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FOREWORD 

The Third Conference on Empirical Methods in Natural Language Processing offers a 
general forum for novel research in corpus-based and statistical natural language processing. 
This year, EMNLP is held in conjunction with the First International Language Resources 
and Evaluation Conference in Granada, Spain, which is concerned with existing and 
required resource development to support language processing work in an increasingly multi­
lingual setting. Indeed, the development of natural language applications that handle multi­
lingual information is the next major challenge facing the field of computational linguistics. 

Given this context, this year's EMNLP conference is focused on work that describes and 
evaluates the strengths, weaknesses, and recent advances in corpus-based NLP as applied 
to multi-lingual applications. In particular, many of the papers in this volume consider 
questions such as the following: how well do techniques for lexical tagging, parsing, 
anaphora resolution, etc., handle the specific problems of multi-lingual applications? What 
new methods have been developed to address the deficiencies of existing algorithms for 
these tasks or to address problems specific to handling multi-lingual applications? What 
problems still lack an adequate empirical solution? Conversely, how can data-driven NLP 
methods be improved with the help of multi-lingual data? 

It is appropriate that this is the first EMNLP conference to be held outside the U.S. We are 
very encouraged to see the participation of so many researchers from Europe and Asia, which 
will result, we hope, in greater communication and collaboration across the international 
NLP community. 

Many people arc owed thanks for their contributions to setting up this conference. In 
particular, Atro Voutilainen, EMNLP3 co-chair, and David Yarowksy, SIGDAT chair, 
provided continual and indispensable help and support throughout. The EMNLP3 Program 
Committee enabled us to work within a very bri~f time frame, by quickly turning around 
all the reviews for the substantial number of submissions to the conference. Finally, the 
LREC conference organization committee at the University of Granada, the LREC program 
organizers at the Istitnto di Linguistica Computazionale in Pisa, and the Department of 
Computer Science at Vassar College provided administrative and organizational support. 
All of them are responsible for the success of EMNLP3. 

Nancy Ide, EMNLP3 Chair 
Poughkeepsie, New York 
May, 1998 
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Dynamic Coreference-Based Summarization 

Breck Baldwin Thomas S. Morton 
Institute for Research Department of Computer 
in Cognitive Science and Information Science 

University of Pennsylvania University of Pennsylvania 
{breck,tsmorton}©linc.cis.upenn.edu 

Introduction 
\Ve ha.ve developed a query-sensitive text summariza­
tion technology \Vell suited for the task of determining 
whether a. document is relevant to <'-" query. Enoug;h 
of the docurnent is displayed for the user to determine 
whether the document should l:H~ read in its entirety. 
Evaluations indicate that sununarics are classif-ied for 
relevauce uearly as well as full documents. This ap­
proach i.s based on the concept that a good SltJnrnary 
will repn-)sent each of the topics in the query and is 
n'alized by ~electing smltcnc<-!S from the document un­
til all the phrases in the query which are represented 
in the sumiHa.ry are (covered.' A phrase in th<:; docu-. ' 
Jllcnt is considered to cover a phraf:le in the qu(~r:Y if it is 
cmeferent \Vith it. This approach maxirnizes the space 
of <!ntities reta.incd in th(:: summ<Jxy with minimal re­
dnnda.ncy. 'rhe software is built upon the CAMP NLP 
spt.cm [2]. 

Problem Statement 
Given the relative immaturity of sunlmari;~,ation tech·· 
nologi<~s and their evaluation, it is \vorthwhile to de­
scribe our approach in d<:;ta.il and t.he problems it is 
intended to solve. An important aspect of our tcch­
Hiqm: is that. we produce sentence c~xtraetion summaries 
which are constructed by selecting sc·mtlmces from the 
som·cc document. In aclditicm, our sununarie':l arc fo­
cnsed on providing relevant information about a query. 
\Ve feel that. the current state-of-the-art techniques are 
better equipped to prod nee high quality query-sensitive 
summa.rics than gmwric summaries. Our goal is to pro­
dun: 'indicative' summaries [4] which allow a. user to 
dPtcrmilw whether the document is relcv;:tnt to his or 
lwr quQry. The ;.;mnmary is not intended to replace the 
docnrnent or provide answers to questions directly but 
nw.:y h<-tve this effect. 

Casting our technology in terms of a product, we sec~ 
t.hc application as an intermediate step between view-
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ing entire documents and the output of an information 
retrieval engine~. Instead of looking at either headlines 
or an entire document, the user \voulcllook at the sum­
rnaries of the documents and then decide whether the 
document merited further reading. 

Approach 

We conducted a simple experiment with sumrru-.1..ries pro­
duced in the TIPSTER .snmrna.rization dry run [G]. For 
5 queries \vith 200 documents each, \ve took the set 
of summaries produced by the 6 dry-run participants 
and retained only those summa.ri<~s that were true­
positives, i.e., the~ sumrna.ry was judged 'rdevant' and 
the full document was judged trclevaJlt'. Over a.ll the 
quei'ies, at least one of the six system~ produced a truc­
posi,tive ~umma.ry for H6.6% of the documents, although 
no individual system performed nearly at that leveL 
This meant that some existing technology produced a 
correct summary for almost every relc~vant document. 
Hence we viewed the problern as one of balancing the 
ea.pabilities of our system to behave like the amalga­
mated systern implicit in joined output. 13ased on this 
result we a.re confident that this class of summarbm­
tion is tractable with current technologies and this has 
strongly motivated our design decisions. 

Upon encountering a query like t~n.c~porting 

on possibility of and search for extra-terrestrial 
life/intelligence." l we assume that the user has defined 
a.. class of actions, ideas, c.tndjor entities that he or she 
is interested in. The job of an information retrieval 
engine is to find instantiations of those classes in text 
documents in some database. \A..!e vimv summarization 
as n.n additional step in this process ,,,here we attempt 
to present the user \:vith the smallest collection of 
sentences in the document that instantiate the user 
specified classes and do not mislead the user about 
the overall content of the document. By doing sol we 
can greatly shortcu the amount of the document that 



the user must read in order to determine whether the 
document is relevant for the user's needs. 

Just as information retrieval algorithms approxi­
wate document relatedness by examining various string 
matchings between the query and the text, we approx­
imate certain classes of corc~fcrence between the query 
and the tc:xt by examining linguistic information. These 
curefereuce relations include identity of reference and 
part-whole relations for nominal and verbal phrases. 1 

This moves us a step closer to reasoning at a more 
appropriate kv(~l of generalization, for summarization, 
which is still tedmologica.lly feasible. Below are (~xam­
plcs indicating the classes of relatedness that we are 
trying to capture. 

'I'he identity relation between the query 
and the document 
Noun phrase con-{erence is the best understood class 
of relations that we compute. For exampl(~, there is 
corefc:'rence between 'Federal Emergency Managernc~nt 
AJ-'.,('IH:y 1 in tlw query a.nd the acronym 'FEtviA' in the 
rl(H'I!lllCilt below: 

(j'U('Xy: \~That is the main functio11 of the Fed­
eral En1ergency Management Agency and the 
funding level provided to meet emergencies? 

Ooc'wment,: ... FEMA a.gree::> that "fine-tuning" is 
needed to the 1974 act establishing a coordinated 
federal program to prepare for and respond to hur­
ricaJWS) t.orrJ<-vloes) storms and floods. 

Sillc(~ these noun phra.Bes refer to the sarne entity in the 
world, S<-~JJtenc(~S that mention the orr;anization would 
!H' particularly valuable in a summary. 1'his class of 
cordcn:nce can include people) cornpa.xlics and objects 
snc:h as automobiles or aluminum siding. It need not 
lw n~stricted to proper nouns as it is possible to refer 
to an entit.Y using common nouns, i.e. (the agency' and 
))l'OIJOUnS. 

Identity also holds betwetm events mentioned in the 
qucr.Y and document. Sometimes tlH~ evc~nt that a query 
d(~scribe.H h; the best. indicator of what document should 
b(~ r(~trieved, and correspondingly what sentences are 
;l.ppropriate for a sumrnary. Consider the following: 

()nm·y: A reh:vant document will provide new the­
ori(~S about the 1960's assassination of Presi­
d(~nt. Kennedy. 

Doc:u:ment: ... The H.ouse Assassinations Commit­
t<~(~ concluded in 1978 that Kennedy was ((prob­
ably') assassinated as the result of a conspiracy 

1 It i~ not clear whether more sophisticated annotations 
Me appropriate for information retrieval) and perhaps more 
t:o the point, it i~ not clear that there are sufficient resources 
t.o proces~ 2 GB collections of data. 
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involving a second gunma11) a finding that broke 
from the Warren Commission)s belief that l..~ce Har­
vey Oswald acted alone in Dallas on Nov. 22) 1963. 

The noun phrase (the 1960's assassination' refers to an 
event, which is the same as the one referred to in the 
document with the verb 'assassina.vxr. Note also that 
there is coreference between 'President l<<'~l111C:~dy' and 
'Kennedy' in the document. 

The part-whole relation between the query 
and the document 

In addition to the identity relation) phrases in a text 
which refer to parts of an entity or concept mentioned 
in the query will likely provide useful information) and 
therefore should be included in a. summary. Finding 
t.hese relations in in general is beyond the scope of 
this paper, however) our approxirnation of a. subclass of 
these relaJions proved helpful f(n· <J number of queri(~S. 

A strong example of the part-\vhoh' rela.tion oc­
curs wlw11 a country is nwntioned in the query and a 
province or city within that country is mentioned in the 
docurnent. For exa.rnple: 

(Jum·y: Document will discuss efforts by the~ black 
majority in South Africa to overthrow domina .. 
tion by the white minority government~. 

Docurnenl: About. DO soldiers have buen arrested 
and face possible death sentenCl)S stemming from a 
coup attempt in Bophuthatswana, ... Rebel sol­
diers staged the ta.keover bid \V(~dnesda.y, detain­
ing homeland President Lucas lVIangoJw. 

Bophuthatswana is im;idc Sont.h Africa) and sentences 
that rncntion it are clca.rly good candida.t(-:s for inclusion 
in a summary. 

We also consider pa.rt-w!Jole relations between events 
as in t.he. relation bctw('.Gll 'overthrow' and :staged' and 
'detained'. Those events are sulJ .. parts of OV(~rthrow 
events, and as such) sentences that contain sub-parts 
of the events a.re reasonable ca.11didates for inclusion in 
summaries. 

Implementation 

The surnmarization tecllllique was developed i:vithin the 
CAMP NLP framework. This s.vstem provides an in­
tegrated environment in which to a.ccess many levels 
of linguistic information as W(~ll <ls world knowledge. 
Its main components include:: n<:-:unc:d entity reeogni­
tion, tokcni~ation, sent.CllCe <letc:ctioll, part .. of-speecll 
tagging, morphological a.nalysi~, parsing, argument dc­
tectiou, a.nd corofcrence n~solut.ion. rvlany of the tech­
niques used for these tasks perform at or nea.r the 



st.ate of t-he art and are describerl in more depth in 
p2) 9) 8: 71 5 1 1) 2). The system produces coreference 
annotated documents ·which serve as the input to the 
:Slllllmarization algorithm. 

Relating the query to the document 
The relationships discu::;sed previously are approxi­
mated via a series of associationH between tokens in the 
query, headline, and the body of the docurnent. Event 
references arc captured by associating verbs or nominal­
izations in the query with verbs and nominali:.::;ations in 
the cloc1nnent. 

Given three verhal forms v1 in the qttery1 v2 in the 
document) and V:} in the set of all verbal forms 1 where 
a verbal form is the morphological root of a verb or 
the vc~rb root corresponding to a nominalization 1 v1 is 
associated with 1)2 if at leaflt one of the following criteria 
an~ met: 

I. (u, cJ -v,) 1\p(u,,v,)/(p(vJ)p(vz)) 2:5 

2- (v, = -uz) 1\ (3v, l v, I p(v,,-v,)/p(v,)p(v,) 2: 5) 

:;_ (-o, --- v2) 1\ ((8nbject(v,) subject(v,)) V 
(objcd(v1 ) = objcct(1!z))) 

Here p(v;) is the probability that 1Ji occurs in a docu­
nwut and p(!Ji 1 v.7) is thr~ probability that Vi and Vj occur 
iu the same document. ThcsQ probabilities are based on 
frequencies gathered frorn approximately 45,000 Wall 
Street .Journal articles. Criterion 1 is a mcasmT of mu­
tnal ill formation between t"wo verbs. Criteriori 2 is used 
to ruh~ out frequently occurring verbs such a::; "ben and 
"make". Criterion 3 allows for verbs which arc ruled out 
by criterion 2 to be associated when additional context 
is available. Thi;.; is important since some queries only 
contain verbal forms which are ruled out by criterion 2. 

Hdationships between proper nouns arc made on the 
hasis of string matches, acronym matching) and dictio­
nary lookup. Acronyms arc determined either through 
a table lookup or an appositive construction occurring 
ill the document which designates the acronym for a 
specif-ic proper noun. A proper noun in the query is 
considered associated with a. proper noun in the docu­
lllcnt if it matches tJ:-w string or acronym of the proper 
nonn in the document or it appears in the definition 
of the proper noun in the docum<~nt. A reverse dictio­
nary lookup often a.llows cities to be associated with the 
country they are in. 

A token in the query 1:vhich is a lowercase noun or 
adjective ir:; associated with any token in the docu­
nwut which matches its morphological root and part 
of speech. 

TokenR which occur in the headline are associated 
with tokens in the document body using the same cri­
teria as the query1 with the exclusion of the dictionary 
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lookup. The dictionary lookup was exduded because 
the headline will likely use the same lt~xiealization of a 
proper noun as that used in a document. This is less 
likely to be the case with the query. 

Selecting a sentence 

The associations discussed in the previous section arc 
used to rank and sek:ct sentences from the document. 
Every token in the document which is associated with 
the same token in the query or headline is considered 
to be in the Ra.me corc.fcrencc chain. A sentence which 
contains any token in a given coreference chain is said 
to cover that chain. 

The following scores are computed for each sentence 
in the document: 

1. The number of coreference chains from the query 
which are covered by the sentence and haven)t been 
covered by a previously ticketed sentence. 

2. The number of noun coreference chains from the 
query which are covered by the sentence and the num­
ber of verbal tcrrns in the sentence which are chained 
to the query. 

3. The number of coreferencc chains from the headline 
which are covered by the sentence and haven 1t been 
covered by a. previously selected sentence. 

4. The number of Houn coreference chains from the 
l;eaclline which are covered by the seutence and UH:.: 
number of verbal terms in the sentence which <Jre 
chained to the headline. 

5. The number of corcference chains which are covered 
by the sentence and haven 1t been covered by a previ­
ously nelected sentence. 

6. The number of noun co reference chains which are cov­
ered by the sentence. 

7. The index of the sentence; in the documenti sentences 
are sequentially numbered. 

The sentences are sorted based 011 the above scores 1 

where the ith scoring Criteria is only considered in case 
of a tie for all criteria less than 'i. Scores 1-6 are ranked 
in descending order while score 7 is ranked in ascending 
order. The top-ranked sentence is sclectE!d 1 and scores 
11 3 1 and 5 are recomputed in order to select the next 
sentence. Selection halts v,rhen all coreference chains in 
the query have be~:n covered a.nd the summary contains 
at least 4 sentences. 

Scores 1 and 2 are used to select sentences 1vhich are 
related to the query. Scores 3 and 4_ are motivated by 
documents which have 1 or 2 sentences whieh appear 



related to the query but if presented alone would give 
a. false impression of the true content of the document. 
Thus sentences related to the headline are presented to 
provide additional background. Consider the following 
example: 

Onery: \Vhat evidence is there of paramilitary ac­
tivity in the U.S.? 

Summoxy: ... Last month the extremists used 
rocket-propelled grenades for the first time in three 
attacks on police and paramilitary units .... 

This sentenc(~ was selected because it contains tol~Jms 
which a.re in coreference chains with tokens in the query; 
however 1 alone it is potentially misleading because the 
place of the attack is not mentioned. This ambiguity is 
resolved when the following sentence is selected because 
it is well associated with the headline. 

Sv.mmoxy: . Sikh militants may have acquired 
one or two U .S.-made Stinger anti-aircraft missiles 
and hidden them inside the Golden Temple) the 
Sikh faith)s holiest shrine) Punjab police officials 
sr.tid Saturday .. 

This provide::; enough background information for the 
reader to realize that the para-military activity is not 
t.a.ldng place in the U.S. and thus that the document is 
ineh-;vanl to the query. 

Likewise) scores 5 and 6 act similarly to 3 and 4 for 
documents which do not contain a headline. \Ve found 
t.his particularly important for advertisements which of­
ten don )t state a product or company name in the be­
ginning of the document) but will repeat these names 
nunH::rous times throughout the document. 

Generating the summary 
Once ;-;entcnces have been selectE:~d) they arc presented 
iu the order they occurred in the document. Pro­
nouns which do not have a referent in the previous sen­
tence of the summary a.re filled with a more descriptive 
string whenever a referent can be determined. If space 
is of c:oncern) prepositional phrases attached to nouns 
(which are not nominalizationsL appositives) conjoined 
noun phrases and relative clauses are removed) provided 
th<~y contain no tokens associated with the query or the 
headline. Since determining pronoun referents and the 
selection of clauses for removal are subject to errors, 
filled pronouns arc placed in square brackets and re­
moved clauses are replaced with an ellipsis to indicate 
l.o the reader that the original text has been modified. 

Example summary 
An t~xa.mple summary which demonstrates many of the 
features of our systen1 appears below. It has been con-
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strained to be approxirna.tely 10% of the original docu­
ment length) so it is not representative of the summaries 
used in the evaluation) but it contains examples of the 
of both pronoun filling and cl<wsc deletion. 

The last sentence in the summary was selected first 
because the tokens ('death))) ({sentence')) a kill))) and 
"term" were associated with the norninalization ((pun­
ishmenf). The stranded pronoun "ie\ has also been 
filled. Sentence 2 was selected next because of the 
match-up between the verb ((is)) and the object ((deter­
rene) in the document and the query. Finally) the first 
sentence was chosen because th(~re is another mention 
of the prison name ((Marion)) in the document. This 
summary differs from the one generated when the 10% 
length constraint is not imposed) because sonw higher 
ranked sentenees were passed over since their inclusion 
would have exceeded the length restriction. 

Query: Is there data ava.ila.ble to sugg(~tit that cap­
ital punishment is a deterrent to erirne? 

Surnrnar-y: ((IVIarion is basically the end of the 
line/) Bogdan s;:.tid. 

There is no deterrent to keep them from do-
ing this again, 
Additionally, [the pending Senate bill] would cre­
ate five new death penalty offenses: murder by a 
federal inmate serving a. life sentence; drug king­
pins in a continuing criminal enterprise even if no 
murders occur; drug kingpins \vho try to kill to ob­
struct justice; drug felons who unintentionally kill 
with aggravated recklessness; and people who kill 
with a firearm during a. violent ... crime. 

Evaluation 

In order to evaluate our summarization algorithm) we 
selected 10 unseen queries from tl-w Text REtrieval Con­
ference (TREC) document collection. Summaries were 
generated for 200 documents) 20 per query) and asses­
sors2 were asked to makn relevance judgments based on 
the summaries. A document was considered relevant if 
it contained the information requested in the query or if 
the a..ssessor believed t.hat the full doeument would likely 
contain this information. Tlw relevance judgments were 
then com pared to those made by the TREC assessors 
using the full documeut. This comparison places a sum­
mary in one of the following categories: 

e a = judged relevant, full document. is relevant 

s b = judged relevant) full document is irwlevant 

e c = judged irrelevo.J1t) full clocurnent is relevant 

2Each a.uthor served as an assessor making judgments for 
100 documents across 10 queries. 



., d :::: judged irrelevant, full docurncnt iH irrelevant 

Fr('cision, recall, and a.cc:uracy are thc:n computed as 
fullows: 

pn;cision = a/ (a+ b) 
recall = a/ ( a·h) 

accuracy~' (a·Hl)/(a·i·b+c+cl) 

CoiUJWCHsion is computed over the mnnber of uon­
\rltit.cspace characters in the summa.ry and the original 
docunwnL. Here compression is defined as the perc:ent­
ilgl' of the docmnent that was not included in the sum­
nJar.y: 

co1npressioll ::-:: (lc.n.iJih,~,"""'~" 1 --1-r:ngUr,""'"'""") 
l (."II r;tha oc·" "'"" t 

Tlw n~sult..c..; from our experirnent are shown in the fol­
lowing table: 

~l5:C:Cision-~=:j=82,s%+- 101/(101+21) ·j 
' Il~<c~l-~l,-r-~?~'YC)±· _1(~1lE9~.±.~2L __ . 
I c:()lllJl'::'':;Sion r_8_2,~ (7046~(i:_l_212722[~9'!Q§Q 
i \cc\l)_<rcy··-······ 75,9'!/o ____ (ll)1::t_492l?OQ. __ _ 
.·\ S(~coud evaluatiou on 910 docum.ent.s was performed 

fur ['1]. These: resnlts superficially appear significantly 
\\·orsc-~ than those from the initial evaluation however a 
JJJOn~ careful analy~is (provid<·~d ill the discussion sec­
t ion) shows that they are in fact. similar Lo the results 
of Llw previous evaluation. 

[ l'rc•crsrorr ~so 3% -322/(:i22+79) 
I Hc·c·cl!l - -- !i7 G% :J2f;(ml 2:J7) 

I 
~Cc7tllj)l(~Swn -8:3 0% _ _,_ 

,_ ,\~Ill~~y~~--· GS 3% -(32Z+272)/9l0 

Discussion 
\\'(' view the results of the flrst evaluation as promising 
iu !.hat. they compare favorably \vith inter-assessor con­
:---:istcncy using the entire document. [1 1] reports unani­
JJHHlS relevance judgments by three assessors for 71.7% 
or Llw documents. Interpolating this figure to two as­
:-;(-'SSors yields an 80.1% agreement figure. Using sum­
lllari(-~S which on average are only 17.2% of the original 
(l(J(:\llli<-:nt 1 our assessors rnatchwl t.hc 'l'H.EC a,c..;sessors 
for 7D.O% of the documents. 

The second evaluation yielded a nmch lower recall 
hgun-' while precision remained compa.rablc. This) hmv­
('\"('L is also the case when the sa.nw assessors judgmcmts 
on the full docmncnts are compared to those of the 
TH.EC assessors. These results are as follows: 

Precision 83.5% 
r-l~ccarr·-- o'f5% 

-167 7(167+33) 
_1_6ij_Q62.±~QL 

Compression 100.0% 
·Acc;rracy·-· 69.3"'%', +-."(lfi7IT24j/42o 
L__~·C.. .... __ .L_.:.:..:..:.c...J.. 

\Ve viC\01.-' these results as favorabk a::; well since our ac­
cnra.ey is 65.3% using 17.0% of the docurnent on average 
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compared to G9.3% accuracy using the entire clocunwnt . 
The discrepancy between the two evaluations appears 
to be based on the assessors in the second evaluation 
using a stricter criteria for relevance than that used by 
the previous evaluation's assessors or the TH.EC asses­
sors. 

It was noted after the first evaluation that difienmt 
criteria for relevance acconnted for some of the disagree­
ment between our assessors and t.hc THEC assessors. 
lvL-my documents considered relevant wen: marked as ir­
relevant due to different uot.iow.; of relevance aJHl not be­
cause the snrnrnc1ry failed to provide material on which 
to base a correct. decision. These difficulties only hin­
der the evaluation of a summat")l system a.ncl not its use 
in an application, since a user will have a clear idea. of 
his or her intentions when determining a. document's 
relevance. 

As we mentioned previously: our approach has been 
to ba.la.nce methods of n~l<_lting Lbe query to sentences 
in the document. The uearly 100% reca-ll of the dry-run 
summaries encoura .. gecl us) and we even used the output 
of those sumrna.ries to provide a tcst-hed for evaluating 
our summarie::>. Although we never actively sought to 
emulate aspects of other syst.ellls directly) our final algo­
rithm does share smne basic id(~as aud a.pproacher-:; from 
those~ systerns. Some of the similarities are listed below: 

In [3L they eliminate redunclnnt iuforma.tion from 
summaries by dassifying sent(:mce.s a.ccording to Max­
imal MarginaJ RelevaJlCe (IVll\IIH.). lVIMH. ra.uks t.(::xt 
clninks according to their dissimilarity to one another. 
Sun,unaries ean then be produced with sentences that 
an-: maximally dissimilar 1 tll(-~relJy increasing the likeli­
hood that distinguishing iufonnation will be in the sum­
mary. One GU1 view our coverage requirement for terms 
in the query as an a.t.tempt to pick clissimila.r r-;entences 
from the document. Instead of IVUVIH. 1 we ur-;e t.he fact 
that a sentence which does not contain redundantly re­
ferring phrases t.o the query is mon: highly ranked than 
a sentence that docs. 

Our individual t>entc:nce scoring algorithm shares 
some properties with [10]. Their approach includes 
scores for anaphoric density) string equivalence 1vith the 
title or headline of a document, and position of the sen­
tence in the document. I-Imvever, we do not. t.akc ad­
vantage of overt cues for summa.ry sf;nt.c.nces) such as 
:in summa.ry) or 'in conclusion)) nor do we use tempo­
ral information in generating a sum1m1ry. 

Like many systems) we do a form of word expan­
sion in atternpting to n~la.tc the query to the document. 
However) th(-~ fact that 1vc restrict expansion to proper 
nouns and verbs and their nominalihations is notable. 
\Ve found this limited set of c:xpan::;ion::; re::;tricts the re­
httions between the t.ext and the query well and a.lso fits 



within the framework of part-whole relation::; in coref­
<:rence. \Ve did not ccmsider part-whole relations for 
common nouns, because in practice we have not had 
vc~ry good results limiting over--generation in that do­
nwin. 

Conclusions and Future Work 
\\Te have developed and test(~d a query-sensitive text 
summarization system that is nearly as effective as full 
text doeu1nents for determining whether a doc:ument is 
rcl<-~vant to the query. The system uses a limited class of 
cord"ercncc-based relations between the query and the 
document to select sentences which represent instanti­
ations of entities, events) or concepts articulated in the 
quer_y. The algorithm is implemented within the CAMP 
NLP systern and utilizes linguistic generalizations like 
pa.rt-of-spt~ech, parsing and predicate-argument struc­
ture, 

. \n is:·me in evaluating our syster:n is that the input 
data ha~ been selected by an information retrieval cn­
g,illt:. As such) we have no data. on how well our sum­
Juaries would work on relevant documents that the in­
fonlla.tion retricva.l engine fails to retrieve. These cn­
ginc~s tend to select documents based on string matching 
a.ud we have shown tha.t our summarization technology 
do(~S an excellent job of ~ummarizing them. However) 
U1c information retrieval engine may be acting as an ad­
\'<llltag(-~Ous filt<-:r on the space of documents. It would 
])(' iut.<~resting to do experiments on relevr_lllt documents 
I ll<lL coutain very few string matches 'vith the query. 

fu thC' future we hopn to improve the accuracy of the 
r·_nn'fe.r<'JJCC'. relations. Specifically, we \vill focus on the 
rct'op.;nition of events which we believe are very impor~ 
L<tlJL Lo a large class of queries. 

Acknowledgments 
\V<' would like to acknowledge three anonymous review­
('1'~ for Llwir helpful comments. and Tonia Bleam for 
pmviding asse~sments during the development of thiB 
syst(~lJ.l. 

References 
[I] Breck Baldwin. CogNIAC: High precision coref­

enmce with limited knowledge and linguistie re­
sources. In Pmccedings of the ACL WoTkshop on 
Openthono..l F'acf;ors in Pnzct?:cal, Rolmst Anaphom 
n:solni,ion for UnTesf,Tic.ted Texts) pages 38---45) 
iVJ.a.drid) Spain) .June 1997. 

[2] Breck Baldwin, Christine Doran, .Jeffrey C. Rey­
ua.r) I\!Jicha.el Niv) B. Srinivas) and iVIark Wasson. 
EAGLE: An extensible architecture for general lin­
guistic engineering. In Proceedings of RIA0~97, 
lVfontreal) 1997. 

6 

[3] Michael Bett and .J adc Goldstein. Automated 
query-relevant document summarization. In Pm­
ceedings of Tipster· Te:Dt Phase III 12-Month Work­
shop, 1997. 

[4] Michael Chrzanowski, Therese Firmin, Lynette 
Hirsclunan) David House, Inderjec\L Nia.ni) Leo 
Obrst) Sara Shelton) Beth Sundheim 1 and San­
dra Wagner. (SUMMAC) call for participa­
tion. http:/ j www. tipster.org/ summca.ll.htm, Jan­
nary 1998. 

[5] Michael John Collins. A New Statistical Parser 
Based on Digram Lexical Dependencies. In Pro­
ceedings of the 34th Anmwl Meeting of the ACL, 
1996 

[6] Therese Hand. Tipster summarization evaluation 
taslcdry-run evaluation results. In Proceedings of 
TipsteT Te:ct Phose III 12-Month Wor-kshop, !997 . 

[7] Daniel Karp) Yves Schabes 1 Martin Zaidel, and 
Dania Egedi. A freely available wide eovcrage 
morphological analyzer for english. In P1-occedings 
of the 15th lnternoJional Confen;nr;c on Cumpnta~ 
t,ional Linguistics) 1994. 

[8] Ad wait Ratnaparkhi. A Maximum Entropy Part of 
Speech Tagger. In Eric Brill cul.d Kenneth Church) 
editors) Confen:nce on J-i}mpin:co,l MdJwrls -in Nat­
nml Langnage Process1>n,_r]) University of Pennsyl­
vania1 May 1.7~18 1996. 

[9] Jdfrcy C. Il.<>ynilr and Adwait Ratna.parkhi. A 
maximum entropy approach to identifying sen~ 

tence boundaries. In Proceedings of the Fifth Con­
ference on Applied NoJnntl Lang'ltage Processing, 
pages 16 19, Washington, D.C., April 1997. 

[10] Tomek Strzalkowski) F~~ng Lin) .Jin \Nang) Lang­
don VVhitc) and Bowden \~lise. Natural language 
information retrieval and summarization. In Pro­
ceedings of Tipster Te.?:i Phase III 12-Month Work­
shop, 1997. 

[11 J Ellen M. Voorhees and Donna Hannan. Overview 
of the fifth Text REtrieval Conference (TREC-5). 
In Pmccedings of the Fifth Te.xl; REtr·icval Confer­
ence {TREC-5}, pages I 28. NIST 500-238, 1997. 

[12] Nina Wacholder, Yael R.avin 1 and Misook Choi. 
Disambiguation of proper mt.mes in text. In Pro­
cecdi,ngs of t.he Fifth Confenmcc o·n Applied Natu­
ro,l Lan,rrnage Pmccssi11.g1 l\tlay 1997. 



Multilingual robust anaphora resolution 

Ruslan Mitkov 
School of Languages and European Studies 

University of Wolverhampton 
Stafford Street 

Wolverhampton WVJ ISB, United Kingdom 
Email R.Mitkov@wlv.ac.uk 

Lamia Belguith 
LARIS -FSEG 

University of Sfax 
B.P. 1088 

3018 Sfax, Tunisia 
Email belguith.lamia@planet.tn 

Malgorzata Stys 
Computer Laboratory 

University of Cambridge 
New Museums Site, Pembroke Street 

Cambridge CB2 3QG 
United Kingdom 

Email Malgorzata.Stys@cl.cam.ac.uk 

Abstract 

Most traditional approaches to anaphora resolution 
rely heavily on linguistic and domain knowledge. One 
of the disadvantages of developing a knowledge-based 
system, however, is that it is a very labour-intensive 
and timehconsuming task. This paper presents a ro­
bust, knowledge-poor approach to resolving pronouns 
in technical manuals. This approach is a modification 
of the practical approach (Mitkov 1998a) and operates 
on texts pre-processed by a part-of-speech taggcr. In­
put is checked against agreement and a nlonhber of an­
tecedent indicators. Candidates are assigried scores by 
each indicator and the candidate with the highest ag~ 
gregate score is returned as the antecedent. We pro~ 
pose this approach as a platform for multilingual pro­
noun resolution. The robust approach was initially de~ 
veloped and tested for English, but we have also 
adapted and tested it for Polish and Arabic. For both 
languages, we found that adaptation required mini­
mum modification and that further, even if used un~ 
modified, the approach delivers acceptable success 
rates. Preliminary evaluation reports high success rates 
in the range of and over 90% 

1. Introduction: robust, knowledge poor 
anaphora resolution and multilingual NLP 

For the most part, anaphora resolution has focused on 
traditional linguistic methods (Carbonell & Brown 
1988; Carter 1987; Hobbs 1978; Ingria & Stallard 
1989; Lappin & McCord 1990; Lappin & Leass 
1994; Mitkov 1994; Rich & LuperFoy 1988; Sidner 
1979; Webber 1979). However, to represent and 
manipulate the various types of linguistic and domain 
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knowledge involved requires considerable human 
input and computational expense. 

While various alternatives have been proposed, 
making use of e.g. neural networks, a situation se­
mantics framework, or the principles of reasoning 
with uncertainty (e.g. Connoly et a!. 1994; Mitkov 
1995; Tin & Akman 1995), there is still a strong need 
for the development of robust and effective strategies 
to meet the demands of practical NLP systems, and 
to enhance further the automatic processing of 
growing language resources. 

, Several proposals have already addressed the 
anaphora resolution problem by deliberately limiting 
the extent to which they rely on domain and/or lin­
guistic knowledge (Baldwin 1997; Dagan & llai 
1990; Kennedy & Boguraev 1996; Mitkov 1998; 
Nasukawa 1994; Williams eta!. 1996). Our work is a 
continuation of these latest trends in the search for 
inexpensive, rapid and reliable procedures for anaph~ 
ora resolution. It shows how pronouns in a specific 
genre can be resolved quite successfully without any 
sophisticated linguistic knowledge or even without 
parsing, benefiting instead from corpus-based NLP 
techniques such as sentence splitting and part-of­
speech tagging. 

On the other hand, none of the projects reported so 
far, has looked at the multilingual aspects of the 
approaches that have been developed, or, in particu~ 
lar, how a specific approach could be used or adapted 
for other languages. Furthermore, in addition to the 
monolingual orientation of all approaches so far 
developed, most of the work has concentrated on 
pronoun resolution in one language alone (English). 



While anaphora resolution projects have been re­
ported for French (Popescu-Belis & Robba 1997, 
Rolbert 1989), German (Dunker & Umbach 1993; 
Fischer eta!. 1996; Leass & Schwa!l1991; Stuckardt 
1996; Stuckardt 1997), Japanese (Mori eta!. 1997; 
Nakaiwa & Ikehara 1992; Nakaiwa & Ikehara 1995; 
Nakaiwa et a!. 1995; Nakaiwa et a!. 1996; Wakao 
1994 ), Portuguese (Abra9os & Lopes 1994 ), Swedish 
(Fraurud, 1988) and Turkish (Tin & Akman, 1994), 
the research on languages other than English consti­
tutes only a small part of all the work in this field. 

In contrast to previous work in the field, our proj­
ect has a tmly multilingual character. We have de­
veloped a knowledge-poor, robust approach which 
we propose as a platform for multilingual pronoun 
resolution in technical manuals. The approach was 
initially developed and tested for English, but we 
have also adapted and tested it for Polish and Arabic. 
We found that the approach could be adapted with 
minimum modifications for both languages and fur­
ther, even if used without any modification, it deliv­
ers acceptable success rates. Evaluation shows a 
success rate of 89.7% for English, 93.3% for Polish 
and 95.2% for Arabic. 1 

2. The approach: general overview 

With a view to avoiding complex syntactic, semantic 
and discourse analysis, we developed a robust, 
knowledge-poor approach to pronoun resolution 
which does not make use of parsing, syntactic and 
semantic constraints or any other form of linguistic 
or non-linguistic knowledge. Instead, we rely on the 
efficiency of sentence segmentation, part-of-speech 
tagging, noun phrase identification and the high per­
formance of the antecedent indicators (knowledge is 
limited to a small noun phrase grammar, a list of 
terms, a list of (indicating) verbs, a list of genre­
specific synonyms, and a set of antecedent indica~ 
tors). 

The core of the approach lies in activating a list of 
multilingual' "antecedent indicators" after filtering 
candidates (from the current and two preceding sen­
tences) on the basis of gender and number agreement. 
Before that, the text is pre-processed by a sentence 
splitter which determines the sentence boundaries, a 
part-of-speech tagger which identifies the parts of the 
speech and a simple phrasal grammar which detects 
the noun phrases (In addition, in the case of complex 

1Given that the evaluation of the English version was more 
extensive, the figures for English are expected to be statis­
tically more representative. 
2We term the antecedent indicators "multilingual" because 

they work well not only for English, but also for other 
languages (in this case Arabic and Polish). 
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sentences, heuristic "clause identification" rules track 
the clause boundaries). Non~anaphoric occurrences 
of "it" in constructions such as "It is important", "It is 
necessary" etc., are eliminated by a "referential fil­
ter11. 

After passing the "agreement filter", the genre­
specific antecedent indicators are applied to the re­
maining candidates (see section 2.2). The noun 
phrase with the highest aggregate score is proposed 
as antecedent; in the rare event of a tie, priority is 
given to the candidate with the higher score for im­
mediate reference. If immediate reference has not 
been identified, then priority is given to the candidate 
with the best collocation pattern score. If this does 
not help, the candidate with the higher score for indi­
cating verbs is preferred. If still no choice is possible, 
the most recent from the remaining candidates is 
selected as the antecedent. 

2.1 Agreement filter 

The detected noun phrases (from the sentence where 
the anaphor is situated and the two preceding sen­
tences, if available) are passed on to a gender and 
number agreement test. In English, however, there 
are certain collective nouns which do not agree in 
number with their antecedents (e.g. ''government", 
"team", "parliament" etc. can be referred to by 
"they"; equally some plural nouns such as "data" can 
be referred to by "it") and are exempted from the 
agreement test. For this purpose we have drawn up a 
comprehensive list of all such cases; to our knowl­
edge, no other computational treatment of pronomi­
nal anaphora resolution has addressed the problem of 
"agreement exceptions". 

The gender and number agreement of an anaphor 
and its antecedent in Polish is compulsory. Polish 
gender distinctions are much more diverse than in 
English (e.g. feminine and masculine do not apply to 
a restricted number of nouns). Moreover, one pro­
nominal form can potentially refer to nouns of differ­
ent gender. For instance, the singular genitive form 
"jego" can equally well refer to either masculine or 
neuter nouns. In addition, certain pronouns such as 
the accusative form 'je" can refer to either singular 
neuter or plural feminine nouns. Finally, unlike Eng­
lish, zero anaphors (in subject position) are typical in 
Polish in declarative sentences. 

