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Abstract 
\Ve are proposing a new framework of statisti­
cal language modeling which integrates lexical 
.association statistics with syntactic preference, 
while maintaining the modularity of those differ­
ent statistics types, facilitating both training of 
the model and analysis of its behavior. In this 
paper, we report the result of an empirical evalu­
ation of our model, where the model is applied 
to disambiguation of dependency structures of 
Japanese sentences. We also discussed the room 
remained for further improvement based on our 
error analysis. 

1 Introduction 
In the statistical parsing literature) it has alread:y 
been established that statistics of lexical associ­
ation have real potential for improvement of dis­
ambiguation performance. The question is how 
lexical association statistics should be incorpo­
rated into the overall statistical parsing frame­
work. In exploring this issue) we consider the 
following four basic requirements: 

o Integration of difjeTent types of statistics: 
Lexical association statistics should be inte­
gra.ted with other types of statistics that are 
also expected to be effective in statistical pars­
ing1 such as short-term POS n-gnun statistics 
and long-term structural preferences over parse 
trees. 

• Modularity of statistics types: 
The total score of a parse derivation should be 
decomposable into factors derived from differ­
ent. types of statistics) which would facilitate 
analysis of a modePs behavior in terms of each 
statistics type. 

• Pmbabilistically well-fottnded semantics: 
The language model used in a statistical parser 
should have probabilistically well-founclecl se­
mantics) whieh \vould a.lso facilitate the anal:,'·· 
sis of the model's behavior. , 
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o Trainability: 
Since incorporation of lexical association statis­
tics would make the model prohibitively com­
plex, the model's complexity should be flexibly 
controllable depending on the amount of avail­
able training data. 

However) it seems to be the case that no existing 
framework of language modeling [2, 4, 12, 1:3, H. 
17) 18] satisfies these basic requirements simulta·· 
neouslyl. In this context 1 we newly designed a 
framework of statistical language modeling tak­
ing all of the above four requirements int.o ac­
count [8) 9]. This paper reports on tlw n'sult.:) 

of our preliminary experiment where our f'rrmH'­
vmrk was applied to structural disambigu<Hion of 
Japanese sentences. 

In what follows) we first briefly review our 
framework (Section 2). \Ve next describe tlw sc:t­

ting of our experiment) including a brief intro­
duction of Japanese dependency struetures, t.hC' 
data sets1 the baseline of the perfonnanc.C', Nc. 

(Section 3). We then describe the results of the 
experinH:mt) which was designed to assess the lu1 .. 

pact of the the incorporation of lexical associ­
ation statistics (Section 4). \Vc finall~· discuss 
the current problems revealed through our <T­

ror analysis, suggesting some possible solutions 
(Section 5). 

2 Overview of our framework 

As with the most statistical parsing frameworks. 
given an input string A) we rank its pars<~ dr:rlYa­
tions according to the joint distribution J'(H, lr). 
where H1 is a word sequence candidate for A, and 
R is a parse derivation candidate for H-- whos(' 
terminal symbols constitute a POS tag scquc-;nce 
L (see Figure 12

). We first. decompose 1'( fl. lr) 

1 For further discussion, see [8]. This is also tlH' 
case with recent works such as [3] and [5] due to t.hc 
lad< of modularity of statistical types. ' . -Although syntactic structure R is represented af' 
a dependency structure in this figure, our framework 



into two submodels, the syntactic model l'(R) 
and the lexical model P(W\R): 

P(R, W) = P(R) · P(W\R) (1) 

The syntactic model, whic:h is lexically insen­
sitive, reflects bpth POS n-gram statistics and 
structural preference, whereas the lexical model 
reflects lexical association statistics. This divi­
sion of labor allows for distinct modularity be­
tween the syntactic--based statistics and lexically 
sensitive statistics, while maintaining the proba­
bilistically wcll-foundedness of the overall model. 

