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Abstract 

It. is common in NLP that the categories into which 
text is classified do not have fully objective def­
initions. Examples of such categories are lexical 
distinctions such as part-of-speech tags and word­
sense distinctions, sentence level distinctions such 
as phrase attachment, and discourse level distinc­
t.icms such as topic or speech-act categorization. 
This p>1per presents an approach to analy?-ing the 
agrcen1ent arnong lnnnan judges for the purpose 
of formulating a refined and more reliable set of 
category designations. We use these techniques to 
analyze the sense tags assigned by five judgps to 
the noun intcr·est. The initial tag set is takmi from 
Longman's Dictionary of Contemporary }i:nglish. 
Through this process of analysis, we automatically 
identify and assign a revised set of sense tags for 
the data. The revised tags exhibit high reliabil­
ity as measured by Cohen's r;.. Such techniques 
are important for formulating and evaluating both 
human and automated classification systems. 

Introduction 

It is common in Natural Language Processing 
(NLP) that the categories into which text is classi­
fied do not have fully objective definitions. Exam­
ples of such categories are lexical distinctions such 
as part-of-speech tags and word-sense distinctions, 
sentence level distinctions such as phrase attach­
ment, and discourse level distinctions such as topic 
or speech-ac.t categorization. This paper presents 
an approach to analyzing the agreement among hu­
man judges for the purpose of formulating a refined 

1~his research was supported by the Of-fice of Naval Re­
search under grant number N00014-95-l-0776. 
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and more reliable set of category designations. 

We performed a case study of the classification 
process, involving multiple judges performing a 
word-sense disambiguation task. Table 1 presents 
the data for two judges assigning one of six senses 
to each instance of inter-est used as a noun in the 
corpus. The data is represented as a contingency 
table, often referred to as a confusion matrix; it 
depicts the "confusion" among the judges' classi­
fications. Evidence of eonfusion among the classi­
fications in Table 1 can be found in the marginal 
totals, ni+ and n+.i> where i and j range h·om 1 to 
6. We see that, on average, judge A has a higher 
preference for senses 1 and 3 than judge E does, 
while judge E has a higher preference for sense 2 
than judge A does. These biases are one aspect of 
agreement (or the lack of it) among judges. 

A seeond aspect of agreement is the extent to 
which judges agree on the tags of individual words 
(mtegory distinguishability). We see from the diag­
onal frequencies in Table 1 that these judges agree 
on 2097 out of 2369 of them, which is 88.5% of the 
individual tags. 

Cohen (1960) proposed the coefficient of agree­
ment, r;, for measuring the agreement between two 
judges. r; compares the actual agreement to that 
which would be expected if the decisions made 
by each judge were statistically independent (i.e., 
"chance agreement"). A number of previous stud­
ies have used r; to evaluate inter-coder reliability 
(e.g., Carletta 1996, Litman & Passonneau 1995; 
Moser & Moore 1995; Hirschberg & Nakatani 1996; 
Wiebe et al. 1997). However, in looking at agree­
ment among judges, we are often not as concerned 
with describing how well two particular judges 



sense 1 "readiness to give attention)) 
sense 2 "quality of causing attention to be givenn 
sense 3 ''activity~ subject, etc., which one gives 

time and attention ton 
sense 4 "advantage, advancement~ or favorn 
sense 5 "a share (in a company, business, etc.)" 
sense 6 "money paid for the use of moneyn 

Figure 1: Noun Senses of Interest in LDOCE 

agree as in measuring how well any observer can 
distinguish the categories from one another. In 
other words, the issue is the precision of the clas­
sification pTocess. 

In this paper, we present a study of a classi­
fication process. The section Agreement Among 
Judges presents an analysis of the patterns of 
agreement among the judges. Agreement is a 
function of the differences among the judges (i.e., 
their biases) and the distinguishability of thecate­
gories themselves. We study bias using the models 
for symmetry, marginal homogeneity, and quasi­
independence (in the subsection Observer DijjeT­
ences). We study category distinguishability us­
ing Darroch & McCloud's (1986) degree of distin­
guishability, O;J (in the subsection Category Dis­
tinguishability). Guided by these analyses, in tho 
section Modification of the Classification Process 
we investigate modifications to the classification 
process that improve reliability. We analyze the 
effects both of removing judges and collapsing cat­
egories. A technique is presented for formulating 
a tag set which can be automatically derived from 
the original tag set. The technique is successful in 
the study presented here: the derived tag set yields 
improved reliability, as measured by Cohen's "· 

The Data 

The classification process performed in this study 
involved five human judges independently assign­
ing sense tags to 2369 instances of the noun interest 
taken from the Wall Street Journal Treebank Cor­
pus (Marcus et al. 1993). The senses given to the 
taggers, shown in Figure 1, are from the Longman's 
Dictionary of Contemporary English (LDOCE). 

