
Boosting Applied to Tagging and PP Attachment

Steven Abney

{abney,

Robert E. Schapire

AT&T Labs - Research
180 Park Avenue

Florham Park, NJ 0 7 9 3 2
schapire,

Yoram Singer

singer}@research.att.com

Abstract
Boosting is a machine learning algorithm that is not
well known in computational linguistics. We ap-
ply it to part-of-speech tagging and prepositional
phrase attachment. Performance is very encourag-
ing. We also show how to improve data quality by
using boosting to identify annotation errors.

1 Introduction
Boosting is a machine learning algorithm that has
been applied successfully to a variety of problems,
but is almost unknown in computational linguis-
tics. We describe experiments in which we apply
boosting to part-of-speech tagging and prepositional
phrase attachment. Results on both PP-attachment
and tagging are within sampling error of the best
previous results.

The current best technique for PP-attachment
(backed-off density estimation) does not perform
well for tagging, and the current best technique for
tagging (maxent) is below state-of-the-art on PP-
attachment. Boosting achieves state-of-the-art per-
formance on both tasks simultaneously.

The idea of boosting is to combine many sim-
ple "rules of thumb," such as "the current word is
a noun if the previous word is the." Such rules of-
ten give incorrect classifications. The main idea of
boosting is to combine many such rules in a prin-
cipled manner to produce a single highly accurate
classification rule.

There are similarities between boosting and
transformation-based learning (Brill, 1993): both
build classifiers by combining simple rules, and
both are noted for their resistance to overfitting.
But boosting, unlike transformation-based learning,
rests on firm theoretical foundations; and it outper-
forms transformation-based learning in our experi-
ments.

There are also superficial similarities between
boosting and maxent. In both, the parameters are
weights in a log-linear function. But in maxent, the

log-linear function defines a probability, and the ob-
jective is to maximize likelihood, which may not
minimize classification error. In boosting, the log-
linear function defines a hyperplane dividing exam-
ples into (binary) classes, and boosting minimizes
classification error directly. Hence boosting is usu-
ally more appropriate when the objective is classifi-
cation rather than density estimation.

A notable property of boosting is that it maintains
an explicit measure of how difficult it finds partic-
ular training examples to be. The most difficult ex-
amples are very often mislabelled examples. Hence,
boosting can contribute to improving data quality by
identifying annotation errors.

2 The boosting algorithm AdaBoost

In this section, we describe the boosting algo-
rithm AdaBoost that we used in our experiments.
AdaBoost was first introduced by Freund and
Schapire (1997); the version described here is a
(slightly simplified) version of the one given by
Schapire and Singer (1998). A formal descrip-
tion of AdaBoost is shown in Figure 1. AdaBoost
takes as input a training set of m labeled exam-
ples ((x l , y l) , . . . , (Xrn, Ym)) where xi is an exam-
ple (say, as described by a vector of attribute val-
ues), and Yi E {-1, -l--l} is the label associated with
xi. For now, we focus on the binary case, in which
only two labels (positive or negative) are possible.
Multiclass problems are discussed later.

Formally, the rules of thumb mentioned in the
introduction are called weak hypotheses. Boost-
ing assumes access to an algorithm or subroutine
for generating weak hypotheses called the weak
learner. Boosting can be combined with any suit-
able weak learner; the one that we used will be de-
scribed below.

AdaBoost calls the weak learner repeatedly in a
series of rounds. On round t, AdaBoost provides the
weak learner with a set of importance weights over
the training set. In response, the weak learner com-

38

Given: (xl, y l) , . . . , (Xm, Ym)
where xi E X , Yi E { - 1 , +1}

Initialize Di (i) =: 1/m.
For t = 1 , . . . , T :

• Train weak learner using distribution Dt.
• Get weak hypothesis ht : X -4 ~.
• Update:

Dt+i(i) =
Dt(i) exp(-y ih t (x i))

Zt

where Zt is a normalization factor (chosen so
that Dt+l will be a distribution).