Fignre 1: A parse derivation for an input string 
"11Ji!c/J";' 1 ii: ]t~t.: (She ate a pie)" 

2.1 The syntactic model 
The syntactic model P(R) can be estimated us­
ing a wide range of existing syntactic-based lan­
guage modeling frameworks, from simple PCFG 
models to more context-sensitive models includ­
ing those proposed in [2, 13, 19]. Am.olg these, 
we, at present, use probabilistic GLil (PGLH.) 
language modeling, which is given by incorpo~ 
rating probabilistic distributions into the GLR 
parsing framework [10, 21]. The advantages of 
PGLR modeling are (a) PGLR. models are mildly 
context~sensitive, compared with PCFG models, 
and (b) PGLR. models inherently capture both 
structural preferences and POS bigram statistics, 
which meets our integration requirement. For 
further discussion, see [10]. 

2.2 The lexical model 
The lexical model P(WIR) is the product of the 
probability of each lexical derivation li ·-7 Wi, 

where 11 E L (L C R) is the POS tag of w; E W: 

P(WIR) =II l'(w;\R,w1 , ... ,w1_1) (2) 

The key idea for estimating each factor 
P(vJiiR, w1, ... , Wi-d (a lexical derivation prob­
ability) is in assuming that each lexical derivation 

does not impose any restriction on the representation 
of syntactic structures. 
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depends only on a certain small part of its whole 
context. We first assume that syntactic struc­
ture R in P(wiiR,w1 , .. . ,wi_- 1) can always be 
reduced to l; ( E R), which allows us to deal with 
the lexical model separately from the syntactic 
model. The question then is which subset C of 
{ ·uJI, ... , Wi-l} has the strongest influence on the 
derivation li -+ Wi· VVe refer to a member of such 
a subset C as a lexical context of the derivation 
li -+ 'Wj. 

Let uB illustrate this through the previous ex­
ample shown in Figure L Suppose that th(-: 
derivation order for TV is head-driven, as givr;n 
below, to guarantee that, for each of the words 
subordinated by a head word, the context of the 
derivation of that subordinated word alwa.J·'S in­
cludes that head word. 

ta (PAST) -; tabe (eat) -+ ga (NO III) --t o 
(ACC) ·-+ kanojo (she) -; pai (pie) 

First, for each lcxieal item that we don't cou­
sider any lexical association, \VC estimate• the 
probability of its derivation as follows. 

P(ta\R) "'P(ta!Av.1') ( :l) 

P(t.abe\R, ta)"' P(tabe\V) (l) 

Second, ,·ve estimate the probability of d(:ri\·­
"ing each slot-marker, e.g. ((ga (NOl'v'I)'' and ··o 
(ACCf' l by considering not only the dependency 
between the head word and each of it::? slot­
markers, but also the dependency between slot­
markers subordinated by the same hc~a.d: 

'l'(ga\R, tabe, ta) "' 
P(ga\l'r[h(tabe,[Pr,Pz])]) (5) 

P(o\R, ga, tabe, ta) "' 
P(o\Pz[h(tabe, [l'r :ga, Pz])]) (G) 

where h(h, [s1, ... , sn]) is a lexical context denot.~ 
ing a head word h that subordinates the set of 
slots s,, ... ,sn, and P(w;\l;[h(h,[st,···•""])]) is 
the probability of a lexical derivation l; -~t 11! 1 , 

given that Wi functions as a slot-marker of lexical 
head h(h, [sr, ... ,snJl· 

Finally, we estimate the probability of deriY·· 
ing each slot-filler, e.g. ''kanojo (sheY and -·'pai 
(pie)", in assuming that the derivation of a slot.·· 
filler depends only on its head word a.nd slot: 

P(kanojo\R, ga, o, tabe, ta) co 

P(kanojo\N[s(tobe, go)]) 

P(pa.iiR, kanojo, ga, o, tabe, tG) ~ 
l'(paiiN[s(tabe, o)]) 

(7) 

(8) 

where s(hl s) is a lexical context denoting a slot 
s of a head word h, and P(w1\l;[s(h, s)]) is the 



probability of a lexical derivation li -f w.i given 
that w; functions as a filler of a slot s(h,s). 

