizing an objective function sug-
gested by (Blum and Mitchell 98); empirically it is
shown to be quite successful in optimizing this cri-
teflon.

The second algorithm builds on a boosting al-
gorithm called AdaBoost (Freund and Schapire 97;
Schapire and Singer 98). The AdaBoost algorithm
was developed for supervised learning. AdaBoost
finds a weighted combination of simple (weak) clas-
sifiers, where the w'eights are chosen to minimize a
function that bounds the classification error on a set
of training examples. Roughly speaking, the new
algorithm presented in this paper performs a sim-
ilar search, but instead minimizes a bound on the
number of (unlabeled) examples on which two clas-
sifiers disagree. The algorithm builds two classifiers
iteratively: each iteration involves minimization of
a continuously differential function which bounds
the number of examples on which the two classifiers
disagree.

1.1 Additional Related Work

There has been additional recent work on induc-
ing lexicons or other knowledge sources from large
corpora. (Brin 98)idescribes a system for extract-
ing (author, book-tiile) pairs from the World Wide
Web using an approach that bootstraps from an ini-
tial seed set of examples. (Berland and Charniak
99) describe a method for extracting parts of ob-
jects from wholes (e.g., "speedometer" from "car")
from a large corpus using hand-crafted patterns.
(Hearst 92) describes a method for extracting hy-
ponyms from a corpus (pairs of words in "isa" re-
lations). (Riloff and Shepherd 97) describe a boot-
strapping approach ifor acquiring nouns in particu-
lar categories (such as "vehicle" or "weapon" cate-

gofies). The approach builds from an initial seed set
for a category, and is quite similar to the decision
list approach described in (Yarowsky 95). More
recently, (Riloff and Jones 99) describe a method
they term "mutual bootstrapping" for simultane-
ously constructing a lexicon and contextual extrac-
tion patterns. The method shares some characteris-
tics of the decision list algorithm presented in this
paper. (Riloff and Jones 99) was brought to our at-
tention as we were preparing the final version of this
paper.

2 The P r o b l e m

2.1 The Data

971,746 sentences of New York Times text were
parsed using the parser of (Collins 96).1 Word se-
quences that met the following criteria were then ex-
tracted as named entity examples:

• The word sequence was a sequence of consecu-
tive proper nouns (words tagged as NNP or NNPS)
within a noun phrase, and whose last word was head
of the noun phrase.

• The NP containing the word sequence appeared
in one of two contexts:

1. There was an appositive modifier to the NP,
whose head is a singular noun (tagged NN). For ex-
ample, take

.... says Maury Cooper, a vice president at
S.&R

In this case, Maury Cooper is extracted. It is a se-
quence of proper nouns within an NP; its last word
Cooper is the head of the NP; and the NP has an ap-
positive modifier (a vice president at S.&P) whose
head is a singular noun (president).

2. The NP is a complement to a preposition,
which is the head of a PP. This PP modifies another
NP, whose head is a singular noun. For example,

... fraud related to work on a federally
funded sewage plant in Georgia

In this case, Georgia is extracted: the NP contain-
ing it is a complement to the preposition in; the PP
headed by in modifies the NP a federally funded
sewage plant, whose head is the singular noun plant.

In addition to the named-entity string (Maury
Cooper or Georgia), a contextual predictor was also
extracted. In the appositive case, the contextual

IThanks to Ciprian Chelba for running the parser and pro-
viding the data.

101

predictor was the head of the modifying appositive
(president in the Maury Cooper example); in the
second case, the contextual predictor was the prepo-
sition together with the noun it modifies (plant_in in
the Georgia example). From here on we will refer
to the named-entity string itself as the spelling of the
entity, and the contextual predicate as the context.

2.2 Feature Extraction
Having found (spelling, context) pairs in the parsed
data, a number of features are extracted. The fea-
tures are used to represent each example for the
learning algorithm. In principle a feature could be
an arbitrary predicate of the (spelling, context) pair;
for reasons that will become clear, features are lim-
ited to querying either the spelling or context alone.
The following features were used:

fuil-string=x The full string (e.g., for Maury
Cooper, ful i- s tring=Maury_Cooper).

contains(x) If the spelling contains more
than one word, this feature applies
for any words that the string contains
(e.g., Maury Cooper contributes two
such features, contains (Maury) and
contains (Cooper).

allcapl This feature appears if the spelling is a sin-
gle word which is all capitals (e.g., IBM would
contribute this feature).

ailcap2 This feature appears if the spelling is a si n-
gle word which is all capitals or full periods,
and contains at least one period. (e.g., N . Y .
would contribute this feature, IBM would not).

nonalpha=x Appears if the spelling contains any
characters other than upper o r lower case
letters. In this case n o n a l p h a is the
string formed by removing all upper/lower
case letters from the spelling (e.g., for
Thomas E. Petry nonalpha=., for A.T.&T.
nonalpha=.. &.).

context=x The context for the entity. The
Maury Cooper and Georgia examples would
contribute context=president and
c ont ex t =p i ant_in respectively.

context-type=x context-type=appos in the
appositive case, context-type=prep in

the PP case.