Agreement rules in Arabic are different. For in­
stance, a set of non~human items (animals, plants, 
objects) is referred to by a singular feminine pro­
noun. Since Arabic is an agglutinative language, the 
pronouns may appear as suffixes of verbs, nouns (e.g. 
in the case of possessive pronouns) and prepositions. 
In particular, in the genre of technical manuals there 
are five "agglutinative" pronouns. The pronoun "ho" 
is used to refer to singular masculine persons and 



objects, while "ha" refers to singular feminine ones. 
There are three plural anaphoric pronouns: "homa" 
which refers to a dual number (a set of two elements) 
of both masculine and feminine nouns, "hom" which 
refers to a plural number (a set of more than two 
elements) of masculine nouns and 11 honna" which 
refers to a plural number of feminine 

2.2 Antecedent indicators 

Antecedent indicators (preferences) play a decisive 
role in tracking down the antecedent from a set of 
possible candidates. Candidates could be given pref­
erential treatment, or not, from the point of view of 
each indicator and assigned a score (-1, 0, I or 2) 
accordingly; the candidate with the highest aggregate 
score is proposed as the antecedent. The antecedent 
indicators have been identified on the basis of em~ 
pirical studies of numerous hand~annotated technical 
manuals (referential links had been marked by human 
experts). These indicators can be related to salience 
(definiteness, givenness, indicating verbs, indicating 
noun phrases, lexical reiteration, section heading 
preference, "non-prepositional" noun phrases, rela~ 

tive pronoun), to structural matches (collocation, 
immediate reference, sequential instructions), to 
referential distance or to preference of terms. Whilst 
some of the indicators are more genre-specific (term 
preference) and others are less genre-specific ("im­
mediate reference", "sequential instructions" and to a 
much lesser extent "indicating noun phrases"), the 
majority of them appear to be genre-independent. In 
the following we shall outline the indicatop used and 
shall illustrate some of them by examples (the indi­
cators are used in the same way for English, Polish 
and Arabic unless otherwise specified). 

Definiteness 

Definite noun phrases in previous sentences are more 
likely antecedents of pronominal anaphors than in~ 

definite ones (definite noun phrases score 0 and in­
definite ones are penalised by -1). In English we 
regard a noun phrase as definite if the head noun is 
modified by a definite article, or by demonstrative or 
possessive pronouns. This rule is ignored if there are 
no definite articles, possessive or demonstrative pro~ 
nouns in the paragraph (this exception is taken into 
account because some English user's guides tend to 
omit articles). 

Since in Polish there are no definite articles, 
definiteness is signalled by word order, demonstra­
tive pronouns or repetition. 

In Arabic, definiteness occurs in a richer variety of 
forms (Galaini 1992). In addition to the definiteness 
triggered by the definite article "a!" (the), demonstra-
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tive and possessive pronouns, a noun phrase in Ara~ 
bic is also regarded as definite if it is followed by a 
definite noun/noun phrase3

. For example, the noun 
phrase "kitabu al-rajuli" (lit. book the man) which 
means "the book of the man", is considered definite 
since the non-definite noun "kitabu" (book) is fol­
lowed by the definite noun "al-rajoli" (the man). This 
form of definiteness is called in Arabic "AI-ta'rif bi­
al-idhafa" (definiteness by addition). 

Give1mess 

Noun phrases in previous sentences representing the 
"given information" (theme)4 are deemed good can­
didates for antecedents and score 1 (candidates not 
representing the theme score 0). In a coherent text 
(Firbas 1992), the given or known information, or 
theme, usually appears first, and thus forms a co~ 
referential link with the preceding text. The new 
information, or rheme, provides some information 

Indicating verbs 

If a verb is a member of the Verb_set = {discuss, 
present, illustrate, identify, summarise, examine, 
describe, define, show, check, develop, review, re­
port, outline, consider, investigate, explore, assess, 
analyse, synthesise, study, survey, deal, cover}, we 
consider the first NP following it as the preferred 
antecedent (scores 1 and 0). Empirical evidence sug­
gests that because of the salience of the noun phrases 
which follow them, the verbs listed above arc par­
ticularly good indicators. 

The Verb_set in Polish contains the Polish equiva­
lents of the above verbs and their synonyms. 

Indicating noun phrases 

If the head of the NP preceding the verb is the noun 
"chapter'\ "section", "table" then consider the NP 
following the verb as the preferred antecedent (scores 
I and 0) 

The last two preferences can be illustrated by the 
example: 

This table shows a minimal configurationi; iti docs not 
leave much room for additional applications or other 
soflware for which you may require additional swap 
space. 

3There are other forms of definiteness in Arabic which we 

shall not discuss in this paper since they are not typical of 

technical manuals. 
4We use the simple heuristics that the given information is 

the first noun phrase in a non~imperative sentence. 



Lexical reiteration 

Lexically reiterated items are likely candidates for 
antecedent (a NP scores 2 if is repeated within the 
same paragraph twice or more, 1 if repeated once and 
0 if not). Lexically reiterated items include repeated 
synonymous noun phrases which may often be pre­
ceded by definite articles or demonstratives. Also, a 
sequence of noun phrases with the same head counts 
as lexical reiteration (e.g. "toner bottle", "bottle of 
toner", "the bottle"). 

Section heading preference 

If a noun phrase occurs in the heading of the section, 
part of which is the current sentence, then we con­
sider it as the preferred candidate (l, 0). 

"Non-prepositional" noun phrases 

A "pure", "non-prepositional" noun phrase is given a 
higher preference than a noun phrase which is part of 
a prepositional phrase (0, -1) 

Insert the cassettei into the VCR making sure iti is 
suitable for the length of recording. 

Here "the VCR" is penalised (-1) for being part of the 
prepositional phrase "into the VCR". 

This preference can be explained in terms of sali­
ence from the point of view of the centering theory. 
The latter proposes the ranking "subject, direct ob­
ject, indirect object" (Brennan et a!. 1987) and noun 
phrases which are parts of prepositional phrases are 
usually indirect objects. 

This criterion was extended in Polish to frequently 
occurring genitive constructions (e.g. liczba kom­
puterow = number of computers). Nouns which are 
part of such genitive constructions and which are not 
in genitive form are penalised by"-!". 

In Arabic the antecedent and the anaphor can be­
long to the same prepositional phrase (see next sec­
tion). Therefore, we have modified this indicator for 
the "Arabic version" accordingly: if an NP belongs to 
a prepositional phrase which doesn't contain the 
anaphor, we penalise it by-!; otherwise we do not 
assign any score to it (0). 

Relative pronoun indicator 

This indicator is used only in the Arabic version and 
is based on the fact that the first anaphor following a 
relative pronoun refers exclusively to the most recent 
NP preceding it which is considered as the most 
likely antecedent (2,0). 

Example: 

Al-tahakkok min tahyiat al-moakkit 
Yornkino~ka a'rdh tahyiat rnoakldtoka li~at-lahakkok 
mina al~bararniji al~lati targhabo fi tasjili-hai. 
(Literal translation) 
Checking the Timer Settings 
You can display your timer settings to confirm the 
programmesi that you wish to recording it1. 
Checking the Timer Settings 
You can display your timer settings to confirm the 
programmes you wish to record. 

In this example the pronoun "ha" (it) is the first pro­
nominal anaphor which follows the relative pronoun 
"al-lati" (that) and refers to the non-animate feminine 
plural "al-baramij" (the programmes; for agreement 
rules in Arabic see section 2.1) which is the most 
recent NP preceding "al-lati". 

Collocation pattern preference 

10 

This preference is given to candidates which have an 
identical collocation pattern with a pronoun (2,0). 
The collocation preference here is restricted to the 
pattern "noun/pronoun, verb" or "verb, 
noun/pronoun" (owing to lack of syntactic informa­
tion, this preference is somewhat weaker than the 
collocation preference described in (Dagan & Itai 
1990). 

Press the keyi down and tum the volume up ... Press it1 
again. 

The collocation pattern preference in Arabic has been 
extended to patterns "(un)V-NP/anaphor", i.e. verbs 
with a "undoing action" meaning are considered for 
the purpose of our approach to fall into collocation 
patterns along with their "doing action" counterparts. 
This extended new rule would help in cases such as 
"Loading a cassette or unloading it". This rule is soon 
to be integrated into the English and Polish versions. 

lrnmediate reference 

In technical manuals the "immediate reference" clue 
can often be useful in identifying the antecedent. The 
heuristics used is that in constructions of the form 
" ... (You) V1 NP ... con (you) V2 it (con (you) V3 it)", 
where con E {and/or/before/after ... }, the noun phrase 
immediately after V 1 is a very likely candidate for 
antecedent of the pronoun "it" immediately following 
V 2 and is therefore given preference (scores 2 and 0). 

This preference can be viewed as a modification of 
the collocation preference. It is also quite frequent 
with imperative constructions. 

To print the paper, you can stand the printer1 up or lay 
it1 flat. 



To turn on the printer, press the Power buttoni and 
hold iti down for a moment. 
~nwrap the paperi, form iti and align iti, then load iti 
mto the drawer. 

Sequential instructions 

This new antecedent indicator has recently been 
incorporated for Arabic but it works equally well 
for English and is to be implemented in the English 
version soon as well. It states than in sequential in­
structions of the form "To V 1 NP 1, V2 NP2. (Sen­
tence). To V 3 it, V 4 NP 4" the noun phrase NP1 is 
the likely antecedent of the anaphor "it" (NP1 is as­
signed a score of 2). 

Example: 

To turn on the video recorder, press the red button. To 
programme it, press the "Programme" key. 
To turn the TV set ON, press the mains ON/OFF 
switch. The power indicator illuminates to show that 
the power is on. To turn the TV set off, press it again. 

Referential distance 

In English complex sentences, noun phrases in the 
previous clause· are the best candidate for the an­
tecedent of an anaphor in the subsequent clause, 
followed by noun phrases in the previous sentence, 
then by nouns situated 2 sentences further back and 
finally nouns 3 sentences fmther back (2, I, 0, -1). 
For anaphors in simple sentences, noun phrases in the 
previous sentence are the best candidate for antece­
dent, followed by noun phrases situated f2 sentences 
further back and finally nouns 3 sentences further 
back (I, 0, -I) 

Since we found out that in Arabic the anaphor is 
more likely to refer to the most recent NP, the scor­
ing system for Arabic gives a bonus to such candi­
dates: the most recent NP is assigned a score of 2, the 
one that precedes it immediately I and the rest 0. 

Term preference 

NPs representing terms in the field are more likely to 
be the antecedent than NPs which are not terms 
(score I if the NP is a term and 0 if not). 

As already mentioned, each of the antecedent indi­
cators assigns a score with a value e { -1, 0, 1, 2}. 
These scores have been determined experimentally 
on an empirical basis and are constantly being up­
dated. Top symptoms like "lexical reiteration" assign 
score "2" whereas "non-prepositional~~ noun phrases 

5Identification of clauses in complex sentences is done 
heuristically, 
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are given a negative score of "-1 ".We should point 
out that the antecedent indicators are preferences and 
not absolute factors. There might be cases where one 
or more of the antecedent indicators do not "point" to 
the correct antecedent. For instance, in the sentence 
"Insert the cassette into the VCR making sure it· is 

I I 

turned on", the indicator "non-prepositional noun 
phrases" would penalise the correct antecedent. 
When all preferences (antecedent indicators) arc 
taken into account, however, the right antecedent is 
still very likely to be tracked down - in the above 
example, the "non-prepositional noun phrases" heu­
ristics (penalty) would be overturned by the "collo­
cational preference" heuristics. 

The antecedent indicators have proved to be rea­
sonably efficient in assigning the right antecedent 
and our results show that for the genre of technical 
manuals they may be no less accurate than syntax­
and centering-based methods (see Mitkov 1998b). 
The approach described is not dependent on any 
theories or assumptions; in particular, it docs not 
operate on the assumption that the subject of the 
previous utterance is the highest-ranking candidate 
for the backward-looking center - an approach which 
can sometimes lead to incorrect results. For instance, 
most centering-orientated methods would propose 
"the utility" incorrectly as the antecedent of "it" in the 

. sentence "The utility (CDVU) shows you a 
LIST4250, LIST38PP, or LIST3820 file on your 
terminal for a format similar to that in which it will 
be printed" because of the preferential treatment of 
the subject as the most salient candidate (e.g. RAP, 
see Dagan et al. 1995). The "indicating verbs" prefer­
et}Ce of our approach, however, would give prefer~ 
cnce to the correct antecedent "LIST4250, 
LIST38PP, or LIST3820 file". 

3. Evaluation 

For practical reasons, the approach presented does 
not incorporate syntactic and semantic knowledge 
(other than a list of domain terms) and it is not real­
istic to expect its performance to be as good as an 
approach which makes usc of syntactic and con­
straints and preferences. The lack of syntactic infor­
mation, for instance, means giving up c-command 
constraints and subject preference (or on other occa­
sions object preference, see Mitkov 1995) which 
could be used in cei1tcr tracking. Syntactic paral~ 

lelism, useful in discriminating between identical 
pronouns on the basis of their syntactic function, also 
has to be forgone. Lack of semantic knowledge rules 
out the use of verb semantics and semantic parallel­
ism. Our evaluation, however, suggests that much 
less is lost than might be feared. In fact, our evalua­
tion shows that the results are comparable to and 



even better than syntax-based methods (Lappin & 
Leass 1994). The evaluation results also show supe­
riority over other knowledge-poor methods (Baldwin 
1997; see also below)6

. We believe that the good 
success rate is due to the fact that a number of ante­
cedent indicators are taken into account and no factor 
is given absolute preference. In particular, this strat­
egy can often override incorrect decisions linked with 
strong centering preference (see 2.2) or syntactic and 
semantic parallelism preferences (Mitkov 1998b). 

We have carried out evaluations on sample texts 
from technical user's guides both for English and 
Arabic and the results show comparable success 
rates. The success rate for Arabic is slightly higher 
and we should mention that in addition to tuning the 
approach for Arabic, the "Arabic improved" version 
uses 2 new indicators recently introduced which have 
not been included in the "Robust English" version 
yet. 

3.1 English 

The first evaluation exercise for English (Mitkov & 
Stys 1997) was based on a random sample text from 
a technical manual (Minolta 1994 ). There were 71 
pronouns in the 140 page technical manual; 7 of the 
pronouns were non-anaphoric and 16 exophoric. The 
resolution of anaphors was carried out with a suc­
cess rate of 95.8%. The approach being robust (an 
attempt is made to resolve each anaphor and a pro­
posed antecedent is returned), this figure represents 
both "precision" and "recall" if we use the MUC 
terminology. To avoid any terminological confusion, 
we shall therefore use the more neutral term "success 
rate" while discussing the evaluation. 

We conducted a second evaluation 7 of the robust 
approach on a different set of English sample texts 
from the genre of technical manuals (47-page Port­
able Style-Writer User's Guide (Stylewriter 1994). 
Out of 223 pronouns in the text, 167 were non­
anaphoric (deictic and non-anaphoric "it"). The 
evaluation carried out was manual to ensure that no 
added error was generated (e.g. due to possible 
wrong sentence/clause detection or POS tagging). 
Another reason for doing it by hand is to ensure a fair 
comparison with other knowledge-poor methods 
(Baldwin 1997), which not being available to us, had 
to be hand-simulated. 

The second evaluation indicated an 83.6% success 
rate for our robust approach. Baldwin's CogNIAC 

6 This applies to the genre of technical manuals; for other 
genres results may be different 
7We are indebted to Lowenna Ansell for carrying out the 
second evaluation 
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scored 75% on the same data, while J. Hobb's algo­
rithm achieved 71% (Mitkov 1998b). 

On the basis of both evaluation experiments a suc­
cess rate of 89.7% could be regarded as a statistically 
more representative figure for the performance of 
"English version" of the robust approach8

• In addi­
tion, our evaluation results indicate 82% "critical 
success rate", which we consider quite a satisfactory 
score (for definition of the concept "critical success 
rate" which is limited to the evaluation of the so­
called "critical cases" - the resolution of "tough" 
anaphors which have already passed the agreement 
filter, see Mitkov 1998b). Finally, in order to evalu­
ate the effectiveness of the approach and to explore 
whether or by how much it is superior to the baseline 
models for anaphora resolution, we also tested the 
sample texts on (i) a Baseline Model which checks 
agreement in number and gender and, where more 
than one candidate remains, picks as antecedent the 
most recent subject matching the gender and number 
of the anaphor and (ii) a Baseline Model which picks 
as antecedent the most recent noun phrase that 
matches the gender and number of the anaphor. The 
evaluation results suggest a success rate of 48.55% 
for the first baseline model and a success rate 65.95% 
for the second (Mitkov 1998b). 

If we regard as "discriminative power" of each an­
tecedent indicator the ratio "number of successful 
antecedent identifications when this indicator was 
applied"/"number of applications of this indicator" 
(for the non-prepositional noun phrase and 
definiteness being penal ising indicators, this f-igure is 
calculated as the ratio "number of unsuccessful ante­
cedent idcntifications"/"number of applications"), the 
immediate reference emerges as the most discrimi­
native indicator (100%), followed by non­
prepositional noun phrase (92.2%), collocation 
(90.9%), section heading (61.9%), lexical reiteration 
(58.5%), givenness (49.3%), term preference (35.7%) 
and referential distance (34.4%). The relatively low 
figures for the majority of indicators should not be 
regarded as a surprise: firstly, we should bear in mind 
that in most cases a candidate was picked (or re­
jected) as an antecedent on the basis of applying a 
number of different indicators and secondly, that 
most anaphors had a relatively high number of can­
didates for antecedent. 

In terms of frequency of usc ("number of non-zero 
applications"/"number of anaphors"), the most fre­
quently used indicator proved to be referential dis­
tance used in 98.9% of the cases, followed by term 
preference (97.8%), givenness (83.3%), lexical reit-

8Piease note that we have recently modified some of the 
rules/added some more rules but we have not evaluated the 
improved English version yet. 



eration (64.4%), definiteness (40%), section heading 
(37.8%), immediate reference (31.1%) and colloca­
tion (11.1 %). As expected, the most frequent indica­
tors were not the most discriminative ones. 

3.2 Arabic 

We evaluated the robust approach for Arabic operat­
ing in two modes: the !irst mode consisted of using 
the robust approach directly, without any adapta­
tion/modification for Arabic, whereas the second 
mode used an adapted/enhanced version which in­
cluded modified rules (see section 2.2) designed to 
capture some of the specific aspects of Arabic plus a 
few new indicators. 

The evaluation was based on 63 examples from a 
technical manual (Sony 1992). The first mode (i.e. 
using the robust approach without any adaptation for 
Arabic- this version is referred to as "Arabic direct" 
in the table below) reported a success rate of 90.5% 
(57 out of 63 anaphors were correctly resolved). 
Typical failures were examples in which the antece­
dent and the anaphor belonged to the same preposi­
tional phrase: 

Tathhar al-surah fi awal kanati ta-stakbilo-hai fi 
mintakati-ka. 
Appears the-picture on first channeli you-rcceivc-iti in 
area-your. (Literal tnmslation) 
The picture appears when the first channel received in 
your area is detected. 

Such failure cases were not detected in the improved 
version for Arabic in which the "non-ptjepositional 
phrase" rule was changed (see section 2.2). 

Another typical problem which was rectified by 
changing the referential distance in Arabic was the 
case in which the anaphor appeared as part of a PP 
modifying the antecedent-NP: 

Kom bi-taghtiat thokb al-lisan bi-sharit plastic aw 
ista'mil kasit akhari bi-hii lisan al-aman. 
Cover slot the-tab wit!Hape plastic or use cassette 
anotheri in iti tab the- safety. 
Cover the safety tab slot with plastic tape, or use an­
other cassette with a safety tab. 

The candidates for antecedent in this example are the 
noun phrases "safety tab slot'', "plastic tape" and 
"another cassette". If we use the robust approach 
without any modification, each candidate gets 2 for 
referential distance; the aggregate score for "safety 
tab slot" is 3, for "plastic tape" it is 2 and for "another 
cassette" is 2 as well (they all get an additional 1 
score for "term preference"). Using the new referen­
tial distance scores, however, the correct candidate 
"another cassette" scores an aggregate of 2 as op-

posed to the other two candidates which are assigned 
an aggregate score of 1. 

The second evaluation mode (evaluating the ver­
sion adapted and improved for Arabic which is re­
ferred to as "Arabic improved" in the table below) 
reported a success rate of 95.2% (60 out of 63 ana­
phors were correctly resolved). 

The evaluation for Arabic also showed a very high 
"critical success rate" as well. The robust approach 
used without any modification scored a "critical 
success rate" of 78.6%, whereas the improved Arabic 
version scored 89.3%. 

The most discriminative indicators for Arabic 
proved to be immediate reference, collocation and 
sequential instructions with 100% discriminative 
power, followed by non-prepositional noun phrase 
(89.2%), term preference (82.1 %), de!initeness 
(78.6%), referential distance_seore_2 (67.9%) and 
section heading (63.6%). The higher contribution of 
referential distance for Arabic is in tune with our 
empirical finding that referential distance is a more 
important indicator for Arabic than for English and 
that in particular, the most recent NPs in Arabic are 
more likely to be antecedents than in English (see 
section 2.2, indicator "referential distance"). 

The most frequently used indicators for Arabic 
were referential distance ( 100%, of which 34.6% 
with score 2 and 34.6% with score 1) and term pref­

, erence (87.7%). Again, the most discriminative indi­
cators could not be frequently used: collocation was 
applied in only 2.5% of the cases, whereas immediate 
reference and sequential instructions could be acti­
vated in 1.2% of the cases only. 
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3.3 Polish 

The evaluation for Polish was based technical manu­
als available on the Internet (Internet Manual, 1994; 
Java Manual 1998). The sample texts contained 180 
pronouns among which were 120 instances of exo­
phoric reference (most being zero pronouns). The 
robust approach adapted for Polish demonstrated a 
high success rate of 93.3% in resolving anaphors. 

Similarly to the evaluation for English, we com­
pared the approach for Polish with (i) a Baseline 
Model which discounts candidates on the basis of 
agreement in number and gender and, if there were 
still competing candidates, selects as the antecedent 
the most recent subject matching the anaphor in gen­
der and number (ii) a Baseline Model which checks 
agreement in number and gender and, if there were 
still more than one candidate left, picks up as the 
antecedent the most recent noun phrase that agrees 
with the anaphor. 

The Polish version of our robust approach showed 
clear superiority over both Polish baseline models. 



The first Baseline Model (Baseline Subject) was 
successful in only 23.7% of the cases, whereas the 
second (Baseline Most Recent) had a success rate of 
68.4%. These results demonstrate the dramatic in­
crease in precision, which is due to the use of antece­
dent tracking indicators. 

The Polish version also showed a very high "criti­
cal success rate" of 86.2%. Used without any modifi­
cation ("Polish direct"), the approach scored a 90% 
success rate. 

The most discriminative antecedent indicators for 
Polish appear to be the sequential instructions, im­
mediate reference and indicating verbs (100%), fol­
lowed by referential distance (84.1 %) and givenness 
(80 %). 

The most frequently used indicators for Polish 
were definiteness (97.2% of the cases), referential 
distance (94.4%), givenness (61.1 %) and non­
prepositional noun phrase (52.8%). The least fre­
quently used indicators proved to be indicating verbs 
(16.7%), lexical reiteration (13.9%) and immediate 
reference (2.8%). 

The success rates obtained can be summarised as 
follows: 

Success rate 

Robust English 89.7% 

Polish direct 90% 

Polish improved 93.3% 

Arabic direct 90.5% 

Arabic improved 95.2% 

Table 1: Success rates of the robust approach 

Success rate 

Baseline subject English 31.6% I 48.6% 

Baseline most recent English 65.9% 

Baseline subject Polish 23.7% 

Baseline most recent Polish 68.4% 

Table 2: Success rates of the baseline models 

Since the approach is robust, the success rates equal 
both recall and precision except for "Baseline subject 
English": since there are cases in which "Baseline 
subject" may not be able to pick up an antecedent 
(e.g. paragraphs with zero subjects), this version can 
be measured in terms of both precision (the higher 
figure in table 2) and recall (the lower figure). 

4. Future work 

Future work includes adapting the approach for 
French, Spanish and Bulgarian as well as testing it on 
(and if necessary, modifying it to cover) a wider 
variety of genres. In addition, we plan to use the 
statistically-based multicriteria approach (Pomerol & 
Barbara-Romero, 1992) to fine-tune scoring. 

5. Conclusion 

We have described a genre-specific modification of 
the practical approach to pronoun resolution (Mitkov 
1998a) and have shown its multilingual nature: we 
have adapted and tested the approach for Polish and 
Arabic. The evaluation reports success rates which 
are comparable to (and even better than) syntax~ 

based methods and show superiority over other 
methods with limited knowledge. 
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Abstract 

This paper describes a method for the automatic align­
ment of parallel texts at clause level. The method fea­
tures statistical techniques coupled with shallow linguis­
tic processing. It presupposes a parallel bilingual corpus 
and identifies alignments between the clauses of the 
source and target language sides of the corpus. Parallel 
texts are first statistically aligned at sentence level and 
then tagged with their part-of-speech categories. Regular 
grammars functioning on tags, recognize clauses on both 
sides of the parallel text. A probabilistic model is ap­
plied next, operating on the basis of word occurrence and 
co-occurrence probabilities and character lengths. De­
pending on sentence size, possible alignments arc fed 
into a dynamic progranuning framework or a simulated 
annealing system in order to find or approxim~te the best 
alignment. 1he method has been tested on a Small Eng~ 
lish-Greek corpus consisting of texts relevant to software 
systems and has produced promising results in terms of 
correctly identified clause alignments. 

Introduction 

The availability of large collections of texts in electronic 
fom1, has given rise to a wide range of applications aim~ 
ing at the elicitation of linguistic resources such as 
tTanslation dictionaries, transfer grammars and retTieval 
of translation examples (Dagan et al., 1991; Matsumoto 
et al., 1993), or even the building of fully-blown machine 
translation systems (Brown et al., 1990). The pmpose of 
this paper is to describe a technique for extracting trans­
lation correspondences at bellow sentence level by em­
ploying statistical techniques coupled with shallow lin­
guistic processing catering for the segmentation of sen­
tences into clauses. 

Statistical processing has proved powerful for the 
exh·action of translation equivalences at sentence and 
intra-sentence level. Brown et al. (1991) described a 
method based on the number of words contained in sen­
tences. The general idea is that the closer in length two 
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sentences are, the most likely they are to align. Moreo­
ver, certain anchor points and paragraph markers are 
considered. Dynamic progra111111ing and HMMs are pipe­
lined to produce alignments at sentence level. The 
method has been applied to the Hansard-Corpus, achiev­
ing an accuracy of 96%-97%. Gale and Church ( 1991) 
proposed a method that relies on a simple statistical 
model of character lengths. The model is based on the 
observation that longer sentences in one language tend to 
be translated into longer sentences in the other language 
while shorter ones tend to be translated into shorter ones. 
A probabilistic score is assigned to each pair of proposed 
sentence pairs, and a dynamic programming framework 
calculates the most probable alignment. Although the 
apparent efficacy of the Gale-Church algorithm is unde­
niable and validated on different pairs of languages, rt 
faces problems when handling complex alignments(l-0, 
1-2, 2-2). 

'Simard et al. (1992) argue that a small amount of lin­
guistic information is necessary in order to overcome the 
inherited weaknesses of the purely statistical techniques. 
They proposed using cognates, which are pairs of tokens 
of different languages sharing 11 0bvioUS 11 phonological or 
orthographic and semantic properties, since these are 
likely to be used as mutual translations. Papageorgiou et 
al. (1994) proposed a generic alignment scheme invoking 
surface linguistic information coupled with information 
about possible unit delimiters depending on the level at 
which alignment is sought. Each unit, sentence, clause or 
phrase, is represented by the sum of its content part of 
speech (POS) tags. The results are then fed into a dy­
namic programming framework that computes the opti­
mum alignment of text units. 

Brown (1988) uses a probabilistic measure to esti­
mate word similarity of two languages in the context of 
statistically-based machine translation. Kay and Ro­
escheisen (1993) present an algorithm for aligning bilin­
gual texts on the basis of internal evidence. Processing is 
pcrfom1ed in many iterations and each new iteration 
uses the results of the previous one in order to calculate 
more accurate word and sentence correspondences. In 



each iteration, processing consists of calculating corre­
spondences between sentences on the basis of their rela­
tive positions, and then calculating word correspon­
dences on the basis of word co-occunences in related 
sentences. The Dice coefficient is used as the similarity 
measure between words of two languages in an attempt 
to secure the conectness of the alignment of parallel texts 
at sentence level. Kitamura and Matsumoto (1995) have 
used the same Dice coefficient to calculate the word 
similarity between Japanese-English parallel corpora. 
Single word correspondences have also been investigated 
by Gale and Church (1991 b) using a statistical evaluation 
of contingency tables. Piperidis et al. ( 1997) and Boutsis 
and Piperidis ( 1996) describe methods for extracting sin­
gle and multi-word equivalences based on a parallel cor­
pus statistically aligned at sentence level and employing 
a similarity metric along the lines of the Dice coefficient 
with comparable performance. 

Collocational conespondences have been studied by 
Smadja (1992) and Smadja et al. (1996), in an attempt to 
find h·anslation patterns for continuous and discontinuous 
collocations in English and French. Meaningful colloca­
tions are first extracted in the source language while their 
corresponding French ones are found by calculating the 
mutual information between instances of the English 
collocation and various single word candidates in Eng­
lish-French aligned corpora. Recent work has broad­
ened the scope identifying correspondences between 
word sequences. Kupiec (1993) proposes a method for 
extracting translation patterns of noun phrases from Eng­
lish-French parallel corpora. The corpus is tagged at part­
of~spcech (POS) level and then finite-state recognizers 
specified by regular expressions defined in tenns of POS 
categories detect noun phrases on either side. Probabili­
ties of correspondences are then calculated using an it­
erative EM-like algorithm. Kumano and Hirakawa 
(1994) presuppose an ordinary bilingual dictimmy and 
non-parallel corpora, attempting to find bilingual cone­
spondences in a Japanese-English setting at word, noun 
phrase and unknown word level. Extending previous 
work, Kitamura and Matsumoto (1996) apply the Dice 
coefficient on word sequence correspondence extraction. 

This paper describes a method for the automatic 
alignment of parallel texts at clause level. Texts are first 
aligned at sentence level using statistical techniques. 
Part-of-speech tagging takes place next annotating each 
word form with the appropriate part of speech. Process­
ing in this step and the next one is monolingual, so each 
language side of the text is treated independently of the 
other. Surface syntactic analysis is performed next on 
the basis of regular grammars. Shallow parsing results in 
the recognition of clauses. Statistical processing follows 
taking into account different sources of information, 
aiming at identifying intra-sentence alignments formed 
by the clauses of the parallel sentences of the bitext. The 
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method caters for alignments of type 1-0, 1-1, 1-2, 2-1, 
and 2-2. A first pass through the text computes occur­
rence and co-occunence probabilities for content words 
on both language sides. A probabilistic score, expressing 
the probability that a clause (or a pair of clauses) of the 
source language is h·anslated into a clause (or a pair of 
clauses) of the target language, is computed on the basis 
of the previously calculated word probabilities, and a 
model of character lengths. Possible clause alignments 
are examined by a dynamic programming framework 
deciding on the best alignment. Avoiding combinatorial 
explosion requires that large sentences be channeled into 
a module that approximates the optimal alignment 
through simulated amrealing, operating in polynomial 
time. EM iterative training caters for the estimation of 
the model's parameters, given the lack of hand-aligned 
training material. The overview of the processing is 
pictured in Figure 1. 

Test Corpus 

The cmpus used to develop and test the proposed algo­
rithms consists of text from the HP-VUE software plat­
form documentation set. The Greek text contains 35726 
wordfomrs and the English text 28872. The number of 
different words is 4512 for the Greek text and 3219 for 
the English text. The richer mmphology of the Greek 
language accounts for the approximately 30% difference 
between these two figures. 

Text Handling 

Recognizing and labeling surface phenomena in the text 
is a necessary prerequisite for most Natural Language 
Processing (NLP) systems. In order to be able to make 
full use of the corpus, texts should be rendered in an ap­
propriate fmm. To this end, parallel texts are normalized 
and handled. In the framework of the presented method, 
basic text handling is perfonned with the use of a 
Mu1text-like tokeniser, (Di Christo et al., 1995). Identifi­
cation of word boundaries, sentence boundaries, abbre­
viations etc. takes place. Following co1nn1on practice, the 
tokeniser makes use of a regular-expression based defi­
nition of words, coupled with downstream precompiled 
lists for the Greek and English language and simple heu­
ristics. This proves to be quite successful in recognizing 
sentences and words effectively. 

Senteuce Alignment 

Alignment consists in establishing correspondence links 
between units in a bilingual text. At this stage, the 
method aligns input text at sentence level. Processing 
caters for sentence substitution (one sentence translates 
into one)) deletion (a sentence is not translated at all), 
insertion (a sentence with no equivalent in the source text 



Shallow Parsing & 
Clause Recognition 

Figure 1: Processing Overview 

is introduced by the translator), contraction (two con­
secutive sentences translate into one), expansion (one 
sentence translates into two) and merging (two sentences 
translate jointly into two). 

The heart of the alignment scheme, employed at this 
stage, is a method for aligning sentences based on a sim­
ple statistical model of character lengths, (Gale and 
Church, 1991). The method relies on the assumption that 
longer sentences in the source language tend to be trans­
lated into longer sentences in the target and vice-versa. A 
probabilistic score is assigned to each pair of proposed 
sentence pairs, based on the ratio of lengths of the sen­
tences and the variance of this ratio. This probabilistic 
score is used in a dynamic programming framework in 
order to find the maximum likelihood alignment of sen­
tences. Additionally, following (Brown et al., 1991) 
certain points of the texts can be anchored thus dividing 
them into smaller sections that need to be aligned. Be­
sides anchors, paragraph markers are also_ /considered. 
Anchor points are specific to the text to be· aligned and 
they usually appear in both texts. They are divided into 
major and minor anchors and alignment proceeds in two 
steps, first aligning major anchor points and then minor 
anchor points, followed by sentence alignment. The 
alignment algorithm has been tested in the setting of a 
multilingual text processing system and has been re­
ported to yield accuracy between 96% and I 00%, 
(Piperidis, 1995). 

Part of speech tagging 

Both English and Greek texts are analyzed morphosyn­
tactically. The words in the patallel sentences are tagged 
with their corresponding POS categories. The corpus is 
thus represented as a bitext of tagged mutual sentence 
translations where every word is accompanied by its cor­
responding POS tag. 

For Greek 

Tagging with part-of-speech information for Greek takes 
place in two steps. First, each word is endowed with all 

possible tags tlnough lexicon lookup, and then a disam­
biguation module decides on the most probable am1ota­
tion. 

Lexicon lookup operates on a morphological lexicon 
of modern Greek. It endows the words of the text with 
the characteristics found in the lexicon. The tagset used 
has been devised for the morphological annotation of 
Greek corpora and conforms to the guidelines set up by 
EAGLES and PAROLE, trying, at the same time, to 
capture the morphological peculiarities of the Greek lan­
guage. 

Text produced at the output of lexicon lookup is an­
notated with below POS information i.e. subcategorisa­
tion information for each POS category. Each wordform 
recognised as noun, for example, is annotated for case, 
number, gender etc. Ambiguous wordfmms are endowed 
with all possible annotations. However, not all available 
mmphological information is necessary for later proc­
essing. In addition, wordforms grammatically fully char­
acterized with below POS information are highly am­
biguous. Retaining all such information would impose a 
heavy burden on the disambiguation process. Experi­
mentation has proved that performance of next stages is 
not seriously affected by reducing the tagset. To this end, 
a simplified tagset has been used helping reduce ambigu­
ous wordforms notably. In addition, words not found in 
the lexicon are assigned possible tags on the basis of a 
probabilistic model operating on word suffixes. In case 

·of multiple tagging, a disambiguator based on trigrams 
and contextual rules trained on Greek texts, suggests the 
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tag that is most likely to be the correct, (Papageorgiou, 
1996). This stage produces around 95% correct results. 

For English 

Tagging for English is based on mainstream statistical 
processing. A tagger implementing hidden markov model 
techniques is employed. The tagger has been trained on 
a large preannotated text collection and is then used to 
tag the HP-VUE test corpus. For training purposes, a set 
of technical texts annotated at POS level, drawn from the 
British National Corpus (BNC), has been used, (Burnard, 
1995). Texts classified under the field codes: "Written: 
Domain: Informative: Natural and pure sciences" and 
"Written: Domain: Infotmative: Applied Science" have 
been selected. The size of the text collection is ca. 
5,000,000 words. Text is annotated with POS tags ac­
cording to the BNC tagset (Leech, 1995). This text col­
lection is used to train the Acquilex HMM tagger (El­
worthy, 1997) and estimate model parameters. After 
training, the HP-VUE corpus is tagged by application of 
the Viterbi algorithm. 



Clause recognition 

This stage) like the previous one, processes each lan­
guage side of the text independently of the other. It aims 
at breaking sentences of both languages into clauses with 
well-defined boundaries. 

In order to recognise clauses, this stage takes advan­
tage of a shallow parser equipped with granunars for 
Greek and English. Syntactic analysis consists of parsing 
via finite state automata. Under this approach, a text can 
be analysed syntactically on the basis of granunars con­
taining non-recursive rules written in the form of regular 
expressions. Rules are numbered in order to be applied 
in a certain order. The grammar is translated into finite­
state automata with standard techniques (Aho ct a!., 
1986) and automata are connected in a pipeline in order 
to form a cascade, which is used to annotate text in an 
incremental way. Each rule (regular expression) de­
scribes a specific phenomenon and higher-order mles can 
be expressed on the basis of the already described ones. 
Rules are designed to be reliable when they arc applied 
using longest match) in order to avoid the need for dis­
ambiguation between different length instances of the 
same constituent type. 

A basic characteristic of this method is that parsing is 
deterministic and no backtracking takes place. No ambi­
guity is produced since each automaton takes a definite 
decision about a constituent's existence or non-existence. 
This doesn't mean that ambiguities are resolved but that 
they are enclosed inside syntactic chunks, whose bounda­
ries have been recognised, although their internal struc­
ture may have not been decided. Enclosure of ambiguity 
helps generate only one partial parse for each sentence, 
since ambiguity is kept local and does not cause the pro­
duction of multiple parses for the whole sentence. 

It should be noted that the method does not depend on 
the exact method adopted for clause recognision. Another 
system performing clause recognition could be used in­
stead. This has also to do with the availability of the rele­
vant linguistic processing modules. On the other hand, 
being aware of the complete partial parse can be ve1y 
useful, if one is up to extend the method to cover other 
types of sub-sentence alignments (e.g. alignment of 
np's). It is also significant that the additional processing 
of shallow parsing does not impose serious speed over­
heads since the speed of analysis is measured in tens of 
hundreds of words/second. Clause boundaries for each 
analysed sentence are channelled into the next stages of 
processing. No distinction is made between different 
clause types. A sample output of this stage is shown in 
Figure 2. 
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[c/ SEVERAL U71LI11ES HELP YOU elj [el DIAGNOSE 
CONFIGURA110N AND DATABASE ERRORS c/j 

fc/ IIOAAA BOHBH11KA llPOTPAMMATA BOliBOYN c/] [el 
NA d!AJWQEETE E<PAAMATA AJAMOP<PQI.HE KAI BALIJE 
AEtJOMENQN elj 

[c/ IF YOUR SYSTEM IS PROPERLY CONFIGURED clj [c/ TO 
AUTOMATICAJ.LY RUN liP VUE elj. [cl YOU WILL SEE 71!E 
liP VUE LOGIN SCREEN cl] [c/ WHEN YOUR SYSTEM IS 
BOOTED clj 

/clAN TO LTEFHMA DIE EJNAI EQl.TA AIAMOP<PQMENO 
elj fcl 17.4 NA EKTEAEI AYTOMATA 70 HP VUE elj [c/ BA 
AEJ11i THN 080NH EYNAEEH!.: TOY HP VUE elf [el OTAN 
70 EYLIHMA DIE EKKJNEJ el/ 

/cl If YOU HAVE NO CONSOLE elf, [c/ YOU MUST J.OG IN 
FROM A REMOTE SYSTEM elf 

[elAN AEN YIIAPXEJ el] /cl llPE/lEI NA EILEABETE A/70 
ENA AIIOMAKPYEMENO H2.71IMA elj 

Figure 2: Parallel text with marked clause 
boundaries 

Translation model 

Part a 

In this section we present the basic translation model, 
which is used for the purposes of clause alignment. Let's 
consider two corresponding sentences of the parallel text 
which are translations of each other, the source sentence 

~L ""'scil ~ci2 ... ~cil and its tTanslation into the target 

language ~L = tcil tc12 ... tcirn where sci and tci are 

clauses identified during the previous stage. We 
approximate sentence h·anslation with the assumption 
that clauses can be tTanslated from the source into the 
target language in the following ways: 

A. 1-0 and 0-1, when a clause of the source or the target 
sentence has no equivalent clause in the other 
language. 

B. 1-1, when a clause of the source sentence is translated 
into one clause of the target sentence. 

C. 1-2 and 2-1, when a clause of the source is translated 
into two clauses of the target or two clauses of the 
source translate into one of the target. 