Output the final hypothesis:

Figure 1: The boosting algorithm AdaBoost.

putes a weak hypothesis ht that maps each example
x to a real number ht(x). The sign of this num-
ber is interpreted as the predicted class (- 1 or +1)
of example z, while the magnitude]ht(z)] is inter-
preted as the level of confidence in the prediction,
with larger values corresponding to more confident
predictions.

The importance weights are maintained formally
as a distribution over the training set. We write
Dr(i) to denote the weight of the ith training ex-
ample (xi, Yi) on the tth round of boosting. Ini-
tially, the distribution is uniform. Having obtained a
hypothesis ht from the weak learner, AdaBoost up-
dates the weights by multiplying the weight of each
example i by I e -ylht(xi) . If ht incorrectly classified
example i so that ht (xi) and Yi disagree in sign, then
this has the effect of increasing the weight on this
example, and conversely the weights of correctly
classified examples are decreased. Moreover, the
greater the confidence of the prediction (that is, the
greater the magnitude of ht(xi)), the more drastic
will be the effect of the update. The weights are then
renormalized, resulting in the update rule shown in
the figure.

In our experiments, we used cross validation to
choose the number of rounds T. After T rounds,

JSchapire and Singer (1998) multiply instead by
exp(-yioetht(xi)) where a t E ~ is a parameter that needs to
be set. In the description presented here, we fold a t into ht.

AdaBoost outputs a final hypothesis which makes
predictions using a simple vote of the weak hy-
potheses' predictions, taking into account the vary-
ing confidences of the different predictions. A new
example x is classified using

T
=

t = l

where the label predicted for x is sign(ff(x)).

2.1 Finding weak hypotheses
In this section, we describe the weak learner used
in our experiments. Since we now focus on what
happens on a single round of boosting, we will drop
t subscripts where possible.

Schapire and Singer (1998) prove that the train-
ing error of the final hypothesis is at most yItr=l Zt.
This suggests that the training error can be greedily
driven down by designing a weak learner which, on
round t of boosting, attempts to find a weak hypoth-
esis h that minimizes

m

Z = ~ D(i)exp(-y ih (x i)) .
i=1

This is the principle behind the weak learner used in
our experiments.

In all our experiments, we use very simple weak
hypotheses that test the value of a Boolean predi-
cate and make a prediction based on that value. The
predicates used are of the form "a = v", for a an
attribute and v a value; for example, "PreviousWord
= the". In the PP-attachment experiments, we also
considered conjunctions of such predicates. If, on a
given example x, the predicate holds, the weak hy-
pothesis outputs prediction Pl, otherwise P0, where
Pl and P0 are determined by the training data in a
way we describe shortly. In this setting, weak hy-
potheses can be identified with predicates, which in
turn can be thought of as features of the examples;
thus, in this setting, boosting can be viewed as a
feature-selection method.

Let ¢(z) E {0, 1} denote the value of the pred-
icate ¢ on the example z, and for b E {0, 1}, let
Pb E IR be the prediction of the weak hypothe-
sis when ¢(x) = b. Then we can write simply
h(x) = PC(z). Given a predicate ¢, we choose P0
and Pl to minimize Z. Schapire and Singer (1998)
show that Z is minimized when we let

p b = ½ In) (1)

39

MF tag O 7.66
Markov 1-gram B 6.74
Markov 3-gram W 3.7
Markov 3-gram B 3.64
Decision tree M 3.5
Transformation B 3.39
Maxent R 3.37
Maxent O 3.11 ~.07
Multi-tagger Voting B 2.84 :t=.03

Table 1: TB-WSJ testing error previously reported
in the literature. B = (Brill and Wu, 1998); M
= (Magerman, 1995); O = our data; R = (Ratna-
parkhi, 1996); W = (Weischedel and others, 1993).

f o r b E {0,1} where Ws b i s t h e s u m of D(i) for
examples i such that yi = s and ¢(xi) = b. This
choice of p# implies that

Z : 2 Z CW+blW-bl" (2)
bE(O,1}

This expression can now be minimized over all
choices of ¢.