Table 1 gives some examples of entities and their
features.

3 Unsupervised Algorithms based on
Decision Lists

3.1 Supervised Decision List Learning

The first unsupervised algorithm we describe is
based on the decision list method from (Yarowsky
95). Before describing the unsupervised case we
first describe the supervised version of the algo-
rithm:

Input to the learning algorithm: n labeled ex-
amples of the form (xi, Yi). Yi is the label of the ith
example (given that there are k possible labels, Yi
is a member of y = { 1 . . . k }) . x i i s a s e t o f m i
features {xil, xi2. . . Ximi} associated with the ith
example. Each xij is a member of A', where X is a
set of possible features.

Output of the learning algorithm: a function
h : &' × y ~ [0, 1] where h(x,y) is an estimate
of the conditional probability p(ylx) of seeing label
y given that feature x is present. Alternatively, h
can be thought of as defining a decision list of roles
x ~ y ranked by their "strength" h(x, y).

The label for a test example with features x is
then defined as

y (x) = a r g m a x h(x,y) (1)
xEx,yrY

In this paper we define h(x, y) as the following
function of counts seen in training data:

Count(x, y) + ol
h (x , y) = Count(x) + k s (2)

Count(x, y) is the number of times feature x is
seen with label y in training data, Count(x) =
~ueyC°unt (x 'Y)" a is a smoothing parame-
ter, and k is the number of possible labels. In
this paper k = 3 (the three labels are p e r s o n ,
organization, location), and we set ~ =

0.1. Equation 2 is an estimate of the conditional
probability of the label given the feature, P(ylx). z

3.2 An Unsupervised Algorithm
We now introduce a new algorithm for learning
from unlabeled examples, which we will call DL-
Co'IYain (DL stands for decision list, the term Co-
t ra in is taken from (Blum and Mitchell 98)). The

2(Yarowsky 95) describes the use of more sophisticated
smoothing methods. It's not clear how to apply these methods
in the unsupervised case, as they required cross-validation tech-
niques: for this reason we use the simpler smoothing method
shown here.

102

Sentence] Entities (Spelling/Context) Features

But Robert Jordan, al partner at Robert Jordan/partner full-string=Robert Jordan contains(Robert)
Steptoe & Johnson who took ... contains(Jordan) context=partner context-type=appos

Steptoe & Johnson/partner_at full-string=Steptoe_&_Johnson contains(Steptoe)
contains(&) contains(Johnson) nonalpha=&
context=partner_at context-type=prep

By hiring a company like A.T.&T./company_like full-string=A.T.&T, allcap2 nonalpha=..&.
A.T.&T.... context=company_like context-type=prep

Hanson acquired Kidde Incor- Kidde Incorporated/parent full-string=Kidde_Incorporated contains(Kidde)
porated, parent of Kidde Credit, contains(Incorporated) context=parent context-type=appos
for

Kidde-Credit/parenLof full-string=Kidde_Credit contains(Kidde)
' contains(Credit) context=parent_of context-type=prep

Table 1: Some example named entities and their features.

input to the unsupervised algorithm is an initial,
"seed" set of rules. In the named entity domain
these rules were

full-string=N~w-York -+ Location
full-string=California -+ Location
full-string=U~S. -~ Location
contains(Mr.), -~ Person
contains(Incorporated) -~ Organization
full-string=Microsoft --~ Organization
full-string=I,B.M. --+ Organization

Each of these rules was given a strength of
0.9999. The following algorithm was then used to
induce new rules:

1. Set n = 5. (n is the maximum number of rules
of each type induced at each iteration.)

2. Initialization: Set the spelling decision list
equal to the set of seed rules.

3. Label the training set using the current set of
spelling rules. Examples where no rule applies
are left unlabeled.

4. Use the labeled examples to induce a decision
list of contextual rules, using the method de-
scribed in section 3.1.

Let Count'(x) be the number of times fea-
ture x is seen with some known label in
the training data. For each label (P e r s o n ,
Organization and Location), take the
n contextual rules with the highest value of
Countt(x) whose unsmoothed 3 strength is
above some threshold Pmin. (If fewer than
n rules have precision greater than Pmin, we

3Note that taking tile top n most frequent rules already
makes the method robust to low count events, hence we do not
use smoothing, allowing low-count high-precision features to
be chosen on later iterations.

.

.

.

keep only those rules which exceed the preci-
sion threshold.) Pmin was fixed at 0.95 in all
experiments in this paper.

Thus at each iteration the method induces at
most n x k rules, where k is the number of
possible labels (k = 3 in the experiments in
this paper).

Label the training set using the current set of
contextual rules. Examples where no rule ap-
plies are left unlabeled.

On this new labeled set, select up to n x k
spelling rules using the same method as in step
4. Set the spelling rules to be the seed set plus
the rules selected.

