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Introduction 
Either directly or indirectly, the lexicon for a natu­
ral language specifies complementation frames or va­
lences for open-class words such as verbs and nouns. 
Constructing a lexicon of complementation fram<:~s 
for larg<-'! vocabularies constitutes a challenge of scale, 
with the further complication that frame usage, like 
vocabulary, varies with genre and undergoes ongo­
ing: innovation in a living language. This paper ad­
dresses this problem by means of a learning tech·· 
niquc baswi on probabilistic lexicalized context free 
grammars and the expectation-maximi~";ation (EM) 
algorithm. Given a hand-written grammar and a 
text corpus, frequencies of a head word accompanied 
by a frame are estimated using the inside-outside al­
gorithm, and such frequencies are used to compute 
probability para.meters characterizing subcategoriza­
tion. The procedure can be iterated for improved 
models. \Nc show that the scheme is practical for 
large vocabularies and accurate enough to capture 
differences in usage, such as those characteristic of 
different domains. 

A grammar and formalism 
The core of t.he grammar is an X grammar (Jackend­
off [1977]) of phrases including noun phrases, preposi­
tional phrases, and verbal clusters. A representative 
verbal structure is given on the left in Figure 1. The 
symbol VF'C is read "finite verb chunk''; similarly we 
work with noun chunks (Nc), prepositional chunks 
(Pc), and so forth. Our use of the ehunk concept 
follows Abney [1991], Abney [1995]. Categories are 
interpretable in terms of a feature decomposition, but 
are treated as atomic in the formalism. We depart 
from a standard context-free formalism in that heads 
are marked on the right hand sides of rules, using a 
prime ('). 

The grammar includes complementation rules for 
verbs, nouns, and adjectives. Complements are at­
tached at. a level above the chunk, which we call the 
phrasal level. For instance, the category VFP is ex­
panded as a finite verb chunk vrc and a sequence 
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of complements. This is illustrated on the right in 
Figure 1, where the VFC headed by decided takes a 
VTOP complement, the VTOC headed by emphasize 
takes an NP complement, and so forth. 

Finally, the least standard part of the grammar is a 
large set of state or n-gram rules which form a parse 
without constructing a standard clause-level analy­
sis. Instead) phrasal categories are strung together 
with context-free rules modelling a finite state ma­
chine, \vhcre the states are categories consisting of 
an ordered pair of phrasal categories. This results 
in right-branching structures, as illustrated Figure 2. 
Note that the entire tree on the right in Figure 1 
could be substituted for the finite verb phrase VFP in 
the tree on the left in Figure 2. The st<:l.te rules allow 
almost all the sentences (about 97%) in the corpus to 
be parsed, at the price of not assigning linguistically 
realistic higher-level structure. 

We now define headed context-free grammars in 
the sense employed here. 

Definition. A headed context free grammar is a 
tuple (N,T, W,L, R,s), where: (i) Nand Tare dis­
joint sets, interpreted as the non-terminal and ter­
minal categories respectively. (ii) VV is a set, in­
terpreted as the set of words. (iii) L is a relation 
between W and T, indicating the possible terminal 
categories {parts of speech) for a given word. {iv) 
The set of headed productions R is a finite subset of 
N x N' x (NUT) x N', such that each non-terminal 
occurs as the left hand side of some rule and each 
terminal occurs on the right hand side of some rule. 
(v) s E N, with the interpretation of a start symbol. 

We typically use fi as a variable for mother cate­
gories, n for head daughter categories, and a and (3 
for the category sequences flanking the head on the 
right hand side, so that (ii, a, n, (3) represents a rule. 
x is used as a variable for non-head categories. 

A category n in N is a projection of a category n 
in NUT if there is some rule of the form {ii, a, n, (3). 
The set of lexicalized nonterminals N C W x N is 
the composition of .C with the transitive closure of the 
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Figure 1: Illustrations of a finite verb chunk and complementation. 

projection relation. We have (w, n) eN if the word w 
can be the lexical head of the nontcrminal category 
n (in a complete or incomplete tree). 