Thus, our weak learner works by searching for
the predicate ¢ that minimizes Z of Eq. (2), and
the resulting weak hypothesis h(x) predicts Pc(z)
of Eq. (1) on example x.

In practice, very large values of p0 and pl can
cause numerical problems and may also lead to
overfitting. Therefore, we usually "smooth" these
values using the following alternate choice of Pb
given by Schapire and Singer (1998):

(W+ba a t-q'-~) pb = ½ In \ ~ - ~ (3)

where e is a small positive number.

2.2 Multiclass problems
So far, we have only discussed binary classification
problems. In the multiclass case (in which more
than two labels are possible), there are many pos-
sible extensions of AdaBoost (Freund and Schapire,
1997; Schapire, 1997; Schapire and Singer, 1998).
Our default approach to multiclass problems is to
use Schapire and Singer's (1998) AdaBoost.MH al-
gorithm. The main idea of this algorithm is to re-
gard each example with its multiclass label as sev-
eral binary-labeled examples.

More precisely, suppose that the possible classes
are 1 , . . . , k . We map each original example x

40

with label y to k binary labeled derived examples
(x, 1) , . . . , (x, k) where example (x, c) is labeled
+1 if c = y and - 1 otherwise. We then essen-
tially apply binary AdaBoost to this derived prob-
lem. We maintain a distribution over pairs (x, c),
treating each such as a separate example. Weak hy-
potheses are identified with predicates over (x, c)
pairs, though they now ignore c, so that we can
continue to use the same space of predicates as
before. The prediction weights c c P0, Pl, however,
are chosen separately for each class c; we have
ht(x, c) = P~,(z)" Given a new example x, the final
hypothesis makes confidence-weighted predictions
f (x, c) = }2tr=l ht(x, c) for each of the discrimina-
tion questions (c = 1? c = 2? etc.); the class is pre-
dicted to be the value of c that maximizes f (x , c).
For more detail, see the original paper (Schapire and
Singer, 1998).

When memory limitations prevent the use of Ad-
aBoost.MH, an alternative we have pursued is to
use binary AdaBoost to train separate discrimina-
tors (binary classifiers) for each class, and com-
bine their output by choosing the class c that max-
imizes re(x), where fc(x) is the final confidence-
weighted prediction of the discriminator for class
c. Let us call this algorithm AdaBoost.MI (multi-
class, independent discriminators). It differs from
AdaBoost.MH in that predicates are selected inde-
pendently for each class; we do not require that
the weak hypothesis at round t be the same for all
classes. The number of rounds may also differ from
discriminator to discriminator.

3 Tagging

3.1 Corpus
To facilitate comparison with previous results, we
used the UPenn Treebank corpus (Marcus et al.,
1993). The corpus uses 80 labels, which comprise
45 parts of speech properly so-called, and 35 inde-
terminate tags, representing annotator uncertainty.
We introduce an 81 st label, ##, for paragraph sepa-
rators.

An example of an indeterminate tag is NNIO'd,
which indicates that the annotator could not decide
between NN and ,30. The "right" thing to do with in-
determinate tags would either be to eliminate them
or to count the tagger's output as correct if it agrees
with any of the alternatives. Previous work appears
to treat them as separate tags, however, and we have
followed that precedent.

We partitioned the corpus into three samples: a
test sample consisting of 1000 randomly selected

ambig
unambig
unknown
total

n errors percent contrib
28,557 (52.7%) 1396 4.89 2.58
24,533 (45.3%) 167 0.68 0.31

1104 (2.0%) 213 19.29 0.39
54,194 1776 3.28 +0.08

Table 2: Performance of the multi-discriminator approach.

paragraphs (54,194 tokens), a development sam-
ple, also of 1000 paragraphs (52,087 tokens), and
a training sample' (1,207,870 tokens).

Some previously reported results on the Treebank
corpus are summarized in Table 1. These results are
all based on the Treebank corpus, but it appears that
they do not all use the same training-test split, nor
the same preprocessing, hence there may be differ-
ences in details of examples and labels. The "MF
tag" method simply uses the most-frequent tag from
training as the predicted label. The voting scheme
combines the outputs of four other taggers.