D. 2-2, when two clauses jointly translate into two 
clauses of the other language. 

We view each group of aligned sentences of the par­
allel text as a sequence of clause-beads (after sentence­
beads in (Brown et al., 1991)) where a bead accounts for 
a group of clauses that align with each other according to 
one of the above mentioned ways. A clause-alignment 



Ai = { ail ai2 ... a in } for a given pair i of sentences 

is a set of clause-beads a ti covering all clauses of the 

source and target sentence under the condition that each 
clause participates to one and only one clause-bead. 
Figure 3 shows a schematic example of a clause­
alignment between two sentences containing four and 
three clauses each. Making the assumption that transla­
tion of clauses in a bead is independent of clauses be­
longing to other beads we seek the alignment that maxi­
mises the joint distribution: 

(!) 

and assuming that Pr(n) (where n is the number of beads 

in the alignment) is independent of s1, Ti and n we get: 

(2) 

s is ignored for the rest of the analysis, since it is a mul­
tiplicative constant factor having the same value for all 
clause-alignments. 

Part b 

Finding the. correct alignment requires that we estimate 

clause-bead probabilities Pr(a;j) which express the 

probability for the source sentence clauses of the bead to 
be translated into the corresponding target sentence 
clauses. We consider a 1-1 bead covering the source and 
target clauses: 

scis = swisl sw1s2 ... sw;.~p and 

(where swisp is the p1
h word of the s1

h clause of the i1h 

source sentence of the parallel text etc.) A first writing 

ofPr(aij) can be as follows: 

Pr(aij) = P1_1 Pr(scis, tcit) 
-· --~ 

(3) 

where ?1_1 is the probability of a '1-l' clause alignment. 

Referring to the second factor of (3), in order to ap­

proximate Pr(scis, tcit) we take into account two pa­

rameters: a) the length of the source and target clauses 
and b) the source language and target language words 

contained in ~~cis· and ~~it . We model the probability 

that source text with character length l(scis) is h·ans-
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Bead 1 Bead 2 Bead 3 

~····~·-~-"~-.-.,.--~~ 

[§>J 8 8 8 
8 8 8 ______ _) 

Figure 3: An aligmnent with three beads 
(SC:Source sentence Clause 
TC:Target sentence Clause) 

lated into target text with length l(tcit) with a distribu­

tion Pr~(sc,,. ), l(tcit) ). Under the assumption that the 

model used by the sentence aligner ("Sentence Align­
ment" section , (Gale and Church, 1991)) expressing 
sentence alignment probabilities on the basis of character 
lengths r valid when applied to clause-lengths, we esti-

mate PrV(scis) l(tcit)) with the same model. 

Furthermore, we approximate clauses by unordered 
sets focusing on content can·ying words i.e. content 
words, which are taken to be verbs, nouns, adjectives and 
adverbs. Thus, we assume that content words contribute 

the most to the examined probability. tcit and scis are 

represented by the unordered sets of the content words 
they contain. Following that, equation (3) can be written 
as: 

(4) 

where sew stands for source clause content word and 
tcw stands for target clause content word. To approxi­
mate the third factor of Eq. ( 4) we assume that the con­
tent words of the source clause are independent events 
and the same is valid for the words of the target clause. 
That is: 

Pr({~·cwisl ,scwis2•····scwisv h = 

Pr(~cwitl ,tcwit2 , ... ,tcwitw }J = 

Pr(tcwitl) Pr(tcwit 2 ) ... Pr(tcwitw) 

(5) 

(6) 

Under this model each word of the target clause de­
pends on zero or one word of the source clause. To il-



lustrate, let's consider the source clause 

sc = { scw1, scw2 , scw3 } the target clause 

1~ ~ { tewl' tcw2' tew3 } and a word alignment wj so 

that lcw1 depends on sew1, lew2 depends on scw
2 

while tcw3 and scw3 are independent events. In this 

case, 

Prw. ( { sew1, scw2 , scw3 }, { tcw1, tcw2 , tcw3 }J ~ 
J 

Pr(tcw1, sew1) Pr(lcw2 , sew2 ) Pr(lcw3 ) Pr(scw3 ) (7) 

given the computation of Figure 4. 
Consequently, when estimating bead probabil-

ity Pr( aij) , we need to sum probabilities over aU possi-

ble word alignments Wj. This would require however to 

inspect an exponentiaUy large set of possible word­
alignments. Thus, we would like to approximate the sum 
with its biggest tem1. This is not feasible, eitl1er. So, a 
greedy-like technique is followed, which does not guar­
antee to find the best word alignment but usually comes 
up with a big enough value to distinguish between good 
and not so good clause alignments. The largest word­
pair probabilities are selected first while probabilities of 
any unmatched words are taken into account next. In 
order to select a pair of words for Eq. (7) two heuristic 
conditions must be met: 1) the occurrence frequencies of 
the two words should not differ more than 50%, 2) their 
co-occurrence frequency in the bitext should not differ 
more than 50% from their occurrence frequencies in the 
texts. 

In case of a non '1-1' alignment between clauses, the 

Prw . ( { sew!' scw2 , scw3 }, { lew!' tew2 , tew3 }J ~ 
J 

same model is used, where f;_1 is substituted by ~--2 , 

P2_1 , P2_ 2 , ~-o and P0_1 . We take ~-2 ~P2_ 1 and 

~-o ~ P0_1 . The distribution on character lengths is also 

taken to be independent of the alignment type. 

Model Training 

In order to calculate clause-alignment probabilities, given 
the model presented in the previous section, estimations 
for several model parameters should be available. At this 
stage, parameters are estimated on the basis of simple 
corpus statistics. The probability of a single word of the 
source or target text is taken to be: 

f(w) 
Pr(w)=---

IJ(w') 
w' 

(8) 

where the denominator of Eq. (8) is the sum of the fre­
quencies of all words i.e. the lengtlr of the source or the 
target text in words. Conespondingly, the probability 
relating a word of the source text with a word of the tar­
get text is estimated by: 

f(sw,lw) 
Pr(sw, tw) ~ _ __c:.__:c__cc_:___ 

I f(sw' ,lw') 
(sw',tw') 

(9) 

For the presented application of the method, these 
probabilities are computed over the whole corpus. In 
very large texts it is adequate to estimate the probabilities 
in a representative large portion of the text. It would be 
also possible to use pre-computed probabilities from an­
other text of the same domain, given that both texts share 

Prw. c{ lew1, tcw2 , tew3 }/{ sew!' scw2 , scw3 }J Pr( { scw1, scw2 , scw3 }J ~ 
J 

(Eq. (5), (6)) 

Prw. (tcw1 j{ scw1, scw2 , scw3 
J 

Pr(sew1) Pr(scw2 ) Pr(scw3 ) ~ 

Pr(lew1/scw1) Pr(lcw2 /scw2 ) Pr(lcw3 ) Pr(sew1) Pr(sew2 ) Pr(sew3 ) ~ 

Pr(lcw1 , scw1) Pr(lcw2 , sew2 ) 
--"-----~'-- -------=~-'~ Pr(lcw

3
) Pr(sew1) Pr(scw2 ) Pr(scw3 ) ~ 

Pr(sew1) Pr(scw2 ) 

Pr(tcw1, scw1) Pr(tcw2 , scw2 ) Pr(tew3 ) Pr(.s·cw3) 

Figure 4: Computation of Prw. ( { scw1, scw2 , scw3 }, { tcw1, tcw2 , tcw3 }J 
J 

22 



the same characteristics with respect to language use, 
coverage and translation. 

Estimating ~--r, !~ __ 2 , P2 __ 2 and P0 . 1 rs less 

straightforward. Given the lack of training material, that 
is marked-up text aligned at clause level, no safe set of 
values can be computed for these parameters. To work 
around this, we first make an educated guess and then 
apply the EM (Expectation-Maximization) algorithm. 
The EM algorithm consists of two major steps: an ex­
pectation step followed by a maximization step. The ex­
pectation uses the current estimates of the parameters to 
process input data and the maximization provides next a 
new estimate of these parameters. These two steps iter­
ate until convergence. EM is not guaranteed to converge 
to a global maximum; if many points of local conver­
gence exist, the point where the method will convergence 
will depend on the initial parameter estimations. The 
initial parameter values we used and the estimated ones 
after the process converged arc displayed in the Table I. 

If an alignment type does not occur in the output (' 1-
0' alignment in this case), the relevant probability takes a 
very small value (IE-4). 

Best Clause-Alignment Selection 

This stage aims at finding the best alignment between the 
clauses of two parallel sentences (or in the case of a non 
'1-1' sentence alignment e.g. '1-2', an alignment is 
sought between the clauses of the source sentence and 
the clauses of the two target sentences). Two schemes 
are considered, dynamic programming and simulated 
annealing. 

Dynamic programming is a generalizat~on of the 
greedy technique. It can be used to solve problems, 
whose solutions can be considered as a sequence of deci­
sions. Usually dynamic programming is uSed to address 
an optimization problem, seeking the sequence of deci­
sions giving the optimal solution. In many problems, 
decisions taken on the basis of local data always lead to 
optimal solutions; this is the case of problems solved by 
greedy teclmiques. On the other hand, there are prob­
lems, including alignment, for which this doesn't hold 
true. In this case one would have to generate all possible 
decision sequences and evaluate them. Dynamic pro­
gramming can be used to exclude sub-optimal decision 
sequences so that they may not be considered. The prinM 
ciple of optimality governing dynamic programming is: 
"Any sub-sequence of the optimal decision sequence is 
optimal for the sub-problem corresponding to this sub­
sequence of decisions". 

Although dynamic programming is successfully ap­
plied to sentence alignment, it comes close to its limits 
when dealing with sub-sentence alignments given that 
the assumption of the left-to-right translation made for 
sentence alignment, is not valid at the bellow sentence 
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Alignment Initial Probability Probability 
Type Estimation after Conver-

gence 
1-0 0.05 0.0001 
1-1 0.8 0.6986 
1-2 0.1 0.2465 
2-2 0.05 0.0548 

Table I : Initial and estimated probabilities 

level, or in other words, the order of the clauses in the 
source language is not the same in the target language. 
To handle cases of clause-alignments involving a number 
of clauses in the order of ten or more, we use a simulated 
annealing framework to approximate the optimal align­
ment. Simulated annealing (Metropolis et aL, 1953), 
(Kirkpatrick et aL 1983), is a method for optimising 
functions depending on a large number of parameters. 
Annealing is a metallurgical term and the method is in­
spired by the controlled cooling of metals getting from 
the liquid to the solid state. The algorithm has been suc­
cessfully applied for optimization purposes, including the 
approximate solution of TSP (Traveling Salesman Prob­
lem). This algorithm does not guarantee to find the best 
solution, but it may come up with a good approximation 
of it in non-exponential time. Processing starts with a 
random clause-alig1m1ent A. Initial temperature setting is 
T~45 and after each iteration it is reduced by 0.9. Each 
iteration is performed tlu·ough 1000 steps. In each step, a 
random change in A is proposed and the cost function 
(negative logarithm of the clause-aligurnent probability) 
is computed. If the new aligurnent is better, the change is 

liE 

adopted, if not, it is adopted with probability P = e T , 

wl1ere LJE is the change in the cost function. Once the 
loqp is computed with no change in the configuration, or 
10 iterations have been performed, the best alignment 
that has been found till that time is proposed. 

Results 

The method has been applied to the corpus presented in 
section 2. A sample output of the method is displayed 
hereunder. Each table contains a source sentence, a tar­
get sentence and the set of proposed clause alignments 
(underlined alignments are wrong): 

Aligurnent type·2-2 Dynamic Programming (DP) 
' 

{ciiF YOU HAVE NO CONSOLE cl], {cl YOU MUST LOG IN 
FROM A REMOTE SYSTEM cl] 

{clAN flEN YnAPXEI c/] {cl nPEnEI NA EliEIIGETE AnO 
ENA AnOMAKPYi:MENO i:Yi:THMA c/] 

IF YOU HAVE NO CONSOLE <->AN flEN YnAPXEI 

YOU MUST LOG IN FROM A REMOTE SYSTEM<-> nPEnEI 
NA Eli:EIIGETE AnO ENA AnOMAKPYi:MENO i:Yi:THMA 



Alignment type-3-3 DP , 
{el THERE ARE SEVERAL REASONS elf [el THAT HP VUE 
MIGHT FAIL elf {el TO START elf 

{el YnAPXOYN nOMOI 110101 elf {cl 1/A TOYI: OnOIOYI: 
TO HP VUE MnOPEI NA AnOTYXEI elf {el NA =EKINHI:EI elf 

THERE ARE SEVERAL REASONS<-> YnAPXOYN n0/\1101 
110101 

THAT HP VUE MIGHT FAIL<-> 1/A TOYI: OnOIOYI: TO HP 
VUE MnOPEI NA AnOTYXEI 

TO START<-> NA ooEKINHI:EI 

Alignment type:4-3, DP 

{el WHEN HP VUE FAILS elf [el TO BEHAVE elf [el AS 
EXPECTED elf, {el YOU SHOULD OPEN THE 
APPROPRIATE ERROR-MONITORING FILE elf 

{el OTAN TO HP VUE AnOTY/XANEI elf [cl NA 
I:YMnEPI<PEPGEI KA TA TO ANAMENOMENO elf [el GA 
nPEnEI NA ANOEETE TO KATAMH/\0 APXEIO 
nAPAKO/\OYGHI:HI:I:<PAIIMATDNelj 

WHEN HP VUE FAILS<-> OTAN TO HP VUE 
AnOTYIXANEI 

TO BEHAVE AS EXPECTED <-> NA I:YMnEPI<PEPGEI 
KA TA TO ANAMENOMENO 

YOU SHOULD OPEN THE APPROPRIATE ERROR-
MONITORING FILE<-> GA nPEnEI NA ANOEETE TO 
KATA/\1\H/\0 APXEIO nAPAKO/\OYGHI:HI: I:<PAIIMA TDN 

Alignment type:6-6, Simulated Annealing(SA) 
,--~--~~~------------~~-------

{eiiF YOU PREVIOUSLY USED SOFTBENCH elf {elAND 
HAVE A PERSONAL <DIR>!HOMEDIRECTORYI .SOFT/NIT 
<!DIR> FILE elj, [el YOU MAY NEED elf [el TO REMOVE THE 
FILE elj [el OR EDIT IT elf [el TO INCLUDE THE HP VUE 
TOOLS elf 

[elAN nPOHIOYMENDI: XPHI:IMOnOIHI:A TE TO 
SOFTBENCH elf [el KAI EXETE ENA nPOI:DntKO APXEIO 
<DIR>!HOMEDIRECTORYI.SOFTINIT<!DIR> elf [el MnOPEI 
NA XPEIAHEI elf [el NA A<PAIPEI:ETE TO APXEIO elf [cl H 
NA TO TPOnOnOIHI:ETE elf {cl DHE NA nEPIMMBANEI 
TA EPrAIIEIA HP VUE cl] 

IF YOU PREVIOUSLY USED SOFTBENCH <->AN 
nPOHIOYMENDI: XPHI:IMOnOIHI:A TE TO SOFTBENCH 

AND HAVE A PERSONAL <DIR>IHOMEDIRECTORY 
I.SOFTINIT<!DIR> FILE<-> KAI EXETE ENA nPOI:DntKO 
APXEIO <DIR>IHOMEDIRECTORYI.SOFTINIT<IDIR> 

YOU MAY NEED <-> MnOPEI NA XPEIAI:TEI 

TO REMOVE THE FILE<-> NA A<PAIPEI:ETE TO APXEIO 
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OR EDIT IT<-> H NA TO TPOnOnOJHI:ETE 

TO INCLUDE THE HP VUE TOOLS <-> DHE NA 
nEPIIIAMBANEI TA EP/AIIEIA HP VUE 

The performance has been evaluated on a text pmiion 
containing ca. 250 sentences and overall precision of the 
output has been calculated to be 85. 7%. If we exclude 
cases of misalignments due to errors in stages of proc­
essing preceding clause-alignment, we can calculate the 
precision of the last stage. In this case, precision is higher 
than 96%, so the error-rate introduced during clause­
alignment is less than 4%. In addition to the low error­
rate, clause-alignment corrects some of the enors caused 
by the previous stages, as it is mentioned in the next sec­
tion. 

Discussion 

Given the incremental and engineering approach 
adopted, the results obtained so far are quite encouraging. 
The accuracy of tl1e output lies around +85%, making the 
method quite reliable and suitable to be used in real 
world application systems. 

Most of the errors were introduced by the first three 
primary processing stages, that is sentence-alignment) 
POS tagging and clause recognition. Major improve­
ments in performance will certainly require further opti­
mization of some or all of these stages along with any 
refinements to the statistical clause-alignment model 
used in the last stage. Regarding refinements to clause­
alignment, there are several sources of information that 
could be readily taken into account. For example, pre­
compiled bilingual dictionaries could be of help in order 
to establish reliable word associations in very short texts, 
which do not allow the safe estimation of the required 
word probabilities, while preference tules on clause types 
could be used to reduce search space, favoring align­
ments betvveen certain clause types and penal ising others. 
Future developments are believed to help improve accu­
racy and performance and broaden the coverage of the 
system in order to cover additional types of sub-sentence 
alignments. An interesting remark is that errors intro­
duced by preceding stages are sometimes repaired by 
clause-alignment. For example, it may happen that a 
sentence is mistakenly chunked into clauses due to tag­
ging or other CITors. Then '1-2' and '2-2' clause­
alignments may function in such a way that illegally 
separated sentence pieces are brought back together. 

It is well understood that linguistic resources building 
is one of the important stumbling blocks in the localiza­
tion/internationalization exercise. Methods approximat­
ing the automatic generation of such resources prove to 
be effective on a cost/time basis. Besides gains in speed 
and efficiency) the data driven approach improves con­
sistency, which is an important requirement for systems 



operating in a multilingual setting. By adopting a data 
driven approach and exploiting existing linguistic proc­
essing modules, the method produces textual parallel data 
of high resolution which can give a competitive advan­
tage to multilingual processes and systems, such as semi­
automatic lexicon builders, machine aided translation 
systems and retrieval of multilingual material. 
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Abstract 
Automatic accent inser·tion (AAI) is the problem of 
re-inserting accents (diacritics) into a text where they 
are missing. Unaccented French texts are still quite 
common in electronic media, as a result of a long his­
tory of character encoding problems and the lack of 
well-established conventions for typing accented char­
acters on computer keyboards. We present an AAI 
method for French, based on a stochastic language 
model. This method was implemented into a program 
and G library of functions, which are now commer­
cially available. Our experiments show that French 
text processed with this program contains less than 
one accent error per 130 words. We also show how our 
AAI method can be nsed to do on-the-fly accent in­
sertions within a word-processing environment, which 
makes it possible to write in French without having 
to type accents. A prototype of such a_ s'ystem was 
integrated into the Emacs editor, and iS now avail­
able to all students and employees of t}1e Universite 
de Montreal's computer science department. 

1 Introduction 
Even in this era of flashy, high-speed multimC::dia in­
formation, unaccented French texts (i.e texts without 
diacritics) are still routinely encountered in electronic 
media. Two factors account for this: first, the com­
puter field has long suffered from a lack of sufficiently 
widespread standards for encoding accented charac­
ters, which has resulted in a plethora of problems in 
the electronic transfer and processing of French texts. 
Even now, it is not uncommon for one of the soft­
ware links in an E-mail distribution chain to delib­
erately remove accents in order to avoid subsequent 
problems. Secondly, when nsing a computer keyboard 
that is not specifically designed for French, keying 
in French accented characters can turn out to be a 
laborious activity. This is a matter of both stan­
dards and ergonomics. As a result, a large number of 
French-speaking users systematically avoid using ac­
cented characters, at least in informal communication. 

If this situation remains tolerable in practice, it is 
essentially because it is extremely rare that the ab-

sence of accents renders a French text incomprehen­
sible to the human reader. Cases of ambiguity do 
nonetheless occur: for instance, "Ce chantier ferme 
a cause des emeutes" could be interpreted as '\Ce 
chan tier ferme a cause des CmeuteS11 C'This work-site 
is closing because of the riots") or \\Ce chan tier fermi 
a cause des Cmeutesn ("This closed work-site [more 
naturally put, this work-site closure] has caused riot­
s',). From a linguistic point of view, the lack of accents 
in French simply increases the relative degree of am­
biguity inherent in the language. At worst, it slows 
down reading and proves awkward, much as a text 

. written entirely in capital letters might do. 
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The fact remains, however, that while unaccented 
ri·ench text may be tolerated under certain circum­
stances, it is not acceptable in common usage, espe­
cially in the case of printed documents. Furthermore, 
unaccented texts pose serious problems for automatic 
processing: NLP-based applications such as informa­
tiOn retrieval, information extraction, machine trans­
latjon, human-machine conversation, speech synthe­
sis, as well as many others, will usually require that 
French texts be properly accented to begin with. 

Actually, for human readers, unaccented texts is 
probably the most benign of a more general class of ill 
treatments to which French texts are subjected. For 
example, it is not uncommon for older programs that 
are not "8-bit clean', to "strip" the eighth bit of each 
character, thus irreversibly mapping French charac­
ters onto the basic ASCII set. When this treatment 
is applied to an ISO-Latin text, 'C' becomes 'i,, 'C' 
becomes 'h', etc. Other programs will simply delete 
accented characters, or replace them with a unique 
character, such as a question mark. The texts that 
result rapidly become unreadable. 

All of the above factors prompted the initial in­
terest in methods of automatic accent insertion (or 
A AI). Of course, as standards such as Unicode (mul­
tilingual character-coding standard) and MIME (mul­
tipurpose Internet mail extensions) gain ground, the 
accent legacy problem slowly disappears. The prob­
lem of typing accents, however, is likely to remain. 
For this reason, we have become interested in meth-



ods that would perform automatic accent insertion on­
the-fly, in real time. It appears to us that such a tool 
would be a valuable addition to any word-processing 
environment, equally useful for native and non-native 
speakers of Ftench. 

In what follows, we first present a general auto­
matic accent insertion method, based on a stocha.s­
tic language model. This method was implemented 
into a program called Reacc, which is now commer­
cially available through Alis Technologies 1 We then 
examine how this method can be adapted to perform 
accent insertions on-the-fly within a word-processing 
environment. As we go along, we describe the various 
experiments we designed to evaluate the performance 
of the system in different contexts, and present the 
results obtained. Finally, we briefly describe how a 
prototype "on-the-fly accentuation" ( OTFA) system 
was implemented within the Emacs text-editor. 

Although our research focuses on unaccented 
French texts, we believe that our approach could be 
adapted to other languages that use diacritical marks, 
as well as to other types of text corruption, such as 
those mentioned above. The AAI problem and the 
solutions that we propose are also related to the more 
general problems of word-sense disambiguation and 
spelling and grammar checking. 

2 Basic Automatic Accent Insertion 
In its simplest form, the autornatic accent insertion 
problem can be formulated this way: we are given as 
input an unaccented French text, in the form of a se­
quence of unaccented words w1 w2 . . Wn. To every one 
of these input words Wi may correspond any number 
of valid words (accented or not) wil ... Wim: our task 
is to disambiguate each word, i.e. to select the correct 
words WiJ..~; at every position in the text, in order to 
produce a properly accented text. 

An examination of the problem reveals that the vast 
majority (approximately 85%) of the words in French 
texts carry no accents at all, and that the correct form 
of more than half of the remaining words can be de­
duced deterministically on the basis of the unaccented 
form. Consequently, with the use of a good dictionary, 
accents can be restored to an unaccented text with a 
success rate of nearly 95o/o (i.e., an error in accen­
tuation will occur in approximately every 20 words). 
The problems that remain at this point mostly re­
volve around ambiguous unaccented words, i.e. words 
to which more than one valid form may correspond, 
whether accented or not2 . 

Obviously, for many such ambiguities in French, a 
simple solution is to systematically select the most 
frequent alternative. For instance, the most frequent 

1 A lis Technologies: http: //YYY. alis. com 
2 As we will see later on, other problems are caused by un­

known words , i.e. words for which no valid forms are known. 
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word in most French texts is usually the preposition 
de, which turns out to be ambiguous, because there is 
also a French word de, meaning either dice or thimble. 
If we simply ignore the latter form, we are likely to 
produce the correct form over 99% of the time, even 
in texts related to gambling and sewing' This general 
strategy can be implemented by determining a pri­
ori the most frequent alternative for each set of am­
biguous words in a dictionary, by means of frequency 
statistics extracted from a corpus of properly accented 
French text. Using this simple method, we achieve a 
success rate of approximately 97%, i.e. roughly one 
error per 35 words. 

Clearly, to attain better performances than these, 
an automatic accent insertion system will need to ex­
amine the context within which a given ambiguous 
word appears, and then resort to some form of lin­
guistic knowledge. Statistical langnage models seem 
to be particularly well fit to this task, because they 
provide us with quantitative means of comparing al­
ternatives. 

We propose an automatie accent insertion (AAI) 
method that proceeds in two steps. 

1. Hypotheses generation: identify for each in­
put word the list of valid alternatives to which it 
may correspond; 

2. Candidate Selection: select the best candidate 
in each list of hypotheses. 

This is illustrated in Figure 1. 

2.1 Hypotheses Generation 

Hypotheses generation produces, for each word VJi of 
the input, a list of possible words 'Wil . . W 1:m to which 
it may correspond. For example, the form pousse 
may correspond to either pou..sse or poussi; cote to 
cote, cOte, cote or cOte; the only valid form for fran­
cais is jran9ais (with a cedilla), and ordinateur is its 
own unique correct form. In theory, nothing precludes 
generating invalid as well as valid hypotheses at. this 
stage: for instance, for cote, also generate ciitc~ and 
9ote. But to limit the number of possibilities that the 
system must consider, hypotheses are produced using 
a list of known French word-forms, indexed on their 
unaccented version. On the other hand, when the hy­
potheses generator encounters word-forms that it does 
not know, it simply reproduces them verbatim. 

2.2 Candidate Selection 

Once lists of hypotheses have been identified for each 
input word, the best candidate of each list. must be 
identified. For this, we rely on a stochastic lan­
guage model, which can assign a score to any sequence 
of words, corresponding to the probability that. the 
model generate this sequence. Given an input se­
quence of words w1 w2 .•. Wn, and for each word Wi 



Input text: 
Mais, la cote une fois rejointe,il nous eut fallu retrouver l'escale. 

Hypotheses generation: 

-[ 
Mais ]- -[ 
Ma~a ' ·-

Candidate selection: 

-[ 
Mais]-, 
Mals 

Figure 1: Automatic accent insertion method 

in the sequence, a list of hypotheses ( wil,,, , , Wim), 

our goal can be reformulated as finding the sequence 
of hypotheses wlk1w2k 2 , , , Wnk, that maximizes the 
overall likelihood of the output sequence. 

The stochastic model we use is a Hidden Markov 
Model (HMM), within which a text is viewed as there­
sult of two distinct stochastic processes. The first pro­
cess generates a sequence of abstract symbols. In our 
case, these symbols correspond to morpho-syntactic 
tags, e.g. 11common noun, masculine-singular", averb, 
present indicative form, third person plural". In an 
N-tag HMM, the production of a tag depends on the 
N - 1 preceding tags, so that the probal)ility of ob­
serving a given tag ti in a given context f{)llows a con­
ditional distribution P(t;it;-N ... t;-r). 

Then, for each tag in this first sequehce, a second 
stochastic process generates a second symbol: in our 
case, these symbols correspond to actual words in the 
language. 

The parameters that define the model arc: 

• P(t;lh,_1 ): the probability of observing tag t;, 
given the previous N -- 1 tags (h+-l designates 
the series of N- 1 tags ending at position i- 1); 

• P(w;lt;): the probability of observing word w; 
given the underlying tag ti. 

Given these parameters, the probability of generat­
ing some sequence of words w = WI w2 ... Wn can be 
evaluated. If T is the tag alphabet, and T" denotes 
the set of all possible sequences of n tags ofT, then: 

P(w) = L IT P(t;lh;-r)P(w;it,) 
tE7'" i::::l 

The direct calculation of this equation requires a 
number of calculation that is exponential in the length 
of the sequence. However 1 there exists an algorithm 

that computes the value of P(w) in polynomial time 
(Rabiner and Juang, 1986). 

To find the sequence of hypotheses that maximizes 
the probability of the text, each individual combina­
tion of hypotheses is examined. Because the number 
of possible combinations grows exponentially with the 
length of the text, we will want to segment the text 
into smaller pieces 1 whose probabilities can be maxi-

. mized individually. Sentences are usually considered 
to be syntactically independent, and so we may as­
sume that maximizing the probability of each sentence 
will yield the same result as maximizing the whole 
text. Even within sentences, it is sometimes possible 
to find subsegments that are ((relatively" independent 
of' one another, Typically, the inner punctuation of 
se~1tences (semicolons, commas, etc.) separates seg­
ments that are likely to be independent of one an­
other. In the absence of inner punctuation, it is still 
possible to segment a sentence around regions of ((low 
ambiguity", 
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Our AAI method relies on a heuristic segmentation 
method 1 which cuts up each sentence into a number of 
segments, such that the number of combinations of hy­
potheses to examine in each segment does not exceed 
a certain fixed threshold, while minimizing dependen­
cies between segments. This segmentation strategy 
effectively guarantees that the accent-insertion can be 
done in polynomial time. But we sometimes end up 
segmenting the text at ((sub-optimar' locations. This 
will have consequences on performance) as we will see 
in the next section. 

Segments are processed in a. left-to-right fashion. In 
practice) we have realized that one way of minimizing 
the negative impact of sub-optimal segmentations is 
to prepend to each segment the last few words of the 
previous segment, as output by the AAI system. This 
seems to have the effect of "priming" the model. The 
prepended words are then simply dropped when the 



• 

final result is pieced together. 

2.3 Implementation 

The method presented in the previous section was 
implemented in a program called Reacc. This pro­
gram, given a hypotheses generator, the parameters 
of a HMM and an input, unaccented French text, pro­
duces an accented version of that text on the output. 

The hypotheses generator we used was produced 
from a list. of over 250 000 valid f\·ench words, ex­
tracted from our French morpho:-syntactic electronic 
dictionary. Such a large dictionary is probably 
overkill, and in fact, it may even be the case that 
it uselessly slows down processing, by proposing ex­
tremely rare (although probably valid) words. (The 
only francophones we met that had heard of a le were 
crossword puzzle addicts.) 

The language model used is a 2-tag HMM, based 
on a set of approximately 350 morpho-syntactic tags. 
The parameters of the HMM were first estimated by 
direct frequency counts on a 60 000 words, hand­
tagged extract of the Canadian Hansard. The pa­
rameters were then refined, using Baum-Welch reesti­
mation (Baum, 1972), on a 3 million word (untagged) 
corpus consisting of equal parts of Hansards, Cana­
dian National Defense docmnents and French press 
revues (Radio~ France International). 

2.4 Performance Evaluation 

One of the interesting properties of the AAI prob­
lem is that the performance assessment of a given 
program is a very straightforward affair: all we need 
is a- corpus of correctly accented French text, and a 
"de-accentuation" program. Performance can be mea­
sured by counting the number of words that differ in 
the original text and its re-acccnted counterpart. 

For the purpose of our evaluation, we used a test 
corpus made up of various types of text. It contains 
Hansard, National Defense and RFI documents (dis­
tinct from those used in training), but also United 
Nations documents, court transeripts, computer man­
uals as well as some literary texts. The whole corpus 
contains 57 966 words (as counted by the standard we 
UNIX program). 

Apart from the hypotheses generator and the lan­
guage model parameters, a number of parameters af­
fect the performance of the program. The most im­
portant of these is the maximum number of combina­
tions per subsegmcnt, that it used in the segmentation 
heuristic. In what follows, we refer to this parameter 
as S. The results obtained for different values of S are 
presented in Table 1. All tests were done on a Spare­
STATION 10 computer, with 32MB of memory. 

A cursory look at the results reveals that there is 
much to be gained by allowing the system to work on 
longer segments. However, beyond a certain limit, the 

quality of the results tends to level off, while the run­
ning time increases radically. Depending on the con­
text of application of the program and the resources 
available, it would seem that acceptable results can be 
obtained with S set at around 16 or 32. In this set­
ting, the system will process anywhere between 10 000 
and 20 000 words per minute. 

It is interesting to look at where R6acc goes wrong. 
Table 2 provides a rough classification of accent­
restoration errors made by the program on our test 
corpus with S set at 16. The largest category of ac­
centuation errors includes a rather liberal grouping of 
errors that have a common feature: they are the result 
of an incorrect choice pertaining to an acute accent on 
a final e. In most cases (although not all), this corre­
sponds to an ambiguity between a finite and participle 
forms of a verb, e.g. aime as opposed to aimC. The 
next group of errors are those that stem from inad­
equacies in the hypotheses generator ·~· i.e. cases in 
which the generator simply does not know the correct. 
accented form. In most cases (nearly half), proper 
nouns are involved, but, especially in more techni­
cal texts, there are also many abbreviations, non­
F'rench words and neologisms (e.g. niamCnagement, 
sCropositivite'). The next category concerns a unique 
word pair: the preposition a, and a, the third person 
singular present indicative form of the verb avoiT. 

2.5 Related Work 

El-Beze et al. (1994) present an AAI method that 
is very similar to ours. It also proceeds in two steps: 
hypotheses generation, which is based on a list of valid 
words, and candidate selection, which also relies on a 
Hidden Markov Model. The main difference between 
their method and ours is how the HMM is used to 
score competing hypotheses. While we segment the 
text into "independent segments1

' and maximize the 
probability of these segments, their program processes 
the text from left to right, using a fixed width "sliding 
window,,: 

llil For each word 'Wi, the hypotheses generator pro­
duces a list of possible wonljtag alternatives: 
( 'Wii 1 ti.I), ... , ( Wik 1 tik); 
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• Candidate Selection proceeds by selecting a spe­
cific pair ( Wij, t;j) at each position; the goal is to 
find the sequence of word/tag pairs whose prob­
ability is maximum according to the model: 

n 

IT P(w;;, It;;, )P(t;;, 1t,_ 1j,_,, t,_ 2;,_,) 

i=l 

e To avoid combinatorial problems, instead of com­
puting this product for all possible sequences, the 
system finds at each position i in the sequence 
the pair ( 'WiJ 1 tiJ) that locally maximizes that pari 



Max. no. of Running time Total number of Average distance 
combinations (seconds) errors (words) between errors 

per segment (S) (words) 
2 68 821 70 
4 85 560 103 
8 132 466 124 
16 169 441 130 
32 277 429 134 
64 429 425 136 
128 '----- 731 -- 420 137 

--~~--~---

Table 1: Results of AAI Experiments on 58K-word Test Corpus 

Type of error Number of occurrences Percentage 
-e VS. -c ending 171 38.8% 
Unknown words 111 25.2% 

" vs. a 69 15.7% 
Other 90 20.4% 
Total 441 100.0% 

Table 2: Classification of Accent Restoration Errors (S = 16) 

of the global c:ornputation within whieh it is in­
volved: 

pi X Pi-/-1 X pi+2 

where P, = P(wij; iti;, )P(ti;, it;-r;, _,, ti···2j,_,). 
o These eomputations proceed from left to right, so 

that the optimal tag found for position i will be 
used in the computation of the optimal word/tag 
pairs at positions i + 1 and i + 2. 

The experimental results reported in El-BE:ze et al. 
(1994) indicate success levels slightly superior to ours. 
This may be explained in part by the use of a better 
language model (their HMM is three-tag, ours is two­
tag). It must be said, however, that their test-corpus 
was relatively small (in all, a little over 8000 words), 
and that the performances varied wildly from text to 
text, with average distances between errors varying 
between 100 and 600 words. 

A method which exploits different sources of infor­
mation in the candidate selection task is described in 
Yarowsky (1994b): this system relies on local context 
(e.g., words within a 2- or 4-word window around the 
current word), global context (e.g. a 40-word window), 
part-of-speech of surrounding words, etc. These arc 
combined within a unifying framework known as de­
cision lists. \Vithin this framework, the system bases 
its decision for each individual candidate selection on 
the single most reliable piece of evidence. 

Although the work described in Yarowsky (1994b) 
does address the problem of l<'rcnch automatic accen­
tuation, it mostly focuses on the Spanish language. 
Furthermore, the evaluation focuses on specific am­
biguities, from which it is impossible to get a global 
performance measure. As a result, it is unfortunately 
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not currently possible to compare these findings with 
ours in a quantitative way. 

In Yarowsky (1994a), the author compares his 
method with one based on the stochastic part-of­
speech tagger of Church (1988), a method which ob­
viously has a number of points in common with ours. 
In Mr Yarowsky 1s experiments) this method is clearly 
outperformed by the one based on decision lists. This 
is most apparent in situations where competing hy­
potheses are "syntactically interchangeable'): pairs 
of words with identical morpho-syntactic features, or 
with differences that have no direct syntactic effects, 
e.g. present/preterite verb tenses. Such ambiguities 
are better resolved with non-local context 1 such as 
temporal indicators. As it happens, however, while 
such situations are very common in Spanish, they are 
rare in French .. Furthermore, Mr Yarowsky's language 
model was admittedly quite weak in the absence of 
a hand-tagged training corpus, he based his model on 
an ad hoc set of tags. 

3 On-the-fly Automatic Accent 
Insertion 

As mentioned earlier) the existence of unaccented 
French texts can in· part be explained by the lack 
of a standard keying convention for French accents: 
conventions vary from computer to computer, from 
keyboard to keyboard, sometimes even from program 
to program. Many users type French texts without 
accents simply because they are unfamiliar with the 
conventions in a particular environment, or because 
these conventions are too complicated (e.g. hitting 
three keys in sequence to type a single accented char­
acter). 
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Clearly, in some situations, automatic accent inser­
tion offers a simple solution to this problem: type the 
text without accents, run an AAI program on the text, 
and revise the output for accentuation mistakes. Of 
course, such a solution, if acceptable for one-time pro­
duction of short texts, is not very practical in general. 
If a text is subjected to a number of editions and re­
editions, or if it is produced cooperatively by several 
authors working in different environments, then it may 
need to go through a series of local re-accentuations. 
This process, if managed by hand, is error-prone and, 
in the end, probably more laborious than typing the 
accents by hand. 

If, however, the accents are automatically inserted 
on-the-fly, as the user types the text, then accent re­
vision and corrections can also be done as the text 
is typed. If such an on-the-fly accent?Wtion ( OTFA) 
system is capable of producing acceptable results in 
real-time, it may become a realistic alternative to the 
manual insertion of accents. In what follows, we ex­
amine how this may be done. 

3.1 Method 

How does OTFA differ from the basic AAI problem? 
In Section 2, the input was considered to be a static 
and (hopefully) complete text. In OTFA, the text. is 
dynamic: it changes with every edit operation per­
formed by the user. Therefore, the OTFA method 
that is conceptually the simplest is to re-compute the 
accentuation of the whole text after each edit, i.e. re­
peatedly apply to the entire text an AAI method such 
as that proposed earlier. 