Lexicalization and the probability 
model 

This section defines a parameterized family of proba­
bility distributions over the trees license_dfby a bead­
lexicalixed CFG. The main ideas on th'C parameter­
ization of a lexicalized context free grr-mmar which 
are employed here derive from Charniak [1995]; see 
also the remarks on lexic:alization in Charniak [1993 1 

section 8.4]. 
The head marking on rules is used to project lexical 

items up a chain of categories. In the transitive verb 
phrase on the right in Figure 21 question is projected 
to the NP level) and asked is projectE~d to the VFP 

level. In this tree, the non-terminal nodes are lexi­
calized non-terminals) while the terminal nodes are 
members of £. The point of projecting head words 
is to make information which probabilistically condi­
tions rules and lexical choices available at the rele­
vant leveL At the top level in this example, the head 
asked is used to condition the choice of the phrase 
structure rule VFP -+ YFC' NP as well as the choice 
of question, the head of the object. 

We now define events which characterize choices of 
rules and of lexical beads. 
Definition. Given 
a grammar G = (N, T, W, £, R., s) with lexicalized 
non-terminals N, the set of rule events ER( G) is the 
set of tuples (w, n, a, n, f!) such that (w, n) is an el­
ement of N and (n, a, n, f!) is an element of R.. The 
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set of lexical choice events EL(G) is the set of tuples 
(w, n, x, v) such that (i) (w, n) and (v, x) are elements 
of N; 1 (ii) in some rule of the form (h) a 1 n, {3), x is 
an element of one or both of the category sequc_nces 
o: and {3; and 

By virtue of the length of tuples, ER(G) and 
EL(G) are disjoint, and the union E(G) can be 
formed without confusing lexical with rule events. 

A head-lexicalized PCFG is represented as a func:­
~tion mapping events to real numbers. 
Definition. Let G be a headed context free gram­
l:nar. A head-lexicalized probabilistic context free 
grammar with signature G is a function p with do­
main E(G) and range [0, 1] satisfying the concli­
ticms: (i) Fixing any lexicalized non-terminal (1V, ft), 
"i:.o:,n,fJPW,fl.,a,n,fJ::::: 1; (ii) Fixing any lexicalized non·· 
terminal (w, n) and possible non-head daughter :r, 
Lx,w Pw,11,x,w = l. Here the value of the function 
p on a rule event is written as Pw,n,a,n,J3, and on a 
lexical event as P~u,n,:c,w· 

To assign probability weights to trees, we usc 
a tree-licensing and labelling interpretation of the 
grammar; a node in a tree analysis is labeled with 
event corresponding to the rule used to expand the 
node, and the list of lexical events for the non-head 
daughters of the node. Where r is a labeled tree li-

1 In the events, conditioning factors are ordered in the 
way they are dropped off in the smoothing procedure de­
scribed below. In a lexical event (w, n, x, v), the choice of 
the word v is conditioned on the parent lexical head w, 
the parent category n., and the child category x. In the 
first smoothing distribution, the first conditioning factor, 
i.e. the parent head w, is dropped. 
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Figure 2: Left: finite-state structure; Right: Lexicalization. 

censed by G, we define e(-r) : E(G) -t IN to be a 
function counting occurrences of events as labels in 
-r. Algebraically, we think of e(r) as a monomial in 
the variables E(G); the exponent of a given variable 
(or event) z is the number of occurrences of z in 1, 

We denote the evaluation of a polynomial or mono­
mial <P in the variables E(G) by subscripting: </Jp is 
the value of <P at the vector of reals p. Relative to 
a parameter setting p, [e(r)]p is interpreted as the 
probabilistic weight of the labeled tree r 2 

These notions are exemplified in Figure 3, which 
is a phrase structure tree for the N1 (read: N-bar) 
/Jig big problem in a grammar where N1 is the sen­
tence category. Each non-terminal is labeled with a 
phrase structure rule, and with lexical choice events 
for non-head daughters. In this case, the only non­
head daughters are the two A 1 's headed with head 
big. (problem,N1,A1,big) is a lexical choice event 
where big is selected as the head of an A1 with par­
ent category N1, and parent head pr-oblem. An event. 
monomial corresponding to the event tree is obtained 
as the symbolic product of the events labeling the 
tree, 

Parameter Estimation 
Given a grammar G) the inductive problem is to es­
timate a head-lexicalized PCFG with signature G. 
We work with the standard method for estimat­
ing PCFGs, based on the Expectation-Maximization 

2 As with ordinary PCFGs) depending on the parame~ 
ters, the construction may or may not define a probability 
measure on the set of finite trees licensed by G. For the 
general case, infinite trees can be included in the sam­
ple space, This requires an extension in the definition of 
the measure but does not affect the probabilities of finite 
trees. 
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framework (Baum & Sell [1968]; Dempster, Laird & 
Rubin [1977]). 