The annotation instructions were minimal. They 
were asked to usc their judgment in assigning to 
each usage of interest the single tag that best 
characterizes its meaning. It is likely that more 
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explicit tagging instructions including examples 
and default rules would improve agreement among 
judges. Indeed, an analysis of the classification 
process such as performed here could be used to 
formulate and interactively revise a set of tagging 
instructions, but this application is not considered 
here. 

Five human judges, referred to as A through 
E, participated in the study. Two of the judges 
(judges C and D) were involved in the project and 
had participated in previous sense tagging exper­
iments. The remaining three judges (judges A, B 
and E) were not members of the project and had 
no previous background in NLP or linguistics. 

Agreement Among Judges 

All of the techniques that we present for the analy­
sis of agreement are appropriate for category classi­
fications assigned to multiple objects (in this case, 
words) by two juclges. 1 We analyze t.he agreement 
among all five judges by evaluating the agreement 
between all pair-wise combinations of these judges. 
We exclusively use maximum likelihood estimates 
of model parameters. 

The Basics 

Tables 1-5 present half of the data, in con­
tingency table format:. Each table is for one 
pair-wise combination of the five judges. The 
rest of the data, for the other five combina­
tions, is available on the World Wiele Web at 
http: I I crl. nmsu. eduiResearchiProjectslgmphling. 
In each table, the rows correspond to the senses 
assigned by the first judge while the columns cor­
respond to those assigned by the second judge. Let 
nij denote the number of words that judge one clas­
sifies as i and judge two classifies as sense j. If we 
let Pii be the probability that the judges will agree 
that a randomly selected usage is sense i, then 
Lip;; is the total probability of agreement across 
all senses. Pii can be estin1ated as 2!i.i... (a 1naxirnum n++ 
likelihood estimate), and the total probability of 
agreement can be estimated as Li Pii = L; ~';~, 
where n++ = Lij n;J = 2369. 

1 Several of these techniques are also applicable to the 
analysis of multiple judges. 



The simplest measure of agreement is the esti­
mated probability of agreement, i.e., L,;f!;;, where 
the possible values are afiected by the marginal 
totals (i.e., the row and column totals). Cohen's 
K. compares the total probability of agreement to 
that expected if the ratings were statistically inde­
pendent (i.e. 1 "chance agreernent"). That value is 
then normalized by the maximum possible level of 
agreement given the marginal distributions. The 
marginal distributions can be estimated from the 
marginal counts as: fh+ = ,nq. and fi-f-i !!±L 

n++ n++ 
The complete formulation of K. is: 

K = L-di;;- L,;fi;+P+i 
1 - L,; Pi+P+i 

(1) 

K is 0 when the agreement is that expected by 
chance, and is 1.0 when there is perfect agreement. 

An extension of K. for the case of multiple judges 
(three or rnore) is presented in Davies and Fleiss 
(1982) and used in this study. 

Analyzing Patterns of Agreement 

In a classification experiment, the two judges are 
assumed to classify any given usage independently 
of each other, but it is clear in the formulation of 
K that we expect the data to exhibit depe,nllence, 
i.e., Ji;1 i Pi+ x J3c.1· Where docs this dependence 
come from? II; ari;;es from three factors and their 
possible interactions: (1) the heterogeneity of the 
objects being classified (i.e., the usages of interest), 
(2) the heterogeneity of the judges, and (3) the 
distinctions made in the category definitions. 

We focus on the latter two factors and their in­
teraction. Rather than simply measuring agree­
ment we measure the contributions to agreement 
made by these two factors and propose changes 
to the classification process based on the analy­
sis. Just as overall agreement can be assessed as 
a function of the counts in the pair-wise confusion 
matrices, so can the measures of observer· differ·­
ence (bias) and category distinguishability. 