I f n < 2500 set n = n + 5 and return to
step 3. Otherwise, label the training data with
the combined spelling/contextual decision list,
then induce a final decision list from the la-
beled examples where all rules (regardless of
strength) are added to the decision list.

3.3 The Algorithm in (Yarowsky 95)

We can now compare this algorithm to that of
(Yarowsky 95). The core of Yarowsky's algorithm
is as follows:

.

.

.

Initialization: Set the decision list equal to the
set of seed rules.

Label the training set using the current set of
rules.

Use the labels to learn a decision list h(z, y)
where h is defined by the formula in equa-
tion 2, with counts restricted to training data
examples that have been labeled in step 2.

103

Set the decision list to include all rules whose
(smoothed) strength is above some threshold

Prain .

4. Return to step 2.

There are two differences between this method
and the DL-CoTrain algorithm:

• The DL-CoTrain algorithm is rather more cau-
tious, imposing a gradually increasing limit on the
number of rules that can be added at each iteration.

• The DL-CoTrain algorithm has separated the
spelling and contextual features, alternating be-
tween labeling and learning with the two types of
features. Thus an explicit assumption about the re-
dundancy of the features - - that either the spelling
or context alone should be sufficient to build a clas-
sifier - - has been built into the algorithm.

To measure the contribution of each modification,
a third, intermediate algorithm, Yarowsky-cautious
was also tested. Yarowsky-cautious does not sep-
arate the spelling and contextual features, but does
have a limit on the number of rules added at each
stage. (Specifically, the limit n starts at 5 and in-
creases by 5 at each iteration.)

The first modification - cautiousness - is a rel-
atively minor change. It was motivated by the ob-
servation that the (Yarowsky 95) algorithm added
a very large number of rules in the first few iter-
ations. Taking only the highest frequency rules is
much "safer", as they tend to be very accurate. This
intuition is born out by the experimental results.

The second modification is more important, and
is discussed in the next section.

3.4 Justification for the Separation of
Contextual and Spelling Features

An important reason for separating the two types of
features is that this opens up the possibility of the-
oretical analysis of the use of unlabeled examples.
(Blum and Mitchell 98) describe learning in the fol-
lowing situation:

• Each example is represented by a feature vector
x drawn from a set of possible values (an instance
space) X. The task is to learn a classification func-
tion f : X ~ Y where Y is a set of possible labels.

• The features can be separated into two types:
X = X1 x X2 where X 1 and X2 correspond to
two different "views" of an example. In the named
entity task, X1 might be the instance space for the
spelling features, X2 might be the instance space
for the contextual features. By this assumption,

each element x E X can also be represented as
(xl, x2) E X1 x X2.

• Each view of the example is sufficient for clas-
sification. That is, there exist functions f l and f2
such that for any example x = (xl ,x2), f (x) =
f l (X l) = f2(x2) . We never see an example x =
(xl, x2) in training or test data such that f l (x l) #
f2(x2).

Thus the method makes the fairly strong assump-
tion that the features can be partitioned into two
types such that each type alone is sufficient for clas-
sification.

• Xl and x2 are not correlated too tightly. (For
example, there is not a deterministic function from
x I to x2.)

Now assume we have n pairs (xl,i, x2,i) drawn
from X1 × X2, where the first m pairs have labels Yi,
whereas for i = m + 1...n the pairs are unlabeled. In
a fully supervised setting, the task is to learn a func-
tion f such that for all i = 1...m, f(Xl,i , x2,i) ---- Yi.
In the cotraining case, (Blum and Mitchell 98) ar-
gue that the task should be to induce functions f l
and f2 such that

1. f l (Xl , i) = f2(x2,i) = Yi for / = 1...m

2. f l (x l , i) = f2(x2,i) for / = m + 1...n

So f l and f2 must (1) correctly classify the la-
beled examples, and (2) must agree with each other
on the unlabeled examples. The key point is that
the second constraint can be remarkably powerful
in reducing the complexity of the learning problem.

(Blum and Mitchell 98) give an example that il-
lustrates just how powerful the second constraint
can be. Consider the case where IXll =]Xa] = N
and N is a "medium" sized number so that it is fea-
sible to collect O (N) unlabeled examples. Assume
that the two classifiers are "rote learners": that is, f l
and f2 are defined through look-up tables that list a
label for each member of X1 or X2. The problem is
a binary classification problem. The problem can be
represented as a graph with 2N vertices correspond-
ing to the members of X1 and X2. Each unlabeled
pair (xl,i, x2,i) is represented as an edge between
nodes corresponding to Xl,i and x2,i in the graph.
An edge indicates that the two features must have
the same label. Given a sufficient number of ran-
domly drawn unlabeled examples (i.e., edges), we
will induce two completely connected components
that together span the entire graph. Each vertex
within a connected component must have the same
label - - in the binary classification case, we need a

104

single labeled example to identify which component
should get which label.