Above, we defined the event polynomial e(r) for 
an event tree r licensed by G. The event polynomial 
for a sentence a is the sum of the event polynomi-· 
als for the event trees with yield a. Where corpus 
C is a sequences of sentences, the corpus event poly­
nomial e(C) is the (polynomial) product of the event 
polynomials for the sentences in C, In these terms, 
maximum likelihood estimation selects a parameter 
setting p such that the value [e(C)]p of the corpus 
polynomial is maximized; this corresponds to select­
ing a parameter setting which maximizes the proba­
bility of the corpus. 

The E step of the EM algorithm computes an ex­
pected event count function which can be defined in 
terms of the corpus polynomiaL In the estimation 
of PCFGs using the inside-outside algorithm, event 
counts are computed iteratively, sentence by sen­
tence, The computation uses a packed parse forest, a 
compact and-or graph representing a set of trees and 
the sentence event polynomial, and which allows ef­
ficient computation of expected event counts, Some­
what more formally, we use the Inside-outside algo­
rithm (Baker [1979]). to compute Ep(zla): E(G) -t 
Dl where z ranges over events in the join rule and 
lexical event space E(G), defined earlier. c(a,p)(z) 
has the probabilistic interpretation of the expected 
number of occurrences of the event z in the set of 
trees with yield cr. 

Given a parameter setting p, event counts are com­
puted and summed over the sentences in the corpus, 
In the algorithm of Baum and Sell, new parame­
ter values would be defined as relative frequencies 
of event counts, Le. maximum-likelihood estimation 
based on hidden data in the EM framework. We 
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Figure 3: On the left, an event tree. On the right, the corresponding lexicalized tree. On the bottom, the event 
monomial obtained as a symbolic product of the event labels. The lexical choice event involving START-CAT 
chooses the head of the sentence, in this case problem. 

use instead a modified M step involving a smooth­
ing scheme in order to deal with the size of the pa­
rameter space and the resulting problems that (i) 
countt> are zero for the majority of events, and (ii) 
the parameter space is too large to be represented 
directly in computer memory. Lexicalized rules are 
smoothed against non-lexicalized rules in a standard 
back-off scheme (Katz [1980]). The smoothed proba­
bility is defined as a weighted sum of the maximum­
likelihood estimates for the lexicalized and unlexi­
calized rule probabilities. The smoothing weight is 
allowed to vary through five discrete value~ as a func­
tion of the frequency of the word-categol'y pair. The 
parameters give greater weight to the lexicalized dis­
tribution when enough data is present' to justify it. 
The smoothing parameters are set using the EM al­
gorithm on reserved data. 

For the lexical choice distributions, an absolute dis­
counting scheme from Ney, Essen & Kneser [1994] is 
used, which is similar to Good-Turing, but somewhat 
simpler to work with. 

The experiment 
We estimated a head-lexicalized PCFG from parts 
of the British National Corpus (BNC Consortium 
[1995]), using the grammar described in the first sec­
tion and the estimation method of the previous sec­
tion. A bootstrapping method was used, in which 
first a non-lexicalized probabilistic model was used 
to collect lexicalized event counts. On the next iter­
ation, counts were estimated based on a lexicalized 
weighting of parses, as described in the previous sec­
tion. 

Analyses were restricted to those consistent with 
the part of speech tags specified in the BNC, which 
are produced with a tagger. In each lexicalized iter­
ation, event counts were collected over a contiguous 
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five million word segment of the corpus. Parameters 
were re-cornputed in the way described above, and 
the procedure was iterated on the next contiguous 
five-million word segment. Results from all iterations 
were pooled to form a single model estimated from 
50M words. Table 1 illustrates lexical distributions 
in this model. 