0 bserver Differences (Bias) The hypothesis 
of no difference between two judges is the hypoth­
esis of complete symmetry (Sym in Table 6), that 
is, Pi,. = f3 1·i or !~~ = 1 for all i, j. If this ratio equals 

. PJ' 
one for all i, j then it follows that the observers' in-
terpretations are indistinguishable. 
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Complete symmetry implies marginal symmetry, 
that is, Pi+ = P+i· Bias of one judge relative 
to another is evidenced as a discrepancy between 
these marginal distributions. BiaB decreases as the 
marginal distributions becorne nwre nearly equiva­
lent. The measure of bias is the test for marginal 
homogeneity (M.H. in Table 6), Pi+= P+i for all ,, 

It is possible to access the similarity of two 
judges even when there is evidence of bias. The 
model for quasi-independence ( Q.I. in Table 6) 
(Bishop et a!. 1975) tests whether two judges' de­
cisions are independent if we consider only the of!~ 
diagonal counts--the counts corresponding to dis­
agreement (i.e., Pij = Pi+ x P+j for i i j). Quasi­
independence holds when, given that the judges 
disagree, there is no pattern of association in the 
categories they assign. 

In the tests for symmetry, marginal homogene­
ity, and quasi-independence, a model is formu­
lated that enforces the hypothesized constraint, 
e:g., Pij = P.ii in the case of symmetry. The degree 
to which the data is approximated by a model is 
called the fit of the model. In this work, the flt of 
each model is reported in terms of the. likelihood 
ratio statistic, G2 , and its significance. The higher 
the G2 value, the poorer the flt. The fit of a model 
is considered acceptable if its reference significance 
level is greater than 0.001 (i.e., if there is greater 
than a 0.001 probability that the data sample was 
randomly selected from a population described by 
the model). 

Category Distinguishability The ratio Tij = 

fi;; xfi;; referred to as the diagonal cross-product-
Vii XPjj' · 

ratio, represents the odds for disagreement over 
agreement on categories i, j. Darroch and Mc­
Cloud (1986) define the degree of distinguishability, 
Oij, for categories i, j as: 

Pij X Pji 
O;j = 1 - Tij = 1 - ' ' (2) 

Pii X PJJ 

If Oij = 1, we say that the categories are completely 
distinguishable, and, if li;j = 0, they are completely 
indistinguishable. 

Majority Consensus When multiple judges are 
involved in a study, it is possible to formulate a 



majority tag for each object, that is, the tag that 
the majority of the judges assign to each object. It 
represents majority opinion and is useful in iden­
tifying outlyers, as shown in the next section. 

Results 

Table 6 presents the results of the tests for ob­
server differences and Table 7 presents the mea­
sures of category distinguishability. All evaluations 
are performed on each pair-wise confusion matrix. 
The eolumns labeled MIA through MI.E refer to 
similar tables comparing the majority tag to the 
assignments made by each judge (e.g., judge A, in 
the case of MIA). These tables are not included in 
the paper. 

While the r; values in Table 6 are reasonably 
high, the judges display bias and cannot. be con­
sidered interchangeable. The only exception is the 
strong similarity between the majority tag and the 
assignments made by judge C (i.e., the column la­
beled MIG in Table 6); these tags are symmet­
ric and unbiased. Among the five judges, the 
most similar are judges C and D, the two ex­
perienced judges. While their scores for symme­
try and marginal homogeneity are not significant, 
indicating· a relative bias, their score for quasi­
independence is significance (i.e., 0.004 > 0.001, 
the cutoff we use to judge significance). This indi­
cates that, although judges C and D are not indis­
tinguishable, there is no systematic difference of 
opinion between them. Judge D also shows some 
similarity to the majority tag. 

The judge that. is least similar to the others is 
judge E; this is particularly evident when judge E 
is compared to the majority tag. 

The distinguishability, oi.i, of all pair-wise eombi­
nat.ions of tags arc evaluated in Table 7. All scores 
are at. or near the maximum of 1.0, with the ex­
ception of those measuring the distinguishability 
of tags 1 and 2. It. is particularly low in Table AlB 
(i.e., Table 2). 

