Logic for Part-of-Speech Tagging and Shallow Parsing

Torbjém Lager,
Department of Linguistics,
Uppsala University
Torbjom.Lager@ling.uu.se

Abstract

In this paper, a purely logical approach to part-of-speech tagging and shallow parsing is
explored. It has a lot in common with reductionist parsing strategies such as those employed in
Constraint Grammar (Karlsson et al. 1994) and Finite-State Intersection Grammar (Koskenniemi
1990), but rules are formulated entirely in logic, and a model generation theorem prover is used
for part-of-speech tagging and parsing.

1 Introduction

In this paper, a purely logical approach to part-of-speech tagging and shallow parsing is
explored. It has a lot in common with reductionist parsing strategies such as those employed in
Constraint Grammar (Karlsson et al. 1994) and Finite-State Intersection Grammar (Koskenniemi
1990), but rules are formulated entirely in first-order logic, and a model generation theorem
prover is used for part-of-speech tagging and parsing. For the purpose of demonstrating the
approach, a small WWW-based system has been implemented.

2 Logic

Recent years have seen several logic programming languages that extend pure Prolog to handle
disjunction and various forms of negation. The particular kind of extension used in this paper
have clauses of the following form:

(1) AI ,'...,' Ak - B],..., Bn, ""DI,Q.., ’“‘Dm

That is, the consequent of a clause may consist of a disjunction of atomic formulas, and the
antecedent may contain negated formulas. Negation here is not classical negation though, but
non-monotonic, ‘default’ negation (like not or \+ in Prolog). For reasons we need not touch upon
here, clauses must be range-restricted, which means that all variables occurring in a clause must
occur in at least one of the positive body atoms By . By,

Explicit negative information can be given as follows:
(2) J- BI,.;., Bn, ~D1,-an' ""Dm

This logic has the expressive power of full first-order logic, and the non-monotonic operator only
adds to that. A collection of such clauses is called a disjunctive normal logic program.

It is well-known that every mode! of a logic program can be represented by a set of ground

atomic formulas. Furthermore, a model M is a minimal model of a theory T if there exists no
other model of 7" which is included (in the set-theoretic sense) in M. Whereas a theory in the

152 NODALIDA, Copenhagen, January 1998


mailto:Torbjom.Lager@ling.uu.se

language of pure Prolog always has exactly one unique minimal model, a disjunctive theory in
general does not (cf. e.g. Femédndez & Minker 1992).

The minimal model state of a theory T is the set of positive ground disjunctions all of whose
minimal models satisfy 7. Thus it provides a very compact representation of a set of minimal
models.

3 Input

Let yield(s) denote the description of an input string of words s. For example, yield(“he can can
a can”) consists of the following clauses:

3) word(1-2,he). word(2-3,can). word(3-4,can). word(4-5,a). word(5-6,can).
Note that the forms of the words, as well as their relative positions, are encoded in these clauses.

4 Grammar

A grammar can be conceived of as a set of constraints, and constraints can be expressed by
clauses. In the approach advocated here, lexical entries are encoded as clauses, often with
disjunctions in their consequents, as in (4).

(4) cat(S,v(nonsg3.inf)) ; cat(S,n(sg)) ; cat(S,aux(fin)) :- word(S,can).
This clause can be paraphrased as “every instance of the word ‘can’ is a noun or a verb or an
auxiliary”.

Other constraints express negative information, and tend to look at the Jocal context of the word
occurrences to be disambiguated. Here’s an example:

(5) - cat(P0-P1,det), cat(P1-P2,v(_,_)).

This sentence can be paraphrased as “determiners and verbs, in that order, do not occur
together”.

Constraints can also be written that ‘tag’ occurrences of words with syntactic functions, and
which perform disambiguation on that level too. Also, by means of a recursive definition of
“zero or more words”, words which are not strictly adjacent may be related, e.g. as follows:

(9] - fun(P0-P1,subj), zero_or_more_words(P1-P2), fun(P2-P3,subj).
This clause expresses the constraint that a sentence may not contain more than one subject.

5 Part-of-Speech Tagging and Parsing

Let T be a grammar, correct but not necessarily complete, in the form of a set of constraints. Let
yield(s) be a set of constraints deriving from the input string of words s. Then the notion of
grammaticality can be defined as follows:

Def. 1: An input string of words s is grammatical if the sentencehood of s is a logical
consequence of T E yield(s), else the grammaticality of s is unknown.