This training scheme allows the frame distribu­
tions for high-frequency words a chance to con­
verge on their true distributions, whereas a single 
50M word iteration would not. The strategy de­
rives from a variant generalized EM algorithm pre­
sented in Neal & Hinton [1998]. In a nutshell, re­
estimating the parameters during the course of a sin­
gle training iteration will still lead to convergence 
On a maximum-likelihood estimate, provided certain 
conditions are met. Foremost among these is the re­
quirement that no parameter setting can be prema­
turely set to zero; this is met by our smoothing strat­
egy. This is not to say that precisely the same strat­
egy, pursued across multiple iterations, would pro­
duce a maximum-likelihood estimate; it would not. 
However, "classical" EM, requiring repeated itera­
tion over the entire training set, is both relatively 
inefficient and infeasible given our present computa­
tional resources. 

Dictionary Evaluation 
The comparison to frames specified in a dictionary 
we use was introduced by Brent [1993] and subse­
quently used by Manning [1993], Ersan & Charniak 
[1995] and Briscoe & Carroll [1996]. The measure 
uses precision and recall to compare the set of in­
duced frames to those in the standard. Precision is 
the percentage of frames that the system proposes 
that are correct (i.e. in the standard). Recall is the 
percentage of frames in the standard that the system 



PNP satisfactonLADJP w PVFP address NP w 
adverb prob noun prob 
entirely 0.17 question 0.086 
highly 0.11 issue 0.086 
rnost 0.09 themselves 0.059 
very 0.075 issues 0.031 
quite 0.055 structure 0.031 
wholly 0.032 argument 0.014 
uncommonly 0.0037 questions 0.0043 
especially 0.0037 electorate 0.0043 

... ... --

Table 1: On the left: the eight largest parameters 
in the lexical choice distribution describing modify­
ing adjectives selected by satisfactory. On the right: 
parallel information for the distribution describing 
heads of objects of the verb address. . 

proposes. If the results are broken down into true 
positives (TP), false positives (FP), true negatives 
(TN), and false negatives (FN), precision is defined as 
TP/(TP+FP) and recall is TP/(TP+FN). To pro­
duce measurements from our system, we must first 
reduce our distributions to set membership. Brent 
proposed a stoehastic filter for this reduction, consist­
ing of a set of per-frame probability cutoffs, which are 
applied independently of the lexical head. Although 
though the independence assumption is certainly du­
bious, we have adopted this method, without change, 
except for the introduction of a heuristic for finding 
the frame cutoffs. 

The key property of cutoffs is that they control the 
tradeoff of precision versus recall. Raising the cutoff 
will generally produce a higher precision, but lower 
recall, and contrariwise. As we are neutral about this 
tradeoff, we set the cutoffs at the crossover point! 
where the difference in precision and recall changes 
sign. This is not entirely deterministic, as the mea­
sures may cross more than once; in that case, we 
optimize for the best precision. 

For our dictionary, we used The Oxford Advanced 
Learner·'s Dictionary (Hornby [1985]), also used by 
Ersan/Charniak and Manning. We reduced our 
frame set and the dictionary 1

S to a common set, map­
ping some frames and eliminating others. For evalu­
ation, we selected 200 verbs at random from among 
those that occurred more than 500 times in the train­
ing data; half were used to set the optimal cutoff 
parameters, and precision and recall were measured 
with the remainder. 

Table shows results broken down by frame. The 
largest source of error is the intransitive frame. It 
is not hard to understand why: our robust parsing 
architecture resolves unparsable constructs as intran­
sitives. In addition to sentences where verbs are not 
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cutoff TP FP FN prec rec 
.. 

~ns 0.15 20 24 12 0.6471 0.781 
NP 0.021 3 5 1 0.9479 0.98! 

~- 0.079 92 0 6 1 0.21 
pp 0.045 27 15 6 0.7761 0.89( 
PART 0.027 60 5 14 0.8077 o:ii 
VTOP 0.079 83 1 7 0.9 0.56~ 
NP PP 0.040 26 11 10 0.8281 0.84J 
NP PART 0.0099 68 6 12 0.7 0.53i 
NP NP 0.036 81 6 8 0.4545 0.38' 
NP VTOP 0.018 84 1 6 0.9 0.6 
V!NG 

~VING 
0.019 86 3 6 0.625 0.45' 
0.017 93 3 2 0.4 0.5 

-
NP VINF 0.019 99 1 0 0 -

NP ADJ 0.016 85 1 12 0.6667 0.14; 
PP VTOP 0.014 97 1 1 0.5 0.5 

C ___ _j_ _ __J_I_~31~0:._tl_:8:::::3:._ti_:1QLLO. 7888 1 o. 75c 

Table 2: Precision/recall broken down by frame. 

linked up with their complements because of interjec­
tions, complex conjunctions or ellipses, this includes 
frames such as SBAR and WH-complernents which are 
not included in the dnmk/phrase grammar. While it 
would be possible in principle to extract these from 
the present word collocation statistics, we plan in­
stead to pursue a solution involving extensions in the 
grammar. 