Of course, such a method is impractical, mainly be­
cause it. will likely be computationally excessively ex­
pensive. It is also overkill, because changes in one 
region of the text are unlikely to affect the accentu­
ation of the text in more or less distant regions. In 
fact, if we use the AAI method of Section 2, changes 
in one location will have no effects outside the sen­
tence within which the edit occurs, because sentences 
are all treated independently. Because sentences are 
themselves sub-segmented, it is tempting to think that 
the effect of a given edit will be even further restricted, 
to the segment of the sentence within which it takes 
place. This, however, is not generally true, firstly be­
cause an edit is likely to affect the sub-segmentation 
process itself, and also because changes in one seg­
ment can have cascading effects on the subsequent seg­
ments, as the last words of each segment arc prefixed 
to the following segment as additional context. 

So a more practical solution is to process only the 
sentence within which the latest edit occurred. There 
are still problems with this approach, however. While 
the user is editing a sentence, chances are that at any 
given time, this sentence is "incomplete'). Further­
more, although modern text-editors allow insertions 

and deletions to be performed in any order and at 
any position of the text, in a normal text-editing con­
text) given the natural tendency of humans to write in 
a beginning-to-end fashion, the majority of the edits 
in a French text will be left-to-right insertions at the 
end of sentences. This means that at any given time) 
the text to the left of the latest edit is likely to consti­
tute relevant context for the AAI task, while the text 
to the right is likely not to btl relevant. In fact, taking 
this text into consideration could very well mislead 
the AAI process) as it may belong to a completely 
different sentence. 

This suggests a further refinement: after each edit, 
process only that part of the current sentence that lies 
to the left of the location where the edit took place. 

Also, it seems that there is no real need to take any 
action while the user is modifying a given word) and 
that it would be wiser to wait until all edits on that 
particular word are finished before processing it. By 
doing so) we will not only save computational tirnc, we 
will also avoid annoying the user with irrelevant accen~ 
tuations on ''partial" words. Notice, however, that de­
tecting the exact moment when the user has "finished" 
typing or modifying a word can be a tricky business. 
We will deal with this question in Section 3.4. 

One of the potential beneflts of performing accen­
tuation on-the-fly, as opposed to a posteriori AAll is 
that the user can correct accent errors as they hap­
pen. In turn, because accentuation errors sometimes 
cascade, such on-the-fly corrections may help the AAI 
"stay on the right track". 

If we want to capitalize on user-corrections) we will 
need to: 

1. somehow distinguish "corrections// /TOm other 
types of edits: the reason is that we don't want 
to override the user's decisions when performing 
AAI. This question will also be dealt. with when 
we discuss implementation details (Section 3.4). 
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2. limit the scope of the A A Is to a small number of 
words aronnd the location of the last edit: the user 
can only correct the error that he sees; in theory, 
the effect of AAI after each edit is limited to the 
current sentence, but sentences come in all sizes. 
If a given "round" of AAI affects text too far away 
from the site of the last edit, which is usually also 
the focus of the user's attention, then he is likely 
not to notice that change. For this reason, it 
seems reasonable to restrict the actual scope of 
the AAI process to just a few words: intuitively, 
three or four words would be reasonable. Note 
that this doesn )t imply restricting the amount of 
context that we provide the AAI with, but only 
limiting the size of the region that it is allowed to 
modify. 
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To summarize, the OTFA method that we propose 
essentially follows these lines: 

• OTFA is performed by repeatedly applying an 
AAI method (such as that of Section 2) on the 
text. 

• AAI rounds arc triggered every time the user fin­
ishes editing a word. 

• The scope of AAI (which we call the AAI win­
dow) is limited to a fixed number of words to the 
left of the last word edited. 

• If this can be useful to the AAI process, more con­
text can be given, in the form of additional words 
belonging t.o the same sentence to the left of the 
AAI window (what we call the context window). 

3.2 Performance Evaluation 

The ultimate goal of OTFA is to facilitate the editing 
of French texts. Therefore, it would be logical t.o eval­
uate the performance of an OTFA system in those 
terms. Unfortunately, the ~~case of typingn is a no­
tion that is hard to quantify. In theory, typing speed 
would seem to be the most objective criterion. But 
measuring performance using such a criterion would 
obviously require setting up a complex (~xperimental 
protocol. On the other hand, the number and nature 
of parameters involved prohibits a ('theoretical'' eval­
uation in these terms. 

Vlhat we can reliably evaluate, however, is the ab­
solute performance of an OTFA system, in terms of 
the number of accentuation errors, for a giren editing 
;\session". Such a measure gives us an irituitive idea 
of the impact of the OTFA system on the '(case of 
typing)'. ' 

Y..,Te conducted a number of experiments along this 
line, to evaluate how an OTFA system based on the 
AAI system of Section 2 would perform. All experi­
ments were done by simulation, using the same corpus 
that was used in Section 2.4. The editing "session" we 
simulated followed a very simple scenario: the user 
types the whole test corpus, from beginning to end, 
without typing accents, without making errors, and 
without correcting those made by the OTFA system. 

As was the case with the Reacc program, several 
parameters affect the quality of the results and the 
computation time required. The only parameter that 
is specific to our OTFA method, however, is the size 
of the AAI window. This parameter, which we refer 
to as TV, is measured in words. We conducted distinct 
experiments with various values for W, the results of 
which arc summarized in Table 3. In all of these ex-· 
periments, the segmentation factor S was set at 16. 

The first conclusion that we can draw from Table 3 
is that there is much to be gained in using an AAI 
window of more than one word: setting W ::::: 2 al­
lows to cut down the number of errors by almost 60%. 
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Performance quickly levels off, however, so that near­
optimal results are obtained with a three- or four-word 
window. This is encouraging, because it seems reason­
able to assume that the user can effectively monitor a 
window of that size, and therefore detect accentuation 
errors when they occur. 

Another point that is very encouraging\ and per­
haps surprising, is that with W = 3, the performance 
of our OTFA system rivals with that of the basic AAI 
experiments reported in Section 2.4. One possible ex­
planation is that because the OTFA works with only 
a small number of words at each round (i.e. only the 
words in the AAI window), the system never has more 
than S ::::::::: 16 combinations to examine, and therefore 
never needs to segment sentences into smaller pieces. 
In the end, both ways of proceeding are probably 
more or less equivalent, although more experimenta­
tion would be required to determine this for sure. The 
major difference, of course, is that since OTFA recom­
putes accentuation with every new word, its compu­
tational cost is accordingly higher. However, as seen 
in Section 2.4, our AAI system can process 20 000 
words per minute. Since very few typists can enter 
more than 100 words per minute, even a straightfor­
ward OTFA implementation should be able to handle 
the required computations in real-time. 

3.3 User-feedback 

We mentioned earlier that one of the expected benefits 
of OTFA, as opposed to applying AAI on a text a pos­
teriori, is that the user can spot accent errors as soon 
as they happen, and correct them right away. In fad, 
we believe that this form of user-feedback can even be 
fm;t.her exploited, to improve the performance of the 
system itself. As pointed out. in Section 2.4, about. a 
quarter of AAI errors arc caused by unknown words, 
i.e. words in the correctly accented version of the text 
which are unknown to the hypotheses generator. This 
suggests an easy way of exploiting user-feedback: sys­
tematically add to the hypotheses generator all user­
corrected words whose form is unknown. 

In principle, if we add such a mechanism to our 
OTFA system, and if the user corrects the AAI er­
rors as soon as they happen, unknown words will be 
lexicalized right after their first appearance, and the 
system should only make one error per unknown word. 
In preliminary experiments with this idea, the average 
distance between errors passed from 138 to 156 words, 
a reduction of almost 12% on the total number of er­
rors. Our test. corpus being heterogeneous by design, 
unknown words do not repeat very often. VVe suspect 
that even better improvements would be observed on 
homogeneous texts of similar size. 

This idea of exploiting user-feedback to modify the 
parameters of the OTFA dynamically can actually be 
pushed further. One of the current problems with 



AAI window (W) Total errors Average distance 
(words) between errors 

(words) 
I 1125 52 
2 461 126 
3 420 138 
4 417 139 
8 417 139 
16 417 139 . ·-

Table 3: OTFA Simulation Results 

our OTFA system is its sometimes annoying tendency 
to systematically select the most frequent alternative 
when confronted with syntactically interchangeable 
words. For example, the two French words cote and 
cOte have similar morpho-syntactic features (common 
noun, feminine singular) and so, from a grammatical 
point of view, are totally interchangeable. It so hap­
pens, however, that in the language model's training 
corpus, the second form, which is highly polysemous, 
is much more frequent. Therefore, the OTFA will sys­
tematically produce that form rather than the other. 
If the user of the system is writing about the stock 
market for example, he is likely to want to use the 
first form cote, and therefore to react negatively to 
the system's insistence on putting a circumflex accent 
where none should appear. 

T'o solve this problern 1 some form of dynamic lan­
gttage modeling is required. We have begun experi­
nwnting with an approach initially proposed by Kuhn 
and Mori (1990) to solve a similar problem in speech 
recognition applications. Essentially) they suggest us­
ing local context to estimate the parameters of a. un­
igram Markov model, and to use this model in eon­
junction with the static Hl\!ll\!1 to evaluate competing 
alternatives. Preliminary results with this approach 
are encouraging1 although much work remains to be 
done. 

3.4 Implementation 

As mentioned earlier 1 the AAI method presented in 
Section 2 has been implemented as a program and C 
function library. Based on this implementation, a pro­
totype OTFA system was developed and integrated to 
the Emacs text-editor. Although Emacs is not gen­
erally viewed as a true word-processing environment, 
it was a natural choice for prototyping because of its 
openness and extendibility. 

In our implementation, the user of Emacs has access 
to a special editing mode called Reacc-mode (techni­
cally speaking, a minor-mode). When in this mode, 
the user has access to all the usual editing functions: 
he can move the cursor around, insert, delete 1 etc. 
The main difference with the normal ''fundamcntar' 
mode is that now, accents are automatically inserted 
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a.s words are typed, without the user having to explic­
itly type them. 

The implementation follows the general lines of the 
OTFA method presented in Section 3.1: every time 
a new word is inserted, the system identifies the AAI 
window, submits the words that fall within this win­
dow to the AAI system, and replaces the content of 
the window with the newly accented words. 

In practice, Emacs and the AAI program run as 
separate processes, and communicate asynchronously: 
when a new word is typed 1 Emacs sends the AAI win­
dow to the AAI process, along with other relevant 
information (context, position, etc.), and returns the 
control to the user. The AAI program processes the 
''accentuation request'1 in the background, and sends 
the results back to Emacs as soon as they are ready. 
\¥hen this happc-'.ns, Emacs interrupts whatever it was 
doing, and replaces the original contents of the AAI 
window with the newly arrived words. This way, user­
interaction is not significantly slowed down by the AAI 
process, because time-consuming computations typi­
cally take place during the editor 1s idle time, between 
keystrokes. 

It is the editing process, responsibility to initi­
ate AAI rounds, and therefore to determine when a 
new word has been typed. After experimenting with 
various strategies, we opted for a relatively simple 
method, based on the possibility to mark individual 
characters of the text with specific ''propertics1

' in 
Emacs. When words are processed by the AAI pro­
gram and re-inserted into the text, they are systemat­
ically marked as auto-accented. By contrast, charac­
ters typed by the user do not carry this mark. Every 
time the user types a space or newline character, we 
examine the word immediately preceding the cursor: 
if all its characters are unmarked 1 then a new AAI 
round must be initiated. 

We mentioned earlier that it was important for an 
OTFA system not to override the usees decisions. 
Two situations are particularly important to consider: 
when the user manually types an accent within a new 
word 1 and when the user corrects the accentuation of a 
word. In both cases, it is undesirable that the OTFA 
modify the words in question. The character mark-



ing capabilities of Emacs are also used to detect these 
situations. The first case (new word with accents) 
will be identified easily by the presence of accented 
characters within an unmarked word. The second sit­
uation (accent corrections) is more difficult to detect~ 
but in general, a mix of marked and unmarked char­
acters within a single word is a good indicator that 
corrections have taken place. 

VVhen these two situations occur, not only do we not 
initiate an AAI round, we also inhibit any further re­
acccntuations on these words, by marking their char­
acters as nser-validated. Words bearing this mark will 
never be touched by AAL This type of marking is not 
limited to user-inserted accents and user-corrections: 
when the user turns Reacc-rnodc on, all existing text is 
initially marked that way. Later on, when AAI rounds 
are initiated and the system locates the AAI window, 
all text outside this window is also marked as user­
validated. This way of proceeding, while allowing the 
OTFA system to do its work during simple text inser­
tions, lil;1its the possibility of "unpleasant surprises)) 
when more complex interactions take place (deletions, 
corrections, cut-and-paste operations, etc.). 

4 Conclusion 
We have presented a method for automatically insert­
ing accents into French text 1 based on a stochastic 
language model. This method was implemented into 
a program and C library of functions, which are com­
mercially available from Alis Technologies. We have 
also shown how this method can be use~f to do on­
the-fly accent insertions within a word-prOcessing en-· 
vironmcnt. A. prototype OTFA system ,was also im­
plemented and integrated into the Emacs editor. 

Text processed with our system contains less than 
one accent error per 130 words on average, regardless 
of whether the system is used on its own or within 
an OTFA environment. On a Sun SparcSTATION 
10 computer, with 32 MB, the system will process 
approximately 20 000 words per minute. Within the 
Emacs OTFA prototype, because AAI is performed 
asynchronously, the performance of the editor itself is 
not. affected, and accents arc inserted faster than this 
typist can type3 . 

The program has been made available to students 
and crnployees of the Universite de J\1ontr6al's com­
puter science department, and initial feedback has 
been positive. We are currently examining the pos­
sibility of integrating ~ur OTFA method to a ((realn 
word-processor, such as Microsoft Word. 
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Introduction 
Either directly or indirectly, the lexicon for a natu­
ral language specifies complementation frames or va­
lences for open-class words such as verbs and nouns. 
Constructing a lexicon of complementation fram<:~s 
for larg<-'! vocabularies constitutes a challenge of scale, 
with the further complication that frame usage, like 
vocabulary, varies with genre and undergoes ongo­
ing: innovation in a living language. This paper ad­
dresses this problem by means of a learning tech·· 
niquc baswi on probabilistic lexicalized context free 
grammars and the expectation-maximi~";ation (EM) 
algorithm. Given a hand-written grammar and a 
text corpus, frequencies of a head word accompanied 
by a frame are estimated using the inside-outside al­
gorithm, and such frequencies are used to compute 
probability para.meters characterizing subcategoriza­
tion. The procedure can be iterated for improved 
models. \Nc show that the scheme is practical for 
large vocabularies and accurate enough to capture 
differences in usage, such as those characteristic of 
different domains. 

A grammar and formalism 
The core of t.he grammar is an X grammar (Jackend­
off [1977]) of phrases including noun phrases, preposi­
tional phrases, and verbal clusters. A representative 
verbal structure is given on the left in Figure 1. The 
symbol VF'C is read "finite verb chunk''; similarly we 
work with noun chunks (Nc), prepositional chunks 
(Pc), and so forth. Our use of the ehunk concept 
follows Abney [1991], Abney [1995]. Categories are 
interpretable in terms of a feature decomposition, but 
are treated as atomic in the formalism. We depart 
from a standard context-free formalism in that heads 
are marked on the right hand sides of rules, using a 
prime ('). 

The grammar includes complementation rules for 
verbs, nouns, and adjectives. Complements are at­
tached at. a level above the chunk, which we call the 
phrasal level. For instance, the category VFP is ex­
panded as a finite verb chunk vrc and a sequence 
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of complements. This is illustrated on the right in 
Figure 1, where the VFC headed by decided takes a 
VTOP complement, the VTOC headed by emphasize 
takes an NP complement, and so forth. 

Finally, the least standard part of the grammar is a 
large set of state or n-gram rules which form a parse 
without constructing a standard clause-level analy­
sis. Instead) phrasal categories are strung together 
with context-free rules modelling a finite state ma­
chine, \vhcre the states are categories consisting of 
an ordered pair of phrasal categories. This results 
in right-branching structures, as illustrated Figure 2. 
Note that the entire tree on the right in Figure 1 
could be substituted for the finite verb phrase VFP in 
the tree on the left in Figure 2. The st<:l.te rules allow 
almost all the sentences (about 97%) in the corpus to 
be parsed, at the price of not assigning linguistically 
realistic higher-level structure. 

We now define headed context-free grammars in 
the sense employed here. 

Definition. A headed context free grammar is a 
tuple (N,T, W,L, R,s), where: (i) Nand Tare dis­
joint sets, interpreted as the non-terminal and ter­
minal categories respectively. (ii) VV is a set, in­
terpreted as the set of words. (iii) L is a relation 
between W and T, indicating the possible terminal 
categories {parts of speech) for a given word. {iv) 
The set of headed productions R is a finite subset of 
N x N' x (NUT) x N', such that each non-terminal 
occurs as the left hand side of some rule and each 
terminal occurs on the right hand side of some rule. 
(v) s E N, with the interpretation of a start symbol. 

We typically use fi as a variable for mother cate­
gories, n for head daughter categories, and a and (3 
for the category sequences flanking the head on the 
right hand side, so that (ii, a, n, (3) represents a rule. 
x is used as a variable for non-head categories. 

A category n in N is a projection of a category n 
in NUT if there is some rule of the form {ii, a, n, (3). 
The set of lexicalized nonterminals N C W x N is 
the composition of .C with the transitive closure of the 
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Figure 1: Illustrations of a finite verb chunk and complementation. 

projection relation. We have (w, n) eN if the word w 
can be the lexical head of the nontcrminal category 
n (in a complete or incomplete tree). 

Lexicalization and the probability 
model 

This section defines a parameterized family of proba­
bility distributions over the trees license_dfby a bead­
lexicalixed CFG. The main ideas on th'C parameter­
ization of a lexicalized context free grr-mmar which 
are employed here derive from Charniak [1995]; see 
also the remarks on lexic:alization in Charniak [1993 1 

section 8.4]. 
The head marking on rules is used to project lexical 

items up a chain of categories. In the transitive verb 
phrase on the right in Figure 21 question is projected 
to the NP level) and asked is projectE~d to the VFP 

level. In this tree, the non-terminal nodes are lexi­
calized non-terminals) while the terminal nodes are 
members of £. The point of projecting head words 
is to make information which probabilistically condi­
tions rules and lexical choices available at the rele­
vant leveL At the top level in this example, the head 
asked is used to condition the choice of the phrase 
structure rule VFP -+ YFC' NP as well as the choice 
of question, the head of the object. 

We now define events which characterize choices of 
rules and of lexical beads. 
Definition. Given 
a grammar G = (N, T, W, £, R., s) with lexicalized 
non-terminals N, the set of rule events ER( G) is the 
set of tuples (w, n, a, n, f!) such that (w, n) is an el­
ement of N and (n, a, n, f!) is an element of R.. The 
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set of lexical choice events EL(G) is the set of tuples 
(w, n, x, v) such that (i) (w, n) and (v, x) are elements 
of N; 1 (ii) in some rule of the form (h) a 1 n, {3), x is 
an element of one or both of the category sequc_nces 
o: and {3; and 

By virtue of the length of tuples, ER(G) and 
EL(G) are disjoint, and the union E(G) can be 
formed without confusing lexical with rule events. 

A head-lexicalized PCFG is represented as a func:­
~tion mapping events to real numbers. 
Definition. Let G be a headed context free gram­
l:nar. A head-lexicalized probabilistic context free 
grammar with signature G is a function p with do­
main E(G) and range [0, 1] satisfying the concli­
ticms: (i) Fixing any lexicalized non-terminal (1V, ft), 
"i:.o:,n,fJPW,fl.,a,n,fJ::::: 1; (ii) Fixing any lexicalized non·· 
terminal (w, n) and possible non-head daughter :r, 
Lx,w Pw,11,x,w = l. Here the value of the function 
p on a rule event is written as Pw,n,a,n,J3, and on a 
lexical event as P~u,n,:c,w· 

To assign probability weights to trees, we usc 
a tree-licensing and labelling interpretation of the 
grammar; a node in a tree analysis is labeled with 
event corresponding to the rule used to expand the 
node, and the list of lexical events for the non-head 
daughters of the node. Where r is a labeled tree li-

1 In the events, conditioning factors are ordered in the 
way they are dropped off in the smoothing procedure de­
scribed below. In a lexical event (w, n, x, v), the choice of 
the word v is conditioned on the parent lexical head w, 
the parent category n., and the child category x. In the 
first smoothing distribution, the first conditioning factor, 
i.e. the parent head w, is dropped. 
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Figure 2: Left: finite-state structure; Right: Lexicalization. 

censed by G, we define e(-r) : E(G) -t IN to be a 
function counting occurrences of events as labels in 
-r. Algebraically, we think of e(r) as a monomial in 
the variables E(G); the exponent of a given variable 
(or event) z is the number of occurrences of z in 1, 

We denote the evaluation of a polynomial or mono­
mial <P in the variables E(G) by subscripting: </Jp is 
the value of <P at the vector of reals p. Relative to 
a parameter setting p, [e(r)]p is interpreted as the 
probabilistic weight of the labeled tree r 2 

These notions are exemplified in Figure 3, which 
is a phrase structure tree for the N1 (read: N-bar) 
/Jig big problem in a grammar where N1 is the sen­
tence category. Each non-terminal is labeled with a 
phrase structure rule, and with lexical choice events 
for non-head daughters. In this case, the only non­
head daughters are the two A 1 's headed with head 
big. (problem,N1,A1,big) is a lexical choice event 
where big is selected as the head of an A1 with par­
ent category N1, and parent head pr-oblem. An event. 
monomial corresponding to the event tree is obtained 
as the symbolic product of the events labeling the 
tree, 

Parameter Estimation 
Given a grammar G) the inductive problem is to es­
timate a head-lexicalized PCFG with signature G. 
We work with the standard method for estimat­
ing PCFGs, based on the Expectation-Maximization 

2 As with ordinary PCFGs) depending on the parame~ 
ters, the construction may or may not define a probability 
measure on the set of finite trees licensed by G. For the 
general case, infinite trees can be included in the sam­
ple space, This requires an extension in the definition of 
the measure but does not affect the probabilities of finite 
trees. 
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framework (Baum & Sell [1968]; Dempster, Laird & 
Rubin [1977]). 

Above, we defined the event polynomial e(r) for 
an event tree r licensed by G. The event polynomial 
for a sentence a is the sum of the event polynomi-· 
als for the event trees with yield a. Where corpus 
C is a sequences of sentences, the corpus event poly­
nomial e(C) is the (polynomial) product of the event 
polynomials for the sentences in C, In these terms, 
maximum likelihood estimation selects a parameter 
setting p such that the value [e(C)]p of the corpus 
polynomial is maximized; this corresponds to select­
ing a parameter setting which maximizes the proba­
bility of the corpus. 

The E step of the EM algorithm computes an ex­
pected event count function which can be defined in 
terms of the corpus polynomiaL In the estimation 
of PCFGs using the inside-outside algorithm, event 
counts are computed iteratively, sentence by sen­
tence, The computation uses a packed parse forest, a 
compact and-or graph representing a set of trees and 
the sentence event polynomial, and which allows ef­
ficient computation of expected event counts, Some­
what more formally, we use the Inside-outside algo­
rithm (Baker [1979]). to compute Ep(zla): E(G) -t 
Dl where z ranges over events in the join rule and 
lexical event space E(G), defined earlier. c(a,p)(z) 
has the probabilistic interpretation of the expected 
number of occurrences of the event z in the set of 
trees with yield cr. 

Given a parameter setting p, event counts are com­
puted and summed over the sentences in the corpus, 
In the algorithm of Baum and Sell, new parame­
ter values would be defined as relative frequencies 
of event counts, Le. maximum-likelihood estimation 
based on hidden data in the EM framework. We 
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Figure 3: On the left, an event tree. On the right, the corresponding lexicalized tree. On the bottom, the event 
monomial obtained as a symbolic product of the event labels. The lexical choice event involving START-CAT 
chooses the head of the sentence, in this case problem. 

use instead a modified M step involving a smooth­
ing scheme in order to deal with the size of the pa­
rameter space and the resulting problems that (i) 
countt> are zero for the majority of events, and (ii) 
the parameter space is too large to be represented 
directly in computer memory. Lexicalized rules are 
smoothed against non-lexicalized rules in a standard 
back-off scheme (Katz [1980]). The smoothed proba­
bility is defined as a weighted sum of the maximum­
likelihood estimates for the lexicalized and unlexi­
calized rule probabilities. The smoothing weight is 
allowed to vary through five discrete value~ as a func­
tion of the frequency of the word-categol'y pair. The 
parameters give greater weight to the lexicalized dis­
tribution when enough data is present' to justify it. 
The smoothing parameters are set using the EM al­
gorithm on reserved data. 

For the lexical choice distributions, an absolute dis­
counting scheme from Ney, Essen & Kneser [1994] is 
used, which is similar to Good-Turing, but somewhat 
simpler to work with. 

The experiment 
We estimated a head-lexicalized PCFG from parts 
of the British National Corpus (BNC Consortium 
[1995]), using the grammar described in the first sec­
tion and the estimation method of the previous sec­
tion. A bootstrapping method was used, in which 
first a non-lexicalized probabilistic model was used 
to collect lexicalized event counts. On the next iter­
ation, counts were estimated based on a lexicalized 
weighting of parses, as described in the previous sec­
tion. 

Analyses were restricted to those consistent with 
the part of speech tags specified in the BNC, which 
are produced with a tagger. In each lexicalized iter­
ation, event counts were collected over a contiguous 
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five million word segment of the corpus. Parameters 
were re-cornputed in the way described above, and 
the procedure was iterated on the next contiguous 
five-million word segment. Results from all iterations 
were pooled to form a single model estimated from 
50M words. Table 1 illustrates lexical distributions 
in this model. 

This training scheme allows the frame distribu­
tions for high-frequency words a chance to con­
verge on their true distributions, whereas a single 
50M word iteration would not. The strategy de­
rives from a variant generalized EM algorithm pre­
sented in Neal & Hinton [1998]. In a nutshell, re­
estimating the parameters during the course of a sin­
gle training iteration will still lead to convergence 
On a maximum-likelihood estimate, provided certain 
conditions are met. Foremost among these is the re­
quirement that no parameter setting can be prema­
turely set to zero; this is met by our smoothing strat­
egy. This is not to say that precisely the same strat­
egy, pursued across multiple iterations, would pro­
duce a maximum-likelihood estimate; it would not. 
However, "classical" EM, requiring repeated itera­
tion over the entire training set, is both relatively 
inefficient and infeasible given our present computa­
tional resources. 

Dictionary Evaluation 
The comparison to frames specified in a dictionary 
we use was introduced by Brent [1993] and subse­
quently used by Manning [1993], Ersan & Charniak 
[1995] and Briscoe & Carroll [1996]. The measure 
uses precision and recall to compare the set of in­
duced frames to those in the standard. Precision is 
the percentage of frames that the system proposes 
that are correct (i.e. in the standard). Recall is the 
percentage of frames in the standard that the system 



PNP satisfactonLADJP w PVFP address NP w 
adverb prob noun prob 
entirely 0.17 question 0.086 
highly 0.11 issue 0.086 
rnost 0.09 themselves 0.059 
very 0.075 issues 0.031 
quite 0.055 structure 0.031 
wholly 0.032 argument 0.014 
uncommonly 0.0037 questions 0.0043 
especially 0.0037 electorate 0.0043 

... ... --

Table 1: On the left: the eight largest parameters 
in the lexical choice distribution describing modify­
ing adjectives selected by satisfactory. On the right: 
parallel information for the distribution describing 
heads of objects of the verb address. . 

proposes. If the results are broken down into true 
positives (TP), false positives (FP), true negatives 
(TN), and false negatives (FN), precision is defined as 
TP/(TP+FP) and recall is TP/(TP+FN). To pro­
duce measurements from our system, we must first 
reduce our distributions to set membership. Brent 
proposed a stoehastic filter for this reduction, consist­
ing of a set of per-frame probability cutoffs, which are 
applied independently of the lexical head. Although 
though the independence assumption is certainly du­
bious, we have adopted this method, without change, 
except for the introduction of a heuristic for finding 
the frame cutoffs. 

The key property of cutoffs is that they control the 
tradeoff of precision versus recall. Raising the cutoff 
will generally produce a higher precision, but lower 
recall, and contrariwise. As we are neutral about this 
tradeoff, we set the cutoffs at the crossover point! 
where the difference in precision and recall changes 
sign. This is not entirely deterministic, as the mea­
sures may cross more than once; in that case, we 
optimize for the best precision. 

For our dictionary, we used The Oxford Advanced 
Learner·'s Dictionary (Hornby [1985]), also used by 
Ersan/Charniak and Manning. We reduced our 
frame set and the dictionary 1

S to a common set, map­
ping some frames and eliminating others. For evalu­
ation, we selected 200 verbs at random from among 
those that occurred more than 500 times in the train­
ing data; half were used to set the optimal cutoff 
parameters, and precision and recall were measured 
with the remainder. 

Table shows results broken down by frame. The 
largest source of error is the intransitive frame. It 
is not hard to understand why: our robust parsing 
architecture resolves unparsable constructs as intran­
sitives. In addition to sentences where verbs are not 
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cutoff TP FP FN prec rec 
.. 

~ns 0.15 20 24 12 0.6471 0.781 
NP 0.021 3 5 1 0.9479 0.98! 

~- 0.079 92 0 6 1 0.21 
pp 0.045 27 15 6 0.7761 0.89( 
PART 0.027 60 5 14 0.8077 o:ii 
VTOP 0.079 83 1 7 0.9 0.56~ 
NP PP 0.040 26 11 10 0.8281 0.84J 
NP PART 0.0099 68 6 12 0.7 0.53i 
NP NP 0.036 81 6 8 0.4545 0.38' 
NP VTOP 0.018 84 1 6 0.9 0.6 
V!NG 

~VING 
0.019 86 3 6 0.625 0.45' 
0.017 93 3 2 0.4 0.5 

-
NP VINF 0.019 99 1 0 0 -

NP ADJ 0.016 85 1 12 0.6667 0.14; 
PP VTOP 0.014 97 1 1 0.5 0.5 

C ___ _j_ _ __J_I_~31~0:._tl_:8:::::3:._ti_:1QLLO. 7888 1 o. 75c 

Table 2: Precision/recall broken down by frame. 

linked up with their complements because of interjec­
tions, complex conjunctions or ellipses, this includes 
frames such as SBAR and WH-complernents which are 
not included in the dnmk/phrase grammar. While it 
would be possible in principle to extract these from 
the present word collocation statistics, we plan in­
stead to pursue a solution involving extensions in the 
grammar. 

A second major source of error is prepositional 
phrases. The complementation model embodied in 
the PCFG does not distinguish complements from 
adjuncts, and therefore adjunct prepositional phrases 
are a source of false positives. Thus the NP PP frame 
is scored as a false positive for the verb meet, be­
cause the OALD does not list the frame, although 
the combination appears often in the corpus data. 
While such frames lead to a loss of precision in the 
dictionary evaluation, we do not necessarily consider 
them a flaw in the information learned by the system, 
since the argument/adjunct distinction is often ten­
uous, and adjuncts are in many cases lexically con­
ditioned. 

Lastly, there are many false negatives for the par­
ticle frame and noun plus particle. This is mainly 
due to disagreements between BNC particle tagging 
and particle markup in the OALD. 

Despite these difficulties, the summary shown in 
table shows results that are on the whole favorable. 
In comparison with other work with a comparable 
number of frames (Manning, Ersan/Charniak), the 
system is well ahead on recall and well behind on 
precision. If one takes the sum of precision and re­
call to be the final performance indicator, than we 
are slightly ahead: 1.54 vs. 1.44 for Ersan and 1.33 



precision ':Yo 
·-

recall 'Yo of frarnes no. 
lex PCFG 79 75 15 
Briscoe 66 36 159 
Charniak 92 52 16 
Manning 90 43 19' 

Table 3: Type precision/recall comparison. Some of 
Manning's frames are parameterized for a preposi­
tion. 

for Manning. Briscoe and Carroll's work, with ten 
times as many target frames, is so different that the 
numbers may be regarded as incomparable. 

Obviously, precision and recall measured against 
a standard relies on the completeness and accuracy 
of that standard. In checking false positives, Ersan 
and Charniak found that the OALD was incomplete 
enough to have a serious impact on precision. Sym­
metrically, false negatives conflate deficiencies in the 
corpus with poor learning efficiency. It is impossible 
to say based on table which of the systems is more 
efficient at learning. While our system shows the best 
recall, this could be attributed to our having the best 
training data. Cha.rniak used 40M words of training 
data, comparable to our SOM, but his data was homo­
geneous, all taken from the Wall Street JournaL As 
we will show below, frame usage varies across genres, 
so the BNC, which includes texts from a wide vari­
ety of sources, shows more varied frame usage than 
the WSJ, and thus provides better dad for frame 
acquisition. 

Cross entropy evaluation 
The information-theoretic notion of cross entropy 
provides a detailed measure of the similarity of the 
acquired probabilistic lexicon to the distribution of 
frames actually exhibited in the corpus (which we 
call the empirical distribution). The cross entropy of 
the estimated distribution q with the empirical dis­
tribution p obeys the identity 

CE(p, q) = H(p) + D(pllq) 

where H is the usual entropy function and D is the 
rel1etive entropy, or Kullback-Leibler distance. The 
entropy of a distribution over frames can be con­
ceptualized as the average number of bits required 
to designate a frame in an ideal code based on the 
given distribution. In this context, entropy measures 
the complexity of the observed frame distribution. 
The relative entropy is the penalty paid in bits when 
the frame is chosen according to the empirical distri­
bution p, but the code is derived from the modeJls 
estimated distribution, q. Relative entropy is always 
non-negative, and reaches zero only when the two 
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obs freq est freq 
1 imag natsci 1 frame imag 1 natsci 1 

51 39 NP VTOP 40.4 34.2 
21 43 NP 20.7 33.1 
13 6 NP NP 8.8 3.9 
6 1 NP PP 3.2 4.7 
5 I NP PART 1.7 1.0 
2 11 PP 1.8 10.2 
I 0 SBAR 0 0 
I 0 In trans 9.3 7.6 

1 2130 1 1.913 1 entropy 1 2.476 1 2.423 1 

Table 4: True and estimated frame frequencies for 
allow. 

distributions are identical. Our goal, then, is to min­
imize the relative entropy. For more in-depth dis­
cussion of entropy measures, see Cover & Thomas 
[1991], or any introductory information theory text. 

For relative entropy to be finite, the estimated dis­
tribution q must be non-zero whenever p is. How­
ever, some observed frames are not present in the 
grammar, for one of two reasons. Some well-known 
frames such as SBAR require high-level constructs 
not available in the chunk/phrase grammar and un­
usual/unorthodox frames turn up in the data, e.g. 
PAH.T PP PP. Since the model lacks these frames, 
smoothing against the unlexicalized rules is insuffi­
cient. Instead, for all the estimated distributions, 
we smooth against a Poisson distribution over cat­
~egories, which assigns non-zero probability to all 
frames, observed or not. This allows us to spell out 
the unknown frame using a known finite alphabet, 
the grammar categories, while retaining a reasonable 
average length over frames. 

For our entropy measurements) we selected three 
verbs, allow, reach1 and suffer and extracted about 
200 occurrences of each from portions of the BNC 
not used for training. Half of each sample was drawn 
from "imaginative" text and the other half from the 
natural or applied sciences, as indicated by BNC text 
mark-up. The true frame for each verb occurrence 
was marked by a human judge3 . The empirical dis­
tribution was taken as the maximum-likelihood esti­
mate from these frequencies. Tables 4 and 5 indicate 
t.he observed frequencies and the entropy of the re­
sulting distributions. 

Alongside the observed frequencies, we indicate a 
set of estimated frequencies. These were generated 
by taking the 50M word model described above, pars­
ing the test sentences, and extracting the estimated 
frequencies. The sum of estimated frequencies is gen-

3For this judgment, the frame set was unrestricted, 
i.e. included frames not in the grammar. 



I obs freq I est freq I 
imag natsci frame imag I natsci I 

63 88 NP 50.1 74.5 
13 15 NP PP 5.9 10.9 
9 I PART 5.9 0.8 
6 0 PART PP 2.7 0 
5 3 PP 6.7 3.4 
4 I In trans 15.2 6.8 
2 0 PART NP 0.5 0 
I 0 NP PA!tr 0 0.1 --

2 o 1 o 979 1 ent10py I 2 101 I 1 473 I ,- obs freq I est freq-
imag natsci frame imag natsci 

-
41 6 In trans 34.9 13.4 
31 54 pp 27.4 50.5 
21 36 NP 18.9 23.0 
4 1 NP VTOP 2.1 0.7 
3 4 NP PP 0.9 5.2 

-
1 !.936 1 !.580 1 entropy 1 1.936 I 1.90:!] 

Table 5: True and estimated frame frequencies for 
reach (top) and s11jJer- (bottom). 

erallv less than the observed frequencies due to tag­
ging.errors, parse failures, and frequency assigned to 
frames not shown in the tables. However, an eyeball 
inspection of the tables shows that the parser does a 
good job of reproducing the target distribution. 

One striking feature in the tables is the variation 
across genre. In particular, suffer used in the imagi­
native genre shows a very different distribution than 
suffer in the natural sciences. A chi-squared test ap­
plied to each pair indicates that the samples come 
from distinct distributions (confidence> 95%). 

The column labeled "50M lex" in Table 6 provides 
a quantitative measure of the agreement between the 
50M word combined model and the empirical distri­
butions for the three verbs in two genres in the form 
of relative entropy. The first column repeats the en­
tropy of the data distributions. For purposes of com­
parison, the second column indicates the relative en­
tropy of one data distribution with the other data 
distribution filling the role of the estimated distribu­
tion (i.e. q) in t.he discussion above. The relative 
entropy is lower when the estimated distribution is 
used for q than when the data distribution for the 
other genre is used for q in each case but one, where 
the figures are the same. This suggests the combined 
model contains fairly good overall distributions. 

To numerically evaluate whether the system was 
abl(', to learn the distribution exhibited in a given col­
lection of sentences, we tuned the lexicon by parsing 
the test sentences for each genre separately with the 
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D(pjjq) for various q 
other 50M 50M 

head, genre H(p) genre lex unlex 

allow imag 2.06 0.50 0.40 3.13 
natsci 1.78 0.49 0.42 2.27 

reach imag 1.99 0.91 0.35 1.07 
natsci 0.90 0.37 0.37 1.36 

suffer imag 1.86 0.87 0.24 0.70 
na.tsci 1.51 0.59 0.37 1.19 
mean 1.68 0.62 0.36 1.62 

Table 6: Frame relative entropy for three verbs in 
two genres. The first column narnes the lexical head 
and genre, and the second the entropy (H) of the 
empirical distribution over frames, p. By empirical 
distribution we mean the relative frequencies from 
examples scored by a human judge. Columns three 
through five give the relative entropy D(pjjq) for var­
ious related distributions. In column three, q is the 
empirical frame distribution for the same head 1 but 
with the complementary genre. In column four q 
is the (genre-independent) distribution derived from 
the 50M word lexicalbed model. Column five uses 
the unlexicalizecl frame distribution derived from the 
SOM model, i.e. a distribution insensitive to the head 
verb. Lower relative entropy is better. 