Modification of the Classification 
Process 

Based on the results presented above, we modified 
the classification process in two ways: (1) judge E 
is removed, and (2) sense tags 1 and 2 are conflat.ed 
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to form a single sense distinction. The poor marks 
for distinguishability between these senses seem to 
be reflected in a closeness in meaning (see in Figure 
1), supporting the decision to conflate them. 

Removing judge E from the study removes the 
tables with the lowest r; scores. As a result, the 
agreement among all judges inereases from 0.874 to 
0.898, as measured by Davies and Fleiss' extension 
of r;. 

The process of conflating two tags is accom­
plished using the latent class model (Goodman 
1974)2 This procedure has historically been used 
to identify a set of latent categories that explain 
the interdependencies among the observable cat­
egories. In this case, the observable categories 
are the sense tags assigned by the remaining four 
judges, while the latent categories correspond to 
the unobservable true meanings of the noun inter­
est. Once the desired number of latent. categories 
has been specified, these categories are assigned 
via the EM algorithm as described in Goodman 
(1974) and applied in Pedersen & Bruce (1997) 3 . 

Using the EM algorithm as described above, all 
usages of interest are assigned to one of five latent 
sense groupings. The mapping between the derived 
(i.e., latent.) categories and the observed senses is 
established to maximize the correlation between 
latent categories and observed senses. This corre­
lation for each judge, is estimated as part of the 
process of assigning latent. categories. As an ex­
ample, Table 10 presents the correlation for judge 
C. The values recorded in the table are the proba­
bilities of judge C assigning sense tag i and the 
EM algorithm assigning latent tag j. As can 
be seen, correlation is maximized when the map­
ping of observed tags to latent tags is as follows: 
1 =? 1, 2 =? 1, 3 =? 2, 4 =? 3, 5 =? 4, and 6 =? 5. 
This mapping conflates senses 1 and 2 while leav­
ing all other senses intact. This corresponds to 
our expectations based on the study of agreement 
presented in the previous section. Using this map­
ping, the observer difference measures among the 

2 Also referred to as the Naive Bayes model (Langley et 
al. 1992). 

3This is a well known unsupervised learning alobserved 
tagsgorithm; other notable references to this procedure are 
Lazarfeld (1966), Pearl (1988), and AutoClass (Cheeseman 
1990). 



1 
2 

Judge 3 
c 4 

5 
6 

0.142 
0.003 

.000 
0.001 
0.001 
0.000 

Latent Tag 
2 3 4 

0.010 0.001 0.001 
0.001 0 001 0.000 
0.024 0.005 0.000 
0.000 0.074 0.001 
0.003 o:ooo .206 
0.000 0.000 0.000 

Table 10: Tag Correlation for Judge C 

" 0 002 
0.000 
0.000 
0.000 
0.000 
0.526 

four judges for the latent tag set are presented in 
Table 8, and the distinguishability of latent tags 
is presented in Table 9. As compared to the origi­
nal classification process, the agreement among all 
judges increases from 0.874 to 0.916 for the revised 
tag set. with four judges. 

Recent work has proposed various methods for 
pruning senses for word instances and tuning tag 
sets to a particular domain using corpus infor­
mation and existing linguistic knowledge sources 
(e.g., Yarowsky 1992, Jing et. al. 1997, Basili et al. 
1997). We have presented an automatic method 
for refining a tag set. using an important additional 
source of information: the 1nanual annotations as-
signed by human judges. . f 

Conclusion 

There is increasing awareness of the need to Inan­
age the uncertainty inherent. in many classification 
systems. We have presented procedures that can 
be used to analyze and refine any classification sys­
tem that makes use of nominal categories. These 
techniques can be used to study and improve the 
reliability of human judges as well as refine catego­
rizations that can be applied automatically and, in 
the process, establish an upper bound on the accu­
racy of automatic classification, i.e., the agreement 
among the human judges. In future work, we will 
apply these techniques to the analysis and evalua­
tion of automated classification systems. 
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sense1 
sense2 