A second major source of error is prepositional 
phrases. The complementation model embodied in 
the PCFG does not distinguish complements from 
adjuncts, and therefore adjunct prepositional phrases 
are a source of false positives. Thus the NP PP frame 
is scored as a false positive for the verb meet, be­
cause the OALD does not list the frame, although 
the combination appears often in the corpus data. 
While such frames lead to a loss of precision in the 
dictionary evaluation, we do not necessarily consider 
them a flaw in the information learned by the system, 
since the argument/adjunct distinction is often ten­
uous, and adjuncts are in many cases lexically con­
ditioned. 

Lastly, there are many false negatives for the par­
ticle frame and noun plus particle. This is mainly 
due to disagreements between BNC particle tagging 
and particle markup in the OALD. 

Despite these difficulties, the summary shown in 
table shows results that are on the whole favorable. 
In comparison with other work with a comparable 
number of frames (Manning, Ersan/Charniak), the 
system is well ahead on recall and well behind on 
precision. If one takes the sum of precision and re­
call to be the final performance indicator, than we 
are slightly ahead: 1.54 vs. 1.44 for Ersan and 1.33 



precision ':Yo 
·-

recall 'Yo of frarnes no. 
lex PCFG 79 75 15 
Briscoe 66 36 159 
Charniak 92 52 16 
Manning 90 43 19' 

Table 3: Type precision/recall comparison. Some of 
Manning's frames are parameterized for a preposi­
tion. 

for Manning. Briscoe and Carroll's work, with ten 
times as many target frames, is so different that the 
numbers may be regarded as incomparable. 

Obviously, precision and recall measured against 
a standard relies on the completeness and accuracy 
of that standard. In checking false positives, Ersan 
and Charniak found that the OALD was incomplete 
enough to have a serious impact on precision. Sym­
metrically, false negatives conflate deficiencies in the 
corpus with poor learning efficiency. It is impossible 
to say based on table which of the systems is more 
efficient at learning. While our system shows the best 
recall, this could be attributed to our having the best 
training data. Cha.rniak used 40M words of training 
data, comparable to our SOM, but his data was homo­
geneous, all taken from the Wall Street JournaL As 
we will show below, frame usage varies across genres, 
so the BNC, which includes texts from a wide vari­
ety of sources, shows more varied frame usage than 
the WSJ, and thus provides better dad for frame 
acquisition. 

Cross entropy evaluation 
The information-theoretic notion of cross entropy 
provides a detailed measure of the similarity of the 
acquired probabilistic lexicon to the distribution of 
frames actually exhibited in the corpus (which we 
call the empirical distribution). The cross entropy of 
the estimated distribution q with the empirical dis­
tribution p obeys the identity 

CE(p, q) = H(p) + D(pllq) 

where H is the usual entropy function and D is the 
rel1etive entropy, or Kullback-Leibler distance. The 
entropy of a distribution over frames can be con­
ceptualized as the average number of bits required 
to designate a frame in an ideal code based on the 
given distribution. In this context, entropy measures 
the complexity of the observed frame distribution. 
The relative entropy is the penalty paid in bits when 
the frame is chosen according to the empirical distri­
bution p, but the code is derived from the modeJls 
estimated distribution, q. Relative entropy is always 
non-negative, and reaches zero only when the two 
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obs freq est freq 
1 imag natsci 1 frame imag 1 natsci 1 

51 39 NP VTOP 40.4 34.2 
21 43 NP 20.7 33.1 
13 6 NP NP 8.8 3.9 
6 1 NP PP 3.2 4.7 
5 I NP PART 1.7 1.0 
2 11 PP 1.8 10.2 
I 0 SBAR 0 0 
I 0 In trans 9.3 7.6 

1 2130 1 1.913 1 entropy 1 2.476 1 2.423 1 

Table 4: True and estimated frame frequencies for 
allow. 

distributions are identical. Our goal, then, is to min­
imize the relative entropy. For more in-depth dis­
cussion of entropy measures, see Cover & Thomas 
[1991], or any introductory information theory text. 