Combining equations (3), (4), (5), (6), (7) and 
(8), we produce (9): 

P(WIR) "' P(taiAu:r) · P(tabeW) · 

P(gajP[h(tabe,[P,P])]) · 

P(oiP[h(tabe,[P:ga,P])]) · 

P(kanojoiN[s(tabe, ga)]) · 

P(paiiN[s(tabe, o)]) (9) 

2.3 Handling multiple lexical contexts 

Note that a le_xical derivation may be associa.ted 
with more than one lexical context (multiple lex­
ical contexts). Multiple lexical contexts appear 
typically in coordinate structures. :For example, 
in the sentence shown in Figure 2, "kanojo~wa 

(she-TOP)" functions as the case of both of the 
verbs "tabe (eat)" and "dekake (Ieaver'. 

Coordination 

Figure 2: An example sentence containing a coor­
dinate structure: "She ate breakfast and left for 
school" 

Let us first consider the lexical deriva­
tion probability for the slot-filler "kanojo 
(she)'1 . According to the assumption men­
tioned in Section 2.2 1 the lexical contexts 
of this slot-filler should be s(tabe, wa) and 
s(dekake,wa). Thus, the probability of deriving 
it is P(kanojoiN![s(tabe, wa), s(dekake, wa)J). 
IV1ore generally, if a slot-filler W-t is associated with 
two lexical contexts c1 and c2 , then the probabil­
ity of deriving Wi can be estimated as follows: 

P(w;jl,[c1 , c2]) 

P(i,[cr, c,Jiw;) · P(w;) 
= (1~ P(/;[~1 , c2 ]) 

"' P(l;[c,]lw;) · P(l;[c,]ll;, w;) · P(w;) (ll) 
P(l;[c,]) · P(i;[c2Jii;]) 

= P(w;ll;). P(w;li;[cr]) . P(w;ll;[c2]) (12) 
P(w;ll;) P(w;ll;) 

P(w;jl;) · D(w;jl;[c!]) · D(w;jl1[c2J) (13) 

In (13), we assume that the two lexical contexts 
c1 and c2 are mutually independent given li (and 
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w;): 

P(l,[cz]ll;[c,]) "'P(l;[c2 JII;) 

P(/;[c2JII;[c,],w;) "'P(l;[c,JII;, w;) 

( 1 :) ) 

(Jo) 

D(w1ll;[c]) is what. we call a lexical dependency 
parameter~ which is given by: 

P( w;jl;[c]) 
D(w;jl;[c]) = P(w;ll;) (16) 

JJ(w;ll;[c]) measures the degree of the depen­
dency between the lexical derivation li ~ Wi and 
its lexical context c. It is close to one if wi and (' 
are highly independent. It becomes greater than 
one if w.; and c are positively correlated: wlwn'as 
it becomes less than one and dose to zero if 11' 1 

and care negatively correlated. Thus, if we set a 
lexical dependency parameter to one, that meaw; 
we create a model that neglects the depend(-:nc.\· 
associated with t,ha.t parameter. For examplr., the 
probability of deriving "kanojo (she)" in Figure 2 
is calculated as follows. 

P( kanojoiN,[s(t.abe, wo), s( deknke, wa)]) 

"' P(kanojoiN1) • D(kanojoiN1 [s(labc, wa)]) 

·D(kanojoiN1 [s(dekake, wa)]) ( 1 I) 

Let us then move to the estimation of the pro b .. 
ability of deriving the slot-markers ''wo (TOP)" 
"o (ACC)", and "e (for)", where ''wa" is associ­
ated with both "tabe (eat)" and "dekake (lean:)" 
while "a)) is assoeiatecl only with ''tabe'', all< I ·'ni" 
is associated only with ''dekake". To be mod(-' 
general, let slot-marker wo is associated with L\\'O 

lexical contexts c1 and c2, and slot-m;_trkers u_: 1 

and w2 are, respectively, associatc~d with c1 and 
c2 . Assuming that w1 and w2 arc mutually de­
pendent, being both dependent on w0 , and c1 and 
c2 are mutually independent, the joint probabil­
ity of the derivations of 'Wo, W1 a.nd -w'2 can be 
estimated as (20) in Figure 3, similar to (13). For 
example, the probability of deriving "wa (TOP)" 
ao (ACC)", and "e (for)" in Figure 2 is calculat.ed 
as (21) in Figme 3. 