(Blum and Mitchell 98) go on to give PAC re-
sults for learning in the cotraining case. They also
describe an application of cotraining to classifying
web pages (the tw~o feature sets are the words on
the page, and other pages pointing to the page).
The method halves the error rate in comparison to
a method using the' labeled examples alone.

i

Limitations of (B!um and Mitchell 98): While
the assumptions of (Blum and Mitchell 98) are use-
ful in developing both theoretical results and an in-
tuition for the problem, the assumptions are quite
limited. In particul~, it may not be possible to learn
functions f l (x l , i) i = f2(x2,i) for i = m + 1...n:
either because there is some noise in the data, or
because it is just not realistic to expect to learn per-
fect classifiers given the features used for represen-
tation. It may be more realistic to replace the sec-
ond criteria with a softer one, for example (Blum
and Mitchell 98) suggest the alternative

1. f l (X l , i) = f2(x2,i) = Yi for i = 1...m

2. The choice of fa and f2 must minimize the
number of examples for which f l (X l , i) 7 ~

f2(z2,i).

Alternatively, if f l and f2 are probabilistic learn-
ers, it might make sense to encode the second con-
straint as one of minimizing some measure of the
distance between the distributions given by the two
learners. The question of what soft function to pick,
and how to design ' algorithms which optimize it, is
an open question, but appears to be a promising way
of looking at the problem.

The DL-CoTrain algorithm can be motivated as
being a greedy method of satisfying the above 2
constraints. At each iteration the algorithm in-
creases the number of rules, while maintaining a
high level of agregment between the spelling and
contextual decision lists. Inspection of the data
shows that at n = 2500, the two classifiers both give
labels on 44,281 (4,9.2%) of the unlabeled examples,
and give the same ~label on 99.25% of these cases.
So the success of the algorithm may well be due to
its success in max!mizing the number of unlabeled
examples on which the two decision lists agree. In
the next section we present an alternative approach
that builds two classifiers while attempting to sat-
isfy the above constraints as much as possible. The
algorithm, called CoBoost, has the advantage of be-
ing more general than the decision-list learning al- l

Input: (x l , Y l) , . . . , (xm,Ym); xi E 2"V,yi = ±1
Initialize D1 (i) = 1 /m .
For t = 1 , . . . , T :

• Get weak hypothesis ht : 2 x -+ II~ by training
weak learner using distribution Dt.

• Choose at E I1~.
• Update:

Dt+l (i) = Dt(i)e-atyiht(xd / z t

where Zt = E~--1 Dt(i) e-atyiht(xi).

Output final hypothesis:

f (x) = sign (•T : 1 o~tht(x))

Figure 1: The AdaBoost algorithm for binary prob-
lems (Schapire and Singer 98).

gorithm, and, in fact, can be combined with almost
any supervised machine learning algorithm.

4 A Boosting-based algorithm

This section describes an algorithm based on boost-
ing algorithms, which were previously developed
for supervised machine learning problems. We first
give a brief overview of boosting algorithms. We
then discuss how we adapt and generalize a boost-
ing algorithm, AdaBoost, to the problem of named
entity classification. The new algorithm, which we
call CoBoost, uses labeled and unlabeled data and
builds two classifiers in parallel. (We would like
to note though that unlike previous boosting algo-
rithms, the CoBoost algorithm presented here is not
a boosting algorithm under Valiant's (Valiant 84)
Probably Approximately Correct (PAC) model.)

4.1 The AdaBoost algorithm
This section describes AdaBoost, which is the ba-
sis for the CoBoost algorithm. AdaBoost was first
introduced in (Freund and Schapire 97); (Schapire
and Singer 98) gave a generalization of AdaBoost
which we will use in this paper. For a description of
the application of AdaBoost to various NLP prob-
lems see the paper by Abney, Schapire, and Singer
in this volume.

The input to AdaBoost is a set of training exam-
ples ((Xl, Y l) , . • • , (X r n , Y m)) - Each xi E 2 x is the
set of features constituting the ith example. For the
moment we will assume that there are only two pos-
sible labels: each Yi is in { -1 , +1}. AdaBoost is
given access to a weak learning algorithm, which

105

accepts as input the training examples, along with
a distribution over the instances. The distribution
specifies the relative weight, or importance, of each
example - - typically, the weak learner will attempt
to minimize the weighted error on the training set,
where the distribution specifies the weights.

The weak learner for two-class problems com-
putes a weak hypothesis h from the input space into
the reals (h : 2 x --+ 11~), where the sign 4 of h(x)
is interpreted as the predicted label and the mag-
nitude Ih(x)l is the confidence in the prediction:
large numbers for Ih(x) l indicate high confidence in
the prediction, and numbers close to zero indicate
low confidence. The weak hypothesis can abstain
from predicting the label of an instance x by set-
ting h(x) = 0. The final strong hypothesis, denoted
f (x), is then the sign of a weighted sum of the weak

hypotheses, f (x) = sign (~tT=l atht(x)), where
the weights at are determined during the run of the
algorithm, as we describe below.