For relative entropy to be finite, the estimated dis­
tribution q must be non-zero whenever p is. How­
ever, some observed frames are not present in the 
grammar, for one of two reasons. Some well-known 
frames such as SBAR require high-level constructs 
not available in the chunk/phrase grammar and un­
usual/unorthodox frames turn up in the data, e.g. 
PAH.T PP PP. Since the model lacks these frames, 
smoothing against the unlexicalized rules is insuffi­
cient. Instead, for all the estimated distributions, 
we smooth against a Poisson distribution over cat­
~egories, which assigns non-zero probability to all 
frames, observed or not. This allows us to spell out 
the unknown frame using a known finite alphabet, 
the grammar categories, while retaining a reasonable 
average length over frames. 

For our entropy measurements) we selected three 
verbs, allow, reach1 and suffer and extracted about 
200 occurrences of each from portions of the BNC 
not used for training. Half of each sample was drawn 
from "imaginative" text and the other half from the 
natural or applied sciences, as indicated by BNC text 
mark-up. The true frame for each verb occurrence 
was marked by a human judge3 . The empirical dis­
tribution was taken as the maximum-likelihood esti­
mate from these frequencies. Tables 4 and 5 indicate 
t.he observed frequencies and the entropy of the re­
sulting distributions. 

Alongside the observed frequencies, we indicate a 
set of estimated frequencies. These were generated 
by taking the 50M word model described above, pars­
ing the test sentences, and extracting the estimated 
frequencies. The sum of estimated frequencies is gen-

3For this judgment, the frame set was unrestricted, 
i.e. included frames not in the grammar. 



I obs freq I est freq I 
imag natsci frame imag I natsci I 

63 88 NP 50.1 74.5 
13 15 NP PP 5.9 10.9 
9 I PART 5.9 0.8 
6 0 PART PP 2.7 0 
5 3 PP 6.7 3.4 
4 I In trans 15.2 6.8 
2 0 PART NP 0.5 0 
I 0 NP PA!tr 0 0.1 --

2 o 1 o 979 1 ent10py I 2 101 I 1 473 I ,- obs freq I est freq-
imag natsci frame imag natsci 

-
41 6 In trans 34.9 13.4 
31 54 pp 27.4 50.5 
21 36 NP 18.9 23.0 
4 1 NP VTOP 2.1 0.7 
3 4 NP PP 0.9 5.2 

-
1 !.936 1 !.580 1 entropy 1 1.936 I 1.90:!] 

Table 5: True and estimated frame frequencies for 
reach (top) and s11jJer- (bottom). 

erallv less than the observed frequencies due to tag­
ging.errors, parse failures, and frequency assigned to 
frames not shown in the tables. However, an eyeball 
inspection of the tables shows that the parser does a 
good job of reproducing the target distribution. 

One striking feature in the tables is the variation 
across genre. In particular, suffer used in the imagi­
native genre shows a very different distribution than 
suffer in the natural sciences. A chi-squared test ap­
plied to each pair indicates that the samples come 
from distinct distributions (confidence> 95%). 

The column labeled "50M lex" in Table 6 provides 
a quantitative measure of the agreement between the 
50M word combined model and the empirical distri­
butions for the three verbs in two genres in the form 
of relative entropy. The first column repeats the en­
tropy of the data distributions. For purposes of com­
parison, the second column indicates the relative en­
tropy of one data distribution with the other data 
distribution filling the role of the estimated distribu­
tion (i.e. q) in t.he discussion above. The relative 
entropy is lower when the estimated distribution is 
used for q than when the data distribution for the 
other genre is used for q in each case but one, where 
the figures are the same. This suggests the combined 
model contains fairly good overall distributions. 