3.2 Applying Boosting to Tagging
The straightforward way of applying boosting to
tagging is to use AdaBoost.MH. Each word token
represents an example, and the classes are the 81
part-of-speech tags. Weak hypotheses are identi-
fied with "attribute=value" predicates. We use a
rather spare attribute set, encoding less context than
is usual. The attributes we use are:

• Lexical attributes: The current word as a
downcased string (S); its capitalization (C);
and its most-frequent tag in training (T). T is
u n k n o w n for unknown words.

• Contextual attributes: the string (LS), capi-
talization (LC), and most-frequent tag (LT) of
the preceding word; and similarly for the fol-
lowing word (RS, RC, RT).

• Morphological attributes: the inflectional
suffix (I) of the current word, as provided by
an automatic stemmer; also the last two ($2)
and last three ($3) letters of the current word.

We note in passing that the single attribute T is a
good predictor of the correct label; using T as the
predicted label gives a 7.7% error rate (see Table 1).

Experiment 1. Because of memory limitations,
we could not apply AdaBoost.MH to the entire
training sample. We examined several approxima-
tions. The simplest approximation (experiment 1)
is to run AdaBoost.MH on 400K training examples,

41

Exp. 1 400K training 3.68 + .08
Exp. 2 4 × 3 0 0 K 3 . 3 2 + . 0 8
Exp. 3 Unambiguous & definite 3.59 ± .08
Exp. 4 AdaBoost.MI 3.28 4- .08

Table 3: Performance on experiments 1-4.

instead of the full training set. Doing so yields a test
error of 3.68%, which is actually as good as using
Markov 3-grams (Table 1).

Experiment 2. In experiment 2, we divided the
training data into four quarters, trained a classifier
using AdaBoost.MH on each quarter, and combined
the four classifiers using (loosely speaking) a final
round of boosting. This improved test error signif-
icantly, to 3.32%. In fact, this tagger performs as
well as any single tagger in Table 1 except the Max-
ent tagger.

Experiment 3. In experiment 3, we reduced the
training sample by eliminating unambiguous words
(multiple tags attested in training) and indefinite
tags. We examined all indefinite-tagged examples
and made a forced choice among the alternatives.
The result is not strictly comparable to results on
the larger tagset, but since only 5 out of 54K test
examples are affected, the difference is negligible.
This yielded a multiclass problem with 648K exam-
ples and 39 classes. We constructed a separate clas-
sifier for unknown words, using AdaBoost.MH. We
used hapax legomena (words appearing once) from
our training sample to train it. The error rate on un-
known words was 19.1%. The overall test error rate
was 3.59%, intermediate between the error rates in
the two previous experiments.

Experiment 4. One obvious way of reducing the
training data would be to train a separate classifier
for each word. However, that approach would re-
sult in extreme data fragmentation. An alternative
is to cut the data in the other direction, and build a
separate discriminator for each part of speech, and

0.4

0.35

0.3

0.25

0.2

0.15

0.i

0.05

0

. , , . . , . . ,

Train
~ . ~ Test

" ColiinS & Brooks

. . , J , , i . . , i . ~ .

i0 I00 i000 I0000

Number of rounds

Figure 2: Training and test error as a
function of the number of rounds of
boosting for the PP-attachment problem.

combine them by choosing the part of speech whose
discriminator predicts 'Yes' with the most confi-
dence (or 'No' with the least confidence). We took
this approach--algorithm AdaBoost.MI--in exper-
iment 4. To choose the appropriate number of
rounds for each discriminator, we did an initial run,
and chose the point at which error on the devel-
opment sample flattened out. To handle unknown
words, we used the same unknown-word classifier
as in experiment 3.

The result was the best for any of our experi-
ments: a test error rate of 3.28%, slightly better than
experiment 2. The 3.28% error rate is not signifi-
cantly different (at p = 0.05) from the error rate of
the best-known single tagger, Ratnaparkhi's Maxent
tagger, which achieves 3.11% error on our data.

