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Abstract 

The Rosetta Stone TM is a successful CD- 
ROM based interactive program for teaching 
foreign languages, that uses speech 
comparison to help students improve their 
pronunciation. The input to a speech 
comparison system is N+I digitised 
utterances. The output is a measure of the 
similarity of the last utterance to each of the 
N others. Which language is being spoken 
is irrelevant. This differs from classical 
speech recognition where the input data 
includes but one utterance, a set of 
expectations tuned to the particular language 
in use (typically digraphs or similar), and a 
grammar of expected words or phrases, and 
the output is recognition in the utterance of 
one of the phrases in the grammar (or 
rejection). This paper describes a speech 
comparison system and its application in 
The Rosetta Stone TM. 

Introduction 

Funding for this research came from the 
developers 1, of The Rosetta Stone TM (TRS), a 
highly successful interactive multimedia 
program for teaching foreign languages. The 
developers wanted to use speech recognition 
technology to help students of foreign languages 
improve their pronunciation and their active 
vocabulary. As of this writing TRS is available 
in twenty languages, which was part of the 
motivation to develop a language independent 
approach to speech recognition. Classical 
approaches require extensive development per 
language. 

1 FLT, 165 South Main St., Harrisonburg, VA 22801. 
540-432-6166 www.trstone.com 

TRS provides an immersion experience, where 
images, movies and sounds are used to build 
knowledge of a language from scratch. Since 
there is no concession to the native language of 
the learner, a German speaker and a Korean 
speaker both learning Vietnamese have the same 
experience--all in Vietnamese. 

The most recent release of TRS includes EAR, 
the speech comparison system described in this 
paper. The input to a speech comparison system 
is N+I digitized utterances--in the case of TRS, 
that includes N utterances by native speakers 
recorded in a studio with quality microphones, 
and one utterance by a student recorded in a 
sometimes very noisy environment with a buil t-  
in or handheld microphone. The output is a 
measure of the similarity of the last utterance to 
each of the N others. Which language is being 
spoken is irrelevant. 

Speech comparison differs from classical speech 
recognition, where the input data includes one 
utterance, a set of expectations tuned to the 
particular language in use (typically digraphs or 
similar), and a grammar of expected words or 
phrases, and the output is recognition of the 
utterance as one of the phrases in the grammar, 
or rejection. 

The TRS CD-ROM contains tens of thousands 
of utterances by native speakers. Thus the TRS 
data set already included the necessary input for 
speech comparison, but not for classical speech 
recognition. The first application we developed 
was a pronunciation guide (see Fig. 1). The user 
clicks on a picture, hears a native speaker's 
utterance, attempts to mimic that utterance, sees 
a display of two images visually portraying the 
two utterances, and observes a gauge which 
shows a measure of the similarity between the 
two utterances. The system normalizes both 
voices (native speaker's and student's) to a 
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Fig. 1. TRS pronunciation evaluation 

Clicking on an image brings up the speech 
comparison panel, seen here imposed over 
the lower two images. The upper half of 
this panel displays a visualization of the 
native speaker's phrase describing the 
image. The student then attempts to mimic 
the pronunciation of the native speaker. 

The visualization of the student's utterance 
is displayed in real time. Each visualization 
includes pitch (the fine line at the top), 
emphasis (the line varying in thickness) and 
an image of highly processed spectral 
information of the normalized voice. 

The meter to the right gives an evaluation. 

common standard, and displays various abstract 
or at least highly processed features of the 
normalized voices, so that differences irrelevant 
to speech (such as how deep your voice is, or the 
frequency response curve of the microphone) 
hopefully do not play a role. 

The second application, currently under 
development, is active vocabulary building. The 
user sees four pictures and hears four phrases 
semantically related to the pictures. This is 
material they have already worked over in other 
learning modes designed to build passive 
vocabulary, i.e. the ability to recognize the 
meaning of speech. However in this exercise the 
user must be able to generate the speech with 
less prompting. The order of the pictures is 
scrambled, and they are flashed one at a time. 
The user must respond to each with the phrase 
that was given for that picture. The system 
evaluates their success, i.e. whether they 
responded with the correct phrase, one of the 
other phrases, or some unrelated utterance. One 
difficulty for the system is that frequently the 
four phrases are very similar, so that the 
difference between them might hinge on a short 
piece in the middle of otherwise nearly identical 
utterances (for example "the girl is cutting the 
blue paper", "the girl is cutting the red paper"). 

EAR is written in C. Since TRS is written in 
MacroMedia Director TM, EAR is interfaced to 
TRS using Director's interface for extending 
Director with C code. TRS is multithreaded, so 
EAR is able to do its work incrementally since it 

must not take the CPU for extended periods of 
time. Indeed EAR itself contains multiple 
threads of two kinds: description threads and 
comparison threads. 

Since the system might load several prerecorded 
utterances of native speakers at once, it is 
desirable that the work of computing the 
normalized high-level description of each 
utterance be done while the user is listening to 
those utterances, in parallel. Thus each stream 
of sound data (22050 Hz sound samples) is 
analyzed by a separate description thread, with a 
visual display in real time being an option. 
Similarly, sound data from the microphone is 
analyzed in real time while the student is 
speaking by a description thread, and the 
resulting visual display is displayed in real time. 
Description threads are discussed in Section 1. 

Once the user has finished speaking, a 
comparison thread can be launched for each of 
the native speaker descriptions, which compare 
those descriptions to the description of the 
student's utterance. Comparison threads are 
discussed in Section 2. 