To numerically evaluate whether the system was 
abl(', to learn the distribution exhibited in a given col­
lection of sentences, we tuned the lexicon by parsing 
the test sentences for each genre separately with the 
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D(pjjq) for various q 
other 50M 50M 

head, genre H(p) genre lex unlex 

allow imag 2.06 0.50 0.40 3.13 
natsci 1.78 0.49 0.42 2.27 

reach imag 1.99 0.91 0.35 1.07 
natsci 0.90 0.37 0.37 1.36 

suffer imag 1.86 0.87 0.24 0.70 
na.tsci 1.51 0.59 0.37 1.19 
mean 1.68 0.62 0.36 1.62 

Table 6: Frame relative entropy for three verbs in 
two genres. The first column narnes the lexical head 
and genre, and the second the entropy (H) of the 
empirical distribution over frames, p. By empirical 
distribution we mean the relative frequencies from 
examples scored by a human judge. Columns three 
through five give the relative entropy D(pjjq) for var­
ious related distributions. In column three, q is the 
empirical frame distribution for the same head 1 but 
with the complementary genre. In column four q 
is the (genre-independent) distribution derived from 
the 50M word lexicalbed model. Column five uses 
the unlexicalizecl frame distribution derived from the 
SOM model, i.e. a distribution insensitive to the head 
verb. Lower relative entropy is better. 

50IVI word model, extracting the frequencies, and es­
timating the distribution from these. The results are 
the column 4 labeled ''SOM lexicalized extraction 11 in 
7. The following columns give the same figures for 
frcqency extraction with other models. Extraction 
with the large lexicalized model gives the best re­
sults, and gives better relative entropy than the 50M 
lexicalilazed model itself (in column 2). Notice that 
only the distributions estimated with the two 50M 
mo~lels are better than the 50M lexicalized model, 
though the unlexicalized one is only marginally bet­
ter. In this sense, only the 50M lexicalized parser 
proves to be a good enough parser for genre tuning. 
Notice that with this model, tuning in no case gives 
worse relative entropy1 and in five out of six cases 
give an improvement. 

Notice also that relative entropy for the distribu­
tions obtained by tuning with the 50M model are a 
good deal lower than the cross-genre figures from Ta­
ble 6. This suggests that if we wanted to have a good 
probabilistic lexicon for, say, the imaginative genre, 
we would be better off using the automatic extrac­
tion procedure on data drawn from that. genre than 
using a perfect parser (or a lexicographer) on dat.a 
drawn from some other genre, such as the natural 
sciences. This provides a calibration of the accuracy 
of the lexicalized parser1s estimates, and conversely 
demonstrates that words are not used in the same 



D(pllq) 
'50Ni 50M 5M 

-
50M 5M 

lex lex lex unl. unl. 
head, genre mod extr extr extr extr 

allow imag 0.40 0.32 1.32 0.47 1.32 
natsci 0.42 0.28 0.28 0.52 0.86 

reach imag 0.35 0.35 0.63 0.32 0.63 
natsci 0.37 0.19 0.34 0.28 0.34 

suffer imag 0.24 0.11 0.38 0.12 0.38 
natsci 0.37 0.20 0.88 0.34 0.88 
mean 0.36 0.24 0.64 0.34 0.74 

Table 7: Relative entropy of distributions estimated 
by parsing the test sentences with various models, 
and using the Inside-outside algorithm to produce 
estimated distributions q. The first column names 
empirical distributions p. The second column repeats 
relative entropy for the 50M lexicalized model from 
the previous table. The third gives relative entropy 
where q is obtained by parsing and estimating fre­
quencies in the test sentences with the 50M lexical­
ized model. The following columns give the corre­
sponding figures for a q obtained by following the 
same procedure with a 5M word lexicalizcd model, a 
50M word unlexicalized model, and a 5M word un­
lexicalized model. 

way in different genres. 

Optimal parses . I 
Although identifying a unique parse does not play 
a role in our experiment, it is potentially useful for 
application!?. A simple criterion is to pick a parse 
with maximal probability; this is identified in a parse 
forest by iterating from terminal nodes, multiply­
ing child probabilities and the local node weight at 
and-nodes (chart edges), and choosing a child with 
maximal probability at or-nodes (chart constituents). 
Figures 1 and 4 give examples of maximal probability 
probability parses. 