Our results are not as good as those achieved by
Brill and Wu's voting scheme. The experiments we
describe here use very simple features, like those
used in the Maxent or transformation-based taggers;
hence the results are not comparable to the multiple-
tagger voting scheme. We are optimistic that boost-
ing would do well with tagger predictions as input
features, but those experiments remain to be done.

Table 2 breaks out the error sources for experi-
ment 4. Table 3 sums up the results of all four ex-
periments.

Experiment 5 (Sequential model). To this point,
tagging decisions are made based on local context
only. One would expect performance to improve if
we consider a Viterbi-style optimization to choose
a globally best sequence of labels. Using decision
sequences also permits one to use true tags, rather

42

than most-frequent tags, on context tokens. We
did a fixed 500 rounds of boosting, testing against
the development sample. Surprisingly, the sequen-
tial model performed much less well than the local-
decision models. The results are summarized in Ta-
ble 4.

4 Prepositional phrase attachment
In this section, we discuss the use of boosting for
prepositional phrase (PP) attachment. The cases
of PP-attachment that we address define a binary
classification problem. For example, the sentence
Congress accused the president o f peccadillos is
classified according to the attachment site of the
prepositional phrase:

attachment to N:
accused [the president of peccadillos]

attachment to V: (4)
accused [the president] [of peccadillos]

The UPenn Treebank-II Parsed Wall Street Jour-
nal corpus includes PP-attachment information, and
PP-attachment classifiers based on this data have
been previously described in Ratnaparkhi, Reynar,
Roukos (1994), Brill and Resnik (1994), and Collins
and Brooks (1995). We consider how to apply
boosting to this classification task.

We used the same training and test data as Collins
and Brooks (1995). The instances of PP-attachment
considered are those involving a verb immediately
followed by a simple noun phrase (the direct ob-
ject) and a prepositional phrase (whose attachment
is at issue). Each PP-attachment example is repre-
sented by its value for four attributes: the main verb
(V), the head word of the direct object (N1), the
preposition (P), and the head word of the object
of the preposition (N2). For instance, in example
4 above, V = accused, N1 = president, P = o f
and N2 = peccadillos. Examples have binary la-
bels: positive represents attachment to noun, and
negative represents attachment to verb. The train-
ing set comprises 20,801 examples and the test set
contains 3,097 examples; there is also a separate
development set of 4,039 examples.

The weak hypotheses we used correspond to "at-
tribute=value" predicates and conjunctions thereof.
That is, there are 16 predicates that are consid-
ered for each example. For example 4, three of
these 16 predicates are (V = accused A N1 =
president A N2 = peccadillos), (P = with), and
(V = accused A p = oJ). As described in section
2.1, a weak hypothesis produces one of two real-
valued predictions P0, Pl, depending on the value of

errors percent
Local decisions, LT/RT = most-frequent tag
Local decisions, LT/RT = true tag
Sequential decisions

1489/52,087 3.18
1418/52,087 3.04
2083/52,087 4.00

Table 4: Performance of the sequential model on the development sample.

Round

Table 5: The first five weak

Test
(P = of)
(P = to)
(N2 = NUMBER)
(N1 = it)
(P = at)

Prediction
+2.393
-0 .729
-0 .772
-2 .273
-0 .669

hypotheses chosen for the PP-attachment classifier.

its predicate. We found that little information was
conveyed by knowing that a predicate is false. We
therefore forced each weak hypothesis to abstain if
its predicate is not satisfied--that is, we set P0 to 0
for all weak hypotheses.

Two free parameters in boosting are the num-
ber of rounds T and the smoothing parameter e for
the confidence values (see Eq. (3)). Although there
are theoretical analyses of the number of rounds
needed for boosting (Freund and Schapire, 1997;
Schapire et al,, 1997) and for smoothing (Schapire
and Singer, 1998), these tend not to give practical
answers. We therefore used the development sam-
ple to set these parameters, and chose T = 20,000
and c = 0.001.