Summarizing equations (2), (13) and (Hi), the 
lexical model P(WIR) can be estimated by the 
product of the context-free distribution of the 
lexical derivations P,t(WIL) and tlJ<>. degree of 
the dependency between the lexical derivations 
D(WIR): 

P(WIR) "'P,t(WIL) · D(Will) (22) 

P,t(WIL) =IT P(w;jl;) (23) 

m 

D(WIR) =IT IT D(w;jl;[c]) (2~1) 

\vhere C.w, is the set of the lexical contexts of '11! 1 • 



P( wo, w,, wz\lo [h(h,, [io, i!]), h(h,, [io, lz])], z, [h(h, , [io, !!]) ], lz [h(hz, [io, !,]) ]) 

"" P( wo llo [h(h,, [io, !!]) , h(hz, [lo, lz])]) · P( w,ll![h(hL[io : wo, !!])]) · P(wz\lz [h(hz, [io : wo ,lz])]) ( 18) 

"" P(wollo). P(wo\lo[h(h,, [io,l!])]). P(wolio[h(h2 , [10 ,/z])]) 
P(wollo) P(wollo) 

P( w,ll![h(h,, [io : Wo ,l !]) ]) · P( wzllz [h(hz, [/o : Wo ,!,]) ]) ( 10) 

-· P(wo[lo) · D(wo[io[h(h,, [io, !!])]) · D(wo[lo[h(hz, [lo,lz])])· 
P(w,ll,) · D(w,[i![h(h,, [io :wo,id)]) · P(w,[lz) · D(wz[lz[h(hz, [io :wo, 1,])]) (20) 

P( wa, o, e[P1 [h(tabe, [P1 , P2 ]), h(dekake, [P1 , 1'3])], P2 [h(talle, [1'1 , 1'2])], P,[h(dekake, [P,, p,])]) 

"' P( wall\) · D(wa[PJ[h(tabe, [1'1 , P2 ])]) · D(wa[P1 [h( dekake, [P1 , P,])]) 
P(oiP2 ) · D(o!Pz[h(tabe, [P, : wa, !'2 ])]) · P(eiP,) · D(e!P,[h(dekake, [!', : wa, !':,])]) (21) 

Figure 3: The joint probability of the derivations of slot-markers 

2.4 Summary of our model 
From equatious (l) and (22), the overall distribu­
tion P(R, W) can be decomposed as follows: 

P(R, W) ""P(R) · P,1(WIL) · D(WIR) (25) 

where the first term P(R) reflects part-of-speech 
bigram statistics and structural preference, the 
second term P,J(WIL) reflects the occurrence of 
each word, and the third term D(WIR) reflects 
lexical association. Thus, equation (25) suggests 
that our model integrates these types of statis­
tics, while maintaining modularity of lexical as-
sociation. ! : f 

Figure 4 shows the factors of the P(R,W) for 
the sentence in Figure 1. In this figure: 

1. P(R) reflects the syntactic pre.fcrence. 

2. P,J(WIL), which consists of P(kanojo!N), 
P(gaiP) etc., reflects the occurrence of each 
word. 

3. D(WIR), which consists of D(o!N[h(tabe, [])]), 
D(paiiN[s(tabc, ACC)]) etc., reflects the lexi­
cal association statistics. 

In this way, our modeling maintains the modu­
larity of different statistics types. 

The modularity of the lexical model facilitates 
parameter estimation. Although the syntactic 
model idmtlly requires fully bracketed training 
corpora, training it is expected to be manage­
able since the model's parameter space tends to 
be only a small part of t.he overall parameter 
space. The lexical assodation statistics, on the 
other hand, rnay have a much larger parameter 
space, and thus may require much larger amounts 
of training dat:-\ as compared to the syntactic 
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modeL Howc:ver, since our lexical model can lw 
trained independently of syntactic preferenct\ onP 
can train it using partially parsed tagged corpora. 
which ca.n he produc-ed at a lower cost (i.e. nuto­
matieally), as well a.s fully bracketed corpora. ln 
fact, we used both a full-bracketed corpus and n 
partially parsed corpus in our cxporiJucnt. 