50IVI word model, extracting the frequencies, and es­
timating the distribution from these. The results are 
the column 4 labeled ''SOM lexicalized extraction 11 in 
7. The following columns give the same figures for 
frcqency extraction with other models. Extraction 
with the large lexicalized model gives the best re­
sults, and gives better relative entropy than the 50M 
lexicalilazed model itself (in column 2). Notice that 
only the distributions estimated with the two 50M 
mo~lels are better than the 50M lexicalized model, 
though the unlexicalized one is only marginally bet­
ter. In this sense, only the 50M lexicalized parser 
proves to be a good enough parser for genre tuning. 
Notice that with this model, tuning in no case gives 
worse relative entropy1 and in five out of six cases 
give an improvement. 

Notice also that relative entropy for the distribu­
tions obtained by tuning with the 50M model are a 
good deal lower than the cross-genre figures from Ta­
ble 6. This suggests that if we wanted to have a good 
probabilistic lexicon for, say, the imaginative genre, 
we would be better off using the automatic extrac­
tion procedure on data drawn from that. genre than 
using a perfect parser (or a lexicographer) on dat.a 
drawn from some other genre, such as the natural 
sciences. This provides a calibration of the accuracy 
of the lexicalized parser1s estimates, and conversely 
demonstrates that words are not used in the same 



D(pllq) 
'50Ni 50M 5M 

-
50M 5M 

lex lex lex unl. unl. 
head, genre mod extr extr extr extr 

allow imag 0.40 0.32 1.32 0.47 1.32 
natsci 0.42 0.28 0.28 0.52 0.86 

reach imag 0.35 0.35 0.63 0.32 0.63 
natsci 0.37 0.19 0.34 0.28 0.34 

suffer imag 0.24 0.11 0.38 0.12 0.38 
natsci 0.37 0.20 0.88 0.34 0.88 
mean 0.36 0.24 0.64 0.34 0.74 

Table 7: Relative entropy of distributions estimated 
by parsing the test sentences with various models, 
and using the Inside-outside algorithm to produce 
estimated distributions q. The first column names 
empirical distributions p. The second column repeats 
relative entropy for the 50M lexicalized model from 
the previous table. The third gives relative entropy 
where q is obtained by parsing and estimating fre­
quencies in the test sentences with the 50M lexical­
ized model. The following columns give the corre­
sponding figures for a q obtained by following the 
same procedure with a 5M word lexicalizcd model, a 
50M word unlexicalized model, and a 5M word un­
lexicalized model. 

way in different genres. 

Optimal parses . I 
Although identifying a unique parse does not play 
a role in our experiment, it is potentially useful for 
application!?. A simple criterion is to pick a parse 
with maximal probability; this is identified in a parse 
forest by iterating from terminal nodes, multiply­
ing child probabilities and the local node weight at 
and-nodes (chart edges), and choosing a child with 
maximal probability at or-nodes (chart constituents). 
Figures 1 and 4 give examples of maximal probability 
probability parses. 

Other optimality criteria can be defined. Tlw 
structure on noun chunks is often highly ambiguous, 
because of bracketing and part of speech ambiguities 
among modifiers. I<Dr many purposes, the internal 
structure of an noun chunk is irrelevant; one just 
wants to identify the chunk. From this point of view, 
a probability estimate which considers just one anal­
ysis might underestimate the probability of a noun 
chunk. In what we call a sum-max parse, probabil­
ities are summed within chunks by the inside algo­
rithm. Above the chunk level, a highest-probability 
tree is computed, as described above. 
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Notes on the implementation and 
parsing times 

Software is implemented in C++. The parser used 
for the bootstrap phase is a vanilla CFG chart parser, 
operating bottom-up with top-down predictive filter­
ing. Chart entries are assigned probabilities using the 
unlexicalized PCFG, and the lexicalized frequencies 
are found by carrying out a modified inside-outside 
algorithm which simulates lexicalization of the chart. 

In the iterative training phase, an unlexical­
ized context-free skeleton is found with the same 
parser. We transform this into its lexicalized form­
categories become ('W, n) pairs and rules acquire 
lexical heads ~-and carry out the standard inside­
outside using the more elaborate head-lexicalized 
PCFG model. Average speed of the parser during 
iterative training, including parsing, probability cal­
culation, and recording observations, is 10.4 words 
per second on a Sun SPARC-20. The memory re­
quirements for a model generated from a 5M word 
segment arc about 90Mbyte. The upshot of all this 
is that we can train about 1M words per day on one 
machine, and a single 5M word iteration requires one 
machine work week. 

Discussion 
We believe the formalism and methodology described 
here have the following advantages: 

• The grammar is under the control of the compu­
tational linguist and is of a familiar kind, making 
it possible to incorporate standard linguistic anaJ-

1 yses, and making results interpretable in terrns of 
, linguistic theory. In contrast, approaches where 
' context free rules are learned are likely to produce 

structures which are uninterpretable in terms of 
linguistic theory and practice. 

• Because of the context free framework, efficient 
parsing algorthims (chart parsing) and probabilis­
tic algorithms (the inside-outside algorithm) can 
be applied. With an efficient implementation, this 
makes it possible to construct representations of 
all the tree analyses for the sentences in corpora 
on the scale of ten to a hundred million words, and 
to map such a corpus to a probabilistic lexicon. 

• With the robustness introduced by the state 
model, almost all sentences in the corpus can be 
parsed. 

e The model assigns probabilities to sentences and 
trees, whieh is useful for applications independent 
of the lexicon-induction problem discussed here. 

• The word-selection model, which threads a word 
bigram model through head relations in the syn­
tactic tree, allows a large body of word-word col­
locations to be learned from the corpus, and put 
to use in weighting of competing analyses. 
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• The valence information learned) rather than be­
ing simply a set of subcategorization frames) is a 
probability distribution which reflects the freqency 
of frames in a given training sample, and which can 
be plugged back into the parser and used to ana­
lyze further text. 

Some of these benefits are purchased at the cost 
of a lack of sophistication in the grammar formal­
ism, compared to constraint-based· formalisms used 
in contemporary computational linguistics. This 
compromise is made in order to make large-scale ex­
periments achievable; our interest is in conducting 
scientific experiments---observational and modeling 
experiments---with large bodies of language use. It 
is natural that this should require incorporating ap­
proximations in computational models. Notably) the 
compromises made in our approach are not so se­
vere that the grammatical analyses identified and the 
probability parameters learned are out of touch with 
linguistic reality. This is in contrast to the situa­
tion with other approaches using similar mathemat­
ical methods, such as terminal-string n-gram rnodel­
ing. 

Conclusion 
We have presented a statistically-based mc~thod for 
valence induction, b.::\sed on the idea of automatic 
tuning of the probability parameters of a grammar. 
On the standard precision/recall measures 1 our sys­
tem performs better on precision, worse!on recall 1 

and on the whole somewhat better than·.- bther pub­
lished systems. We have provided a more precise 
evaluation via entropy measures) show"ing that the 
model learns efficiently and builds accurate models 
of frame distributions. The cross-domain entropy of 
the data frame distributions provides numerical evi­
dence that frame usage varies across domains) similar 
to word usage. This, in turn, suggests that auto­
matic acquisition and stochastic tuning are a must 
for large-scale NLP applications and computational 
linguistic models. 
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Measures for corpus similarity and homogeneity 

Adam Kilgarriff' 
ITRI, University of Brighton 

Abstract 
How similar are two corpora? A measure of corpus 
similarity would be very useful for NLP for many pur­
poses, such as estimating the work involved in porting 
a system from one domain to another. First, we dis­
cuss difficulties in identifying what we mean by 'corpus 
similariti: human similarity judgements are not fine­
grained enough, corpus similarity is inherently multi­
dimensional, and similarity can only be interpreted in 
the light of corpus homogeneity. We then present an op­
erational definition of corpus similarity \vhich addresses 
or circumvents the problems, using purpose-built sets 
of aknown-similarity corpora". These KSC sets can be 
used to evaluate the measures. We evaluate the mea­
sures described in the literature, including three vari­
ants of the information theoretic measure 'perplexity'. 
A x2-based measure, using word frequencies, is shnwn 
to be the best of those tested. 

The Problem 

How similar arc two corpora? The question arises on 
many occasions. In NLP, many useful results can be 
generated from corpora, but when can the results de­
veloped using one corpus be applied to another? How 
much will it cost to port an NLP application from one 
domain, with one corpus, to another, with another? For 
linguistics, does it matter whether language researchers 
use this corpora or that, or are they similar enough for it 
to mal<e no difference? There are also questions of more 
general interest. Looking at British national newspa­
pers: is the Independent more like the Guardian or the 
Telegraph?' 

What are the constraints on a measure for corpus 
similarity? The first is simply that its findings cor­
respond to unequivocal human judgements. It must 

* Kilgarriff's part of the work was undertaken under EP­
SRC grant GR/K/18931 

1 The work presented here develops and extends that pre­
sented in Kilgarriff (1997). 
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match our intuition that, eg, a corpus of syntax papers 
is more like one of semantics papers than one of shop­
ping lists. The constraint is key but is weak. Direct 
human intuitions on corpus similarity are not easy to 
come by, firstly 1 because large corpora, unlike coherent 
texts, are not the sorts of things people read, so people 
are not generally in a position to have any intuitions 
about them. Secondly, a human response to the ques­
tion, ((how similar are two objects)), where those objects 
are complex and multi-dimensional, will themselves be 
multi-dimensional: things will be similar in some ways 
and dissimilar in others. To ask a human to reduce a 
set of perceptions about the similarities and differences 
between two complex objects to a single figure is an 
exereise of dubious value. 

This serves t;o emphasise an underlying truth: corpus 
similarity is complex, and there is no absolute answer 
to "is Corpus 1 more like Corpus 2 than Corpus 3?". 
All there arc, are possible measures which serve par­
ticular purposes more or less well. Given the task of 
costing the customisation of an NLP system, produced 
for one domain, to another, a corpus similarity measure 
is of interest insofar as it predicts how long the porting 
will take. It could be that a measure which predicts 
well for one NLP system, predicts badly for another. 
It can only be established whether a measure correctly 
predicts actual costs, by investigating actual costs.2 

Having struck a note of caution, we now proceed on 
the hypothesis that there is a single measure which cor­
rc~sponds to pre-theoretieal intuitions about 'similarity' 
and which is a good indicator of many properties of 
interest ··- customisation costs, the likelihood that lin­
guistic findings based on one corpus apply to another, 
etc. We would expect the limitations of the hypothesis 
to show through at some point, when different measures 
arc shown to be suited to different purposes 1 but in the 
current situation, where there has been almost no work 

2Cf. Ucbcrla (1997), who looks in detail at the appro­
priateness of perplexity as a measure of task difficulty for 
spe(~ch recognition, and finds it wanting. 



Corpus I Corpus 2 Distance Interpretation 
·--

equal equal equal same language variety /ies 
equal equal high different language varieties 
high low high corpus 2 is homogeneous and falls within 

the range of 'general' corpus 1 
high low higher corpus 2 is homogeneous and falls outside 

the range of 'general' corpus 1 
high high low impossible 
low low a bit lower overlapping; share some varieties 
high high a bit lower similar varieties 

-

Table I: Interactions between homogeneity and similarity: a similarity measure can only be interpreted with 
respect to homogeneity. 
High means a large distance between corpora, or large within-corpus distances, so the corpus is heteroge­
neous/corpora are dissimilar; low, that the distances are low, so the corpus is homogeneous/corpora are similar. 
High, low and equal are relative to the other columns in the same row, so, in row 2, 'equar in the first two columns 
reads that the within-corpus distance (homogeneity) of Corpus I is roughly equal to the within-corpus distance of 
Corpus 2, and 'high' in the Distano~ column readt> that the distance between the corpora is substantially higher than 
these within-corpus distances. 

on the question, it is a good starting point. 

Similarity and homogeneity 
How homogeneous is a corpus? The question is both 
of interest in its own right, and is a preliminary to any 
quantitative approach to corpus similarity. In its own 
right) because a sublanguage corpus) or one contain­
ing only a specific language variety, has very different 
characteristics to a general corpus (Biber, 1993) yet it is 
not obvious how a corpus's position on this scale can be 
assessed. As a preliminary to measuring corpf.ls similar­
ity, because it is not clear what a measure of similarity 
would mean if a homogeneous corpus (of, ,eg, software 
manuals) was being compared with a heterogeneous one 
(eg. Brown). Ideally, the same measure can be used 
for similarity and homogeneity, as then, Corpus !/Cor­
pus 2 distances will be directly comparable with het­
erogeneity (or "within-corpus distances") for Corpusl 
and Corpus2. This is the approach adopted here. 

Not all combinations of homogeneity and similar­
ity scores are logically possible. A corpus cannot be 
much more similar to something else than it is to itself. 
Some of the permutations) and their interpretations) 
are shown in Table 1. 

The last two lines in the table point to the differences 
between general corpora and specific corpora. High 
within-corpus distance scores will be for general cor­
pora) which embrace a number of language varieties. 
Corpus similarity between general corpora will be a 
matter of whether all the same language varieties are 
represented in each corpus) and in what proportions. 
Low within-corpus distance scores will typieally relate 
to corpora of a single language variety) so here, scores 
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may be interpreted as a measure of the distance between 
the two varieties. 

Related Work 
There is very little work which explicitly aims to 
measure similarity between corpora. Johansson and 
Hofland (1989) aim to find which genres, within the 
LOB corpus, most resemble each other. They take the 
89 most common words in the corpus) find their rank 
within each genre, and calculate the Spearman rank 
correlation statistic ('spearman,). 

Rose, Haddock, and Tucker (1997) explore how per-
' formance of a speech recognition system varies with the 

size and specificity of the training data used to build the 
language model. They have a small corpus of the target 
text type 1 and experiment with 'growing) their seed cor­
pus by adding more same-text-type material. They use 
spearman and log-likelihood (Dunning, 1993) as mea­
sures to identify same-text-type corpora. Spearman is 
evaluated below. 

There is a large body of work aiming to find words 
which are particularly characteristic of one text, or cor­
pus) in contrast to another, in various fields including 
linguistic variation studies (Rayson, Leech, and Hodges, 
1997), author identification (Mosteller and Wallace, 
1964) and information retrieval (Salton, 1989; Dun­
ning, 1993). Biber (1988, 1995) explores and quantifies 
the differences between corpora from a sociolinguistic 
perspective. While all of this work touches on corpus­
similarity, none looks at is as a topic of itself. 

Sekine (1997) explores the domain dependence of 
parsing. He parses corpora of various text genres and 
counts the number of occurrences of each subtree of 



depth one. This gives him a subtree frequency Jist 
for each corpus, and he is then able to investigate 
whieh subtrees arc markedly different in frequency be­
tween corpora. Such work is highly salient for cus­
tomising parsers for particular domains. Subtree fre­
quencies could readily replace word frequencies for the 
frequency-based measures below. 

In information-theoretic approaches, perplexity is a 
widely-used measure. Given a language model and a 
corpus, perplexity "is, crudely speaking, a measure of 
the size of the set of words from which the next word is 
chosen given that we observe the history of ... words'' • (Roukos, 1996). Perplexity is most often used to assess 
how good a language modelling strategy is) so is used 
with the corpus held constant. Achieving low perplex­
ity in the language model is critical for high-accuracy 
speech reeognition 1 as it means there are fewer high­
likelihood candidate words for the speech signal to be 
compared with. 

Perplexity can be used to measure a property akin 
to homogeneity if the language modelling strategy is 
held constant and the corpora arc varied. In this case) 
perplexity is taken to measure the intrinsic difficulty 
of the speech recognition task: the less constraint the 
domain corpus provides on what the next word might 
be, the harder the task. Thus Roukos (1996) presents 
a table in which different corpora are associated \vith 
different perplexities. 

Perplexity measures are evaluated below. 

"Known-Similarity Corpora" 
A "Known-Similarity Corpora11 (KSC) set is built as 
follows: two reasonably distinct text types 1 A and B1 

arc taken. Corpus 1 comprises 100% A; Corpus 2, 90% 
A and 10% B; Corpus 3, 80% A and 20% B; and so 
on. We now have at our disposal a set of fine-grained 
statements of corpus similarity: Corpus 1 is more like 
Corpus 2 than Corpus 1 is like Corpus 3. Corpus 2 is 
more like Corpus 3 than Corpus 1 is like Corpus 41 etc. 
Alternative measures can now be evaluated 1 by deter­
mining how many of these 'gold standard judgements 1 

they get right. For a set of n Known-Similarity Corpora 
there are 

n (.( .. l) ) . t 1- + .. 2_)n- ') -:2·-- 1 
t:::=l 

gold standard judgements (see Appendix for proof) and 
the ideal measure would get all of them right. Mea­
sures can be compared by seeing what percentage of 
gold standard judgements they get right. 

Two limitations on the validity of the method are, 
first 1 there are different ways in \'Vhich corpora can be 
different. They can be different because each represents 
one language variety, and these varieties are different 1 
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or because they contain different mixes, with some of 
the same varieties. The method oi1ly directly addresses 
the latter model. 

Second, if the corpora are small and the difference 
in proportions between the corpora is also small) it is 
not clear that all the 'gold standard) assertions are in 
fact true. There may be a finance supplement in one 
of the copies of the Guardian in the corpus, and one 
of the copies of AccC'lmtancy may be full of political 
stories: perhaps, then 1 Corpus 3 is more like Corpus 
5 than Corpus 4. This was addressed by selecting the 
two text types with care so they were similar enough 
so the measures were not 100% correct yet dissimilar 
enough to make it likely that all gold-standard judge· 
ments \Vere true 1 and by ensuring there was enough data 
and enough KSG·sets so that oddities of individual cor­
pora did not obscure the picture of the best overall mea­
sure. 

Measures 
All the measures use spelt forms of words. None make 
use of linguistic theories. Comments on an earlier ver­
sion of the paper included the suggestion that lemmas1 

or word senscs 1 or syntactic constituents) \vere more ap­
propriate objects to count and perform computations 
on than spclt forms. This would in many ways be 
desirable. However there are costs to be considered. 
To count 1 for example 1 syntactic constituents rcquires 1 

f1rstly1 a theory of what the syntactic constituents are; 
secondly) an account of how they can be recognised in 
running text; and thirdly1 a program which performs 
the recognition. Shortcomings or bugs in any of the 
three will tend to degrade performancc 1 and it will not 
be straightforward to allocate blame. Different theories 
and implementations are likely to have been developed 
with difl'erent varieties of text in focus 1 so the degrada­
tion may well effect different text types differentially. 
Moreover, practical users of a corpus-similarity mea­
sure cannot be expected to invest energy in particular 
linguistic modules and associated theory. To be of gen­
eral utility) a measure should be as theory-neutral as 
possible. 

While we are planning to explore counts of lemmas 
and part-of-speech catcgories 1 in these experiments we 
consider only raw word-counts. 

Word Frequency measures 

Two word frequency measures were considered. For 
each, the statistic did not dictate which words should be 
compared across the two corpora. In a preliminary in­
vestigation we had experimented with taking the most 
frequent 10, 20, 40 ... 640, 1280, 2560, 5120 words in 
the union of the two corpora as data points, and had 



achieved the best results with 320 or 640. For the ex­
periments below, we used the most frequent 500 words. 

Both word-frequency measures can be directly ap­
plied to pairs of corpora, but only indirectly to measure 
homogeneity. To measure homogeneity: 

L divide the eorpus into 'slices'; 

2. create two subc:orpora by randomly allocating half 
the slices to each; 

3. measure the similarity between the subcorpora; 

4. iterate with different random allocations of slices; 

5. calculate mean and standard deviation over a.ll iter­
ations. 

Wherever similarity and homogeneity figures were to 
be compared, the same method was adopting for calcu­
lating corpus similarity, with one subcorpus comprising 
a random half of Corpus 1, the other, a random half of 
Corpus 2. 

Spearman Rank Correlation Co-efficient 
Ranked wordlists are produced for Corpus 1 and Corpus 
2. For each of the n most common words! the difference 
in rank order between the two corpora is taken. The 
statistic is then the normalised sum of the squares of 
these differences, 

Comment Spearman is easy to compute anc~ds inde­
pendent of corpus size: one can directly compc\:re ranked 
lists for large and small corpora. However thpre was an 
a priori objection to the statistic. For very frequent 
words, a difference of rank order is highly significant: if 
the is the most common word in corpus 1 but only 3rd 
in corpus 2, this indicates a high degree of difference be­
tween the genres. At. the other end of the scale, if /!read 
is in 4.00th position in the one corpus and 500th in the 
other, this is of no significance, yet Spearman counts 
the latter as far more significant than the former. 

x2 
For each of the n most common words, we calculate 
the number of occurrences in each corpus that would 
be expected if both corpora were random samples from 
the same population. If the size of corpora 1 and 2 are 
N1, N2 and word w has observed frequencies Ow 1 , ow 2 , 

then expected value ew 1 :;:;;: N1 x~w~1;0 "'' 2 ) and l,il.;:ev.,ri,se 
, 1- 2 

for Cw,2; then 

2 ,~(o-e)2 
X ='"' e 
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Co1nn1ent The inspiration for the statistic comes 
from the x2-test for statistical independence. As Kil­
garriff (1996) shows, the statistic is not in general ap­
propriate for hypothesis-testing in corpus linguistics: a 
corpus is never a random sample of words, so the null 
hypothesis is of no interest. But once divested of the 
hypothesis-testing link, x2 is suitable. The (o- e) 2 je 
term gives a measure of the difference in a word's fre­
quency lx~t\veen two corpora, and, while the measure 
tends to increase with word frequency, in contrast to 
the raw frequencies it does not increase by orders of 
magnitude. 

The measure docs not directly permit comparison be­
tween corpora of different sizes. 

Perplexity and Cross-entropy 

From an information-theoretic point of view, prima fa­
cie, entropy is a well-defined term capturing the infor­
mal notion of homogeneity, and the cross-entropy be-· 
tween tvw corpora captures their similarity. Entropy 
is not a quantity that can be directly measured. The 
standard problem for statistical language rnodelling is 
to aim to find the model for which the cross-entropy 
of the model for the corpus is as low as possible. For 
a perfect language model, the cross-entropy would be 
the entropy of the corpus (Church and Mercer, 1993; 
Charniak, 1993). 

With language modelling strategy held constant, the 
cross-entropy of a language model (LM) trained on Cor­
pus 1: as applied to Corpus 2, is a similarity measure. 
The cross-entropy of the LM based on nine tenths of 
Corpus 1, as applied to the other 'held-out' tenth, is 
a measure of homogeneity. We standardised on the 
'teqfold cross-validation' method for measures of both 
similarity and homogeneity: that is, for each corpus, 
we dividE~d the corpus into ten parts3 and produced ten 
LMs, using nine tenths and leaving out a different tenth 
each time. (Perplexity is the log of the cross-entropy of 
a corpus with itself: measuring homogeneity as self­
similarity is standard practice in information theoretic 
approaches.) 

To measure homogeneity, we calculated the cross­
entropy of each of these LMs as applied to the left-out 
tenth, and took the mean of the ten values. To mea­
sure similarity, we calculated the cross-entropy of each 
of the Corpus 1 LMs as applied to a tenth of Corpus 2 
(using a different tenth each time). We then repeated 
the procedure with the roles of Corpus 1 and Corpus 2 
reversed, and took the mean of the 20 values. 

3For the KSC corpora, we ensured that each tenth had 
an appropriate mix of text types, so that, eg, each tenth of a 
corpus comprising 70% Guardian, 30% BMJ, also comprised 
70% Guardian, 30% BMJ. 



All LMs were trigram models. All LMs were 
produced and calculations performed using the 
CMU /Cambridge toolkit (Rosenfeld, 1995). 

The treatment of words in the test material but not in 
the training material was critical to our procedure. It is 
typical in the language modelliug community to repre­
sent such words with the symbol UNK, and to calculate 
the probability for the occurrence of UNK in the test 
corpus using one of three main strategies. 

Closed vocabulary The vocabulary is defined to in-· 
elude all items in training and test data. Probabili­
ties for those items that occur in training but not test 
data) the 'zerotons\ are estimated by sharing out the 
probability mass initially assigned to the singletons 
and doubletons to include tbe zerotons. 

Open, type 1 The vocabulary is chosen indepen­
dently of the training and test data, so the probability 
of UNK may be estimated by counting the occurrence 
of unknown words in the training data and dividing 
by N (the total number of words). 

Open, type 2 The vocabulary is defined to include all 
and only the training data, so the probability of UNK 
cannot be estimated directly from the training data. 
It is estimated instead using the discount mass cre­
ated by the normalisation procedure. 

All three strategies were evaluated. 

Data 
All KSC sets were subsets of the British National Cor­
pus (BNC)'. A number of sets were prepared as follows. 

For those newspapers or periodicals for which the 
BNC contained over 300,000 running words of text, 
word frequency lists were generated and similarity and 
homogeneity were calculated (using x2 ). We then se­
lected pairs of text types which were modemtely dis­
tinct, but not too distinct, to use to generate KSC sets. 
(In initial experiments, more highly distinct text types 
had been used, but then both Spearman a.nd x' had 
scored 100%, so 'harder' tests involving more similar 
text types were selected.) 

For each pair a and b, all the text in the BNC for 
each of a and b was divided into 10,000-vwrd tranche:=L 
These tranches were randomly shuff-led and allocated as 
follows: 

first 10 of a into bOa 
next 9 of a, first 1 of b into b1a 
next 8 of a, next 2 of b into b2a 
next 7 of a, next 3 of b into b3a 

4 http:/ /info.ox.ac.ukjbnc 
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until either the tranches of a orb ran out, or a complete 
11-corpus KSC-set was formed. A sample of KSC sets 
are available on the web.5 There were 21 sets containing 
between 5 and 11 corpora. The method ensured that 
the same piece of text never occurred in more than one 
of the corpora in a KSC set. 

The text types used were: 
Accountancy (ace); The Art Newspaper (art); British 
Medical Journal (bmj); Environment Digest (env); The 
Guardian (gua); The Scotsman (sco); and Today ('low­
brow' daily newspaper, tod). 

To the extent that some text types differ in content, 
whereas others differ in style, both sources of variation 
are captured here. Accountancy and The Art News­
paper are both trade journals, though in very different 
domains, while The Guardian and Today are both gen­
eral national newspapers, of different styles. 

Results 

For each KSC-set, for each gold-standard judgement 
the 1Correct answer' was known, eg., 11the similarity 1,2 
is greater than the similarity 0,3". A given measurE 
either agreed with this gold-standard statement, or dis­
agreed. The percentage of times it agreed is a measun 
of the quality of the measure. Results for the caseE 
where all four measures were investigated are presented 
in Table 2. 

-
spear x" closed type 1 type 2 

KSC-set 
accgua 93.33 91.33 82.22 81.11 80.44 
art_gua 95.60 93.03 84.00 83.77 84.00 
brnj_gua 95.57 97.27 88.77 89.11 88.77 
env_gua 99.65 99.31 87.07 84.35 86.73 

Table 2: Comparison of four measures 

The word frequency measures outperformed the per· 
plexity ones. It is also salient that the perplexity mea· 
sures required far more computation: ca. 12 hours on c 
Sun, a ... s opposed to around a minute. 

Spearman and x 2 were tested on all 21 KSC-sets, anc 
x' performed better for 13 of them, as shown in Table 3 

spear :;?"tie total 
Highest score 5 13 3 21 

Table 3: Spearman/x' comparison on all KSCs 

5 http' I I www' itri' bton. a c. uk r Adam. Kilgarriff /KSC I 



The difference was significant (related t-test: t=4.47, 
20DF, significant at 99.9% level). x2 was the best of 
the measures compared. 

Conclusions and further work 
\Ve have argued that computational linguistics is in ur~ 
gent need of measures for corpus similarity and homo­
geneity. Without one, it is very difficult to talk ac­
curately about the relevance of findings based on one 
corpus) to another, or to predict the costs of porting 
an application to a new domain. We note that corpus 
simila.rity is complex and multif<lceted, and that differ­
ent measures might be required for different purposes. 
However, given the paucity of other work in the Held, 
at this stage it is enough to seek a single measure which 
performs reasonably. 

The Known-Similarity Corpon.t method for evaluat­
ing corpus-similarity measures was presented, and rnen­
sures discussed in the literature were compa.red using it. 
For the corpus-size used and this approach to <Walua­
tion, x2 and Speannan both perfon:ned better than auy 
of three cross-entropy measures. These measures have 
the advantage that they are cheap and straightforward 
to compute. x2 outperformed Spearman. 

Further work is to include: 

0 developing a scale-independent x2-based statistic 

e investigating a 2-dimensional measure for simila.rity1 

with one dimension for closed-class \vords and an­
other for open-class words 1 to see whether differences 
in style and in domain can be distinguished 

f1l evaluation of a log-likelihood-bttsed measj,lY~~' and of 
different vocabulary-sizes for open models. Then it 
will be possible to eompare the 500-word {ncasure for 
spearman and x2 more directly with the perplQxity 
measures 

e gathering data on the actual costs of porting systems, 
for correlation with results given by similarit.y mea­
sures 

$ comparing the method with Biber 1S feature-set and 
analysis. 
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Appendix 
The proof is based on the fact that the number of simi­
larity judgements is the triangle number of the number 
of corpora in the set (less one), and that each new sim­
ilarity judgement introduces a triangle number of gold 
standard judgements (once an ordering which rules out 
duplicates is imposed on gold standard judgements). 

• A KSC set is ordered according to the proportion of 
text of type 1. Call the corpora in the set I. .. n. 

• A similarity judgement ('sim') between a and b (a, b) 
compares two corpora. To avoid duplication, we 
stipulate that a<b. Each sim is associated with a 
number of steps of difference between the corpora: 
dif(a,b)=b-a. 

• A gold standard judgement ('gold') compares two 
sims; there is only a gold between a, b and c,d if 
a<b and c<d (as stipulatNI above) and also if a<=c, 
b>=d, and not (a=c and b=d). Each four-way com­
parison can only give rise to zero or one gold, as en­
forced by the ordering constraints. Each gold has 
a difference of difs ('difdif') of (b-a)-(d-c) (so, if we 
compare 3,5 with 3A, difdif=l, but where we com­
pare 2,7 with 3,4, difclif = 4). difdif(X,Y) = dif(X)· 
dif(Y). 

• Adding an nth corpus to a KSC set introduces n-1 
sims. Their difs vary from 1 (for (n-1),n) to n-1 (for 
1,n). 

• The number of golds with a sim of dif rn as first term 
is a triangle number less one, 2:;:2 i. or m(n~.-J-l) - 1 
For example, for 2,6 ( dif=4) there are 2 golds of difdif 
1 (eg with 2,5 and 3,6), 3 of difdif 2 (with 2,4, 3,5, 
4,6), and 4 of difdif 3 (with 2,3, 3,4, 4,5, 5,6). 

• With the addition of the nth corpus, we intro­
duce n-1 sims with difs from 1 to n-1, so we add 
2::;~~1 i(iil) - 1 golds. For the ·whole set, there 

are 2::;~ 1 I:;:;\ iU~Il ··· 1 and collecting up repeated 

terms gives 2::;~ 1 (n- i)('(i;-rl - 1) 
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Abstract 

It. is common in NLP that the categories into which 
text is classified do not have fully objective def­
initions. Examples of such categories are lexical 
distinctions such as part-of-speech tags and word­
sense distinctions, sentence level distinctions such 
as phrase attachment, and discourse level distinc­
t.icms such as topic or speech-act categorization. 
This p>1per presents an approach to analy?-ing the 
agrcen1ent arnong lnnnan judges for the purpose 
of formulating a refined and more reliable set of 
category designations. We use these techniques to 
analyze the sense tags assigned by five judgps to 
the noun intcr·est. The initial tag set is takmi from 
Longman's Dictionary of Contemporary }i:nglish. 
Through this process of analysis, we automatically 
identify and assign a revised set of sense tags for 
the data. The revised tags exhibit high reliabil­
ity as measured by Cohen's r;.. Such techniques 
are important for formulating and evaluating both 
human and automated classification systems. 

Introduction 

It is common in Natural Language Processing 
(NLP) that the categories into which text is classi­
fied do not have fully objective definitions. Exam­
ples of such categories are lexical distinctions such 
as part-of-speech tags and word-sense distinctions, 
sentence level distinctions such as phrase attach­
ment, and discourse level distinctions such as topic 
or speech-ac.t categorization. This paper presents 
an approach to analyzing the agreement among hu­
man judges for the purpose of formulating a refined 

1~his research was supported by the Of-fice of Naval Re­
search under grant number N00014-95-l-0776. 

53 

and more reliable set of category designations. 

We performed a case study of the classification 
process, involving multiple judges performing a 
word-sense disambiguation task. Table 1 presents 
the data for two judges assigning one of six senses 
to each instance of inter-est used as a noun in the 
corpus. The data is represented as a contingency 
table, often referred to as a confusion matrix; it 
depicts the "confusion" among the judges' classi­
fications. Evidence of eonfusion among the classi­
fications in Table 1 can be found in the marginal 
totals, ni+ and n+.i> where i and j range h·om 1 to 
6. We see that, on average, judge A has a higher 
preference for senses 1 and 3 than judge E does, 
while judge E has a higher preference for sense 2 
than judge A does. These biases are one aspect of 
agreement (or the lack of it) among judges. 

A seeond aspect of agreement is the extent to 
which judges agree on the tags of individual words 
(mtegory distinguishability). We see from the diag­
onal frequencies in Table 1 that these judges agree 
on 2097 out of 2369 of them, which is 88.5% of the 
individual tags. 

Cohen (1960) proposed the coefficient of agree­
ment, r;, for measuring the agreement between two 
judges. r; compares the actual agreement to that 
which would be expected if the decisions made 
by each judge were statistically independent (i.e., 
"chance agreement"). A number of previous stud­
ies have used r; to evaluate inter-coder reliability 
(e.g., Carletta 1996, Litman & Passonneau 1995; 
Moser & Moore 1995; Hirschberg & Nakatani 1996; 
Wiebe et al. 1997). However, in looking at agree­
ment among judges, we are often not as concerned 
with describing how well two particular judges 



sense 1 "readiness to give attention)) 
sense 2 "quality of causing attention to be givenn 
sense 3 ''activity~ subject, etc., which one gives 

time and attention ton 
sense 4 "advantage, advancement~ or favorn 
sense 5 "a share (in a company, business, etc.)" 
sense 6 "money paid for the use of moneyn 

Figure 1: Noun Senses of Interest in LDOCE 

agree as in measuring how well any observer can 
distinguish the categories from one another. In 
other words, the issue is the precision of the clas­
sification pTocess. 

In this paper, we present a study of a classi­
fication process. The section Agreement Among 
Judges presents an analysis of the patterns of 
agreement among the judges. Agreement is a 
function of the differences among the judges (i.e., 
their biases) and the distinguishability of thecate­
gories themselves. We study bias using the models 
for symmetry, marginal homogeneity, and quasi­
independence (in the subsection Observer DijjeT­
ences). We study category distinguishability us­
ing Darroch & McCloud's (1986) degree of distin­
guishability, O;J (in the subsection Category Dis­
tinguishability). Guided by these analyses, in tho 
section Modification of the Classification Process 
we investigate modifications to the classification 
process that improve reliability. We analyze the 
effects both of removing judges and collapsing cat­
egories. A technique is presented for formulating 
a tag set which can be automatically derived from 
the original tag set. The technique is successful in 
the study presented here: the derived tag set yields 
improved reliability, as measured by Cohen's "· 

The Data 

The classification process performed in this study 
involved five human judges independently assign­
ing sense tags to 2369 instances of the noun interest 
taken from the Wall Street Journal Treebank Cor­
pus (Marcus et al. 1993). The senses given to the 
taggers, shown in Figure 1, are from the Longman's 
Dictionary of Contemporary English (LDOCE). 

The annotation instructions were minimal. They 
were asked to usc their judgment in assigning to 
each usage of interest the single tag that best 
characterizes its meaning. It is likely that more 
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explicit tagging instructions including examples 
and default rules would improve agreement among 
judges. Indeed, an analysis of the classification 
process such as performed here could be used to 
formulate and interactively revise a set of tagging 
instructions, but this application is not considered 
here. 

Five human judges, referred to as A through 
E, participated in the study. Two of the judges 
(judges C and D) were involved in the project and 
had participated in previous sense tagging exper­
iments. The remaining three judges (judges A, B 
and E) were not members of the project and had 
no previous background in NLP or linguistics. 

Agreement Among Judges 

All of the techniques that we present for the analy­
sis of agreement are appropriate for category classi­
fications assigned to multiple objects (in this case, 
words) by two juclges. 1 We analyze t.he agreement 
among all five judges by evaluating the agreement 
between all pair-wise combinations of these judges. 
We exclusively use maximum likelihood estimates 
of model parameters. 

The Basics 

Tables 1-5 present half of the data, in con­
tingency table format:. Each table is for one 
pair-wise combination of the five judges. The 
rest of the data, for the other five combina­
tions, is available on the World Wiele Web at 
http: I I crl. nmsu. eduiResearchiProjectslgmphling. 
In each table, the rows correspond to the senses 
assigned by the first judge while the columns cor­
respond to those assigned by the second judge. Let 
nij denote the number of words that judge one clas­
sifies as i and judge two classifies as sense j. If we 
let Pii be the probability that the judges will agree 
that a randomly selected usage is sense i, then 
Lip;; is the total probability of agreement across 
all senses. Pii can be estin1ated as 2!i.i... (a 1naxirnum n++ 
likelihood estimate), and the total probability of 
agreement can be estimated as Li Pii = L; ~';~, 
where n++ = Lij n;J = 2369. 

1 Several of these techniques are also applicable to the 
analysis of multiple judges. 



The simplest measure of agreement is the esti­
mated probability of agreement, i.e., L,;f!;;, where 
the possible values are afiected by the marginal 
totals (i.e., the row and column totals). Cohen's 
K. compares the total probability of agreement to 
that expected if the ratings were statistically inde­
pendent (i.e. 1 "chance agreernent"). That value is 
then normalized by the maximum possible level of 
agreement given the marginal distributions. The 
marginal distributions can be estimated from the 
marginal counts as: fh+ = ,nq. and fi-f-i !!±L 

n++ n++ 
The complete formulation of K. is: 

K = L-di;;- L,;fi;+P+i 
1 - L,; Pi+P+i 

(1) 

K is 0 when the agreement is that expected by 
chance, and is 1.0 when there is perfect agreement. 

An extension of K. for the case of multiple judges 
(three or rnore) is presented in Davies and Fleiss 
(1982) and used in this study. 

Analyzing Patterns of Agreement 

In a classification experiment, the two judges are 
assumed to classify any given usage independently 
of each other, but it is clear in the formulation of 
K that we expect the data to exhibit depe,nllence, 
i.e., Ji;1 i Pi+ x J3c.1· Where docs this dependence 
come from? II; ari;;es from three factors and their 
possible interactions: (1) the heterogeneity of the 
objects being classified (i.e., the usages of interest), 
(2) the heterogeneity of the judges, and (3) the 
distinctions made in the category definitions. 

We focus on the latter two factors and their in­
teraction. Rather than simply measuring agree­
ment we measure the contributions to agreement 
made by these two factors and propose changes 
to the classification process based on the analy­
sis. Just as overall agreement can be assessed as 
a function of the counts in the pair-wise confusion 
matrices, so can the measures of observer· differ·­
ence (bias) and category distinguishability. 