On each round of boosting, we consider every
predicate relevant to any example, and choose the
one that minimizes Z as given by Eq. (2). In Ta-
ble 5 we list the weak hypotheses chosen on the first
five rounds of boosting, together with their assigned
confidence Pl. Recall that a positive value means
that noun attachment is predicted. Note that all the
weak hypotheses chosen on the first rounds test the
value of a single attribute: boosting starts with gen-
eral tendencies and moves toward less widely ap-
plicable but higher-precision tests as it proceeds.
In 20,000 rounds of boosting, single-attribute tests
were chosen 4,615 times, two-attribute tests were
chosen 4,146 ,times, three-attribute tests were cho-
sen 2,779 times, and four-attribute tests were cho-
sen 8,460 times. It is possible for the same predi-
cate to be chosen in multiple rounds; in fact, pred-
icates were chosen about twice on average. The fi-
nal hypothesis considers 9,677 distinct predicates.

We can define the total weight of a predicate to be
the sum of Pl'S over the rounds in which it is cho-
sen; this represents how big a vote the predicate has
on examples it applies to. We expect more-specific
hypotheses to have more weight--otherwise they
would not be able to overrule more-general hy-
potheses, and there would be no point in having
them. This is confirmed by examining the predi-
cates with the greatest weight (in absolute value) af-
ter 20,000 rounds of boosting, as shown in Table 6.

After 20,000 rounds of boosting the test error
was down to 14.6 ± 0.6%. This is indistinguish-
able from the best known results for this problem,
namely, 14.5±0.6%, reported by Collins and Brook
on exactly the same data. In Figure 2, we show the
training and test error as a function of the number
of rounds of boosting. The boosted classifier has
the advantage of being much more compact than the
large decision list built by Collins and Brooks using
a back-off method. We also did not take into ac-
count the linguistic knowledge used by Collins and
Brooks who, for instance, disallowed tests that ig-
nore the preposition.

Compared to maximum entropy methods (Ratna-
parkhi et al., 1994), although the methods share a
similar structure, the boosted classifier achieves an
error rate which is significantly lower.

5 Using boosting to improve data quality
The importance weights that boosting assigns to
training examples are very useful for improving data
quality. Mislabelled examples resulting from anno-
tator errors tend to be hard examples to classify cor-
rectly; hence they tend to have large weight in the

43

prev word tagged word next word

(V = was, N1 = decision, P ~- of, N2 = People)
(V = put, N1 = them, P = on, N2 = streets)
(V = making , N1 = it, t 9 = in, N2 = terms)
(V = prompted , N1 = speculat ion, 19 = in, N2 = market)
(V = is, N1 = director, 19 =- at, N2 = Bank)

Prediction
+25.41
- 2 3 . 0 8
- 2 2 . 8 9
+25.76
+23.83

Table 6: The five weak hypotheses with the highest (absolute) weight after 20,000 rounds.

be
Big
only
at
of
some

" To
with the
" the
- and
for most
We have
- and
- - a

by A
< P > But
- and
I were
n't make
have thought
will have
the first
be involved
A 's
including as

Half
I were
in both
, said
to one
to one
" the
to long-term
have called
have called
with the
was his
have thought
3O %
of have

new
'S
in
what
out
the
by

corpus label
NN
JJ
NN
JJ
JJ
VBN

correct label
TO
DT
DT
CC
JJS
VBP

to
big
in

much
the
out
gold
to
'S
'S
only

JJ CC
IN DT
NNP DT
IN CC
NN CC
VB VBP
VBP VB
VBD VBN

Test

VBP VB
RB JJ
JJ VBN
NNP POS
JJ RB
DT PDT
VB VBP
CC (DT)
VBN
NN PRP
NN PRP
NN PRP

for
for
Big
before
by
more
and

NN
VBD
VBD
JJ
PRP
VBD
JJ
JJ

(R B)

VBN
VBN
DT
PRP$
VBN
NN

Table 7: Training examples from experiment 4 with greatest weight.

final distribution D T + i (i). I f we rank examples by
their weight in the final distribution, mislabelled ex-
amples tend to cluster near the top.