3 A preliminary experiment 

Let us f-irst briefly describe some fundamemnl 
features of Japanese syntax. A JapaneS(-' SPll·· 
tcncc can be analyzed as a. S(~qnence of so--called 
b"unsettt. phrases (BPs, hereafter) as illustratc~d in 
Fir$ure 1. A BP is a chunk of words consisting of a 
content word (noun, verb, a.djcctive, etc.) accmu­
pari-ied by some function word(s) (postposition. 
auxiliary, etc.). For example, the BP "ko:nojo-gr{ 
(Bl\) in Figure 1 consists of the noun 11 kon.ojo 
(she)" followed by the postposition "ga (:\Oil I)"' 
which functions as a slot-marker. The BP 11 tahe­
ta" (BP3 ), on the other hand, consists of the 
verb "tabe (eat)" follmved by the auxiliar:v 11 f.a 
(PAST)" 

Given a sequence of BPs) one can recognized<'­
pendency relations betvveen them as illustrated in 
Figure 1. In Ja.pa .. nese) if BPi precedes IJP_i, and 
BPi and BPj are in a. dependency relation) then 
BPi is always the modifier of BJJ.;, and we sa.v 
11BPi modifies BPj·:' For exa.mple 1 in Figure. 1. 
both BP1 and BPz modify BP3. 

For the preliminary evaluation of our model, 
we restricted our focus only on the model's per­
formance for structural disambigua.tion excluding 
morphological disambiguation. Thus 1 the task of 
the parser was restricted to detennina.tion of the 
dependency structure of an input sentence, ,.,_,hich 
is given together with the specification of word 



A~~ )P(R) 
N 1 P1 N 2 P~ V Aux 

-- Pik;n~j~l~f P(~oMIP) r -P(;a;l~)r P(~CCJPf P(;a~;IV) r -p(~1~~J -~~~(~1-L) 
kanojo ga pa1 o tabe ta 
(she} (NOH) (pie) (ACC) (eat) {PAST) 

--------;..---- -:+-----;....-----: jJ---- .;..1.;.'-------------
' 'I ' 'II •1.1 . ~---------- ~ ,---------- -~ ·-------- -~r r--- ---- · c 1 : 1 

D(kanojolN[s(tabe,NOM)J) 1 : :1, 1:' P(WIR) 
D(NOMIP[h(ea[[ACCJTI)T ___ --,-~----":: 

'----------'-,----------'• D(WIR) 
D(paiiN[s(tabe,ACC)]), 

D(ACCIP[h(tabe~[Jjj) 

Figure 4: The summary of our model 

segments) their POS tags, and the boundaries be­
tween BPs. 

In developing the grammar used by our PGLR 
parser, we first established a categori2ation of 
BPs based on the POS of their constituents: post­
positional BPs, verbal BPs, nominal predicative 
BPs, etc. We then developed a modification con­
straint matrix that describes \vhich BP category 
can modify which BP category, based on exam­
ples collected from the Kyoto University text cor­
pus [11]. We finally transformed this matrix into 
a CFG; for instance, the constraint that a BP 
of category Ci can modify a BP of category CJ 
can be transformed into context-free rules such 
as (C; -+ C; C;), (C; --> C; C;), etc., where X 
denotes a nontermina.l symbol. 

For the text data, we used roughly 10,000 sen­
tences from the Kyoto University text corpus 
for training the syntactic model, and the \Vhole 
EDR corpus [6] Mel the R.WC POS-taggecl cor­
pus [16] for training the lexical model. For test­
ing, we used 500 sentences collected from the 
Kyoto University text corpus with the average 
sentence length being 8.7 BPs. The data sets 
used for training and testing are mutually ex­
clusive. The grammar used by our probabilis­
tic G LR parser was a CFG automatic.ally ac­
quired from the training sentences) consisting of 
967 context-free rules containing 50 nontermina.J 
symbols and 43 terminal symbols (i.e. BP cate­
gories). 