0 bserver Differences (Bias) The hypothesis 
of no difference between two judges is the hypoth­
esis of complete symmetry (Sym in Table 6), that 
is, Pi,. = f3 1·i or !~~ = 1 for all i, j. If this ratio equals 

. PJ' 
one for all i, j then it follows that the observers' in-
terpretations are indistinguishable. 
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Complete symmetry implies marginal symmetry, 
that is, Pi+ = P+i· Bias of one judge relative 
to another is evidenced as a discrepancy between 
these marginal distributions. BiaB decreases as the 
marginal distributions becorne nwre nearly equiva­
lent. The measure of bias is the test for marginal 
homogeneity (M.H. in Table 6), Pi+= P+i for all ,, 

It is possible to access the similarity of two 
judges even when there is evidence of bias. The 
model for quasi-independence ( Q.I. in Table 6) 
(Bishop et a!. 1975) tests whether two judges' de­
cisions are independent if we consider only the of!~ 
diagonal counts--the counts corresponding to dis­
agreement (i.e., Pij = Pi+ x P+j for i i j). Quasi­
independence holds when, given that the judges 
disagree, there is no pattern of association in the 
categories they assign. 

In the tests for symmetry, marginal homogene­
ity, and quasi-independence, a model is formu­
lated that enforces the hypothesized constraint, 
e:g., Pij = P.ii in the case of symmetry. The degree 
to which the data is approximated by a model is 
called the fit of the model. In this work, the flt of 
each model is reported in terms of the. likelihood 
ratio statistic, G2 , and its significance. The higher 
the G2 value, the poorer the flt. The fit of a model 
is considered acceptable if its reference significance 
level is greater than 0.001 (i.e., if there is greater 
than a 0.001 probability that the data sample was 
randomly selected from a population described by 
the model). 

Category Distinguishability The ratio Tij = 

fi;; xfi;; referred to as the diagonal cross-product-
Vii XPjj' · 

ratio, represents the odds for disagreement over 
agreement on categories i, j. Darroch and Mc­
Cloud (1986) define the degree of distinguishability, 
Oij, for categories i, j as: 

Pij X Pji 
O;j = 1 - Tij = 1 - ' ' (2) 

Pii X PJJ 

If Oij = 1, we say that the categories are completely 
distinguishable, and, if li;j = 0, they are completely 
indistinguishable. 

Majority Consensus When multiple judges are 
involved in a study, it is possible to formulate a 



majority tag for each object, that is, the tag that 
the majority of the judges assign to each object. It 
represents majority opinion and is useful in iden­
tifying outlyers, as shown in the next section. 

Results 

Table 6 presents the results of the tests for ob­
server differences and Table 7 presents the mea­
sures of category distinguishability. All evaluations 
are performed on each pair-wise confusion matrix. 
The eolumns labeled MIA through MI.E refer to 
similar tables comparing the majority tag to the 
assignments made by each judge (e.g., judge A, in 
the case of MIA). These tables are not included in 
the paper. 

While the r; values in Table 6 are reasonably 
high, the judges display bias and cannot. be con­
sidered interchangeable. The only exception is the 
strong similarity between the majority tag and the 
assignments made by judge C (i.e., the column la­
beled MIG in Table 6); these tags are symmet­
ric and unbiased. Among the five judges, the 
most similar are judges C and D, the two ex­
perienced judges. While their scores for symme­
try and marginal homogeneity are not significant, 
indicating· a relative bias, their score for quasi­
independence is significance (i.e., 0.004 > 0.001, 
the cutoff we use to judge significance). This indi­
cates that, although judges C and D are not indis­
tinguishable, there is no systematic difference of 
opinion between them. Judge D also shows some 
similarity to the majority tag. 

The judge that. is least similar to the others is 
judge E; this is particularly evident when judge E 
is compared to the majority tag. 

The distinguishability, oi.i, of all pair-wise eombi­
nat.ions of tags arc evaluated in Table 7. All scores 
are at. or near the maximum of 1.0, with the ex­
ception of those measuring the distinguishability 
of tags 1 and 2. It. is particularly low in Table AlB 
(i.e., Table 2). 

Modification of the Classification 
Process 

Based on the results presented above, we modified 
the classification process in two ways: (1) judge E 
is removed, and (2) sense tags 1 and 2 are conflat.ed 
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to form a single sense distinction. The poor marks 
for distinguishability between these senses seem to 
be reflected in a closeness in meaning (see in Figure 
1), supporting the decision to conflate them. 

Removing judge E from the study removes the 
tables with the lowest r; scores. As a result, the 
agreement among all judges inereases from 0.874 to 
0.898, as measured by Davies and Fleiss' extension 
of r;. 

The process of conflating two tags is accom­
plished using the latent class model (Goodman 
1974)2 This procedure has historically been used 
to identify a set of latent categories that explain 
the interdependencies among the observable cat­
egories. In this case, the observable categories 
are the sense tags assigned by the remaining four 
judges, while the latent categories correspond to 
the unobservable true meanings of the noun inter­
est. Once the desired number of latent. categories 
has been specified, these categories are assigned 
via the EM algorithm as described in Goodman 
(1974) and applied in Pedersen & Bruce (1997) 3 . 

Using the EM algorithm as described above, all 
usages of interest are assigned to one of five latent 
sense groupings. The mapping between the derived 
(i.e., latent.) categories and the observed senses is 
established to maximize the correlation between 
latent categories and observed senses. This corre­
lation for each judge, is estimated as part of the 
process of assigning latent. categories. As an ex­
ample, Table 10 presents the correlation for judge 
C. The values recorded in the table are the proba­
bilities of judge C assigning sense tag i and the 
EM algorithm assigning latent tag j. As can 
be seen, correlation is maximized when the map­
ping of observed tags to latent tags is as follows: 
1 =? 1, 2 =? 1, 3 =? 2, 4 =? 3, 5 =? 4, and 6 =? 5. 
This mapping conflates senses 1 and 2 while leav­
ing all other senses intact. This corresponds to 
our expectations based on the study of agreement 
presented in the previous section. Using this map­
ping, the observer difference measures among the 

2 Also referred to as the Naive Bayes model (Langley et 
al. 1992). 

3This is a well known unsupervised learning alobserved 
tagsgorithm; other notable references to this procedure are 
Lazarfeld (1966), Pearl (1988), and AutoClass (Cheeseman 
1990). 



1 
2 

Judge 3 
c 4 

5 
6 

0.142 
0.003 

.000 
0.001 
0.001 
0.000 

Latent Tag 
2 3 4 

0.010 0.001 0.001 
0.001 0 001 0.000 
0.024 0.005 0.000 
0.000 0.074 0.001 
0.003 o:ooo .206 
0.000 0.000 0.000 

Table 10: Tag Correlation for Judge C 

" 0 002 
0.000 
0.000 
0.000 
0.000 
0.526 

four judges for the latent tag set are presented in 
Table 8, and the distinguishability of latent tags 
is presented in Table 9. As compared to the origi­
nal classification process, the agreement among all 
judges increases from 0.874 to 0.916 for the revised 
tag set. with four judges. 

Recent work has proposed various methods for 
pruning senses for word instances and tuning tag 
sets to a particular domain using corpus infor­
mation and existing linguistic knowledge sources 
(e.g., Yarowsky 1992, Jing et. al. 1997, Basili et al. 
1997). We have presented an automatic method 
for refining a tag set. using an important additional 
source of information: the 1nanual annotations as-
signed by human judges. . f 

Conclusion 

There is increasing awareness of the need to Inan­
age the uncertainty inherent. in many classification 
systems. We have presented procedures that can 
be used to analyze and refine any classification sys­
tem that makes use of nominal categories. These 
techniques can be used to study and improve the 
reliability of human judges as well as refine catego­
rizations that can be applied automatically and, in 
the process, establish an upper bound on the accu­
racy of automatic classification, i.e., the agreement 
among the human judges. In future work, we will 
apply these techniques to the analysis and evalua­
tion of automated classification systems. 
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Abstract 

We consider the problem of assigning level numbers 
(weights) to hierarchically organized categories during 
text categorization. These levels control the ability of 
the categories to attract documents during the catego­
rization process. The levels are adjusted to obtain a 
balance between recall and precision for each category. 
If a category's recall exceeds its precision, the category 
is too strong and its level is reduced. Conversely, a cat­
egory's level is increased to strengthen it if its prelision 
exceeds its recall. ·' 

The categorization algorithm used is a su~ervised 
learning procedure that uses a linear classifier hewed 
on the category levels. We are given a set of categories: 
organized hierarchically. \Ve are also given a training 
corpus of documents already placed in one or more cat­
egories. From these, we extract vocabulary, words that 
appear with high frequency within a given category, 
characterizing each subject area. Each node1s vocab­
ulary is filtered and its words assigned weights with 
respect to the specific category. Tben, test documents 
are scanned and categories ranked based on the pres­
ence of vocabulary terms. Documents are assigned to 
categories based on these rankings. We demonstrate 
that precision and recall can be significantly improved 
by solving the categorization problem taking hierarchy 
into account. Specifically, we show that by adjusting 
the category levels in a principled way, that precision 
can be significantly improved, from 84% to 91%, on 
the much-studied Reuters-21578 corpus organized in a 
three-level hierarchy of categories. 
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1 Introduction and Background 

The volume of online information has drastically in­
creased with the explosive use of the Internet and online 
databases. Text retrieval systems employed by search 
engines for accessing this information have difficulty 
keeping pace with the growth in the amount of data 
that needs indexing and searching. Categorization of 
the original text is a method of organizing and mak­
ing more efficient the retrieval task by sorting informa­
tion into pre-specified 11 category bins 11 that can then be 
queried against using natural language processing sys­
terns.1 

The, document categorization problem is one of as­
signing newly arriving documents to categories within 
a given hierarchy of categories. In general 1 lower level 
categories may be part of more than one higher level 
category. Moreover 1 a document may belong to more 
than one low-level category. While the techniques de­
scribed here can be applied to this more general prob­
lem1 the experiments we have conducted1 to date, have 
been carried out on a corpus where each document is a 
member of a single category and the categories form a 
tree rather than a more general directed acyclic graph. 
We limited the investigation to this more specific prob­
lem in order to focus the investigation on the effect of 
adjusting the category level numbers. 

Most computational experience discussed in the lit­
erature deals with hierarchies that are trees. Indeed, 
until recently, most problems discussed dealt with cate­
gorization within a simple (non-hierarchical) set of cat­
egories (Frakes and Baeza-Yates, 1992). The Reuters-
21578 corpus (available at David Lewis1

S home page: 



http:/ jwww.research.att.com/ lewis) has been studied 
extensively. Yang (Yang, 1997) compares 14 categoriza­
tion algorithms applied to this Reuters corpus as a flat 
categorization problem on 135 categories. This same 
corpus has been more recently studied by others treat­
ing the categories as a hierarchy (Chakrabarti et al., 
1997)(Koller and Sahami, 1997)(Ng et al., 1997)(Yang, 
1996). Yang examines a portion of the OHSUMED 
(Hersh et al., 1994) corpus of medical abstracts, a part 
of the 0iational Library of Medicine corpus that has over 
9 million abstracts organized into over 10,000 categories 
in a taxonomy (called MeSH) which is seven levels deep 
in some places. 

We describe an algorithm for hierarchical document 
categorization where the vocabulary and term weights 
are associated with categories at each level in the tax­
onomy and where the categorization process itself is 
iterated over levels in the hierarchy. Thus a given term 
may be a discriminator at one level in the taxonomy 
receiving a large weight and then become a stopword 
at another level in the hierarchy. 

There are two strong motivations for taking the hi­
erarchy into account. First, experience to date has 
demonstrated that both precision and recall decrease as 
the number of categories increases (Apte et al., 1994) 
(Yang, 1996). One of the reasons for this is that as 
the scope of the corpus increases, terms become in­
creasingly polysemous. This is particularly evident for 
acronyms, which are limited by the number of 3- and 
4-letter combinations, and which are reused from one 
domain to another. 

The second motivation for doing categorization 
within a hierarchical setting is it affords the ability to 
deal with very large problems. As the number of cat­
egories grows, the need for domain-specific vocabulary 
grows as well. Thus, we quickly reach the point where 
the index no longer fits in memory and we are trading 
accuracy against speed and software complexity. On 
the other hand, by treating the problem hierarchically, 
we can decompose it into several problems each involv­
ing a smaller number of categories and smaller domain­
specific vocabularies and perhaps yield savings of sev­
eral orders of magnitude. 

Feature selection, deciding which terms to actually 
include in the indexing and categorization process, is 
another aspect affected by size of the corpus. Some 
methods remove words with low frequencies both in or­
der to reduce the number of features and because such 
words are often unreliable. Depending on the size of the 
corpus, this may still leave over 10,000 features, which 
renders even the simplest categorization methods too 
slow to be of use on very large corpora and renders the 
more complex ones entirely infea.sible. 
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Methods that incorporate additional feature selection 
have been studied (Apte et al., 1994) (Chakrabarti et 
al., 1997) (Deerwester et al. 1990) (Koller and Sahami, 
1996) (Lewis, 1992) (Ng et al., 1997) (Yang and Peder­
son 1997). The effectiveness of these feature selection 
methods varies. Most reduce the size of the feature set 
by one to two orders of magnitude without significantly 
reducing precision and recall from what is obtained with 
larger feature sets. Some approaches assign weights to 
the features and then assign category ranks based on 
a sum of the weights of features present. Some weight 
the features further by their frequency in the test docu­
ments. These methods are all known as linear classifiers 
and are computationally simplest and most efficient, 
but they sometimes lose accuracy because of the as­
sumption they make that the features appear indepen­
dently in documents. More sophisticated categorization 
methods base the category ranks on groups of terms 
(Chakrabarti et a!., 1997) (Heckerman, 1996) (Koller 
and Sahami, 1997) (Sahami, 1996) (Yang, 1997). The 
methods that approach the problem hierarchically com­
pute probabilities and make the categorization decision 
one level in the taxonomy at a time. 

Precision and recall are used by most authors a.':> a 
measure of the effectiveness of the algorithms. Most of 
the simpler methods achieved values for these near 80% 
for the Reuters corpus (Apte et al., 1994) (Cohen and 
Singer, 1996). \!lore computationally expensive meth­
ods using the same corpus, achieved results near 90% 
(Koller and Sahami, 1997) while methods that used hi­
erarchy obtained small increases in precision and large 
increases in speed (Ng et a!., 1997). As the number of 
categories increased in a corpus (OHSUMED), precision 
and recall decline to 60% (Yang 1996). 

In a previous paper (D'Alessio et al., 1998) we show 
that it is possible to obtain more significant improve­
ments in precision and recall by making use of the hier­
archy. vVe describe an earlier version of the algorithm 
discussed here and show that treating the categoriza­
tion problem within the context of a hierarchy is ef­
fective in realizing these improvements. The principal 
focus there was on the effect of the hierarchy itself and 
in refining the hierarchy. In some cases, moving cate­
gories from one place within the hierarchy to another 
within it can further improve the accuracy of the cate­
gorization. Here we extend that investigation and focus 
on the effect of adjusting the category levels to further 
improve accuracy. We are particularly interested in ex­
ploring the situations where one approach (hierarchy 
modification or level modification) \vorks best. 



2 Problem Definition 

2.1 General Definition of Categories 

VVe are given a set of categories where sets of categories 
may be further organized into supercategories. We are 
given a training corpus and, for each document, the cat­
egory to which it belongs. Documents can, in general, 
be members of more than one category. In that case, it 
is possible to consider a binary categorization problem 
where a decision is made whether each document is or is 
not in each category. Here, we examine the M-ary cat·· 
egorization problem where we choose a single category 
for each document. 

trade 
258/104' 

gories organized as a flat ta-<onomy. Although the col­
lection does not have a pre-defined hierarchical classi­
fication structure, additional information on the cat­
egory sets available at Lewis's site describes an orga­
nization that has 5 additional categories that become 
supercategories of all but 3 of the original topics cat­
egories. Adding a root forms a 3-level hierarchy (see 
Figure 1). The number of categories per supercategory 
varies widely from a minimum of 2 to a maximum of 
78. All of the documents in the Reuters collection are 
assigned to 0 or more of the original 135 topics cat­
egories. In this ca..se, documents are assigned only to 
leaf categories of the hierarchy while, in general, this is 
not necessarilv the case. 

root 
6753/2648' 

acquisitions earnings 
1674/688' 2789/1156' 

" number of training/ test documents t number of subcategories in test set 

Figure 1 Reuters basic hierarchy 

2.2 Document Corpus and Taxonomy . I 

We use the Reuters-215 78 corpus, Distribution 1.0, 
which is comprised of 21578 documents, representing 
what remains of the original Reuters-22173 corpus af­
ter the elimination of 595 duplicates by Steve Lynch 
and David Lewis in 1996. The size of the corpus is 
28,329,337 bytes, yielding an average document size of 
1,313 bytes per document. The documents are "cate­
gorized'' along five axes ~ topics, people, places, organi­
zations, and exchanges. VVe consider only the catego­
rization along the topics a.'CiS. Close to half of the docu­
ments (10,211) have no topic and as Yang (Yang, 1996) 
and others suggest, we do not include these documents 
in either our training or test sets. Note, that unlike 
Lewis (acting for consistency with earlier "tudies}, the 
documents that we consider no-category are those that 
have no categories listed between the topic tags in the 
Reuters-21578 corpus' documents. This leaves 11,367 
documents with one or more topics. Most of these doc­
uments (9,495) have only a single topic. The average 
number of topics per document is 1.26. 

The Reuters-21578 collection uses 135 topics cate-
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The number of training documents per category also 
varies widely, from a minimum of 0 (for 71 such cate­
gories) to a ma.'Cimum of 2, 789 (earnings). On the other 
hand', document size does not vary greatly across cate­
gories. In the experiments described in this paper, we 
only considered categorizing test documents into cat­
egories having 20 or more training documents. This 
was done in order to focus on a problem where there 
was enough statistical significance in the features we 
extracted to make comparisons among different cate­
gory levels meaningful. This limited the investigation to 
27 categories and actually removed only 94 documents 
(less than 3.5%) from the test corpus. This increased 
the overall precision and recall by about 1.5%. How­
ever, since we are principally interested here in study­
ing the effect of varying the category level numbers, this 
is not a problem as all the experiments described were 
carried out on the same corpus. 

2.3 Performance Metrics 

\Ve measure the effectiveness of our algorithm by us­
ing the standard measures of microaveraged precision 



and recall; i.e., the ratio of correct decisions to the to­
tal number of decisions and the ratio of correct deci­
sions to the total number of documents, respectively. 
\Ve do, however, sometimes leave documents in non-leaf 
categories and then, in measuring precision and recall, 
count these as "no-category'', reducing recall but not 
precision. 

3 Algorithm Description 

3.1 Overview 

We begin by creating training and test files using 
the 9,495 single-category documents from the Reuters-
21578 corpus. While this led to somewhat higher pre­
cision and recall than would have been obtained by 
including multicategory documents, our 91% precision 
and 90% recall is also higher than the roughly 80% typi­
cally reported for categorization methods of comparable 
speed and complexity. Thus, our approach is compara­
ble to those methods and serves as a reasonable baseline 
against which to study the effects of the hierarchy. 

The corpus is divided randomly, using a 70%/30% 
split, into a training corpus of 6,753 training documents 
and 2,742 test documents. Documents in both the 
training and test corpora are then divided into words 
using the same procedure. Non-alphabetic characters 
(with the exception of"-") are removed and all char­
acters are lowercased. Stopwords are removed. The 
document is then parsed into 11 Wordsn; i.e., character 
strings delimited by whitespace, and these words are 
then used as features. 

Next, we count the number of times each feature ap­
pears in each document and, from that, we compute the 
total number of times each feature appears in training 
documents in each category. \Ve retain only features 
appearing 2 or more times in a single training docu­
ment or 10 or more times across the training corpus. 
All other features are discarded as being insufficiently 
reliable. 

Next we use a variant of the ACTION Algorithm 
(Wong et a!. 1996), described in detail in Section 3.2 
below, to associate features with nodes in the ta.'Con­
omy. This is one of the two aspects that make our ap­
proach novel. By eliminating most features from most 
categoriesl we gain several advantages. First, by lim­
iting the appearance of a feature to a small number of 
categories (usually, just one) where it is an unambigu­
ous discriminator, we improve the precision of the cat­
egorization process. Second, by working with a small 
number of features, we avoid optimization over a large 
number of features, and have a procedure with low com­
putational complexity that can be applied to large prob­
lems with many categories. (Currently the number of 
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features is set to 50). Our feature selection procedure 
most closely resembles rule induction (Apte eta!., 1994) 
but it differs from that approach in that it considers 
the interactions among a larger number of features for 
a given amount of computational effort. 

\Veights are now assigned to the surviving features in 
each category. We associate a weight, Wt, , with each 
surviving feature, f , in category c. We define Wt, by: 

( 1) 

where Nt, is the number of times f appears in c, M, 
is the maximum frequency of any feature inc, and is a 
parameter (currently set to 0.4). 

We also assign a negative weight to features associ­
ated with siblings (successors of the same parent node) 
of each category. A feature appearing in one or more 
siblings of c but not in c itself, is assigned a negative 
weight 

( NtP) Wt, = -(.\ + 1 - .\) M (2) 
p 

where p is the parent of c in the hierarchy. Thus NtP is 
the number of times f appears in the parent of c, which 
is in turn the number of times f appears in all siblings 
of c since it does not appear in c itself at all. Alp is the 
maximum frequency of any feature in c's parent. 

Finally, we filter the set of positive and negative 
words associated with each category, both leaf and inte­
rior, retaining the most significant words. This process 
is described in the next section. 

We now have an index suitable for use in the cate­
gory ranking process. The index contains features and 
a weight, VVtc , associated with each feature in each 
category. Note that W1, is implicitly 0 for any feature 
not a'3sociated with a particular category. 

Given a document, d, a rank can now be associated 
with each category with respect to d. Let F be the 
set of features, f, in D. The ranking of category c with 
respect to document d, Red, is then defined to be: 

R,d = L NtdWf, (3) 
! 

where the sum is over all positive and negative features 
associated with c and Ntd is the number of times f ap­
pears in d. Note that, in practice, the sum is taken only 
over features that are in the intersection of the sets of 
features actually appearing in d and actually associated 
with c. Note that Red may be positive, negative or zero. 

Test document d is now placed in a category. Starting 
at r, the root of the hierarchy, we compute R,d for all c 
which are successors of r. If all Red are zero or negative, 
dis left at r. If any R,d is positive, let c' be the category 
with the highest rank. If c' is a leaf node, d is placed 
inc'. If c' is an interior node, the contest is repeated 



at node c'. Thus, d is eventually placed either in a leaf 
category which wins a contest among its siblings or in 
an interior node none of whose children have a positive 
rank with respect to d. In this latter case, we may 
say that d is actually placed in the interior category, 
partially categorized or not categorized at alL Which 
of these we choose is dependent upon the application 
and on how much we value precision versus recall. 

3.2 The ACTION Algorithm 

The ACTION Algorithm was first described in (Wong 
et aL, 1996) as a method of associating documents with 
categories within a hierarchy. Here, we use it to asso­
ciate vocabulary with nodes in a hierarchy and asso­
ciate documents with the nodes using the procedure 
described in Section 3.1 above. The original algorithm 
applied to problems with documents at interior and leaf 
nodes. Although our adaptations apply to the more 
general case also, we describe the algorithm with re­
spect to that simpler case since the corpus we are using 
has documents only at leaf nodes. 

The algorithm begins by counting Ntc' the number 
of times feature f appears in documents associated with 
category c in the training set, for all f and c. There 
is a level, , associated with each category, c, in the 
hierarchy. By convention, the root is at level 1; its 
immediate successors are at level 2, etc. 

We then define EF1" the effective frequency of a 
subtree rooted at node c with respect to feature f as 

EFJ, = L Nfi . I ( 4) 
)eSc 

Thus, EF/c is the total number of occurrences off inc 
and all subcategories, Sc of node c. 

Finally, we define Vfc, the significance value~ of c with 
respect to f, as 

(5) 

Thus, a node gets credit, in proportion to its level, for 
occurrences off in itself and in its successors. The far­
ther down the tree a node is, the more credit it is given 
for its level, but the higher up the tree a node is, the 
larger the subtree rooted at c and the larger the credit. 
it gets for effective frequency. A competition thus takes 
place between each node and its parent (immediate pre­
decessor). For each feature, f, EFfc is compared with, 
EFfp , where pis the parent of c and if EF/, is smaller 
then f is removed from node c. Thus a parent can re­
move a feature from a child but not vice versa. In the 
case of a tie, the child loses the feature. All this com­
petition proceeds from the leaves upward towards the 
root. 
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The net effect of this is that if a feature occurs in only 
a single child of a given parent, then the child retains the 
feature (as does the parent), but if the feature occurs 
significantly in more than one child of the same parent, 
then only the parent retains the feature. 

Several advantages accrue from all this. First, com­
mon features, including stopwords, will naturally rise to 
the root, where they will not participate in any rank­
ings. Thus, this algorithm is a generalized version of 
removing stopwords. If a feature is prominent in sev­
eral children of the same node, the parent will remove 
it from all of them. Ideally, words that are important 
for making fine distinctions among categories farther 
down in the category hierarchy, but are ambiguous at 
higher levels, will participate only in places where they 
can help. 

Note that we never directly remove a feature from the 
parent even when the child retains it. The reason for 
this is that we may need the feature to get the document 
to the parent; if it doesn 1t reach the parent it can never 
reach the child. In the case where a feature strongly 
represents only one category, there is no harm in the 
parent retaining it. In the cases where it is ambiguous 
at the level of the parent, the grandparent removes it 
from the parent (its child). 

Thus, at the end of the algorithm when we filter the 
feature set for each category (leaf and non-leaf) retain­
ing only the 50 most highly ranked positive and negative 
words, at non-leaf categories we also retain any words 
retained by their children. 

3.3 Assignment of Category Level Values 
' 

The focus of the experiments described in Section 4 is 
to invbstigate the effect of modifying the category levels 
in the ACTION Algorithm and in the ranking process 
which actually selects document categories. We begin 
with the root at level 1 and with all other categories at 
a level one higher than that of their parents. We run a 
categorization and measure the resultant precision and 
recall for each category and for the corpus as a whole. 

Next, we consider the effect of varying the level of the 
root, observing the effect on accuracy, and setting the 
level of the root (and all other categories, since their 
levels are set relative to that of the root) to the best 
value found. A simple, linear search is carried out at a 
fairly coarse scale (increments of .25). Experiments we 
carried out using a finer scale did not yield significantly 
better results and we thus limited all the experiments 
here to this stepsize of .25. Even with such a simple 
search, we obtained significant improvements in accu­
racy, over 7% overall. It is our intention in the future, 
after examining the effects of the interaction between 
hierarchy modifications and level modificatioi1s in more 



detail, to return to the issue of searching over a nar­
rower grid. At this stage in the investigation, however, 
we felt that doing so would only obscure the main re­
sults. 

Actually, the category level numbers serve two pur­
poses: word selection and document ranking. First, 
during the ACTION Algorithm (see Equation 5), they 
affect the competition (between parents and children) 
for words. A parent at level L will compete success­
fully with a child at level L+D, removing a word from 
the child's wordlist, if the Fp/ F,, the frequencies of the 
word in the subtrees rooted at the parent and child, 
respectively, exceeds (L+D)/L. Thus, the difference in 
the level number of the parent and child directly affects 
how high the relative frequency of the word must be, 
in the child relative to the parent, in order for the child 
to retain the word. Making D smaller strengthens the 
parent with respect to the child. Similarly, making L 
smaller while leaving D the same, weakens the parent 
with respect to the child. But altering L is fundamen­
tally different from altering D as altering L also affects 
the parent's strength with respect to its own parent. 

Thus, in modifying level numbers we must consider 
this interaction. We do so simply by looking for cat­
egories where the precision and recall are very differ­
ent and where the interaction with other categories is 
marked. At each step, we consider the performance of 
a node relative to its parent, strengthening or weaken­
ing it as appropriate to balancing the node's precision 
and recall, specifically, its ability to attract the correct 
documents to its subtree. 

Changing a node's level number also affects the rank­
ing process. Again, the higher the level number, the 
stronger the node. Now, however, the change in level 
number also affects a node's strength with respect to 
its siblings as siblings compete directly for documents 
reaching their parent. We deal simply with this prob­
lem too. By examining the dispersion matrix, we ob­
serve which categories in the group under a common 
parent are too strong, aggressively stealing documents 
from their siblings, and which are victims. We begin by 
adjusting the node most out of kilter, or several nodes 
that are all out of kilter in the same direction and are 
not directly competing with one another. In practice 
this was found to be effective; experiments with more 
complex modification procedures did not produce sig­
nificantly better results. 

Actually! it is possible to consider two different level 
numbers, one for word selection and another for docu­
ment ranking. In fact, the motivations for modifying a 
node's level number for word selection and for document 
ranking coincide thus making it reasonable to consider 
making similar adjustments. \Ve plan to return to this 
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issue as part of a broader investigation of refinements 
to the overall algorithm, preferring to concentrate here 
on the simpler case. Even using this simple approach, 
however, we obtained significant gains. 

4 Computational Experience 

There are a number of ways that the performance 
of a hierarchical categorization system can be tuned. 
Here we describe experiments performed in order to 
understand the effects of adjusting the level numbers 
(weights) of the categories within the hierarchy. 

The purpose of this research is to investigate the role 
of a hierarchical organization of categories on the text 
categorization task. In particular we are considering a 
tree of categories with each node in the tree assigned 
a level number. As described above, this level number 
is used in evaluating the significance of features during 
the feature selection process, and in weighting of doc­
ument features during the categorization process. The 
experiments reported here were conducted to determine 
the impact of this level number on feature selection and 
categorization of documents. 

We begin with a base line case. We use the topics 
hierarchy supplied with the Reuters-21578 corpus, and 
consider only the leaf categories. We add a root cat­
egory to make a simple tree structure. \Ve assign the 
root a level number of 0 and the leaves a level of 1. 
VVith this organization of categories and level numbers 
the root is unable to remove any features from a node 
during the feature selection process. Therefore, it effec­
tively becomes a set of nodes rather than a tree. When 
we apply our categorization algorithm to the test doc­
uments we achieve a precision of 83.6% and a recall of 
83.5%. We refer to this case as F!at-0. Note that if no 
category gives a document a ranking above our thresh­
old, currently set to zero, then the document remains 
unclassified. In the Flat-0 case there are 2 unclassified 
documents. 

We modified the base case by giving the root a level of 
1, and all leaves a level of 2. The root is now capable of 
extracting features from the leaves during the feature 
selection process. VVhen we apply our categorization 
procedure to the same test data as above we achieve a 
precision of 90.6% and a recall of 87.2%. We refer to 
this case as Flat-!. In Flat-1 there are 99 unclassified 
documents, but the precision and recall are significantly 
improved. 

With a level number of 1, the root aggressively re­
moves features from the leaves. The result is that 97 
more documents receive rankings below the threshold 
and remain unclassified in Flat-1 than in Flat-0. We 
hypothesize that if the root were less aggressive in reM 



moving features from the leaves, the leaves would retain 
better features, resulting in better recall and precision. 
On the other hand, if the root has too low a level num­
ber the root does not remove any features from the 
leaves, and as a result the leaves retain features that 
are noisy. We tested this hypothesis by assigning the 
root a level of. 75 and the leaves levels of l. 75. We refer 
to this case as Flat-75. Applying our feature selection 
and categorization algorithms as above resulted in a 
precision of 9!.2% and a recall of 89.2%. In this case 
60 documents were unclassified but both precision and 
recall were improved when compared to Flat-1. The 
results of the experiments on the test data for the three 
Flat hierarchy cases are in the summary Table 3. 

These results support our hypothesis that the value 
of the level numbers affects the ability of the root to 
remove features. We conducted a further experiment 
to confirm this conclusion. Normally our program re­
moves stopwords from the training and testing docu­
ments. Since we restrict the number of features at each 
node to 50, this insures that the retained features are 
useful. We modified our programs so that stopwords 
were not removed, then ran the feature selection and 
categorization processes. If our conclusions regarding 
the level numbers were correct, then using a level num­
ber of . 75 should result in precision and recall approxi­
mately equal to the results described above for Flat-75. 
However if we run the program with a root level of 0 the 
precision and recall should deteriorate since the stop­
words will impede performance. \Vhen we performed 
these experiments we achieved a precision of 90.71% and 
a recall of 88.9% with a root level of .75 and a precision 
and recall of 78.3% with a root level of 0. These results 
confirm that our feature selection algorithm' together 
with appropriate level values significantly reduces noise 
and improves performance. 

Our next objective was to determine if the level num­
bers could be tuned to improve performance in the case 
of a more elaborate hierarchy. For this set of experi­
ments we also used the topics hierarchy provided with 
the Reuters-21578 corpus (Figure 1). This time we 
included the intermediate categories, corporate, com­
modities, economic indicators, energy and currency. We 
first established a base line for performance by assigning 
the root a level of . 75 and increasing the level numbers 
by 1 at each lower level of the tree. We refer to this or­
ganization as Base-Hier. \Ve ran our feature selection 
program using the training data, and our categorization 
program using the same test data as above. The result 
was a precision of 87.1% and a recall of 85.2%. This 
result is reported in the summary Table 3. In order to 
tune the level numbers we repeated a process of first us­
ing the training data to select a set of features for each 
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node, then categorizing the training data and using the 
results to select new level numbers, then repeating the 
feature selection/categorization process on the training 
data until we arrived at an appropriate set of level num­
bers. At that point we could judge the effectiveness of 
the training by comparing our results against the base 
line case. 

We began the process by using the training data 
for feature selection and categorization with Base-Hier. 
Based on our analysis of the results from the previ­
ous experiments we hypothesize that we could improve 
the categorization performance in two ways. First, if 
a category is achieving high precision and low recall, 
we could raise its level number; and second, if a cate­
gory is achieving high recall and low precision we could 
lower its level number. For our first experiments we 
selected simple cases of nodes that were experiencing 
poor performance, and as we learned more about the 
tuning process moved onto more involved cases. 

When we apply our feature selection and categoriza­
tion programs to our training data using Base-Him· we 
get a precision of 89.2% and a recall of 87.5%. When 
we examine the results more closely we see that the cat­
egories of interest and money-fx are candidates for tun­
ing. Interest has a precision of 95% but a recall of only 
23% while money-fx has a precision of 89% and a recall 
of 60%. Both of these categories are direct descendents 
of the root and have no descendents. In both cases rais­
ing the level numbers should allow us to improve recall. 
We changed both level numbers from 1.75 to 2.75 and 
ran our feature selection and categorization procedures 
with the new hierarchy. Overall the precision and recall 
imptoved to 90.8% and 89.3% respectively. Interest has 
a precision of 98% and recall of 62% and rnoney-fx has 
a precision of 85% and recall of 84%. Of course these 
results are from categorizing the training data, however 
they do indicate significant improvement. 

If we look at the results of the previous experiment 
we see that with a precision of approximately 90% and a 
training set of 6493 documents, we are making approx­
imately 650 errors. The largest single source of these 
errors occurs in the corporate subtree. Corporate has 
two subcategories, earnings and acquisitions. Earnings 
has a precision of 91% and a recall of 99% w bile ac­
quisitions has a precision of 94% and a recall of 84%. 
The corporate category has a precision of 97% and a 
recall of 98%. These categories account for approxi­
mately 2/3 of the training data, From these results 
we can see that almost all of the earnings and acquisi­
tions documents are correctly placed in the corporate 
category. Our categorizer must then decide if the doc­
uments are earnings or acquisitions documents. Our 
program is placing 22 earnings documents in the acqui-



sitions category and 211 acquisitions documents in the 
earnings category. In addition, 42 earnings and acquisi­
tions documents are left in the corporate category since 
there was no positive rank. In all, this is a total of 275 
mistakes, which accounts for a substantial portion of 
the total 650 mistakes. Clearly this set of categories is 
a good candidate for tuning. This case is more complex 
than the interestfmoney-fx case since earnings and ac­
quisitions are not descendents of the root. As we tune 
their level values we want to improve the performance 
of earnings and acquisitions without having a negative 
impact on the performance of the corporate category. 

Since many more acquisitions documents are being 
classified as earnings documents than the reverse and 
acquisitions, recall is significantly lower that its preci­
sion (see Table 1), we should lower the level number of 
earnings relative to acquisitions in order to make ac­
quisitions stronger. At this point corporate is at level 
l. 75, and both earnings and acquisitions are at level 
2.75. There are a number of ways that we might tune 
these levels, we explored three possibilities. The first 
alternative leaves corporate at 1. 75 and acquisitions at 
level 2.75 but lowers earnings to 2.5. Call this Al. The 
second alternative leaves corporate at 1. 75 and lowers 
both earnings and acquisitions, earnings to 2.25 and 
acquisitions to 2.5. Call this A2. The final possibility 
lowers corporate to 1.5 and earnings to 2.5 and leaves 
acquisitions at. its 2.75 level. Call this A3. 

We would expect that using A1 would result in ac­
quisitions getting better features and consequently also 
getting more of its own documents) with the possible 
side effect of having more earnings documents classified 
as acquisitions. A2 makes corporate stronger relative to 
both earnings and acquisitions. As we saw in the flat 
cases this would mean that corporate would remove fea­
tures more aggressively. VVe would expect therefore that 
acquisitions would have fewer of its documents classi­
fied as earnings, but there is the possibility that many 
more documents from both earnings and acquisitions 
will be unclassified. A3 makes both earnings and ac­
quisitions stronger relative to corporate and we would 
expect to have fewer unclassified documents. We would 
also expect that fewer acquisitions documents would be 
classified as earnings. Since both A1 and A2 leave cor­
porate at levell. 75 we would also expect that corporate 
would continue to achieve both high recall and preci­
sion. In fact, other branches of the hierctrchy should 
be unaffected by the changes inside the corporate tree 
(one of the strengths of a hierarchical approach). A3 
changes the level of corporate so there is the possibility 
that the performance of corporate relative to the rest 
of the hierarchy will deteriorate in this case. 

VVe ran our feature selection and classification proce-
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dure for all three cases. The results are shown in the 
Table 1 below. 

As we can see AI allows acquisitions to retain bet­
ter features and its recall improves significantly. By 
making earnings weaker it classifies fewer acquisitions 
documents as earnings and earnings achieves a higher 
precision with a slight decrease in recall. The weaker 
value for earnings also results in more unclassified cor­
porate documents, A2 produces similar improvements 
in the precision of earnings and the recall of acquisi­
tions but results in many more unclassified corporate 
documents resulting in a slightly lower overall recall. 
A3 gives the fewest unclassified corporate documents. 
Since corporate has a lower level number in this case it 
does not remove features as aggressively as in the other 
two cases. One side effect however is that many more 
documents are incorrectly classified as acquisitions, and 
the overall performance deteriorates. Of course there 
are other adjustments that could be made, but our ob­
jective was not to find the optimum combination, but 
rather to understand the effects of changing the levels. 
We selected A1 as the best alternative. 

The next case we consider is the economic indica­
tors subtree. This is a more complex case than those 
described above. Nine of the categories in this subtree 
have more than twenty training documents and are used 
in these experiments. Together there are 663 training 
documents for the categories in the subtree. Using the 
A1 hierarchy above the subtree achieves a recall of 88% 
and a precision of 84% on the training data. Within 
the subtree the performance is quite varied. Five of the 
nine subcategories have a precision of over 90% while 
four of the categories have recall below 70%. In some 
cases the difference between precision and recall is very 
large. The category cpi for example has a precision of 
100% but a recall of only 40%. Balance of payments 
has a recall of 88% and a recall of only 29%. On the 
other hand, trade has a precision of only 73% and a 
recall of 88%. 