1 Utterance Description 

An EAR utterance description is a vector of 
feature vectors. Of these, only pitch, emphasis 
and a dozen spectral features are portrayed in the 
visual display. An utterance description 
contains one feature vector for each 1/100 of a 
second of the utterance. 
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1.1 Filters 

Description of a sound stream begins with 48 
tuned Danforth(1997) filters developing a mel- 
scale frequency domain spectrum. They are 
tuned 6 per octave to cover 8 octaves, the 
highest frequency of the highest octave being 
8820 Hz, well below the Nyquist limit for a 
22050 Hz sample rate. Within each octave each 
filter is tuned to a frequency 2 TM times as high as 
the next lower filter, so that they are 
geometrically evenly spaced over the octave. 

1.2 Speech Detection 

Every 220 sound samples, i.e. about 100 times 
per second, the response of each of the filters is 
sampled. Call the resulting 48-value vector the 
"raw spectrum". EAR automatically detects the 
onset and end of speech by the following 
method. Let S be the sum of the upper half of 
the raw spectrum. If S is greater than five times 
the least S observed during this utterance, EAR 
considers that speech is occurring. This method 
makes EAR insensitive to constant background 
noise, but not to varying background noise 

1.3 Voice Normalization 

The natural logarithm of the raw spectrum 
values are smoothed in the frequency domain, 
using kernel widths adequate to bridge the 
distance between the voice harmonics of a child. 
This over-smoothes the signal for adults, 
especially males, but it makes the resulting 
spectral curve less dependent on the pitch of the 
voice and more accurately reflect formants. 

The rain and max of the smoothed result are 
mapped to 0 and 1 respectively, and multiplied 
by the volume, to give a measure of the 
distribution of energy in the spectrum. This is 
the data displayed in the voice panel in Fig. 1, 
and the data (combined with pitch and emphasis) 
used in the comparison discussed in the 
following section. 

2 Comparison 

This section describes the dynamic template 
matching approach used in EAR to match two 
utterances. The result of a comparison between 
two utterance descriptions A and B is a mapping 

between the two, and a scalar that on the range 
0-1 gives a measure of similarity between the 
two utterances. A threshold on the scalar can be 
used to accept or reject the hypothesis that the 
two utterances are the same. 

In a real-time thread, EAR dynamically matches 
a pair (A,B) of descriptions by means of a zipper 
object. Remember that a description contains 
one feature vector for each .01 second of 
utterance. A zipper object implements a 
mapping from description A to description B in 
patches. A patch is a segment (time-contiguous 
series of feature vectors) of A that is mapped to 
a segment of identical length (duration) in B. A 
zipper is a series of compatible patches--no 
overlaps, and the nth patch, timewise, in A is 
mapped to the nth patch in B. In the gaps 
between patches, A is mapped to B by 
interpolation. If the gap in A is x times as long 
as the gap in B, then each feature vector in the 
gap in B is mapped to, on the average, x 
consecutive feature vectors in A, such that the 
time discrepancy between the two patches is 
made up incrementally as you traverse the gap. 

Initially several identical zippers are made by 
interpolating the two utterances onto each other 
wholesale--beginning to beginning, end to end, 
and everything in between is time interpolated. 
EAR then goes about randomly improving them 
as will be described shortly. When the zippers 
cease improving significantly, the best one is 
taken as the mapping between the two 
utterances. 

A track(A,B) maps each feature vector of 
description A onto a feature vector of 
description B in a time non-decreasing fashion. 
A zipper object defines two compatible tracks, 
one from A to B and the other from B to A. The 
goodness of zipper z is defined as the least 
goodness of its two tracks. The goodness of a 
track(A,B) is the trackValue minus the 
trackCost. 

The trackCost penalizes tracks where the timing 
of A relative to B is not uniform. It accumulates 

• cost whenever timing is advanced, then retarded, 
etc., but permits a smooth movement in one 
direction without cost, so that an utterance that 
is uniformly slower or faster than another is not 
penalized. 
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The trackValue favors tracks which match better 
than would be expected--the null hypothesis. 
Since a track maps each feature vector of A onto 
one of B, the trackValue is the sum of the 
vectorMatches of those pairs of vectors, divided 
by the null hypothesis value of the match of A. 

The vectorMatch(Fa,Fb) of a pair of feature 
vectors Fa,Fb is 

vectorMatch(Fa,Fb) = Fa.infoWt*MAMI(Fa,Fb) 

Let feature vectors Fa and Fb be indexed by i to 
access their m individual features. Then 

Ongoing research includes better automatic 
adaptation to different microphones' response 
curves without burdening the user with training 
sessions or stringent microphone requirements. 
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SUM(i=I to m) { min(Fa[i],Fb[i]) } 

MAMI(Fa,Fb) ............................................. * l/m 

SUM(i=I to m) {max(Fa[i],Fb[i]) } 

Thus if the features are random uniformly 
distributed random variables in the range 0 to 1, 
the expected (null hypothesis) value of MAMI is 
V2. 

Conclusion 

Speech comparison in TRS enables students to 
focus on those elements of pronunciation that 
are deficient. Pitch and emphasis are used quite 
differently in most languages. For example, in 
English, pitch is used to mark questions, 
responses, and place in a list, whereas in 
Chinese there are very different words whose 
only distinguishing characteristic is pitch. 

Some users of TRS who could not hear the 
difference between a vowel sound produced by a 
native speaker and their own vowel, have been 
helped by the visual display drawing their 
attention to the nature of the difference. 
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