Pseudo-code describing the generalized boosting
algorithm of Schapire and Singer is given in Fig-
ure 1. Note that Zt is a normalization constant that
ensures the distribution Dt+l sums to 1; it is a func-
tion of the weak hypothesis ht and the weight for
that hypothesis at chosen at the tth round. The nor-
malization factor plays an important role in the Ad-
aBoost algorithm. Schapire and Singer show that
the training error is bounded above by

1 exp --Yi o~tht(xi) H Z t . (3)
i=1 t

Thus, in order to greedily minimize an upper bound
on training error, on each iteration we should search
for the weak hypothesis ht and the weight at that
minimize Zt.

In our implementation, we make perhaps the sim-
plest choice of weak hypothesis. Each ht is a func-
tion that predicts a label (+1 or - 1) on examples
containing a particular feature xt, while abstaining
on other examples:

±1 x t C x
ht(x) = 0 Xt ~ x

The prediction of the strong hypothesis can then be
written as

awe define sign(O) = O.

We now briefly describe how to choose ht and o~t
at each iteration. Our derivation is slightly different
from the one presented in (Schapire and Singer 98)
as we restrict o~t to be positive. Zt can be written as
follows

Zt = ~ Dt(i)
i:ggt~xi

+ E nt(i) exp(-Yiatht(xi)) . (4)
i:XtExi

Let

Wo = E Dt(i),
i:ht(xl)=O

W+ = E Dt(i) ,
i:ht(xi)=yl

W_ = E Dr(i).
i:ht(xl)=-yi

Following the derivation of Schapire and Singer,
providing that W+ > W_, Equ. (4) is minimized
by setting

at = ~ In . (5)

Since a feature may be present in only a few ex-
amples, W_ can be in practice very small or even
0, leading to extreme confidence values. To pre-
vent this we "smooth" the confidence by adding a
small value, e, to both W+ and W_, giving s t =

Plugging the value of at from Equ. (5) and ht into
Equ. (4) gives

Zt = Wo + 2v/W+W_ (6)

In order to minimize Zt, at each iteration the final
algorithm should choose the weak hypothesis (i.e.,
a feature xt) which has values for W+ and W_ that
minimize Equ. (6), with W+ > W_.

4.2 The CoBoost algorithm

We now describe the CoBoost algorithm for the
named entity problem. Following the convention
presented in earlier sections, we assume that each
example is an instance pair of the from (Xl,i, X2,i)
where Xj,i E 2"vJ,j E {1,2}. In the named-
entity problem each example is a (spelling,context)
pair. The first rn pairs have labels Yi, whereas for
i = m + 1 , . . . , n the pairs are unlabeled. We
make the assumption that for each example, both

106

I
i

xl,i and x2,i alone are sufficient to determine the la-
bel Yi. The learning task is to find two classifiers
fx : 2 & --+ { - 1 , +1} f2 : 2 x'2 --+ { - 1 , +1} such
that f l (x l , i) = f2(x2,i) = Yi for examples i =
1 , . . . , m, and f l (Xl , i) = f2(x2,i) as often as possi-
ble on examples i = m + 1 , . . . , n. To achieve this
goal we extend the auxiliary function that bounds
the training error (see Equ. (3)) to be defined over
unlabeled as well as labeled instances. Denote by

gj(x) = ~ t 4 h ~ : (x) , j E {1,2} the unthresholded
strong-hypothesis (i.e., f j (x) = sign(gj (x))). We
define the following function:

m

Xco de_=y Z e x p (_ y i g l (X l , i))

+

i=1
m

exp(-y g (x ,d)
i=1

n

-q- Z exp(--f2(x2,i)gl(xl,i))
i = m + l

n

+ ~ exp(- f l (x l , i)g2(x2, i)) . (7)
i = m + l

If Zco is small, then it follows that the two classi-
fiers must have a ' low error rate on the labeled ex-
amples, and that they also must give the same la-
bel on a large number of unlabeled instances. To
see this, note that the first two terms in the above
equation correspond to the function that AdaBoost
attempts to minimize in the standard supervised set-
ting (Equ. (3)), With one term for each classifier.
The two new terms force the two classifiers to agree,
as much as possible, on the unlabeled examples.
Put another way, the minimum of Equ. (7) is at
0 when: 1)Vi : s ign(gl(xi)) = sign(g2(xi));
2) Igj(xi)l ~ ~ ; and 3) sign(gj(xi)) = yi for
i = 1 , . . . , m . In fact, Zco provides a bound on
the sum of the classification error of the labeled ex-
amples and the number of disagreements between
the two classifiers on the unlabeled examples. For-
mally, let el (e2) be the number of classification er-
rors of the first (second) learner on the training data,
and let eco be the number of unlabeled examples on
which the two classifiers disagree. Then, it can be
verified that

q + e2 + 2eco _< Zco •

We can now derive the CoBoost algorithm as a
means of minimizing Zco. The algorithm builds

two classifiers in parallel from labeled and unla-
beled data. As in boosting, the algorithm works in
rounds. Each round is composed of two stages; each
stage updates one of the classifiers while keeping
the other classifier fixed. Denote the unthresholded
classifiers after t - 1 rounds by 9} -x and assume
that it is the turn for the first classifier to be updated
while the second one is kept fixed. We first define
"pseudo-labels", yi, as follows:

Yi l < i < m
Yi = sign(g~-l(x2,i)) m < i <_ n

Thus the first m labels are simply copied from the
labeled examples, while the remaining (n - m) ex-
amples are taken as the current output of the second
classifier. We can now add a new weak hypothesis
ht 1 based on a feature in P(1 with a confidence value
oct 1 . ht 1 and tit 1 are chosen to minimize the function

n

Zclo = Z exp(--,Yi(g~ - l (x i) + c~tlh~(xl, i)))" (8)
i=1

We now define, for 1 < i < n, the following virtual
distribution,

1
Dtl(i) = z--~ exp(-~ig~-l(xl , i)),

As before, Zt 1 is a normalization constant. Equ. (8)
can now be rewritten 5 as

n

Z Dtl(i)exp(- ,Yi~h~(xl , i)) '
i=l

which is of the same form as the function Zt used
in AdaBoost. Using the virtual distribution Dtl(i)
and pseudo-labels ~)i, values for W0, W+ and W_
can be calculated for each possible weak hypothesis
(i.e., for each feature x E ,121); the weak hypothe-
sis with minimal value for W0 + 2 ~ + W _ can be
chosen as before; and the weight for this weak hy-

pothesis c~t = ½ In \ w_ +~) can be calculated. This

procedure is repeated for T rounds while alternat-
ing between the two classifiers. The pseudo-code
describing the algorithm is given in Fig. 2.

The CoBoost algorithm described above divides
the function Zco into two parts: Zco = Zclo + Zc2o •

• On each step CoBoost searches for a feature and
a weight so as to minimize either Zclo or Zc2o . In

5up to a constant factor Zt ~ which does not affect the mini-
mization of Equ. (8) w.r.t, ht and a t .

107

n m
Input: {(xl,i, x2,i) }i=l , {Yi}i=l
Initialize: Vi, j : g ° (x /) = 0.
For t = 1, T and f o r j = 1,2:

• Set pseudo-labels:

Yi l < i < m
Yi = sign(9~-}(x3_j,{)) m < i _< n

• Set virtual distribution:

D{(i) = 1 -~- exp (- g i g] - I (xj,i))
Zt

where Zt 3 = E~=I exp(-Yi9] -1 (xj,i)).

• Get a weak hypothesis ht 3 : 2A:J --+ IR. by train-
ing weak learner j using distribution D~.

• Choose at 6 ~.
• Update:

t X -~-]--l:x Vi : g j (j,i) g ~ j,i) + c~th~(xj,i) .

Output final hypothesis:

f (x) = sign (E~=i g T (X j))

Figure 2: The CoBoost algorithm.

practice, this greedy approach almost always results
in an overall decrease in the value of Zco. Note,
however, that there might be situations in which
Zco in fact increases.

One implementation issue deserves some elab-
oration. Note that in our formalism a weak-
hypothesis can abstain. In fact, during the first
rounds many of the predictions of gl, 92 are zero.
Thus corresponding pseudo-labels for instances on
which 9j abstainare set to zero and these instances
do not contribute to the objective function. Each
learner is free to pick the labels for these instances.
This allow the learners to "bootstrap" each other by
filling the labels of the instances on which the other
side has abstained so far.

The CoBoost algorithm just described is for the
case where there are two labels: for the named en-
tity task there are three labels, and in general it will
be useful to generalize the CoBoost algorithm to the
multiclass case. Several extensions of AdaBoost for
multiclass problems have been suggested (Freund
and Schapire 97; Schapire and Singer 98). In this
work we extended the AdaBoost.MH (Schapire and
Singer 98) algorithm to the cotraining case. Ad-

aBoost.MH maintains a distribution over instances
and labels; in addition, each weak-hypothesis out-
puts a confidence vector with one confidence value
for each possible label. We again adopt an approach
where we alternate between two classifiers: one
classifier is modified while the other remains fixed.
Pseudo-labels are formed by taking seed labels on
the labeled examples, and the output of the fixed
classifier on the unlabeled examples. AdaBoost.MH
can be applied to the problem using these pseudo-
labels in place of supervised examples.

For the experiments in this paper we made a cou-
ple of additional modifications to the CoBoost al-
gorithm. The algorithm in Fig. (2) was extended
to have an additional, innermost loop over the (3)
possible labels. The weak hypothesis chosen was
then restricted to be a predictor in favor of this la-
bel. Thus at each iteration the algorithm is forced
to pick features for the l o c a t i o n , p e r s o n and
o r g a n i z a t i o n in turn for the classifier being
trained. This modification brings the method closer
to the DL-CoTrain algorithm described earlier, and
is motivated by the intuition that all three labels
should be kept healthily populated in the unlabeled
examples, preventing one label from dominating - -
this deserves more theoretical investigation.