Table 7 shows the training examples with the
greatest weight in tagging experiment 4. All but
two represent annotator errors, and one of the two

4 4

non-errors is a highly unusual construction ("a lot
of have and have-not markets"). Table 8 similarly
illustrates the highest-weight examples from the PP-
attachment data. Many of these are errors, though
others are genuinely difficult to judge.

v N~ P
rose NUMBER to
dropped NUMBER to
added NUMBER to
gained NUMBER to
gained NUMBER to
jumped NUMBER to
reported earnings of
had sales of
lost NUMBER to
lost NUMBER to
lost NUMBER to
earned million on
outnumbered NUMBER to
had change in
had change in
posted drop in
yielding PERCENT to
posted loss for
raise billion in
is reporter in
yield PERCENT in
yield PERCENT in
have impact on
posted drop in
registered NUMBER on
auction million in
following decline in
reported earnings for
signed agreement with
have impact on
report earnings for
fell NUMBER to
buy stake in
report loss for
make ,payments on
took charge in
is writer in
earned million on
earned million on
reached agreement in
reached agreement in
started venture with
resolve disputes with
become shareholder in
reach agreement with

Table 8: High-weight examples
attachment data. The last column
that appears in the corpus.

N2
NUMBER N
NUMBER N
NUMBER N
NUMBER N
NUMBER N
NUMBER N
million V
million V
NUMBER N
NUMBER N
NUMBER N
revenue N
NUMBER V
earnings V
earnings V
profit V
assumption N
quarter V
cash V
bureau" V
NUMBER N
NUMBER N
market V
earnings V
scale N
maturity V
August V
quarter V
Inc. V
results N
quarter N
point N
Airlines V
quarter N
debt V
quarter N
York V
sales N
sales N
principle V
principle V
Co. N
company V
bank V
regulators V

from the PP-
gives the label

Eric Brill and Jun Wu. 1998. Classifier combination for
improved lexical disambiguation. In Proceedings of
COLING-A CL.

Eric Brill. 1993. Transformation-Based Learning.
Ph.D. thesis, Univ. of Pennsylvania.

Michael Collins and James Brooks. 1995. Prepositional
phrase attachment through a backed-off model. In
Proceedings of the Third Workshop on Very Large
Corpora.

Yoav Freund and Robert E. Schapire. 1997. A decision-
theoretic generalization of on-line learning and an ap-
plication to boosting. Journal of Computer and Sys-
tem Sciences, 55(1): 119-139, August.

David Magerman. 1995. Statistical decision-tree models
for parsing. In Proc. ACL-95.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313-330.

A. Ratnaparkhi, J. Renyar, and S. Roukos. 1994. A max-
imum entropy model for prepostional phrase attache-
ment. In Proceedings of the ARPA Workshop on Hu-
man Language Technology.

Adwait Ratnaparkhi. 1996. A maximum entropy part-
of-speech tagger. In Proceedings of the Empirical
Methods in Natural Language Processing Conference.

Robert E. Schapire and Yoram Singer. 1998. Improved
boosting algorithms using confidence-rated predic-
tions. In Proceedings of the Eleventh Annual Confer-
ence on Computational Learning Theory, pages 80-
91.

Robert E. Schapire, Yoav Freund, Peter Bartlett, and
Wee Sun Lee. 1997. Boosting the margin: A new
explanation for the effectiveness of voting methods.
In Machine Learning: Proceedings of the Fourteenth
International Conference.

Robert E. Schapire. 1997. Using output codes to boost
multiclass learning problems. In Machine Learning:
Proceedings of the Fourteenth International Confer-
ence.

Ralph Weischedel et al. 1993. Coping with ambigu-
ity and unknown words through probabilistic models.
Computational Linguistics, 19(2):359-382.

References

E. Brill and E Resnik. 1994. A rule-baed appraoch to
prepositional phrase attachment disambiguation. In
Proceedings of the fifteenth international conference
on computational linguistics (COLING).

45