Judge 1 sense3 
= A sense4 

senseS 
sertse6 

sense1 
nu 174 

n21 -7 
n31 -- 25 
n41 - 3 
not - 1 
7l61 

sense2 
nl2 llo 
nn- 8 

ns2 - 24 
n42 - 1 
ns2 - 1 
n52- 0 

Judge 2 = E 
sense3 sense4 

n" 11 n14 8 
n23- 1 n24 - 2 

n33 - 40 ns4 - 12 
n4s....:. 3 n44 - 156 
nss- 6 ns4 - 12 
n53 1 n64 2 

sense5 
n1s 
nzs -1 
n3s- 4 
n4s- 8 

ns5 - 474 -
n55 6 

sense6 
n16 2 
nz6- 0 
ns5- 3 
n45 -1 
ns6- 6 

no, 1245 

nl+ = 316 
n2+ = 19 
n3+ = 108 
n4+ = 172 
ns+ = 500 
na+ = 1254 ', u 

' 192 n+5 499 n+6 12o7 n++ = 2369 

Table 1: Confusion Matrix for Judges A and E 

1 
2 

Judge 1 3 
=A 4 

1 
242 
13 
32 
2 

Judge 2 = B 
2 3 4 5 

37 21 7 8 
2 1 1 1 
5 53 i5 1 
0 1 161 6 

6 
1 
1 
2 
2 

316 
19 
108 
172 

3 0 zo 16 458 3 5 500 
0 0 1 1 6 1246 6 1254 

' 292 44 97 201 480 J25o 2369 

Table 2: Confusion Matrix for Judges A and B 

1 
2 

Judge 1 3 
= A 4 

5 
6 

303 

__;_~-42 
4 

--;r 
5 

368 

Judge 2 = C 
2 3 4 5 6 
2 0 6 3 2 
6 1 1 1 0 
3 56 5 1 1 
0 8 154 6 ·a--
0 1 13 480 2 ·' 
1 1 1 5 1241 
12 67 18U 496- 1246 

Table 3: Confusion Matrix for Judges A and C 

1 
2 

Judge 1 3 
= c 4 

5 
6 

342 
- 1 
~----z-
~-----s-

4 
1 

35~ 

.htdge 2 = D 
2 3 4 5 6 
1 2'- 2 12 9 
10 0 0 0 1 
1 48 12 3 1 -1 0 160 7 1 
u u u •~v 0 
0 u 0 0 12_45 
13 53 174 511 1260 

Table 4: Confusion Matrix for Judges C and D 

1 
2 

Judge 1 3 
= c 4 

5 
6 

1 
i--206 

~~ 1 
1 
1 
1 

210 

Judge 2 E 
2 3 4 5 6 

131 11 6 7 7 
-

11 0 0 0 1 
--6-- ~'42 13 2 3 

1 5 164 8 1 
0 4 7 481 3 
0 0 2 1 1242 

149 62 192 499 1257 

316 
19 
108 
172 
500 
1254 
2369 

368 
12 
67 
180 
496 
1246 
2369 

368 
12 
67 
180 
496 
1246 
2369 

Table 5: Confusion Matrix for Judges C and E 
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Test. 
AlE AIC AID BIG BID BIE G]D C\F ' lJII' ' MIA MIB MIG WID ' MIE 

['''". c{2 165 70 77 75 105 101 109 1G 226 214 81 84 22 39 212 

f---..;\~'9·- 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 o.ooo 0.000 0.000 0.102 0.001 0.000 
lVi. Tl.: 

cf2 150 30 47 58 69 79 90 37 213 210 64 42 15 39 206 
Sig. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 o.ooo 0.000 0.000 0.010 0.000 0.000 

Q. 1 .. 
c;2 151 143 79 61 94 81 186 12 135 120 67 82 34 25 120 

Si_q. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.~_;;~ 0.016 0.051 0.000 
appa 0.825 0.866 1 0.903 0.882 0.873 .821 0. 51 . 85 0.819 02.2_9_ ONll . .977 0.96 0.874 

Table 6: Tests of Observer Differences (Bias) for Five Judges and Six Senses 

s~nscs 

AlE AlB AIC AID BIG BID BIB 0 OlD GjE DIE 0 MIA MIB MIC MID MIE 
1 2 0.422 0.006 0.989 0.986 0.765 0.662 0.183 1.000 1.000 1.000 0.990 0.675 1.000 1.00 1.000 
1 3 0.960 0.948 1.000 0.997 0.959 0.964 0.950 1.000 .999 0.997 1.000 0.9(f8 1.000 1.000 0.999 
1 • 4 0.999 0.999 1.0 0 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

r-l -- 5 1. 0 1. 00 1.000 1.0 1. 0 0 0 1.00 1.000 1. 00 1. 00 1. 1. 1. 00 1. 1. 
-- (j 1. l. JOO 1.000 t.obo 1.000 1.00 1. 0 1.00 1. 00 l.O 1.00 1. 0 1.000 1.000 1. 00 