Other optimality criteria can be defined. Tlw 
structure on noun chunks is often highly ambiguous, 
because of bracketing and part of speech ambiguities 
among modifiers. I<Dr many purposes, the internal 
structure of an noun chunk is irrelevant; one just 
wants to identify the chunk. From this point of view, 
a probability estimate which considers just one anal­
ysis might underestimate the probability of a noun 
chunk. In what we call a sum-max parse, probabil­
ities are summed within chunks by the inside algo­
rithm. Above the chunk level, a highest-probability 
tree is computed, as described above. 
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Notes on the implementation and 
parsing times 

Software is implemented in C++. The parser used 
for the bootstrap phase is a vanilla CFG chart parser, 
operating bottom-up with top-down predictive filter­
ing. Chart entries are assigned probabilities using the 
unlexicalized PCFG, and the lexicalized frequencies 
are found by carrying out a modified inside-outside 
algorithm which simulates lexicalization of the chart. 

In the iterative training phase, an unlexical­
ized context-free skeleton is found with the same 
parser. We transform this into its lexicalized form­
categories become ('W, n) pairs and rules acquire 
lexical heads ~-and carry out the standard inside­
outside using the more elaborate head-lexicalized 
PCFG model. Average speed of the parser during 
iterative training, including parsing, probability cal­
culation, and recording observations, is 10.4 words 
per second on a Sun SPARC-20. The memory re­
quirements for a model generated from a 5M word 
segment arc about 90Mbyte. The upshot of all this 
is that we can train about 1M words per day on one 
machine, and a single 5M word iteration requires one 
machine work week. 

Discussion 
We believe the formalism and methodology described 
here have the following advantages: 

• The grammar is under the control of the compu­
tational linguist and is of a familiar kind, making 
it possible to incorporate standard linguistic anaJ-

1 yses, and making results interpretable in terrns of 
, linguistic theory. In contrast, approaches where 
' context free rules are learned are likely to produce 

structures which are uninterpretable in terms of 
linguistic theory and practice. 

• Because of the context free framework, efficient 
parsing algorthims (chart parsing) and probabilis­
tic algorithms (the inside-outside algorithm) can 
be applied. With an efficient implementation, this 
makes it possible to construct representations of 
all the tree analyses for the sentences in corpora 
on the scale of ten to a hundred million words, and 
to map such a corpus to a probabilistic lexicon. 

• With the robustness introduced by the state 
model, almost all sentences in the corpus can be 
parsed. 

e The model assigns probabilities to sentences and 
trees, whieh is useful for applications independent 
of the lexicon-induction problem discussed here. 

• The word-selection model, which threads a word 
bigram model through head relations in the syn­
tactic tree, allows a large body of word-word col­
locations to be learned from the corpus, and put 
to use in weighting of competing analyses. 
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• The valence information learned) rather than be­
ing simply a set of subcategorization frames) is a 
probability distribution which reflects the freqency 
of frames in a given training sample, and which can 
be plugged back into the parser and used to ana­
lyze further text. 

Some of these benefits are purchased at the cost 
of a lack of sophistication in the grammar formal­
ism, compared to constraint-based· formalisms used 
in contemporary computational linguistics. This 
compromise is made in order to make large-scale ex­
periments achievable; our interest is in conducting 
scientific experiments---observational and modeling 
experiments---with large bodies of language use. It 
is natural that this should require incorporating ap­
proximations in computational models. Notably) the 
compromises made in our approach are not so se­
vere that the grammatical analyses identified and the 
probability parameters learned are out of touch with 
linguistic reality. This is in contrast to the situa­
tion with other approaches using similar mathemat­
ical methods, such as terminal-string n-gram rnodel­
ing. 

Conclusion 
We have presented a statistically-based mc~thod for 
valence induction, b.::\sed on the idea of automatic 
tuning of the probability parameters of a grammar. 
On the standard precision/recall measures 1 our sys­
tem performs better on precision, worse!on recall 1 

and on the whole somewhat better than·.- bther pub­
lished systems. We have provided a more precise 
evaluation via entropy measures) show"ing that the 
model learns efficiently and builds accurate models 
of frame distributions. The cross-domain entropy of 
the data frame distributions provides numerical evi­
dence that frame usage varies across domains) similar 
to word usage. This, in turn, suggests that auto­
matic acquisition and stochastic tuning are a must 
for large-scale NLP applications and computational 
linguistic models. 
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