All the categories within economic indicators have 
level 2.75. We tested our hypotheses regarding the ef­
fects of level numbers by adjusting the levels within the 
subtree. We increased the level of the two nodes with 
very low recall and high precision from 2. 75 to 4. 75. We 
increased the level of one node to 3.75 and we decreased 
the level of trade from 2. 75 to 2.5. Nodes with recall 
and precision approximately equal were left unchanged. 
YVith these adjustments, our overall performance on the 
training data was a 93.0% precision and a 91.7% recall. 
Using our guidelines we performed a final round of tun­
ing throughout the hierarchy (called Final-Hier) using 
the training data with a precision of 93.2% and a re­
call of 92.0%. The results of these experiments on the 



Level Numbers 
Corp Acq Earn Overall Earn Acq Unclass Earn Acq 

Prec/Rec Prec/Rec Prec/Rec Corp Docs as Acq as Earn 
Before 1.75 2.75 2.75 91/89 91/99 94/84 42 22 211 
Al 1.75 2.75 2.50 93/91 96/98 92/93 55 47 55 
A2 1.75 2.50 2.25 92/90 97/97 91/91 96 65 39 
A3 1.50 2 75 2.50 91/89 97/94 88/93 15 160 50 

Table 1: Precision, Recall, Unclassified Corporate Documents, Earnings Documents Classified as Acquisitions and 
Acquisitions Documents Classified as Earnings for Different Levels Number for Corporate, Acquisitions and Earnings 
using Training Data. 

Prec(%) Rec(%) 
Base-Hier 89.2 87.5 
InterestjC.!oney-fx at 2.75 90.8 89.3 
Earnings at 2.5 (A1) 92.7 91.0 
Adjusting Econ Inds 93.0 91.7 
Final-Hier 93.2 92 0 

Table 2: Results Using Training Data 

training data are reported in Table 2. 

We then used the resulting hierarchy, Final-Hier, to 
categorize the test data. The result was an overall pre­
cision of 91.5% and a recall of 89.9%. This compares 
favorably \Vith our results on the test data using Base­
Hier where we achieved a precision of 87.1% and a recall 
of 85.2%. See Table 3 for a summary of selected corre-
sponding results using the test data. ,: J. 

VVe performed additional experimentS to test the ro­
bustness of our final hierarchy. In all of the experiments 
above we restricted ourselves to categories that had at 
least 20 training documents. In the first test of ro­
bustness we relaxed this condition and only required 10 
training documents. When we applied our categorizer 
to the test data we achieved a precision of 91.0% and 
a recall of 89.4%. In our second test we relaxed the 
condition further and considered all the categories re­
gardless of the number of training documents. When 
we applied the categorizer in this case we achieved a 
precision of 90.0% and a recall of 88.4%. In our next 
test we kept the level values of the categories the sarne 
but retrained the graph using only 30% of the data as 
training data. We then tested the categorizer on the 
remaining 70%. In this experiment we again required 
20 training documents for a category. The result was 
a precision of 89.8% and a recall of 89.4%. Finally, we 
tested the categorizer on an alternate 70/30 random 
split of the corpus and obtained similar results. This 
final result is also reported in Table 3. 
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Prec(%) Rec(%) 
Flat-0 83.6 83.5 
Flat-75 91.2 89.2 
Flat-1 90.6 87.2 
Base-Hier 87.1 85.2 
Final-Hier 91.5 89.9 
Final-Hier (Alt split) 91.1 89.9 

Table 3: Results Using Test Data 

5 Summary and Conclusions 

In this paper, we have explored the effect of modifying 
the category level numbers in an algorithm for hier­
archical text categorization and have shown that it is 
possible to obtain substantial improvements in precision 
and recall by doing so. Specifically, we improved preci­
sion and recall from an 84% level to over a 91% level, by 
adjusting the category level numbers. The procedure 
we used was a simply, greedy search heuristic guided 
by the principle that categories whose precisions signif­
icantly exceeded their recall were too weak and those 
whose recall exceeded their precision were too strong. 

In a previous paper (D' Alessio et al., 1998) we ex­
plored the effect of modifying the hierarchy itself, mov­
ing categories from one part of the hierarchy to another, 
in order to achieve similar objectives. We found that 
approach effective also and have now shed additional 
light on the role of hierarchy in the categorization pro­
cess and in the interaction between hierarchy modifica­
tion and level modification. Close examination of the 
dispersion matrix has been very useful in this regard. 
We found that level modification was most useful in 
cases where a category was generally too weak or gen­
erally too strong. The row or column in the dispersion 
matrix containing many off-diagonal elements charac­
terized these cases. On the other hand, when the prob­
lem was a single large off-diagonal element, moving a 
category from one part of the hierarchy to another was 
rnore effective. In some cases, both approaches were 
effective. 



We have seen examples of all these cases. We illus­
trated we could achieve improvements by modifying the 
level numbers for earnings and acquisitions or, alterna­
tively (in our previous work (D'Aiessio et a!., 1998)) 
by altering the hierarchy by removing the intermedi­
ate corporate category. The former approach, however, 
worked somewhat better. We found that we could gain 
by altering the level numbers of interest and money-fx 
or, alternatively making them children of economic in­
dicators. Both approaches worked, but in this case, the 
latter worked better. 

Based on our computational experience to date, our 
conclusion is that both types of adjustment are useful 
and that much of the obtainable gain can be achieved by 
making adjustments individually, focussing on simple 
adjustments and on those with large potential gains. 
Our next goal is to explore this interaction more closely 
and to automate the process of category level number 
modification. We also plan to explore the use of these 
techniques in problems with multi-category documents. 
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Abstract 
In this paper) we propose a method for text categoriza­
Lion task using term weight learning. In our approach, 
learning is to learn true keywords from the error of clus­
tering results. Parameters of term weighting are then 
estimated so as to maximize the true keywords and min­
imize the other words in the text. The characteristic of 
our approach is that the degree of context dependency 
is used in order to judge whether a word in a text is 
a true keyvv·ord or not. The experiments using Wall 
Street Journal corpus demonstrate the effectiveness of 
the method. 

Introduction 
\~Vith increasing numbers of machine readable docti­
ments becoming availa.ble, an automatic text catego­
rization which is the classification of text with respect 
t.o a. set. of pre-categori;.:ed texts) has become a trend in 
IR and NLP studies. .I 

One of the important issues in text cHtegoriza.­
t.ion task is hc)\\1 to characteri;.:e texts whicl.1 are pre­
categorized. There are at least two stat.lstica.l ap­
proaches t.o cope with the issue) i.e. statistical approach 
that relies mainly on ( 1) surface information of words in 
texts, and (2.) senwntic infonnation of \VOrds in texts. 

Statistical approach based on surface information of 
words has been widely studied in IR. One represen­
tative is a vector model. In this model, each text. is 
represented by a vector, i.e. every text which should 
be classified a.nd texts which are pre-categorized in a 
training phase are characterized by a vector, each di­
mension of which is associated with a specific word in 
Lcxts) and every coordinate of the text is represented 
by term weighting. Then) some similarity measure 
is used and the text is assigned to the most sema.n­
tica.lly similar set of texts which are pre-ca.t.egori;.:ed. 
Term weighting method is widely studied [Luhn 1958], 
[Salton and Yang1973], [Salton\988], [.Jones1973]. 
Guthrie a.nd Yuasa. used word frequencies for weight­
ing [Guthrie and Walkerl994], [Yuasa et al.l995], and 
Tokunaga used weighted inverse document frequency 
(WIDF) which is a word frequency within the docu­
ment divided by its frequency throughout the entire 
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document collection [Tokunaga and Iwayama1994]. 

The other approach is based on a probabilistic 
model. This approach is widely used, since it has 
solid formal grounding in probability theory. I way am a 
et. al. proposed a probabilistic rnodel called Sin­
gle mndom Variable with Multiple Values (SVMV) 
[Iwayama and Tokunaga\994]. They reported that t.he 
result of their experiment using S VM V was better than 
other probabilistic models; Component Theory(CT) 
[Kwok\989], Probabilistic Relevance Weighting(PRW) 
[Robertson and Jones\976] and Retrieval with Proba­
bilistic Inde,;ing(RI'I) [Fuhr!989] in the task of catego­
rizing news articles from the Wall Street. Journal( W8J). 
Most previous approaches seem to show the effect in en­
tirely difl'erent texts, such as 'weather forecasts', 'medi­
cal reports) and 'computer manuals). Because each dif­
ferent text is characterized by a large number of words 
which appear frequently in one text, but. appear sel­
dom in other texts. However) in some texts from the 
same domain such as 'weather forecasts') one encoun­
terS quite a large number of words which appear fre­
quently over texts. Therefore, how to characterize every 
text is a serious problem in such the restricted subject 
domain. 

The other statistical approach is based on seman­
tic information of words. The technique developed 
by VVa.lker copes with the discrimination of polysemy 
[Walker and Amslcrl986]. The basic idea of his ap­
proach is that to disambiguate word-senses in articles 
might affect Lhe accuracy of context dependent classi­
fication, since the meaning of a. word characterizes the 
domain in which it is used. He used the semantic codes 
of the Longman Dictionary of Contemporary English 
to determine the subject domain for a set of texts. For 
a given t.ext, each word is checked against the dictio­
nary t.o determine the semantic codes associated with 
it.. By accumulating the frequencies for these senses 
and then ordering the list of categories in terms of fre­
quency) the subject matter of the text can be identified. 
However, Fukumoto reported that when using disam­
biguated word-senses within texts ( 49 different texts) 
each of which consists of 3,500 sentences) were up to 
only 7.5% as those when using word frequencies for 



weighting, since in a restricted subject domain such as 
Hia.l/ St.reet Journal, lots of nouns in articles were used 
with the same sense. As a result, the results of word­
sense disambiguation did not strongly contribute to an 
accurate classification (Fukumoto and Suzuki1996J. 

Blosseville et. al. proposed an automated method 
of classifying research project descriptions using tex­
tual and non-textual information associated with the 
projects. Textual information is processed by two meth­
ods of analysis: a NL analysis followed by a statisti­
cal analysis. Non-textual information is processed by 
a symbolic learning technique. T'he results using two 
classification sets showed that 90.G% for 7 classes and 
70.9% for 28 classes could be classified correctly. Their 
method, however, requires a great effort, since the in­
put data are not raw textual data, but rather the result 
of deep synta.ctic and semantic analysis of textual data. 

In this paper, we propose an a!Lernative rnethod for 
an automatic classification, i.e. a. method for term 
weight learning which is used to characterize texts. In 
our approach, learning is to learn true keywords from 
the error of clustering results. Parameters of term 
weighting are then estimated so as to maximize the true 
keywords and minimize the other words in the text. The 
characteristic of our approach is that the degree of con­
text dependency is used in order t.o judge whether a 
word in a text is a true keyword or not. \Ve applied our 
technique to the task of categorizing news articles from 
1989 VVSJ in order to see how our method can be used 
effectively to classify each text into a. suitable category. 

In the following sect.ions 1 we first present a basic idea 
of context dependency, and describe how to recognize 
keywords. Next, we describe methods for term \Veight 
lca.rnillg and for classifying texts using term weight. 
leaming. Then, we present a method for categoriza­
tion task. Finally, we report on some experiments tn 

order to show the effect of the method. 

Training the Data 
Recognition of Keywords 
In our approach, learning is to learn true keyv·wrds from 
the error of clustering results. The basic idea of our 
tenn weight learning is to use the fact that whether a 
word is a key in a text or not depends on the domain 
to which the text belongs. 

\Ve will focus on the WSJ corpus. Let 'stake' be 
a. keyword and 'today' not be a keyword in the text 
(art.icle). If the text belongs l.o a restrict.ed subjeet 
domain, such a.."l 'Economic news', there are other texts 
which are related to the text. Therefore, the frequency 
of 'stake) and 'today' in other texts are similar to each 
other. Let us further consider a broad coverage domain 
such as a.ll texts of the WS'J; i.e. the text containing 
the words 'stake' and 'today' belong::; to the YVSJ which 
consists of different subject domains such as 'Economic 
ne,vs' or (International news'. 'Today' should appear 
frequently with every text. even in such a .. domain, while 
'stake' should not. Our technique for recognition of 
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true keywords explicitly exploits this feature of context 
dependency of word: how strongly a. word is related to 
a given context? 

Like Luhn's assumption of keywords, our method is 
based on the fact that a writer normally repeats cer­
tain words (keywords) as he advances or varies his ar­
guments and as he elaborates on an aspect of a subject 
[Luhn1958]. Figure 1 shows t.he structure of the WSJ 
corpus. 

Economic International 
news news 

xxxx yyyy 

Text ••• [ZJ [1 Q 0 

. 
-~-------------~~ ~~~--------~ ... 

o: Keyword 

Figure 1: The structure of the WSJ corpus 

••• 

In Figure 1, (xxxx' and 'yyyy' shows a title name of 
a text. which belongs to the category, 'Economic news' 
and 'International news', respectively. 

VVe introduce a degree of context dependency into 
the structure of t.he WSJ corpus shown in Figure 1 in 
order to recognize keywords. A degree of context de­
pendency is a measure showing how strongly each word 
is related to a particular paragraph or text. In Figure 
1, let '0' be a keyword in the text 'xxxx'. According 
to Luhn 's assumption, '0' frequently appears through­
out paragraphs. Therefore, the deviation value of '0' 
in the pa.ragraph is sma.ll. On the other hand, the de­
viation value of '0' in the text is larger than that of 
the paragraph, since in texts, '0' appears in the par­
ticular text, 'xxxx'. \Ve extracted keywords using t.his 
feature of the degree of context dependency. In Figure 
1, if a word is a keyword in a. given text., it satisfies 
that. the deviation value of a word in the paragraph is 
smaller than that. of the text, a.nd is shown in formula 
(1) [Fukumoto et aU997]. 

where, 

p2 X wj 

< 

"'" ( jJ2 ) L...-j.::::l X wj - iiw 
1D 

( - )' .Twj -- Vwj 

Vwj 

( 1) 

(2) 

(3) 



(4) 

In formula OL w of xP~ and x'l~~ is a word in para­
graph and text, respectively. xP1~ and x'l~, is the devi­
ation value of a set of paragraph and text, respectively. 
In formula (2), n is the number of paragraphs, and iiw 
is the mean value of the total frequency of word w in 
paragraphs which consist of n. In formula (3), Xwj is 
the frequency of word w in the j-th paragraph. Vwj in 
formula (3) is shown iu ( 4) where m is t.he number of 
different words and n is the number of paragraphs 1 . 

Term Weight Learning 

In our method, non-overlapping group average cluster­
ing algorithm based on frequency-based term weight­
ing is applied to every text which is pre-categorized. 
If a text which could not be clustered correctly in the 
process of clustering, then, recognition of keywords is 
perfonned. 

Let I~ and Tc' be Lhe same category and Ty not be 
the same one with Tx. Let also T.r: and 7~ be judged 
to be the same category incorrectly. Recognition of 
keywords is shown in Figure 2. 
In Figure 2, (a-1) and (b-1) are t.he procedures t.o ex­
tract keywords, and (a-2) and (b-2) are the procedures 
to extract other words. In (a), for example, when w 
is judged to be a keyword, term weighting of w is ct x 
J(w), where f(w) is a frequency of w. On t.he other 
hand, when w is judged not to be a keyword, Lerrn 
weighting of w is (3 x f( w ). Here, c.t and (3 is a variable 
which is concerned with a. true key\vorcl and the other 

') xP 2 

words, respectively-. In xr1,· < I shown in ~''fgure 2, 
the texts are 1·~ and 7~. 

Clustering Texts based on Term Weight 
Learning 

The clustering algorithm for pre-categorization of texts 
is shown in Figure 3. 
As shown in Figure 3, the algorit.hrn is composed 
of three procedures: Make-Initial-Cluster-Set, 
Apply-Clustering and Tcnn-Weight-Learning3 . 

l. Make-Initial-Cluster-Set 
The procedure Make-Initial-Cluster-Set produces 
all possible pairs of texts in the input with their sim­
ilarity values. Firstly, every text which is the pre­
categorization of texts is represented by a. vector. Us­
ing a. term weighting method, every text vwuld be 

1 ln formulae {2), {3) and (4), we ca.n repla.ce xP,~ with 
x'l~,. 

2 fn the experiment, two procedures arc performed alter­
natively; (1) increment value of n is set to 0.001 and f3 is a 
constant value, (2) decrease value of ,8 is set to 0.001 and n 
is a constant value. 

3 The largest value of n is cmpirica.lly det-ermined. 
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begin 
do Make-Initial-Cluster-Set 
for i := 1 to m(l~-l) do 

do Apply-Clustering 
if T."t· such that]~. does not belong to 

the correct cluster 
then do Term-Weight-Learning 

do Make-Initial-Cluster-Set 

endJf 
endJOr 

end 

i := 1 

Figure 3: Flow of t.he algorithm 

represented by a vector of the form 

(5) 

where :r is the number of nouns in a text and x·ij is 
a frequency with which t.he noun xj appears in text 
7i. 
Given a vector representation of texts T1, · ·, 1·~n 

(where rn is the number of texts) as in formula (5), a 
similarity between two texts 7i. and 1j would be ob­
tained by using formula (6). The sim.ila.rity between 
1"i and 7j is measured by the inner product of their 
normalized vectors and is defined as follows: 

S'im(:li, 7j) (6) 

The greater the value of S'im('Ti, 'lj) is, the more sim­
ilar Ti and 7j. For texts T1, · · ·, 'J'm-1 and T'm, we 
calculate Lhe similarity value of all possible pairs of 
tbxt.s. 'I'he result is a. list of pairs which arc sorted in 
the descending order of their similarity values. 'The 
li~t. is called ICS (Initial Cluster Set). In the FOR­
loop in the algorithm, a pair of texts is retrieved from 
ICS, one at each iteration, and passed to the next two 
procedures. 

2. Apply-Clustering 
ln this procedure, the clustering algorithm is applied 
to t.he sets and produces a set of clusters, which 
are ordered in the descending order of their seman­
tic similarity values. We adopted non-overlapping 
group average method in our clustering technique 
(.Jardine and Sibsonl968]. Let 1~ and T,, be the 
same category and Ty not be the same one with 
T:t.. Let also Tx and 'I~ be judged to be the same 
category incorrectly. The next procedure, Tertu­
Weight-Learning is applied to 7~, 7~, and 7~. 

:3. T(~l'ln-Weight-Learning 
For T_.,_., 'J'x, and Ty (Ty'), recognition of key,vorcls 
shown in Figure 2 is applied, and every text would 
be represented by a vector of the form 

1:: (7) 



begin 
(a) if]~, such that]~, and 1~ be the same category exists 

for all w such that Tr n I~ 
'f . fi xP' 1 d . I I f 7' 7' T T 1 w sat.1s es ~ < an· tv IS t. tc e cment. o x n x' or y n y' 

(a.-1) then w is judged to be a. keyword and paruneter of term weighting of w is set too: (I <a< 10) 
P' 

else if w does not satisfy ~1,. · < 1 and w is the element of Tx n T~., or T~ n 'J~, 
X w 

(a-2) then w is judged not t.o be a keyword and parameter of term weighting of w is set to /3 (0 < {3 < 1) 
end_if 

end_for 
{b) else 

for all w such that l'x n 1; 
.p2 

if w satisfies ~72' < 1 and w is the clement of 1'x n 1:., 
X w 

(b-1) tlHm w is judged to be a. keyword and parameter of terrn weighting of m is set to cr (1 < n· < 10) 

else if w does not satisfv ~71~.
2 

< I and w is the element of 1~ n 7~.~ • X u . 

(b-2) then w is judged not to be a keyword and parameter of term weighting of w is set to (3 (0 < {J < !) 
end_if 

end_for 
end _if 

end 

Figure 2: Recognition of key,.vords 

\vhcre :r is the number of nouns in a. text and XIj IS 

as follO\vs; 

l 
0 x~ docs not appear ]J') Ti J 
ct X f(Xj) X' is a keyword and / j 

x:j appears lll 1i 
f! X f(Xj) X j is not a keyword and 

appears m 1i 

where j(Xj) is a frcqueucy with which t.bc noun Xj 
appears in text Ti. 
(1' and j3 are cst.irnat.ed so as to maximize S'im('l~, Tr:') 
~t~ld ,-~~'in;(?;,, 7~')_, among all possible pairs of texts, 
1~:, 1x', 1y and .ly'· 

Make-Initial-Cluster-Set where every text except 
T~., T~·', I~ and 7~, would be represented by a vector 
of the forrn shovn1 in formula (5) and 'I~, 1~:', ~[~ and 
'1-~, would be represented by a vector shown in formula 
(7), is applied to an arbitrary pa.ir in texts, and t.he 
procedures a.re repeated. 

If the newly obtained cluster contains all the texts in 
input., the whole process terminates. 

Category Assignment 
For the training data, 'I'1 , · · · 1 l~n (where rn is the num­
ber of texts), clustering algorithm which is shown in 
Figure 3 is applied) and a.ll texts arc c.lassified into a. 
suitable category. Given a. new text T which should 
be classified, T would be represented by a term vec­
tor of the fonn shown in formula (5). The similarities 
between T and each text of the training data are ca.leu­
l.::tted by using formula (6). Then, T1, · · ·, 1;n are sorted 
in the descending order of their similarity values. T is 
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assigned to the categories ''vhich are assigned to J}: · · ·, 
'I~n with the descending order of their similarity values. 

Le.wis proposed the proport-ional assignm.cnt sfnd­
cgy based on the probabilistic ranking principle 
[LewisHl92]. Ea.ch category is assigned to its top scor-· 
ing texts in proportion to the number of times the cat­
egory was assigned in the training data. For example, 
a. category assigned to 2% of the training Lcxt.s would 
be assigned to the top scoring 0.2% of the test. texts if 
the proportionality constant was 0.1, or to 10% of t.he 
test texts if the proportionality constant w<:ts 5.0. Vfe 
used this strategy for eva.luaLion. 

Experiments 
VVe have conducted two experiments to examine the ef­
fect of our method. The first experiment, Text Cate­
gorization Experirnont shows hO\v the results of term 
\veight learning can be used effectively to categorize new 
texts. The second experiment, Cmnparison to Other 
Mcthods 1 we applied chi-sq·uarc method as a vector 
m-odel and lwaycuna's SVMVas a probabilistic m.odel to 
classify Lcxts [lwayama and Tokunaga.1994], and com­
pared Lhern with our method. 

Data 

The training data we have used is 1989 Wall Street 
Jo·urnal ( WSJ) in ACL/DCI CD-ROM which consists 
of 12,380 texts [Liberm<ml991]. The WS'J are indexed 
\Vith 78 categories. Texts having no category \Vere ex­
cluded. 8,907 texts remained. Each having 1.94 cate­
gories on the average. The largest. category is wrender 
Offers, Mergers: Acquisitions (TNtvl)" which encom­
passed 2,475 texts; the smallest one i~ "H.ubber (H.UBY' 1 



assigned to only 2 texts. On the average, one category 
is assigned to 443 texts. A II 8,907 texts were tagged 
by the tagger [!3rill1992]. We used nouns in the texts. 
Inflected forms of the same words are treated as single 
units. For example, 'share' and 'shares' arc treated as 
the same unit. We divided 8,907 t.ext.s into two sets; one 
for training( 4,454 texts), and the other for testing( 4,453 
texts). 

Text Categorization Experiment 

Term weight learning is applied to 4,454 texts, and each 
word in the texts was weighted. For the result, we ap~ 
plied category assignment to the 4,453 test data. The 
best known measures for evaluating text categorization 
models are recall and precision, calculated by the fol­
lowing equations [Lewis1992]. 

Recall = 

Precision 

t.he number of categories that 
are correctly assigned to texts 
the number of categories that 
should be assigned to texts 
the number of categories that 
are correctly assigned to texts 
the number of categories that 
are assigned to texts 

Note that. recall and precision have somewhat mutually 
exclusive characteristics. To raise the recall value, one 
can simply assign many categories to each text. How­
ever, this leads to a degradation in precision, i.e. almost 
all the assigned categories are false. A bTeakevcn point 
might be used to summarize the balance between recall 
and precision, the point at which they are equal. VVe 
calculated breakeven points in the experiment. There­
sult of Text Categorization Experiznent. i,ls shmvn 
in Table 1. ·1 • 

Table 1· The result of the experiment 
Category Training data 'fest da.ta Breakeven 

10 2,399 1A57 0 80 
20 :J ,893 2,452 0.77 
30 5,178 3,508 0.77 
10 5,828 3,991 0.76 
50 7 ,:l44 4,998 0.77 
60 8,475 5,976 0.76 
70 11,489 6,148 0.75 
78 ! 1 ,649 7,305 0.75 

In Table 1, <Category' shows the number of categories 
which are extracted at random. 'Training data) shows 
the number of training texts which are included in each 
category shown in the 'Category'. iv1ost of the texts in 
WS'J are classiHed into more than one category. Each 
having 1.94 categories on the average. 'Test data' in 
'fable 1 shows the total nurnber of the texts which is 
classified into 'Category'. 
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Comparison to Other Methods 
Vi/e reported on the results of our method compar­
ing with other two methods, i.e. chi-square value for 
term weighting and Single random VaTiable with Multi­
ple Val1tes(SVMV) which is proposed by lwayama et.al. 
[Iwayama and Tokunaga1994]. 

The reason why We compared our method with chi­
square method is the following two points: 

• Chi-square value is one of the conventional text clas­
sification [lwadera and Kikui1997]. 

e In our method, chi-square value is used in order to 
introduce a degree of context dependency. 

Jwa.yama ct. a.!. proposed a new probabilistic model 
for text categorization called SVMV. The probability 
that. the document dis classified into the category c IS 

shown in formula (8). 

P(c I d) = P(c) "\' P(T = t, I c)P(T = t, I d) (S) 
L- P(T- t,) 
'· 

P(T = i; I c) = !{v~+: NC; is the ft'equency 
of the term ti in the category c, and NC is the 
total frequency of terms in c. 
P(T = t, I d) = ':/J, : N n, is the ft'equency 
of the term ti in the document d, and N D is 
the -~ota! frequenc~ of t~rr~1s in d. 
1'(1 = ti) = 'it' N; IS the frequency of 
the term ti in the given training documents, 
and N is the total frequency of terms in the 
training documents. 
P( c) ::::: lJf: De is the frequency of documents 
that is categorized to c in the given training 
documents, and D is the frequency of docu­
ments in the training documents. 

They reported that in their experiment using VVSJ1 

the result of the breakeven points of TF•IDF which 
was proposed by Salton et. a.l. was 0.48, while the 
result of SVMV was 0.6:l. Furthermore, their method 
is similar to our technique when the following two points 
are considered: 

• Text categorization is defined as the classification of 
texts with respect to a set of pre-categorized texts. 

• Category assignment is based on surface information 
of words in texts. 

Therefore, we implemented Iwayama ct. al.'s method 
and compared it with our method. The results are 
shown in Figure 4. 
Figure 4 shows the recall/precision trade off for each 
rnethod with proportional assignment strategy. 'learn­
ing', 'SVMV' and 'x2

' shows the result of our method, 
I wayama's method and x2 value, respectively. Table 
2 lists the breakeven points for each method. All the 
breakeven points were obtained when proportionality 
constant \vas about 1.0. 
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Figure 4: The result of comparative experiment 

IViCChod Breakeven Points 
learning 0.75 
SVMV 0.61 

. x 2 
__ J._ _ __:o~.:::5f~i __ _ 

Discussion 

Text Categorization Experiment 

Effectiveness of the Method According to Table ll 
there are 7,305 test data in all which are classified into 
78 categories, and the value of the brcakcven points 
was 0.75. Comparing the ratios of correct judgments 
\vhen the number of categories is large with when the 
number of it is srnall, the correctness of the former was 
higher in some cases. For example, when the number 
of categories was 10, the correct ratio was 0.76, \vhile 
the nurnber of cakgories was 50) the correct ratio was 
0. 77. This shows that our method can be used effec­
tively to characterize each text without depending on 
the number of categories. 

Table 3 shows the first top five oft. he highest weighted 
value of 12 categories \vhich were selected from 78 cat­
egories at random .. 

In Table 3, (VVord' shows the extracted words, and 'VVV 
shows its weighted value. 12 categories which are used 
in Table 3 arc shown in 'Table 1. 

According to Table 3, our technique for t.erm weight 
learning is effective, though there are sorne nouns 
judged highly weighted but our intuition cannot explain 
why. For example, (general' in 'FOD' is not a true key­
word in our intuition. 
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AIR: 
BilK: 
FOD: 
E:NV: 
E:CO: 
DIV: 

Table 4: The category name 

Airlines 
Buy backs 
Food products 
Environment 
Economic news 
Dividends 

ARO: Aerospace 
BNK: Banks 
STK: Stock market 
ME:D: Media 
PIP: 
CPR: 

Pipeline 
Computers 

Problem of the Method The test data which was 
the worst result, was the data which should be classified 
into 'STK'. There were 499 test data which should be 
classified into 'STK'. Of these, !59 data (32% in all) be 
judged to classify into 'BBK', incorrectly. According to 
Table 3, the first top three \Vords in 'BBK' and those 
of 'STK' are the same, and the weighted values of these 
words of 'BBK' are higher than those of 'STK'. 'BilK' 
and 'STK are semantically similar with each other and 
it is difficult to distinct even for a hurnan. Therefore, 
in this case, there are limitations to our method using 
term ¥.'eight. learning. 

Comparison to Other Methods 

(1) x2 method and our method Table 2 shows 
that the breakevcn points using our method \vas 0.75 
while x2 was 0.56. Table 5 shows the first. top five of 
the highest weighted value of 12 categories using x2 

method. 
According to Table 5, every noun except 'devon' and 
'hadson' in 'BBK' and 'transcanada' and 'westcoast' 
in 'PIP' are correctly weighted as keywmds in every 
categories. On the other hand, t.he test data which was 
the worst. result, \Vas the same data as the result using 
our mdhocl, i.e. the data. which should be classified into 
'STK'. According t.o Table 5, three words in 'BBK' and 
those of 'STK' are the same, and the weighted values 
of these words of 'STK' are higher than those of 'STK'. 
As a result, it is difficult. to distinct these two categories 
in x2 method. 

One possible reason why the result of our method was 
better than x2 method is that the difference between 
weighting values of t.vw words in x2 was smaller than 
those of our method. The deviation value between an 
arbitrary two keywords in both met.hods is shown in 
Table 6. 

'T'tble 6· Devhtion v·due of x2 and our rr et hods ' ' ' ' • 
Cat.. learning x' Cat. leat:ning x' 
AIR 4.63 3.61 AIW 4.20 4.12 
BllK 3.80 2.57 BNI< 2.23 2.25 
FOil 2.25 2.72 STI< 1.45 2.57 
ENV 2.99 2.:10 MED 3.89 6.10 
LCO 4.41 2.55 PIP 3.94 :l.ll 
DIY 4.93 3.41 CPR 4.50 3.86 



Table 3· The first top 5 of the highest weighted words in our method 
AIR ARO -BilK PIP 

Wt Word \V"t \Nord VVt Word Wt 
] airline 522.1 aerosp<tce 118.2 share 149.0 gas 58.0 
2 mile 136.5 aircrctft. 143.0 stock 71.9 pipeline 37.0 
3 pa-Ssenger 120.5 au 730. company 57.2 industry 29.0 
1 revenue 85.0 army 51.0 bank 51.0 foothill 24·.0 

6 7. 2_-l-2j::.d:cl._.ir._-H:-_~r,~,~---'4"':l-". 3'-j_s:::·e::o'<.::uecr::i t.",y=~-1._.3::·::_5_f-'oil 7. 0 
BNI< FOD STK DIV 

No WoH'I _____ Tw·=t+'w"Or<C' wt WOrd Vilt Word ---wt· 

5 air 

1 bank 84.0 food 110.0 company 50.'0 cent. 85.0 
2 branch 32.0 fda. 27.0 share 37.7 share 70.0 
3 credit 30.0 general 24.0 stock 31.7 company 60.9 
4 tax 21.0 cereal 19.0 tnrdc 10.1 dividend 54.6 
5 !ctter lG.O health 16.0 investment 9.4 split 46.7 

ENV MED ECO CPR 
-,N:co:c--l-nwiTo:crc:.dr-=---nvvcr•t:-f-\n'Tr,-.,r_,d__::.:::_:.:::_ ___ I"·V"t-r'I".V"o"r"d-=:.=--=---cwu;--t+"\\71o-r'·d'=ec.::.:__.Wt 
'I--'-+-:-el::-\\':-,i;:'rc.o=u-::-m:cc-c:n7t-----,7"'8:,.0;-t-'-ne'-'_,:.:,.::s ____ 281.0 gain---·----.1'2""'o'.=s:-f-,'-arc:":.;rl.::y7t.'i-c-s--106.5 

2 maquilas 19.0 d&b 108.0 tax 111.0 IBM 89.8 
3 w;tter 12.0 network 69.1 c<tpit.<d 83.1 machine 69.0 
4 plant 10.1 report 69.0 rate 79.5 computer 62.0 

~~- L~~.~~l~-~---~---9_._1_-'--~~~!~:st.er ____i:!_:.§.~ _ CC?~.~.~~~L~-.. ~~·}.~:Q_ __ ?.,_Y.,st':'e:'·n.,t __ ___::4:_:8~-c 6:_ 

Table 5: The first top,:5f.or the highest .weighted words in x2 n .. 1e .. t.l .. w_d .. 
=c=~~- ---=c=-·--A flf .. -.... - ... _ ·--· "''- - . ----

AHO ' BBIZ P.lP 
N.O .. .. \~vorcr-·-·--------w~:- ·wor<F _____ \Vt VVord-~ ...... _______ \f\Tt· 'VVo1T--·-~~Wt 
--]-- ariT\1-H'-. --~ 121 o 9 T boeing 1886JJ---sltal·6 23 4 8 . 7 pipdine 

- 852i.7 
-

2 ual 5268.5 force 1022.3 redemption 1902.4 foothill 59:l:l.7 
3 passenger 5142.3 aircraft. 3886.7 devon 1779.4 gas 5744.4 
4 pilot 4672.1 defense 2328.6 hadson 1611.1 t.ransca.nada 4948.0 
5 flight 4050.8 missile 2060.7 buy-back 1616.1 wcastcoast 4191.9 

BN!'{ FOD 
---· -----

STK DIV 
No- ·\-\torcr·~----~wT- Word-~----~Tt· ·---------·-·---------·-·-·-------- -----

VVord Wt \-\lord Wt. 
1 bank 6196.4 :;pam 3148.1 stock 7265.4 dividend !0067.7 
2 bnl 1517.3 food 28<18.5 sha,re ~~563.2 share 4999.4 
:J bond 12]].1 cere<tl 2627.7 buy-ba.ck 23(12.0 company 3666.8 
1 loan I 02-Ll cholesterol 2518.2 redemption 114.8.5 buy-back 2499.4 
5 rate 890.1 cooke 2355.1 big !018.6 henley 2166.6 

ENV MED ECO CPR 
No \l\1ord Wt Word Wt Word Wt \>\ford Wt 
J ozone 2650.7 magazine 4222.3 gam 2160.5 computer J,J948.8 
2 cpa 2411.0 d&b :l3J3.7 democrat 1492.0 IBM 8470.1 
:l <tsbestosis 2259.0 cable 2890.1 t<tx: 1410.6 softw;u-c 4709.2 
4 anthrax 1183.5 network 21196.9 budget. 129·1.5 eras 3538.7 
5 pollution 1165 ,;3 broadca;>ter 1_99~.:...~ ~<:_nding 1157.3 clif!;i t.a\ 3291.7 _, .... 
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In Table 6, the deviation value using x2 rncthod was 
smaller than our method except 'BNK', 'FOD' and 
)MED). This shows that x2 method can not represent 
the characteristic of the text more precisely than our 
method. 

(2) SV MV method and our method According 
to Table 4) the breakeven points using our method was 
0.75, while 8VMV was 0.64, respectively. 

A possible reason why the result of our method was 
better than 8 V M Vis that term weight learning is efl'ec­
tive to classify texts. Let A and B be a category name 
and the total number of words which were included in 
each category be the same. Let a.!So w1 is included 
in A) B and the test data with the same frequency, 
and the test data consists of only w1 . In 8 V M V, the 
probabilities of the test. data which is classified into A 
and B are the same. Therefore, it could not be judged 
\vhether the test data is classified into A or 1:3, correctly. 
However) our method introduces the degree of context 
dependency in order t.o judge whether a word in a text. 
is a true keyword or not. Therefore, our method can 
classify the test data into A or B, when the kcyv·wrd 
of the category A is judged to be the word 111 1 . As a 
result, our rncthod can represent the characteristic of 
the t.ext.s rnore precisely than SVJVIV. 

Conclusion 

VVc have reported on a.n empirical st.udy for term \Vcight 
learning for a.n automatic text cat.cgoriza.t.ion. The 
characteristic of om a.pproach is that the degree of con·· 
text dependency is introduced in order to judge whether 
a word in a. texL is a true key\vord or not. In the experi­
ment using WSJ, we could obtain 0. 75 breakeven points 
for 4/15~~ texts which are c.lassified into 78 categories. 

In our current method, category assignment is based 
on a word in texts, i.e. every text. which should be clas­
sified and texts which are pre-categorized are character­
ized by a vector, each Jirnension of which is associated 
with a word in texts. As a result., two words arc treated 
quite different. even if these wmds are semantically sim­
ilar. In order to get more accuracy, linking words with 
their semantically sim.ilar words might be necessary to 
be introduced into our framework. 
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Abstract 
\Ve are proposing a new framework of statisti­
cal language modeling which integrates lexical 
.association statistics with syntactic preference, 
while maintaining the modularity of those differ­
ent statistics types, facilitating both training of 
the model and analysis of its behavior. In this 
paper, we report the result of an empirical evalu­
ation of our model, where the model is applied 
to disambiguation of dependency structures of 
Japanese sentences. We also discussed the room 
remained for further improvement based on our 
error analysis. 

1 Introduction 
In the statistical parsing literature) it has alread:y 
been established that statistics of lexical associ­
ation have real potential for improvement of dis­
ambiguation performance. The question is how 
lexical association statistics should be incorpo­
rated into the overall statistical parsing frame­
work. In exploring this issue) we consider the 
following four basic requirements: 

o Integration of difjeTent types of statistics: 
Lexical association statistics should be inte­
gra.ted with other types of statistics that are 
also expected to be effective in statistical pars­
ing1 such as short-term POS n-gnun statistics 
and long-term structural preferences over parse 
trees. 

• Modularity of statistics types: 
The total score of a parse derivation should be 
decomposable into factors derived from differ­
ent. types of statistics) which would facilitate 
analysis of a modePs behavior in terms of each 
statistics type. 

• Pmbabilistically well-fottnded semantics: 
The language model used in a statistical parser 
should have probabilistically well-founclecl se­
mantics) whieh \vould a.lso facilitate the anal:,'·· 
sis of the model's behavior. , 
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o Trainability: 
Since incorporation of lexical association statis­
tics would make the model prohibitively com­
plex, the model's complexity should be flexibly 
controllable depending on the amount of avail­
able training data. 

However) it seems to be the case that no existing 
framework of language modeling [2, 4, 12, 1:3, H. 
17) 18] satisfies these basic requirements simulta·· 
neouslyl. In this context 1 we newly designed a 
framework of statistical language modeling tak­
ing all of the above four requirements int.o ac­
count [8) 9]. This paper reports on tlw n'sult.:) 

of our preliminary experiment where our f'rrmH'­
vmrk was applied to structural disambigu<Hion of 
Japanese sentences. 

In what follows) we first briefly review our 
framework (Section 2). \Ve next describe tlw sc:t­

ting of our experiment) including a brief intro­
duction of Japanese dependency struetures, t.hC' 
data sets1 the baseline of the perfonnanc.C', Nc. 

(Section 3). We then describe the results of the 
experinH:mt) which was designed to assess the lu1 .. 

pact of the the incorporation of lexical associ­
ation statistics (Section 4). \Vc finall~· discuss 
the current problems revealed through our <T­

ror analysis, suggesting some possible solutions 
(Section 5). 