The~ baseline of the disambiguation perfor­
mance was assessed by way of a naive strategy 
which selects the nearest possible modifiee (simi­
larly to the right association principle in English) 
under the non-crossing constraint. The perfor­
mance of this naive strategy was 62.4% in BP­
hased accuracy: where BP-based accuracy is the 
ratio of the number of the BPs whose modifiee 
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is correctly identified to the total numbc!r of BPs 
(excluding the tv·.ro rightmost BPs for each S('ll­

tence). On the other hand, the syntactic model 
P(R) achieved 72.1% in BP-bascd <tccun\C)'- 9.7 
points above the baseline. 

4 The contribution of the lexical 
model 

In our experiment, we considered the following 
three lexical dependency parameters in the lPxical 
modeL 

First, we considered the depenclcnde,s lwt\YCC'll 

slot-markers and their lexical hca,cl by using tlw 
lexical dependency parameter (26). 

D(piP[h(h, [s 1 , _. _, s,])]) (26) 

(26) can be computed from P(p''II"'[h(h. [])]). 
the distribution of n post. positions (slot-Jnarkers) 
given that all of them are suborclinnted ])~· 

a single lexical head h. \Ve trained this 
distribution using 1501000 instances of p 11

-

{verb,adj ective,nom?.n(tl_pred1.cate} colloca t:ion 
collected from the EDR full-bracketed corpus. 
For parameter estimation) we used the 1naximwu 
entropy estimation technique [1, 15). For furtlwr 
details of this estimation process, see [20]-

Next, \Ve considered depench:.ncies het\Yecn 

slot-fillers and their head verh coupled with tlw 
corresponding slot-markers by using the lexical 
dependency parameter (27). 

D(niN[s(v,p)]) (27) 

(27) was trained using 6.7 million instances of 
noun-postposition-verb collocation eollectr;(l from 
both the EDR and RWC corpora. For parameter 
estimation, we used 115 non-hien.trchical seman­
tic noun classes derived from the N'fT semantic 



dictionary [7] to reduce the parameter space: 

D(niN[s(v,p)]);:, L, P(cniN[s(v,p)]) · P(nlcn) 
P(niN) 

(28) 
P(cniN[s(v,p)]) was estimated using a simple 
back-off smoothing technique: for any given lexi­
cal verb v and postposition p, if the frequency of 
s(v,p) is less than a certain threshold ,\ (in our 
experiment,,\= 100), then P(cniN[s(v,p)]) was 
approximated to be P(c,,!N[s(c,p)]) where c, is 
a class of v whose frequency is more than ,\, 

Finally, we considered the occurrence of post­
positions by using the lexical dependency param­
eter (29). 

D(piP[head_type]) (29) 

In .Japanese, the distribution of the lexical deriva­
tion of postpositions, P(piP), is quite differ­
ent depending on whether they function as slot­
markers of verbs, adjectives and nominal precli­
catcs such as "ga (NOM)" and "o (ACC)" in Fig­
ure 1, or they function as slot-markers of nouns 
sueh as ((no (oft in the following sentence. 

hana no syashin3 

(flower) (of) (picture) 

For such a rea.son, we introduced the lexical de­
pendency pararneter (29L \vherc head .. type de­
notes whether the postposition P functions as a 
slot-marker of a predicate or a nomL \Vc esti­
matl~d this dependency parameter using about 
950,000 postpositions collected from the EDR 
corpuR. . f 

Table 1 summarizes the results of.~-fhc experi­
ment. The lexical model achieved 76.5% in BP­
bascd accuracy) and the model using both the 
syntactic and lexical model achieved 82.8% in 
BP-based accuracy. According to these results 1 

the contribution of lexical statistics for disam­
biguation is as great as that of syntactic statistics 
in our framework. 

The bottom three lines in Table 1 denotes the 
setting where the only lexical dependency param­
eter (26), (27) and (29) are considered in the lexi­
cal model. Among these, the contribution of (29) 
was greatest. 