2 - 3 0 J25 o:-%3 0.9!)1 0.978 0.0 0.979 1.000 1.00 1.( 00 l.QOO 0.988 0.966 1. 0 1.0 1.0 0 ·-·-· 4 .998 1.00 1.000 1.0 1 0 0.999 1.000 1. 1.0 0 1.000 1.0 1.00 1. 0 1.0 0 2 
~:~5}-7 5 1.000 1.000 1.000 - 1 OOl 1.000 ).0 1. 00 1.0 0 ). 00 1.000 1.0 0 1.000 1.000 1.00 .. 

2 - 6 1.000 1.000 1.000 1.000 1.000 1. 0 1.000 1.00 1. 1.000 1.000 1.000 1. 1. 0 1. 
3 4. (j]J94 0.998 0.995 0.9U4 0.997 0.9~)4 0.986 0.995 0.991 0.993 0 .. 99 0.998 0.999 0.999 0.996 
3 5 0.99\) 0.99(1 1.000 1.000 1.000 1.000 O.ll94 1.000 1.000 0.(1(19 1.000 1.000 1.000 1.000 1.000 
3 6 1.000 1.060 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
4" -- .\ ""O.a9D .99\l O.Sl9\l o.9m 1.000 l"'lTITif 0.999 

~ :~~6-
·o.H9' 1. 1 0 ~- """"T.("f"O(f 1.0 0 1.000 

4 ... (i 

::ogiT- 1.0 1.000 Cooo 1.000 1.000 1 0 1--i.ooo 1.000 1.000 1.000 1.0 1 0 1.00 
5 6 1.000 1.000 1.000 1. 00 I. 1.00 1.000 1.000 1. '0 ~ 1.0 1.000 1. 00 1.000 . -

Table 7: Measure of Cat~gory Distinguishability for Five .Judges and Six S~nses 

A IB AIC AID BIG BID CID MIA MIB MIG MID [f[--. 

' 56 63 63 72 70 44 72 72 17 36 
S1g. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.068 0.000 

--~ 

c;'J 10 ;)9 52 38 53 37 57 43 7 29 
Sig. 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.136 0.000 -·-----

(.(.G2. 
72 08 50 46 23 37 00 37 20 19 

Siy. 0.000 0.000 0.000 0.000 0.016 0.000 0.000 0.000 0.006 0.017 
/{ tl]!l!!:....__ ~~· ~()8 _2-~l24 0.91 0.909 0.902 0.952 0.943 0.\)26 0.978 0.964 

Table 8: Tests of Obsnrver Differences (Bias) for Four Judges and Five Senses 

AlB AIC > AID BIG BID CID MIA MIB MIG MID 
1 2 0.94 0.9H7 .994 0.957 O.H64 1. 1.0 0 0.968 1.000 1.000 
1 3 1.000 0.999 0.999 .99 0.999 

.. 
1.000 1.000 1.000 1. ). 00 

1 ' 1 00 1.000 1.000 1.000 0.\)99 1. 0 1. ). 0 -- 1. 0 1.000 
1 5 1.000 1.00 1.000 ). 00 l.OOQ 1. 0 1.00 1.( 00 1. ). 

2 3 0.998 O.\l95 0.993 o.mn 0.004 0.995 0.999 0.998 1.000 0.997 
2 4 0.>199 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1. 0 1.000 
2 1.000 1.000 1.000 1.000 J .000 1.000 1. 0 1.000 1.000 1.000 
3 .999 .\199 O.>lH8 0.999 1. 1. 0 1.00 1.000 1.00 1. 0 
3 ·- 5 1.0 1.0 1. 0 1.00 1. 00 1.00 1. 0 1. .00 1.000 

·• 1.000 1.00 1 00 1.000 1. I. 0 1. 0 1. 0 1.0 0 1. 

Table 9: Measure of Category Distinguishabilily for Fott!" Judges and Five Senses 

60 