We also removed the c o n t e x t - t y p e feature
type when using the CoBoost approach. This "de-
fault" feature type has 100% coverage (it is seen on
every example) but a low, baseline precision. When
this feature type was included, CoBoost chose this
default feature at an early iteration, thereby giving
non-abstaining pseudo-labels for all examples, with
eventual convergence to the two classifiers agreeing
by assigning the same label to almost all examples.
Again, this deserves further investigation.

Finally, we would like to note that it is possible to
devise similar algorithms based with other objective
functions than the one given in Equ. (7), such as the
likelihood function used in maximum-entropy prob-
lems and other generalized additive models (Laf-
ferty 99). We are currently exploring such algo-
rithms.

5 An EM-based approach

The Expectation Maximization (EM) algorithm
(Dempster, Laird and Rubin 77) is a common ap-
proach for unsupervised training; in this section we
describe its application to the named entity prob-
lem. A generative model was applied (similar to
naive Bayes) with the three labels as hidden vari-

108

!

ables on unlabeled examples, and observed vari-
ables on (seed) labeled examples. The model was
parameterized such that the joint probability of a
(label, feature-sei) pair P(Yi, xi) is written as

P(Yi, xi) = P(Yi, Xil ' ' . Ximi)
mi

= P(yi)P(mi) N P(xij]Yi)
j = l

(9)

The model assumes that (y, x) pairs are generated
by an underlying process where the label is first cho-
sen with some prior probability P(Yi); the number
of features mi is then chosen with some probability
P(mi); finally th~ features are independently gen-
erated with probabilities P(xij [Yi).

We again assume a training set of n examples
{xl . . . Xn} where the first m examples have labels
{Yl . . . ym}, and the last (n - m) examples are un-
labeled. For the purposes of EM, the "observed"
data is {(xx,ya)i . . . (Xm, Ym),Xm+l...Xn}, and
the hidden data is {ym+l . . . Yn}. The likelihood of
the observed data under the model is

m n k

l ~ P(yi, xl) × I I ~ P(y , xi)
i = 1 i = m + l y= l

(10)

where P(Yi, xi) is defined as in (9). Training under
this model involves estimation of parameter values
for P(y), P(m) and P(xly). The maximum likeli-
hood estimates (i.e., parameter values which maxi-
mize 10) can not be found analytically, but the EM
algorithm can be used to hill-climb to a local max-
imum of the likelihood function from some initial
parameter settings. In our experiments we set the
parameter values randomly, and then ran EM to con-
vergence.

Given parameter estimates, the label for a test ex-
ample x is defined as

f(x) = argum{~xk}P(x,y) (11)

We should note that the model in equation 9
is deficient, in that it assigns greater than zero
probability to some feature combinations that
are impossible. For example, the indepen-
dence assumptions mean that the model fails
to capture the dependence between specific and
more general features (for example the fact that
the feature f u l l ' - s t r i n g = N e w _ Y o r k is always
seen with the features c o n t a i n s (New) and

Learning Algorithm Accuracy Accuracy
(Clean) (Noise)

Baseline
EM
(Yarowsky 95)
Yarowsky-cautious
DL-CoTrain
CoBoost

45.8%
83.1%
81.3%
91.2%
91.3%
91.1%

41.8%
75.8%
74.1%
83.2%
83.3%
83.1%

Table 2: Accuracy for different learning methods.
The baseline method tags all entities as the most fre-
quent class type (organization).

contains (York) and is never seen with a fea-

ture such as contains (Group)). Unfortunately,
modifying the model to account for these kind of
dependencies is not at all straightforward.

6 Evaluation

88,962 (spelling,context) pairs were extracted as
training data. 1,000 of these were picked at
random, and labeled by hand to produce a test
set. We chose one of four labels for each exam-
ple: location, person, organization,
or noise where the noise category was used for
items that were outside the three categories. The
numbers falling into the l o c a t i o n , p e r s o n ,
o r g a n i z a t i on categories were 186, 289 and 402
respectively.

123 examples fell into the n o i s e category. Of
these cases, 38 were temporal expressions (either a
day of the week or month of the year). We excluded
these from the evaluation as they can be easily iden-
tified with a list of days/months. This left 962 ex-
amples, of which 85 were noise. Taking Arc to be
the number of examples an algorithm classified cor-
rectly (where all gold standard items labeled no i s e
were counted as being incorrect), we calculated two
measures of accuracy:

Nc
Accuracy : Noise -- (12)

962
Nc

Accuracy :Clean - (13)
962 - 85

See Tab. 2 for the accuracy of the different meth-
ods. Note that on some examples (around 2% of
the test set) CoBoost abstained altogether; in these
cases we labeled the test example with the baseline,
o r g a n i z a t i o n , label. Fig. (3) shows learning
curves for CoBoost.