5 Error analysis 

In the test set, there were 574 BPs whose rnocl­
ifiec was not correctly identified by the system. 
Among these errors) we particularly explored 290 
errors that were associated with postpositional 
I3Ps functioning as a ease of either a verb) adjec­
tive) or nominal predicate, since, for lexical asso­
ciation statistics in the lexical model, we took the 

3This sentence means ~'a picture of a flower." 

85 

Table 1: The contribution of the lexical model 

'b_a_s_e'h~. n-e-------+ a~;~~·~)y 
syntactic model only 72.1 % 
lexical model only 76.5 % 
syntactic + lexical model 82.8 % 

syntactic model + (26) 
syntactic model + (27) 
syntactic model + (29) 

7:l:;r-:%-
783% 
81.3% 

dependencies between slots (i.e. slot-markers and 
slot-fillers) and their heads into account. In this 
exploration) we identified three major error types: 
(a) errors associated with a coordinate clause, (b) 
errors associated with relative clauses, (c) errors 
associated with the lack of the consideration of 
dependency between slot-fillers. 

5.1 Coordinate structures 

One of the typical error types iR associated with 
coordinate structures. The sentence in Figure 2 
has at least three alternative interpretations in 
terms of which J3P is modific~d by the left­
most BP "kano}o-wa (she-TOP)": (a) "i.abc-l.a 
(cat-PAST)", (b) "dckake-ta (leave-PAST)", (c) 

· both "tabe-ta (ea.t-PASTf) and ''dekake~tn (leaH'·· 
PASTr. Among these alternatives, the most rea­
sonable interpretation is obviously (c), where 
the two predicative BPs constitute a coordinate 
structure. 

In our experim<.mt) however, neither the train­
ir~g data nor the test data indicates such coordi­
nate structures. Thus, in the above sentence, for 
example, the system was required to choose oue of 
two alternatives (>t) and (b), where (b) is the pre­
ferred candidate according to the structura.l pol-· 
icy underlying our corpora. However, this choice 
is not really meaningful. F'urtlwrmore 1 the system 
systematically prefers (aL the wrong choiCl\ since 
(i) the syntactic model tends to pref(-;r shorter­
distance modification relations (similarly to th(-' 

right association principle in English): and (ii) 
the lexical model is expected to support both can­
didates because both D(kanojoiN[s(tabc, wa)]) 
in (a) and D(kanojo!N[s(dekakc, wa)]) in (b) 
should be high. This problem malws the per­
fonnance of our model lower than \vhat it should 
be. 

Obviously, the first step to resolving this prob­
lem is to enhance our corpora and grammar t.o 

enable the parser to generate the third interpre­
tation, i.e. to explicitly generate a coordinate' 
structure such as (c) if needed. Once such a set­
ting is established, \Ve then need to consider the 



lexical contexts of each of the constituents modi­
fying a coordinate structure, such as "kanojo-wa 
(she-Torr' in the above sentence. In interpreta­
tion (c), since "kanojo-wa (she-TOP)" modifies 
both predicative BPs, it is reasonable to asso­
ciate it with two lexical contexts, s(tabe, wa) and 
s(dekake, wa). As mentioned in Section 2, our 
framework allows us to deal with such multiple 
lexical contexts, namely: 

D(kanojo[N[s(tabe, wa), s(dekake, wa)]) 

"'D(kanojo[N[s(tabe, wa)]) · 
D(kanojo[N[s(dekake, wa)]) (30) 

The correct interpretation (c) would assigned 
higher probability than (a) or (b), since the two 
lexical dependency parameters in (30), D(kanojo[ 
N[s(tabe, wa)]) and D(kanojo[N[s(dekake, wa)]) 
are both expected to be sufficiently large. 

5.2 Treatment of correference 
One may have already noticed that the issue dis­
cussed above can be generalized as an issue asso­
ciated with the treatment of correference in de­
pendency structures. Narnely, if a prepositional 
BP i:s correferred to by more than one clause as 
a participant~ a naive treatment of this cmTef­
ercncc relation eould require the parser to make 
a meaningless choice: which clause subordinates 
that BP. This problem in the treatment of corref­
erence is considered to cause a significant propor­
tion of errors associated with relative/adverbial 
clauses or compound predicates. Such errors are 
expected to be resolvable through an extension of 
the model, as discussed in Section 5 .1. 