Notice that if the sentencehood of s cannot be demonstrated, we really don’t know whether s is
grammatical. Yet, this kind of strategy is often supplemented with the closed world assumption,

NODALIDA, Copenhagen, January 1998 153



and with an indirect definition of ungrammaticality based on a negation by failure inference step,
in which the negative is traded for the unknown:

Def. 2: An input string of words s is ungrarnmatlca] if it cannot be shown to be
gmmmatlcal in the sense of Def. 1.
Parsing by means of traditional generatlvé grammars can be performed within such a framework
(cf. Johnson 1994). In contrast, the reductionist approach can be seen as based on a notion of
ungrammaticality defined as follows:
Def 3: An input string of words s i§ ungrammatical if TE yield(s) has no model, i.e. if
false is a logical consequence of T E yield(s), else the grammaticality of s is unknown.

This definition can be supplemented with the following indirect definition of grammatical:
Def. 4: An input string of words s is grammatical if it cannot be shown to be
ungrammatical in the sense of Def. 3.

In the traditional approach, represented by the definitions 1 and 2, everything not explicitly
allowed (or ‘licensed’) is forbidden, whereas a reductionist grammar, based on the definitions 3
and 4, allows everything which it does not explicitly disallow.

The difference can be seen very clearly in the extreme case where we have no grammar at all.
Then, in the traditional approach, since no input string of words can be parsed, every such string
is deemed ungrammatical, whereas in the reductionist approach, no input string of words is
deemed ungrammatical.

6 Ountput

If false cannot be demonstrated, then the grammar has at least one minimal model which shows
that the sentence is allowed by the grammar and which encodes the linguistic properties of the
input string of words. That is, a well-formed linguistic representation is any structure that
satisfies the constraints.

There are two equivalent ways in which linguistic structures can be represented: as a set of
minimal models, where each model represents a structure that ‘survives’ the constraints, or as a
minimal model state (i.e. as a set of disjunctions of ground atomic sentences).

7 Examples

7.1 Part-of-Speech Tagging

The above ideas can be applied to part-of-speech tagging. A yield representing the sentence “he
can can a can” as follows:

{) word(1-2,he). word(2-3,can). word(3-4,can). word(4-5,a). word(5-6,can).
and the relevant lexicon entries as follows:

(8) cat(S,pron(sg3)) :- word(S,he).
cat(S,det) :- word(S,a).
cat(S,v(nonsg3,inf)) ; cat(S,n(sg)) ; cat(S,aux(fin)) :- word(S,can).

has 1o less than twenty-seven minimal models. We then add the following constraints (which ail
seem reasonably true) to the theory:

154 | NODALIDA, Copenhagen, January 1998



(9) -cat(P0-P1,det), cat(P1-P2,v(_,_)).

:-cat(P0-P1,det), cat(P1-P2,aux()).

:~cat(P0-P1,pron()), cat(P1-P2,n(sg)).

:-cat(P0-P1,pron(sg3)), cat(P1-P2,v(nonsg3,_)).

-cat(P0-P1,aux(_)), cat(P1-P2,n(sg)). .

- cat(P0-P1,aux(fin)), cat(P1-P2,aux(fin)).
Computing the set of minimal models, we find that only one minimal model remains.
(10) {word(1-2,he). word(2-3,can). word(3-4,can). word(4-5,a). word(5-6,can).

cat(1-2,pron(sg3)). cat(2-3,aux(fin)). cat(3-4,v(nonsg3,inf)). cat(4-5,det).

cat(5-6,n(sg)). }
This model encodes the part-of-speech of the words in the input string. Thus the constraints serve
well to discard certain minimal models and, by doing this, disambiguate the input string of words
on the level of part-of-speech.

7.2 Shallow Parsing

Now, let us consider an example from syntax. Given the representation of the Swedish sentence
“lisa dlskar pelle” (English = “lisa loves pelle”) in (11), the lexical entries in (12), the rules for
assigning syntactical functions to part-of-speech in (13), and the negative information in (14),
there are two minimal models, displayed in (15) and (16), respectively.

11) word(1-2,pelle). word(2-3,8Iskar). word(3-4,lisa).

(12) cat(S,pn) :- word(S,pelle).
cat(S,pn) :- word(S,lisa).
cat(S,pron{nom)) :- word(S,hon).
cat(S,v) :- word(S,alskar).

(13) fun(S,subj) ; fun(S,obj) :- cat(S,pn).
fun(S,subj) :- cat(S,pron(nom)).
fun(S,pred) :- cat(S,v).

(14) :- fun(PO-P1,subj), zero_or_more_words(P1-P2), fun(P2-P3,subj).
- fun(P0-P1,0bj), zero_or_more_words(P1-P2), fun(P2-P3,0bj).