109

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

"

.,.¢¢"
. '

.,,.,,,~.-" C o v e r a g e : t r a i n ----*
. ~ : A g r e e m e n t s : t r a i n •

10 1 O0 1000 10000

N u m b e r o f r o u n d s

Figure 3: Learning curves for CoBoost. The graph
gives the accuracy on the test set, the coverage (pro-
portion of examples on which both classifiers give a
label rather than abstaining), and the proportion of
these examples on which the two classifiers agree.
With each iteration more examples are assigned la-
bels by both classifiers, while a high level of agree-
ment (> 94%) is maintained between them. The
test accuracy more or less asymptotes.

7 Conc lus ions

Unlabeled examples in the named-entity classifica-
tion problem can reduce the need for supervision to
a handful of seed rules. In addition to a heuristic
based on decision list learning, we also presented a
boosting-like framework that builds on ideas from
(Blum and Mitchell 98). The method uses a "soft"
measure of the agreement between two classifiers
as an objective function; we described an algorithm
which directly optimizes this function. We are cur-
rently exploring other methods that employ simi-
lar ideas and their formal properties. Future work
should also extend the approach to build a complete
named entity extractor - - a method that pulls proper
names from text and then classifies them. The con-
textual rules are restricted and may not be applicable
to every example, but the spelling rules are gener-
ally applicable and should have good coverage. The
problem of "noise" items that do not fall into any of
the three categories also needs to be addressed.

References
M. Berland and E. Charniak. 1999. Finding Parts in Very Large

Corpora. In Proceedings of the the 37th Annual Meeting of
the Association for Computational Linguistics (ACL-99).

D. M. Bikel, S. Miller, R. Schwartz, and R. Weischedel. 1997.
Nymble: a High-Performance Learning Name-finder. In
Proceedings of the Fifth Conference on Applied Natural
Language Processing, pages 194-201.

A. Blum and T. Mitchell. 1998. Combining Labeled and
Unlabeled Data with Co-Training. In Proceedings of the
l lth Annual Conference on Computational Learning The-
ory (COLT-98).

E. Brill. 1995. Unsupervised Learning of Disambiguation
Rules for Part of Speech Tagging. In Proceedings of the
Third Workshop on Very Large Corpora.

S. Brin. 1998. Extracting Patterns and Relations from the World
Wide Web. In WebDB Wokshop at EDBT '98.

M. Collins. 1996. A New Statistical Parser Based on Bi-
gram Lexical Dependencies. Proceedings of the 34th Annual
Meeting of the Association for Computational Linguistics,
pages 184-191.

A.P. Dempster, N.M. Laird, and D.B. Rubin, (1977). Maximum
Likelihood from Incomplete Data Via the EM Algorithm,
Journal of the Royal Statistical Society, Ser B, 39, 1-38.

Y. Freund. Boosting a weak learning algorithm by majority.
Information and Computation, 121 (2):256-285, 1995.

Y. Freund and R. E. Schapire. A decision-theoretic general-
ization of on-line learning and an application to boosting.
Journal of Computer and System Sciences, 55(1): I 19-139,
1997.

M. Hearst. 1992. Automatic Acquisition of Hyponyms from
Large Text Corpora. In Proceedings of the Fourteenth In-
ternational Conference on Computational Linguistics.

Michael Kearns. Thoughts on hypothesis boosting. Unpub-
lished manuscript, December 1988.

J. Lafferty. Additive Models, Boosting, and Inference for Gen-
eralized Divergences. In Proceedings of the Twelfth Annual
Conference on Computational Learning Theory, 1999.

Proceedings of the Sixth Message Understanding Conference
(MUC-6). Morgan Kaufmann, San Mateo, CA.

E. Riloff and J. Shepherd. 1997. A Corpus-Based Approach
for Building Semantic Lexicons. In Proceedings of the Sec-
ond Conference on Empirical Methods in Natural Language
Processing (EMNLP-2).

E. Riloff and R. Jones. 1999. Learning Dictionaries for Infor-
mation Extraction by Multi-Level Bootstrapping. In Pro-
ceedings of the Sixteenth National Conference on Artificial
Intelligence (AAAI-99).

R. E. Schapire. The strength of weak learnability. Machine
Learning, 5(2): 197-227, 1990.

R. E. Schapire and Y. Singer. Improved boosting algorithms
using confidence-rated predictions. In Proceedings of the
Eleventh Annual Conference on Computational Learning
Theory, pages 80-91, 1998. To appear, Machine Learning.
G. Valiant. A theory of the learnable. Communications of
the ACM, 27(11): 1134-1142, November 1984.
Yarowsky. 1995. Unsupervised Word Sense Disambiguation
Rivaling Supervised Methods.In Proceedings of the 33rd
Annual Meeting of the Association for Computational Lin-
guistics. Cambridge, MA, pp. 189-196.

L.

D .

110