Let us briefly look at another example in 
Figure 51 1vhere the matrix clause and relative 
clause correfm· to the leftrnost BP ''kanojo-wa 
(she-TOP)", i.e. interpretation (c). \Vithout any 
refined treatment of this correference relation, the 
parser would be required to make a meaningless 
choice between (a) and (b). 

N, P, 
I I 

kanojo wa 
{o.l1~) (TOP) 

Adv 
I 

kinou 
{yoslo!d~\') 

v, Aux, N, P 
I I I 1' 

kat ta hon o 
(b"y) !PAST) (book) (!ICC) 

v, Aux, 
I I 

yon (Ia 
{rottd) (PASl) 

Figure 5: An example sentence containing a rela­
tin; clause: ''She read the book which she bought 
yestercla.y1

' 

5.3 Dependency between slot fillers 
According to the results summarized in Table 
1, the contribution of the dependency between 
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slot-fillers a11d their heads seems to be negligibl~· 
small. Vvre can enumerate several possible rea­
sons including th<.1.t the estimation of these types 
of dependency pa.rarneters 'vas not sufficiently so­
pllisticated. 

In addition to these reasons, \VC also found that 
the lack of the consideration of dependency b(:­
tween slot-fillers was also problematic iu sonw 
cases; there are particular patterns where depen­
dency between slot-fillers seems to be highly sig­
nificant. For example) in the clause "knnojo-wa 
(she-TOP) ishu-ni (doctor-DAT) nat-ta (become­
PAST)" (she became a doctor), the distrilm· 
tion of the ftller of the "wa (TOP)" slot is 
considered to be highly dependent on the filler 
of the "ni (DAT)" slot, "isha (doctor)", since 
its distribution would be markedly different if 
~'isha. (doctor)'1 was replaced with ';m:i::::u (\Yil­

ter))). Similar patterns include, for ex;Jmpl(:\ ;, A­
wo (ACC) B-ni (DAT) s·ur·u (make)", where .I 
and Bare highly dependent, and "A-ga (NO'Il) 
B-wo (ACC) suTn (do)", where noun D iudicat. .. 
ing an action strongly influences the (listribltl im1 
of A. 

In our framework, this type of problem ('all ])(' 

treated by means of controlling the choicC' of h:xi­
cal contexts. \Ve arc ncn:v conducting anot.lwr ('X­

periment in \Vhich the dependencies between .slot.­
flllers arc additionally considered in particular 
patterns. Note that the ref-inement of our mod('l 
in this manner illustrates that the: modularity of 
lexical association statistics fa.cilitate;.; rulc-\)ased 
control in choosing the locations where lexical as­
sociation is considered. This rulc-bas(~d control 
allows us to incorporate qualitative kuowh'dg(' 
such as linguistic insights and heuristics IH'\\·l~· 

obtained from experiments based on t.lle mod(']. 

6 Conclusion 

In this paper, we first presented a new franH'­
work of language modeling for statistical pars­
ing, which incorporates lexical association statis­
tics while maintaining modularity. \Vc then re­
ported on the results of our preliminary evrdu­
ation of the model's performance, showing that 
both the syntactic and lexical models made a con­
siderable contribution to structural disambigua­
tion, and that the division of labor between those 
two models thus seemed to be working well to 
date. 

IV1any issues remain unclear. Fir::;t:, we need 
to conduct experiments on the combination of 
the morphological and syntactic clisa .. mbiguation 
tasks: which our framework intrinsica.ll.Y is ck­
signed for. Second, empirical compa .. risou with 
other lexically sensitive models is also strongly 



required. One interesting issue is whether the 
division of labor between the syntactic and lex­
ical models presented in this paper works well 
language-independently) or conversely) whether 
the existing models designed for English are 
equally applicable to languages like Japanese. 
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