(15) { word(1-2,lisa). word(2-3,4lskar). word(3-4,pelle). cat(1-2,pn).
cat(2-3,v). cat(3-4,pn). fun(1-2,subj). fun(2-3,pred). fun(3-4,0bj).}

(16) { word(1-2,lisa). word(2-3,&lskar). word(3-4,pelle). cat(1-2,pn).
cat(2-3,v). cat(3-4,pn). fun(1-2,0bj). fun(2-3,pred). fun(3-4,subj).}

In Swedish, this ambiguity is actual, since these two analyses are both possible. However,
analyses assigning the same syntactic function to both names are ruled out by the description, as
they should be.

These two analyses can be ‘packed’ into one minimal model state, as follows:

17) { word(1-2,lisa). word(2-3,4lskar). word(3-4,pelle). cat(1-2,pn).
cat(2-3,v). cat(3-4,pn). fun(1-2,0bj);fun(1-2,subj). fun(1-2,0bj);fun(3-4,0bj).
fun(1-2,subj);fun(3-4,subj). fun(2-3,pred). fun(3-4,0bj);fun(3-4,subj). }

NODALIDA, Copenhagen, January 1998 155



Thus, a minimal model state can always provide a dense, ‘underspecified’ representation of
analyses represented as a set of minimal models.

Finally, note that the sentence “hon &lskar pelle” would only receive one anal’ysis, since the
nominative form of the personal pronoun “hon” (English = “she”) disambiguates the sentence on
the level of syntax. o '

7.3 More Complex Constraints

The constraints we have seen so far have been fairly simple, so let’s consider a more complex
one. In (Karlsson et al. 1994, p. 59) the following example of a constraint is given:

{18) (“<for>* =1 CS (NOT -1 VFIN)(1 TO)(2 INF)(*3 VFIN))

The idea behind this constraint is that “the subjunction reading (CS) of the word-form “<for>“ is
correct if the preceding word is not a finite verb, if the base form of the next word is “to”, if the
word after this is an infinitive, and if there is a finite verb in or rightwards of positions 3.”

Here’s one way to write this in logic:

(19) cat(P1-P2,cs) :-
word(P1-P2,for),
~cat(P0-P1,v(fin)),
cat(P2-P3,t0),
cat(P3-P4,v(inf)),
zero_or_more_words(P4-P5),
cat(P5-P6 v(fin)).

Note that this is a positive constraint. Note also the use of a negative condition, made possible by

the inclusion of negation in the language, and the use of the zero-or-more-words predicate,
introduced above.

Lets test this rule on a real-world example. In the Brown corpus (Francis & Kucera 1982), there
is one (but only one!) example that satisfies the conditions of this rule.

Without saying so, she was really grateful; for to attend the
dying was something she had never experienced ...

Given a representation of the relevant part of this text as in (20), the lexicon entries in (21), and
the constraints in (19) and (22), we are able to compute the minimal model state in (23).

(20) word(1-2,for). word(2-3,t0). word(3-4,attend). word(4-5,the). word(5-6,dying).
word(6-7,was). word(7-8,something). ...

1) cat(S,cs) ; cat(S,prep) :- word(S,for).
cat(S,to) ; cat(S,prep) :- word(S,to).
cat(S,v(ing)) ; cat(S,n) :- word(S,dying).
cat(S,det(def)) :- word(S,the).
cat(S,v(fin)) :- word(S,was).
cat(S,v(inf)) :- word(S,attend).
cat(S,pron) :- word(S,something).

(22) = cat(P0-P1,prep), cat(P1-P2,v(inf)).
= cat(P0-P1.det()), cat(P1-P2,v()).

156 NODALIDA, Copenhagen, January 1998



(23) {word(1-2,for). word(2-3,to). word(3-4,attend). word(4-5,the).

word(5-6,dying). word(6-7 was). word(7-8,something). cat(1-2,cs).

cat(2-3,t0). cat(3-4,v(inf)). cat(4-5,det(def)). cat(5-6,n). cat(6-7,v(fin)). }
One final thing worth noting about this example is that there is a lot of interaction between
constraints, but that the order in which they interact does not matter at all.

8 Implementation

On top of the model generation theorem prover DisLog (Seipel & Théne 1994), which is capable
of generating the set of minimal models or the minimal model state which satisfies a disjunctive
normal logic program, I have built a simple but user-friendly World Wide Web application
which tailors the DisLog prover to the task of tagging and parsing with grammars encoded in
logic. The entry page is at http.//www.ling.gu.se/~lager/ICCG/iccg.html.

9 Summary and Conclusion

In the logic grammar tradition, phrase structure grammars as well as unification-based
extensions of phrase structure grammars are viewed in the light of the two equations “grammar =
theory” and “parsing = theorem proving”. This view is simple, natural and in many other ways
attractive: Formal logic has an old tradition and is well-understood; logic is close to natural
language, it comes with a clear notion of truth, and is declarative in the strongest possible sense.
Also, properties like consistency and monotonicity have been extensively studied in logical
frameworks. Indeed, if there is a lingua franca of knowledge representation, it ought to be formal
logic.

Reductionist grammars — grammars that use mostly negative and usually local constraints to cut
away ambiguities introduced by a lexical/morphological analysis phase — constitute an
interesting alternative to traditional phrase structure grammars, and have been developed for
several languages.

In this paper I have tried to take a logic grammar view on reductionist grammars. I hope to have
shown that this view is conceptually simple and transparent, and well worth to explore. It
remains to develop the basic ideas further, to scale up, to assess its practical merits and
disadvantages, and to compare it with other approaches when tried on real corpora.

By trying to ‘reconstruct’ reductionist grammars in logic, we may begin to see why and how they
work, if and when they deserve to be called ‘declarative’, what we could/should mean when we
speak of them as ‘inconsistent’, ‘redundant’ or ‘robust’, etc. We may also be able to improve our
understanding of how reductionist parsing relates to other kinds of methods such as parsing with
phrase structure grammars, and tagging with statistical methods. For example, since phrase
structure grammars can be expressed in logic, it would be interesting to elaborate on the relation
of reductionist grammars to phrase structure grammars, and also, to try to combine the two.

The use of a minimal model state for representing ambiguity in a principled and very compact

way appears to be related to work by Dymetman (1997), where an ambiguous representation of
the grammatical properties of an input string of words is seen as a specialisation of the grammar

NODALIDA, Copenhagen, January 1998 157


http://www.ling.gu.se/~lager/ICCG/iccg,htmL

for that particular input string.' This indeed is exactly how a minimal model state is related to the
kind of grammars explored in the present paper.

As far as scaling up is concerned, the logical approach is hopefully sufficiently similar to
Constraint Grammar and Finite-state Intersection grammar to allow large portions of such
grammars to be converted into logic. Moreover, since everything is expressed in logic, there may
be off-the-shelf methods — such as these developed within the field of Inductive Logic
Programming (Muggleton 1992) - for automatically acquiring constraints by learning from a
corpus.

As regards efficiency, it remains to be shown that a logic-based reductionist grammar could ever
become practical as a method for tagging or parsing. There is a well-known trade-off between
expressive power and computational complexity that always threatens to make particular uses of
such powerful formalisms intractable. On the other hand, there are, as far I know, no results that
show that the specific kind of theories that I have in mind here actually exercise the worst case
complexity of the general case. Be that as it may, since in any case, logic may still have a role to
play as an analytical tool for investigating how different kinds of knowledge about language can
be brought to bear on the problem of part-of-speech tagging and shallow parsing.

Acknowledgements

This work was conducted within the TagLog Project, supported by NUTEK and HSFR. I am
grateful to my colleagues at Uppsala University and Géteborg University for useful discussions,
and in particular to Joakim Nivre in Géteborg.

References

Dymetman, M. (1997) Charts, Interaction-free Grammars, and the Compact Representation of
Ambiguity, Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence
NAGOYA, Aichi, Japan, August 23-29, 1997.

Fernandez, J. A. & Minker, J. (1992) Disjunctive Deductive Databases, Proceedings of the
Logic Programming and Automated Reasoning Conference.

Francis, W. & Kucera, H. (1982) Frequency Analysis of English Usage. Houghton Mifflin.
Johnson, M. (1994) Two Ways of Formalizing Grammars. Linguistics and Philosophy 17(3).

Karlsson, F., Voutilainen, A., Heikkild, J. & Antilla, A. (1995) Constraint Grammar: A
Language-Independent System for Parsing Unrestricted Text. Mouton De Gruyter.

! Dymetman’s approach is in turn related to methods proposed by researchers working in the LFG framework.
The connection to LFG and thus indirectly to the work of Dymetman was kindly suggested to me by an anonymous
reviewer of a draft version of the present paper.

158 NODALIDA, Copenhagen, January 1998



Koskenniemi, K. (1990) Finite-state parsing and disambiguation. In Hans Karlgren (ed.)
COLING-90. Papers presented at the 1 3’h International Conference on Computational
Linguistics, Vol. 2, Helsinki, Finland. S

Muggleton, S. (Ed.). (1992) Inductive Logic Programming, Academic Press.
Seipel, D. & Théne, H. (1994) DISLOG - A System for in Reasoning in Disjunctive Deductive
Databases, In: Antoni Olivé (Ed.): Proceedings of the Fifth International Workshop on the

Deductive Approach to Information Systems and Databases. September 19-21, 1994,
Aiguablava, Costa Brava.

NODALIDA, Copenhagen, January 1998 159