2 Overview of our framework 

As with the most statistical parsing frameworks. 
given an input string A) we rank its pars<~ dr:rlYa­
tions according to the joint distribution J'(H, lr). 
where H1 is a word sequence candidate for A, and 
R is a parse derivation candidate for H-- whos(' 
terminal symbols constitute a POS tag scquc-;nce 
L (see Figure 12

). We first. decompose 1'( fl. lr) 

1 For further discussion, see [8]. This is also tlH' 
case with recent works such as [3] and [5] due to t.hc 
lad< of modularity of statistical types. ' . -Although syntactic structure R is represented af' 
a dependency structure in this figure, our framework 



into two submodels, the syntactic model l'(R) 
and the lexical model P(W\R): 

P(R, W) = P(R) · P(W\R) (1) 

The syntactic model, whic:h is lexically insen­
sitive, reflects bpth POS n-gram statistics and 
structural preference, whereas the lexical model 
reflects lexical association statistics. This divi­
sion of labor allows for distinct modularity be­
tween the syntactic--based statistics and lexically 
sensitive statistics, while maintaining the proba­
bilistically wcll-foundedness of the overall model. 

Fignre 1: A parse derivation for an input string 
"11Ji!c/J";' 1 ii: ]t~t.: (She ate a pie)" 

2.1 The syntactic model 
The syntactic model P(R) can be estimated us­
ing a wide range of existing syntactic-based lan­
guage modeling frameworks, from simple PCFG 
models to more context-sensitive models includ­
ing those proposed in [2, 13, 19]. Am.olg these, 
we, at present, use probabilistic GLil (PGLH.) 
language modeling, which is given by incorpo~ 
rating probabilistic distributions into the GLR 
parsing framework [10, 21]. The advantages of 
PGLR modeling are (a) PGLR. models are mildly 
context~sensitive, compared with PCFG models, 
and (b) PGLR. models inherently capture both 
structural preferences and POS bigram statistics, 
which meets our integration requirement. For 
further discussion, see [10]. 

2.2 The lexical model 
The lexical model P(WIR) is the product of the 
probability of each lexical derivation li ·-7 Wi, 

where 11 E L (L C R) is the POS tag of w; E W: 

P(WIR) =II l'(w;\R,w1 , ... ,w1_1) (2) 

The key idea for estimating each factor 
P(vJiiR, w1, ... , Wi-d (a lexical derivation prob­
ability) is in assuming that each lexical derivation 

does not impose any restriction on the representation 
of syntactic structures. 
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depends only on a certain small part of its whole 
context. We first assume that syntactic struc­
ture R in P(wiiR,w1 , .. . ,wi_- 1) can always be 
reduced to l; ( E R), which allows us to deal with 
the lexical model separately from the syntactic 
model. The question then is which subset C of 
{ ·uJI, ... , Wi-l} has the strongest influence on the 
derivation li -+ Wi· VVe refer to a member of such 
a subset C as a lexical context of the derivation 
li -+ 'Wj. 

Let uB illustrate this through the previous ex­
ample shown in Figure L Suppose that th(-: 
derivation order for TV is head-driven, as givr;n 
below, to guarantee that, for each of the words 
subordinated by a head word, the context of the 
derivation of that subordinated word alwa.J·'S in­
cludes that head word. 

ta (PAST) -; tabe (eat) -+ ga (NO III) --t o 
(ACC) ·-+ kanojo (she) -; pai (pie) 

First, for each lcxieal item that we don't cou­
sider any lexical association, \VC estimate• the 
probability of its derivation as follows. 

P(ta\R) "'P(ta!Av.1') ( :l) 

P(t.abe\R, ta)"' P(tabe\V) (l) 

Second, ,·ve estimate the probability of d(:ri\·­
"ing each slot-marker, e.g. ((ga (NOl'v'I)'' and ··o 
(ACCf' l by considering not only the dependency 
between the head word and each of it::? slot­
markers, but also the dependency between slot­
markers subordinated by the same hc~a.d: 

'l'(ga\R, tabe, ta) "' 
P(ga\l'r[h(tabe,[Pr,Pz])]) (5) 

P(o\R, ga, tabe, ta) "' 
P(o\Pz[h(tabe, [l'r :ga, Pz])]) (G) 

where h(h, [s1, ... , sn]) is a lexical context denot.~ 
ing a head word h that subordinates the set of 
slots s,, ... ,sn, and P(w;\l;[h(h,[st,···•""])]) is 
the probability of a lexical derivation l; -~t 11! 1 , 

given that Wi functions as a slot-marker of lexical 
head h(h, [sr, ... ,snJl· 

Finally, we estimate the probability of deriY·· 
ing each slot-filler, e.g. ''kanojo (sheY and -·'pai 
(pie)", in assuming that the derivation of a slot.·· 
filler depends only on its head word a.nd slot: 

P(kanojo\R, ga, o, tabe, ta) co 

P(kanojo\N[s(tobe, go)]) 

P(pa.iiR, kanojo, ga, o, tabe, tG) ~ 
l'(paiiN[s(tabe, o)]) 

(7) 

(8) 

where s(hl s) is a lexical context denoting a slot 
s of a head word h, and P(w1\l;[s(h, s)]) is the 



probability of a lexical derivation li -f w.i given 
that w; functions as a filler of a slot s(h,s). 

Combining equations (3), (4), (5), (6), (7) and 
(8), we produce (9): 

P(WIR) "' P(taiAu:r) · P(tabeW) · 

P(gajP[h(tabe,[P,P])]) · 

P(oiP[h(tabe,[P:ga,P])]) · 

P(kanojoiN[s(tabe, ga)]) · 

P(paiiN[s(tabe, o)]) (9) 

2.3 Handling multiple lexical contexts 

Note that a le_xical derivation may be associa.ted 
with more than one lexical context (multiple lex­
ical contexts). Multiple lexical contexts appear 
typically in coordinate structures. :For example, 
in the sentence shown in Figure 2, "kanojo~wa 

(she-TOP)" functions as the case of both of the 
verbs "tabe (eat)" and "dekake (Ieaver'. 

Coordination 

Figure 2: An example sentence containing a coor­
dinate structure: "She ate breakfast and left for 
school" 

Let us first consider the lexical deriva­
tion probability for the slot-filler "kanojo 
(she)'1 . According to the assumption men­
tioned in Section 2.2 1 the lexical contexts 
of this slot-filler should be s(tabe, wa) and 
s(dekake,wa). Thus, the probability of deriving 
it is P(kanojoiN![s(tabe, wa), s(dekake, wa)J). 
IV1ore generally, if a slot-filler W-t is associated with 
two lexical contexts c1 and c2 , then the probabil­
ity of deriving Wi can be estimated as follows: 

P(w;jl,[c1 , c2]) 

P(i,[cr, c,Jiw;) · P(w;) 
= (1~ P(/;[~1 , c2 ]) 

"' P(l;[c,]lw;) · P(l;[c,]ll;, w;) · P(w;) (ll) 
P(l;[c,]) · P(i;[c2Jii;]) 

= P(w;ll;). P(w;li;[cr]) . P(w;ll;[c2]) (12) 
P(w;ll;) P(w;ll;) 

P(w;jl;) · D(w;jl;[c!]) · D(w;jl1[c2J) (13) 

In (13), we assume that the two lexical contexts 
c1 and c2 are mutually independent given li (and 
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w;): 

P(l,[cz]ll;[c,]) "'P(l;[c2 JII;) 

P(/;[c2JII;[c,],w;) "'P(l;[c,JII;, w;) 

( 1 :) ) 

(Jo) 

D(w1ll;[c]) is what. we call a lexical dependency 
parameter~ which is given by: 

P( w;jl;[c]) 
D(w;jl;[c]) = P(w;ll;) (16) 

JJ(w;ll;[c]) measures the degree of the depen­
dency between the lexical derivation li ~ Wi and 
its lexical context c. It is close to one if wi and (' 
are highly independent. It becomes greater than 
one if w.; and c are positively correlated: wlwn'as 
it becomes less than one and dose to zero if 11' 1 

and care negatively correlated. Thus, if we set a 
lexical dependency parameter to one, that meaw; 
we create a model that neglects the depend(-:nc.\· 
associated with t,ha.t parameter. For examplr., the 
probability of deriving "kanojo (she)" in Figure 2 
is calculated as follows. 

P( kanojoiN,[s(t.abe, wo), s( deknke, wa)]) 

"' P(kanojoiN1) • D(kanojoiN1 [s(labc, wa)]) 

·D(kanojoiN1 [s(dekake, wa)]) ( 1 I) 

Let us then move to the estimation of the pro b .. 
ability of deriving the slot-markers ''wo (TOP)" 
"o (ACC)", and "e (for)", where ''wa" is associ­
ated with both "tabe (eat)" and "dekake (lean:)" 
while "a)) is assoeiatecl only with ''tabe'', all< I ·'ni" 
is associated only with ''dekake". To be mod(-' 
general, let slot-marker wo is associated with L\\'O 

lexical contexts c1 and c2, and slot-m;_trkers u_: 1 

and w2 are, respectively, associatc~d with c1 and 
c2 . Assuming that w1 and w2 arc mutually de­
pendent, being both dependent on w0 , and c1 and 
c2 are mutually independent, the joint probabil­
ity of the derivations of 'Wo, W1 a.nd -w'2 can be 
estimated as (20) in Figure 3, similar to (13). For 
example, the probability of deriving "wa (TOP)" 
ao (ACC)", and "e (for)" in Figure 2 is calculat.ed 
as (21) in Figme 3. 

Summarizing equations (2), (13) and (Hi), the 
lexical model P(WIR) can be estimated by the 
product of the context-free distribution of the 
lexical derivations P,t(WIL) and tlJ<>. degree of 
the dependency between the lexical derivations 
D(WIR): 

P(WIR) "'P,t(WIL) · D(Will) (22) 

P,t(WIL) =IT P(w;jl;) (23) 

m 

D(WIR) =IT IT D(w;jl;[c]) (2~1) 

\vhere C.w, is the set of the lexical contexts of '11! 1 • 



P( wo, w,, wz\lo [h(h,, [io, i!]), h(h,, [io, lz])], z, [h(h, , [io, !!]) ], lz [h(hz, [io, !,]) ]) 

"" P( wo llo [h(h,, [io, !!]) , h(hz, [lo, lz])]) · P( w,ll![h(hL[io : wo, !!])]) · P(wz\lz [h(hz, [io : wo ,lz])]) ( 18) 

"" P(wollo). P(wo\lo[h(h,, [io,l!])]). P(wolio[h(h2 , [10 ,/z])]) 
P(wollo) P(wollo) 

P( w,ll![h(h,, [io : Wo ,l !]) ]) · P( wzllz [h(hz, [/o : Wo ,!,]) ]) ( 10) 

-· P(wo[lo) · D(wo[io[h(h,, [io, !!])]) · D(wo[lo[h(hz, [lo,lz])])· 
P(w,ll,) · D(w,[i![h(h,, [io :wo,id)]) · P(w,[lz) · D(wz[lz[h(hz, [io :wo, 1,])]) (20) 

P( wa, o, e[P1 [h(tabe, [P1 , P2 ]), h(dekake, [P1 , 1'3])], P2 [h(talle, [1'1 , 1'2])], P,[h(dekake, [P,, p,])]) 

"' P( wall\) · D(wa[PJ[h(tabe, [1'1 , P2 ])]) · D(wa[P1 [h( dekake, [P1 , P,])]) 
P(oiP2 ) · D(o!Pz[h(tabe, [P, : wa, !'2 ])]) · P(eiP,) · D(e!P,[h(dekake, [!', : wa, !':,])]) (21) 

Figure 3: The joint probability of the derivations of slot-markers 

2.4 Summary of our model 
From equatious (l) and (22), the overall distribu­
tion P(R, W) can be decomposed as follows: 

P(R, W) ""P(R) · P,1(WIL) · D(WIR) (25) 

where the first term P(R) reflects part-of-speech 
bigram statistics and structural preference, the 
second term P,J(WIL) reflects the occurrence of 
each word, and the third term D(WIR) reflects 
lexical association. Thus, equation (25) suggests 
that our model integrates these types of statis­
tics, while maintaining modularity of lexical as-
sociation. ! : f 

Figure 4 shows the factors of the P(R,W) for 
the sentence in Figure 1. In this figure: 

1. P(R) reflects the syntactic pre.fcrence. 

2. P,J(WIL), which consists of P(kanojo!N), 
P(gaiP) etc., reflects the occurrence of each 
word. 

3. D(WIR), which consists of D(o!N[h(tabe, [])]), 
D(paiiN[s(tabc, ACC)]) etc., reflects the lexi­
cal association statistics. 

In this way, our modeling maintains the modu­
larity of different statistics types. 

The modularity of the lexical model facilitates 
parameter estimation. Although the syntactic 
model idmtlly requires fully bracketed training 
corpora, training it is expected to be manage­
able since the model's parameter space tends to 
be only a small part of t.he overall parameter 
space. The lexical assodation statistics, on the 
other hand, rnay have a much larger parameter 
space, and thus may require much larger amounts 
of training dat:-\ as compared to the syntactic 
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modeL Howc:ver, since our lexical model can lw 
trained independently of syntactic preferenct\ onP 
can train it using partially parsed tagged corpora. 
which ca.n he produc-ed at a lower cost (i.e. nuto­
matieally), as well a.s fully bracketed corpora. ln 
fact, we used both a full-bracketed corpus and n 
partially parsed corpus in our cxporiJucnt. 

3 A preliminary experiment 

Let us f-irst briefly describe some fundamemnl 
features of Japanese syntax. A JapaneS(-' SPll·· 
tcncc can be analyzed as a. S(~qnence of so--called 
b"unsettt. phrases (BPs, hereafter) as illustratc~d in 
Fir$ure 1. A BP is a chunk of words consisting of a 
content word (noun, verb, a.djcctive, etc.) accmu­
pari-ied by some function word(s) (postposition. 
auxiliary, etc.). For example, the BP "ko:nojo-gr{ 
(Bl\) in Figure 1 consists of the noun 11 kon.ojo 
(she)" followed by the postposition "ga (:\Oil I)"' 
which functions as a slot-marker. The BP 11 tahe­
ta" (BP3 ), on the other hand, consists of the 
verb "tabe (eat)" follmved by the auxiliar:v 11 f.a 
(PAST)" 

Given a sequence of BPs) one can recognized<'­
pendency relations betvveen them as illustrated in 
Figure 1. In Ja.pa .. nese) if BPi precedes IJP_i, and 
BPi and BPj are in a. dependency relation) then 
BPi is always the modifier of BJJ.;, and we sa.v 
11BPi modifies BPj·:' For exa.mple 1 in Figure. 1. 
both BP1 and BPz modify BP3. 

For the preliminary evaluation of our model, 
we restricted our focus only on the model's per­
formance for structural disambigua.tion excluding 
morphological disambiguation. Thus 1 the task of 
the parser was restricted to detennina.tion of the 
dependency structure of an input sentence, ,.,_,hich 
is given together with the specification of word 



A~~ )P(R) 
N 1 P1 N 2 P~ V Aux 

-- Pik;n~j~l~f P(~oMIP) r -P(;a;l~)r P(~CCJPf P(;a~;IV) r -p(~1~~J -~~~(~1-L) 
kanojo ga pa1 o tabe ta 
(she} (NOH) (pie) (ACC) (eat) {PAST) 

--------;..---- -:+-----;....-----: jJ---- .;..1.;.'-------------
' 'I ' 'II •1.1 . ~---------- ~ ,---------- -~ ·-------- -~r r--- ---- · c 1 : 1 

D(kanojolN[s(tabe,NOM)J) 1 : :1, 1:' P(WIR) 
D(NOMIP[h(ea[[ACCJTI)T ___ --,-~----":: 

'----------'-,----------'• D(WIR) 
D(paiiN[s(tabe,ACC)]), 

D(ACCIP[h(tabe~[Jjj) 

Figure 4: The summary of our model 

segments) their POS tags, and the boundaries be­
tween BPs. 

In developing the grammar used by our PGLR 
parser, we first established a categori2ation of 
BPs based on the POS of their constituents: post­
positional BPs, verbal BPs, nominal predicative 
BPs, etc. We then developed a modification con­
straint matrix that describes \vhich BP category 
can modify which BP category, based on exam­
ples collected from the Kyoto University text cor­
pus [11]. We finally transformed this matrix into 
a CFG; for instance, the constraint that a BP 
of category Ci can modify a BP of category CJ 
can be transformed into context-free rules such 
as (C; -+ C; C;), (C; --> C; C;), etc., where X 
denotes a nontermina.l symbol. 

For the text data, we used roughly 10,000 sen­
tences from the Kyoto University text corpus 
for training the syntactic model, and the \Vhole 
EDR corpus [6] Mel the R.WC POS-taggecl cor­
pus [16] for training the lexical model. For test­
ing, we used 500 sentences collected from the 
Kyoto University text corpus with the average 
sentence length being 8.7 BPs. The data sets 
used for training and testing are mutually ex­
clusive. The grammar used by our probabilis­
tic G LR parser was a CFG automatic.ally ac­
quired from the training sentences) consisting of 
967 context-free rules containing 50 nontermina.J 
symbols and 43 terminal symbols (i.e. BP cate­
gories). 

The~ baseline of the disambiguation perfor­
mance was assessed by way of a naive strategy 
which selects the nearest possible modifiee (simi­
larly to the right association principle in English) 
under the non-crossing constraint. The perfor­
mance of this naive strategy was 62.4% in BP­
hased accuracy: where BP-based accuracy is the 
ratio of the number of the BPs whose modifiee 
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is correctly identified to the total numbc!r of BPs 
(excluding the tv·.ro rightmost BPs for each S('ll­

tence). On the other hand, the syntactic model 
P(R) achieved 72.1% in BP-bascd <tccun\C)'- 9.7 
points above the baseline. 

4 The contribution of the lexical 
model 

In our experiment, we considered the following 
three lexical dependency parameters in the lPxical 
modeL 

First, we considered the depenclcnde,s lwt\YCC'll 

slot-markers and their lexical hca,cl by using tlw 
lexical dependency parameter (26). 

D(piP[h(h, [s 1 , _. _, s,])]) (26) 

(26) can be computed from P(p''II"'[h(h. [])]). 
the distribution of n post. positions (slot-Jnarkers) 
given that all of them are suborclinnted ])~· 

a single lexical head h. \Ve trained this 
distribution using 1501000 instances of p 11

-

{verb,adj ective,nom?.n(tl_pred1.cate} colloca t:ion 
collected from the EDR full-bracketed corpus. 
For parameter estimation) we used the 1naximwu 
entropy estimation technique [1, 15). For furtlwr 
details of this estimation process, see [20]-

Next, \Ve considered depench:.ncies het\Yecn 

slot-fillers and their head verh coupled with tlw 
corresponding slot-markers by using the lexical 
dependency parameter (27). 

D(niN[s(v,p)]) (27) 

(27) was trained using 6.7 million instances of 
noun-postposition-verb collocation eollectr;(l from 
both the EDR and RWC corpora. For parameter 
estimation, we used 115 non-hien.trchical seman­
tic noun classes derived from the N'fT semantic 



dictionary [7] to reduce the parameter space: 

D(niN[s(v,p)]);:, L, P(cniN[s(v,p)]) · P(nlcn) 
P(niN) 

(28) 
P(cniN[s(v,p)]) was estimated using a simple 
back-off smoothing technique: for any given lexi­
cal verb v and postposition p, if the frequency of 
s(v,p) is less than a certain threshold ,\ (in our 
experiment,,\= 100), then P(cniN[s(v,p)]) was 
approximated to be P(c,,!N[s(c,p)]) where c, is 
a class of v whose frequency is more than ,\, 

Finally, we considered the occurrence of post­
positions by using the lexical dependency param­
eter (29). 

D(piP[head_type]) (29) 

In .Japanese, the distribution of the lexical deriva­
tion of postpositions, P(piP), is quite differ­
ent depending on whether they function as slot­
markers of verbs, adjectives and nominal precli­
catcs such as "ga (NOM)" and "o (ACC)" in Fig­
ure 1, or they function as slot-markers of nouns 
sueh as ((no (oft in the following sentence. 

hana no syashin3 

(flower) (of) (picture) 

For such a rea.son, we introduced the lexical de­
pendency pararneter (29L \vherc head .. type de­
notes whether the postposition P functions as a 
slot-marker of a predicate or a nomL \Vc esti­
matl~d this dependency parameter using about 
950,000 postpositions collected from the EDR 
corpuR. . f 

Table 1 summarizes the results of.~-fhc experi­
ment. The lexical model achieved 76.5% in BP­
bascd accuracy) and the model using both the 
syntactic and lexical model achieved 82.8% in 
BP-based accuracy. According to these results 1 

the contribution of lexical statistics for disam­
biguation is as great as that of syntactic statistics 
in our framework. 

The bottom three lines in Table 1 denotes the 
setting where the only lexical dependency param­
eter (26), (27) and (29) are considered in the lexi­
cal model. Among these, the contribution of (29) 
was greatest. 

5 Error analysis 

In the test set, there were 574 BPs whose rnocl­
ifiec was not correctly identified by the system. 
Among these errors) we particularly explored 290 
errors that were associated with postpositional 
I3Ps functioning as a ease of either a verb) adjec­
tive) or nominal predicate, since, for lexical asso­
ciation statistics in the lexical model, we took the 

3This sentence means ~'a picture of a flower." 
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Table 1: The contribution of the lexical model 

'b_a_s_e'h~. n-e-------+ a~;~~·~)y 
syntactic model only 72.1 % 
lexical model only 76.5 % 
syntactic + lexical model 82.8 % 

syntactic model + (26) 
syntactic model + (27) 
syntactic model + (29) 

7:l:;r-:%-
783% 
81.3% 

dependencies between slots (i.e. slot-markers and 
slot-fillers) and their heads into account. In this 
exploration) we identified three major error types: 
(a) errors associated with a coordinate clause, (b) 
errors associated with relative clauses, (c) errors 
associated with the lack of the consideration of 
dependency between slot-fillers. 

5.1 Coordinate structures 

One of the typical error types iR associated with 
coordinate structures. The sentence in Figure 2 
has at least three alternative interpretations in 
terms of which J3P is modific~d by the left­
most BP "kano}o-wa (she-TOP)": (a) "i.abc-l.a 
(cat-PAST)", (b) "dckake-ta (leave-PAST)", (c) 

· both "tabe-ta (ea.t-PASTf) and ''dekake~tn (leaH'·· 
PASTr. Among these alternatives, the most rea­
sonable interpretation is obviously (c), where 
the two predicative BPs constitute a coordinate 
structure. 

In our experim<.mt) however, neither the train­
ir~g data nor the test data indicates such coordi­
nate structures. Thus, in the above sentence, for 
example, the system was required to choose oue of 
two alternatives (>t) and (b), where (b) is the pre­
ferred candidate according to the structura.l pol-· 
icy underlying our corpora. However, this choice 
is not really meaningful. F'urtlwrmore 1 the system 
systematically prefers (aL the wrong choiCl\ since 
(i) the syntactic model tends to pref(-;r shorter­
distance modification relations (similarly to th(-' 

right association principle in English): and (ii) 
the lexical model is expected to support both can­
didates because both D(kanojoiN[s(tabc, wa)]) 
in (a) and D(kanojo!N[s(dekakc, wa)]) in (b) 
should be high. This problem malws the per­
fonnance of our model lower than \vhat it should 
be. 

Obviously, the first step to resolving this prob­
lem is to enhance our corpora and grammar t.o 

enable the parser to generate the third interpre­
tation, i.e. to explicitly generate a coordinate' 
structure such as (c) if needed. Once such a set­
ting is established, \Ve then need to consider the 



lexical contexts of each of the constituents modi­
fying a coordinate structure, such as "kanojo-wa 
(she-Torr' in the above sentence. In interpreta­
tion (c), since "kanojo-wa (she-TOP)" modifies 
both predicative BPs, it is reasonable to asso­
ciate it with two lexical contexts, s(tabe, wa) and 
s(dekake, wa). As mentioned in Section 2, our 
framework allows us to deal with such multiple 
lexical contexts, namely: 

D(kanojo[N[s(tabe, wa), s(dekake, wa)]) 

"'D(kanojo[N[s(tabe, wa)]) · 
D(kanojo[N[s(dekake, wa)]) (30) 

The correct interpretation (c) would assigned 
higher probability than (a) or (b), since the two 
lexical dependency parameters in (30), D(kanojo[ 
N[s(tabe, wa)]) and D(kanojo[N[s(dekake, wa)]) 
are both expected to be sufficiently large. 

5.2 Treatment of correference 
One may have already noticed that the issue dis­
cussed above can be generalized as an issue asso­
ciated with the treatment of correference in de­
pendency structures. Narnely, if a prepositional 
BP i:s correferred to by more than one clause as 
a participant~ a naive treatment of this cmTef­
ercncc relation eould require the parser to make 
a meaningless choice: which clause subordinates 
that BP. This problem in the treatment of corref­
erence is considered to cause a significant propor­
tion of errors associated with relative/adverbial 
clauses or compound predicates. Such errors are 
expected to be resolvable through an extension of 
the model, as discussed in Section 5 .1. 

Let us briefly look at another example in 
Figure 51 1vhere the matrix clause and relative 
clause correfm· to the leftrnost BP ''kanojo-wa 
(she-TOP)", i.e. interpretation (c). \Vithout any 
refined treatment of this correference relation, the 
parser would be required to make a meaningless 
choice between (a) and (b). 

N, P, 
I I 

kanojo wa 
{o.l1~) (TOP) 

Adv 
I 

kinou 
{yoslo!d~\') 

v, Aux, N, P 
I I I 1' 

kat ta hon o 
(b"y) !PAST) (book) (!ICC) 

v, Aux, 
I I 

yon (Ia 
{rottd) (PASl) 

Figure 5: An example sentence containing a rela­
tin; clause: ''She read the book which she bought 
yestercla.y1

' 

5.3 Dependency between slot fillers 
According to the results summarized in Table 
1, the contribution of the dependency between 
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slot-fillers a11d their heads seems to be negligibl~· 
small. Vvre can enumerate several possible rea­
sons including th<.1.t the estimation of these types 
of dependency pa.rarneters 'vas not sufficiently so­
pllisticated. 

In addition to these reasons, \VC also found that 
the lack of the consideration of dependency b(:­
tween slot-fillers was also problematic iu sonw 
cases; there are particular patterns where depen­
dency between slot-fillers seems to be highly sig­
nificant. For example) in the clause "knnojo-wa 
(she-TOP) ishu-ni (doctor-DAT) nat-ta (become­
PAST)" (she became a doctor), the distrilm· 
tion of the ftller of the "wa (TOP)" slot is 
considered to be highly dependent on the filler 
of the "ni (DAT)" slot, "isha (doctor)", since 
its distribution would be markedly different if 
~'isha. (doctor)'1 was replaced with ';m:i::::u (\Yil­

ter))). Similar patterns include, for ex;Jmpl(:\ ;, A­
wo (ACC) B-ni (DAT) s·ur·u (make)", where .I 
and Bare highly dependent, and "A-ga (NO'Il) 
B-wo (ACC) suTn (do)", where noun D iudicat. .. 
ing an action strongly influences the (listribltl im1 
of A. 

In our framework, this type of problem ('all ])(' 

treated by means of controlling the choicC' of h:xi­
cal contexts. \Ve arc ncn:v conducting anot.lwr ('X­

periment in \Vhich the dependencies between .slot.­
flllers arc additionally considered in particular 
patterns. Note that the ref-inement of our mod('l 
in this manner illustrates that the: modularity of 
lexical association statistics fa.cilitate;.; rulc-\)ased 
control in choosing the locations where lexical as­
sociation is considered. This rulc-bas(~d control 
allows us to incorporate qualitative kuowh'dg(' 
such as linguistic insights and heuristics IH'\\·l~· 

obtained from experiments based on t.lle mod(']. 

6 Conclusion 

In this paper, we first presented a new franH'­
work of language modeling for statistical pars­
ing, which incorporates lexical association statis­
tics while maintaining modularity. \Vc then re­
ported on the results of our preliminary evrdu­
ation of the model's performance, showing that 
both the syntactic and lexical models made a con­
siderable contribution to structural disambigua­
tion, and that the division of labor between those 
two models thus seemed to be working well to 
date. 

IV1any issues remain unclear. Fir::;t:, we need 
to conduct experiments on the combination of 
the morphological and syntactic clisa .. mbiguation 
tasks: which our framework intrinsica.ll.Y is ck­
signed for. Second, empirical compa .. risou with 
other lexically sensitive models is also strongly 



required. One interesting issue is whether the 
division of labor between the syntactic and lex­
ical models presented in this paper works well 
language-independently) or conversely) whether 
the existing models designed for English are 
equally applicable to languages like Japanese. 
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Abstract 
\Ve JH't'::wnt statistical rnodels of Japanese dependency 
analysis aud report results of some experiments to in­
vestigate the pnfonuancc of the models for the use fo 
a partical parsing system. The statistical modeb <:u'<' 
rather simple compared with the recent complex mod­
els <wd intesivcl,y usc lexical level information 1 such a.s 
morplH:mcs 1 and part-of-speech tags .. 

\Ve conducted several expcrimcllts to show the fol­
lowing properties of the modeb: 

lb performance of the models according to feature selec­
tion 

;{I performance of the models as a partial pa.rsiHg s:y:::;­
tclll. 

The EDH .. [6] corpus was used for both tra.iuing a.ud 
evaluatioH of the syst(_'HL 

1. Introduction 
A HUilllwr of statistical parsing methods have lwe11 pro·· 
pOS('Cl. most of the systous focus on full parsing of scl\­
t<'Hces, and do not discuss the performance of partial 
parses, whkh b nucia.l for some application;;, such as 
i11forma.t.ion n'trieva.l or pre pron'ssing of corpus <HlllO­

ta.liou. 

Early approa.clH'S of statistical pa.r,':>iHg [15, 10, 1~3] 

conditioned probabilitic::; on syHta(tic rules. To take 
lllOn: contextual iufonna.tioll into a.ccomtt, word collo­
cation i.':> applied to syntactk fonnalization, Buch as k'x­
ica.lized PCFG.lexica.li:zc'd tree adjoining gra.mmar 1 and 
lcxicalir.:cd lillk gra.nuna.r. 

The leugth of phrase::; or the distcuKe between head­
words were also cmtsidere<l in the severa.l mocleb [16, 8] 

Th('re a.re parsing methods tlta.t do uot require a 
grammar. Colliils [a] propo.':\c's a statistical pa.nwr bas('d 
on probabilities of d<'].H?llclcHcics bet.W('eH head-words in 
parse tn'<'S. Yasnha.ra. [18L co11stnH'ts a. syst<'m based 
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on collocation counts as the Oilly source of grammati­
cal iilfonna.tiOit. He uses co-occurr<'Hce pa.th'nts of tlw 
POS tags of head-words. The method, how<'H'f, is not 
statistical, iu that it only accumulates correct pattems 
for direct. use. 

Ma.genna.n [4] proposes a statistical parser based Oil 
a decision tree model, in which the probabilitiC':; arc 
conditioned on the derivation history of the parse tr<.'cs 
[4, 10]. He compares the decision tiT(' model with the 
n-gra.m model, a.ud cla.ims that the a.mouut of parauw­
tcrs in t.h<' resulting model remaiHs relatively constant, 
depending mostly on the numher of traiuing exa.mph's. 

Cha.ntiak [5] proposes a lH'W model alld compared 
it with Colli11s' 1 aud IVJa.germaiL's models and shows 
what aspects of these systems affect. their relative per­
fonnance. 

In general, statistical models suffc'r from the probkut 
of data. spa.rs<'IH.'ss. 

Instead of usiilg a complex sta.t.istiralinodd combi11nl 
with vnrions smoothillg techniq11es [1 1 2, I, 0], \Ve stick 
to a. statistical model of simple scttillg aiming at au 
('asy implt'mentatioll, and pursue a wa.y to select usdul 
information for achieving higlwr parse a.c·naa.cy. 

T'he basic model is close to Colli11s' model[3] Ja.pa.HcS<~ 
dep<'ndeilcy structure are usually bct-':iNI Oil phrasa.l units 
(called '' b-un8ct.su1

' ). A bnnsetsn b<:t.sica.lly COilSifits of OilC' 
(or a. sequ<'ucc of) content wonl(fi) and its sucn~cding 
function words (that forms the smallest phrase, such as 
a simple uoun phrase.). 

\Vc' consider the d<.'P<'nclell.C'Y structure such that C\'­

cry lmnset5u. in a. :-:;euteuce except the right most one 
moclifi<'S one of its followiiLg bttnsef.s'l.t's iu the S<'nteuce 
and no two modifications llla.y cross each other. 

The difference of our model to Collins' model priu­
cipall:y comes front the property of .Japanese seHtence 
structure. First, the type of modification rl'la.tioll ( dc­
pcndc'H<.'Y rel<:1..tions) is lmiqly determined by tlt<.' func­
tion words or tlte <.'IHling form of the modifler. Second, 
the modification <.tlways din:ct from left to right since 
.Japanese is a. lwad-fi.na.l language. 



Tlt(•re an' various features that may aJfc:ct the parsiug 
pn'cision. \Ve test a nmnber of possible setting ami try 
to find out the best combination of features. V1h' a.lso 
test the p<~rfonmlUC(' of partial parsing iu several set~ 
tiugs. 200 100 pa.rsed .Japanese sentences in EDR corpus 
is used for evaluatiou. 

lu the uext. scctioH 1 the statistical model is described. 
Section 3 outlines the parsiug algorithm is outlined. sec­
tion 4 presents the evaluation method. Final section is 
for conclusion and future work. 

2. The Statistical Model 
\Ve propose a statistical model based on the feature-s 
of b-u.n8et8u's. Those fe•atures usually defined b:y the re~ 
suit of lllOrphological analysis 1 such a.s part-of-speech 
(POS) tags 1 inflection types, punetuations 1 and other 
grannna.t.ical or surfac(' information. Some features a.re 
determined not directly from the modifier a11d mod­
ifiee lm .. nsets·u Js For inst.ann\ the umubcr of bv.nsetsn 
l><'twt>en a. moclifi<'r and a. modifiee can be a feature. 

\Vc first introduce Hota.tiona.l conv<'ntions. S = 
w 1,,,,, Wn is a sentem·e, where wi is th<' i-tlt word. 
T is a sequcHcc of -yvords and tag pairs, that is, T = 
< WJ,tl >_. .. ,< Wn 1 t.n >. F is a. seqncll('<' of lmn­
set.sn aud f<·aturc pairs, that is, F =< U1, f1 >, ... , < 
bm.fm >. \Ve· us<· the notation .Dep(i) = j to iudicat:e 
that the ·i.-th lmnsetsv, iu tlH' sequence is a. modifier to 
the j-t.h bv:n .. <;d.<w .. H<.•n•, th<~ symbol "it';, ti, an db; staml 
for word, tag, aHd bv:nM:tsu respectively, and fi reprc­
ocuto the oct of features a.osigucd to bu:n.<etsu. b;. 'rhc 
subscripts ·1n, and n sta.ll(l for the IlUmbcr of b·unsetsu )s 

a.Hd words, n'SJH.•ct.in•ly. Lis the sequ<'llC<' of dqwndeu­
cies: L = (Dep(l). Dep(2)., .. , Dep(rn -· 1)). . f 

In g<'IH'ra.L a statistical parsing model e.':itiuLttcs the 
<:oHditioua.l probability1 P(P1 I S'L for ea.ch v-<utdida.t.e• 
parse tree P1 for a. seuteuce S. ln .JapallCS<' dcpen­
d<'HC). ::;tructtu'(' analysis, the final goal is to identify L 
rather thau P1, and\\'<' try to maxiruiz<' the probability 
P(L,F,T IS). 

Tlt<• mo::>t likely depeu<lency structure analysis u11der 
the model is the11: 

Lb~, 81 = argmax P(L, F\ TIS) 
L.F,T 

Mgmax P(LJF, T, S) P(FIT, S) P(TIS) 
L. F.l' 

\Ve assume tha.t lmnsdsu. consttnction only dqH•ml 
011 word/tag pairs, hmcc' P(F IT, S) = P(F IT), all(l 
assume that a. dependency structure can be dctermill('d 

only by b-u.nsds·u features, thuo P(L I F. T, S) = P(L I 
F). Th<' equation (1) is 11ow writt<.•u: 

L""·'' argmax P(LIF') l'(FIT) J'(TIS) 
L.F,T 
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For simplicity, \\'<' <:l.':>Sumc that the uwrphologica1 
analysis and the b·unsetsn construction are both deter­
ministic. For the morphological analysis, we use the 
most likely output of the' .Japanese morphological ana­
lyzer C:lmScn [11]. 

For the b·un8dsu coustruct.ion, we usc a finite state 
trallsducer constructed from regular exprcssioHs of 
word/tag pairs. 

\Vhat we need to do therefor is to estimate P(L I F) 1 

and fiud L for ca.ch 8 that maximizes the conditional 
prolmbilit.y P(L I F). 

YVe a.ssmne that dcpeudcncies are mutually indepen·· 
deut 1 that is, 

m-1 

P(L I F)= IT P(Dep(i)=j I r, ... ,fm) (1) 
i::::::l 

a.nd no two modifications may cross each other. 
f1 1 .. 1 fm stands for th<• sequence of bnn.set81t features 

<:l.':>Signed to the bunset.<;·tt, Tln1sl P(L I P) can be defined 
<:t::; th(' product of the probability of dependency pairs. 

Oue point that differs from the Colliusl model is that 
our model docs not estimate the type of dependency 
relations. It only estimate the exist(~nce of the depen­
dency relations. This is because• the type of dependency 
is detenniiH.'d uniquely by the modifier in Japall('Se sen­
tences. 

, The modC'l estimate th<' probability of each depen­
deJtcy pair directly by ma.ximunl likelihood estimation 
ba .. <:>cd on bztn.'ietsn f<•a.turcs. Head-words, POS tags, 
word classes, function words, pnnctua.tioHs, aml di::;­

tapce measure such as the numlwr of bnnsds·u's are used 
available for the probability cstimat.iou. 

\\{c can expand each item of the equation ( 1) by us­
iug those fea.tun•s 1 and a.ssumiHg inckj)('IHh'IH'<' of tlH' 
co-o<.'TmTe'nc<· of some features. Ill the following, we 
discriminate the bnn5ct.m feature's that directory relat<• 
to the modifier a.ud modifi<'<' and the distance features 
that relate to relative positions of the rnodifkr aHd the 
modifi<'<'. 

P (Dcp(i)=j I f1, ... ,fm) 

"" P,(Dep(i)=j I f1, ... , fm) (2) 

X Pd(Dep(i)=j I f1, ... , fm) (3) 

lu the secoud equation, we assume indepcudence of 
two kiwis of probabilities. The first is the collocation 
probability ])('tween b·u:nsetsu j(:a.t·ures, and the second 
Oll<' is the distmln' fC'atnre between two b·unsct.su's. Tll<' 
iwlepeHekucy of these• two probabilities reduce the siz(' 
of thC' model. 

\Ve refer to the> probability (2) a.<:> the collocation 
probability, and the probability (3) as the distance 

probability. 



The remaiuder of this s('(tion explains these proba­
bilities in <ktail. 

Head Collocation Probability 
.Japanes<' language has dependency n'la.tions expn'ssed 
by the function words or the ending form, and they play 
a nuda} role in dctcrrnining the dependency structure. 
The relation name (type) is usua.ll:,' dd.ennincd by the 
functiou words. 

If a b·unsetsn has no function words, we use POS tag 
(aud inflection type) of the right most content word of 
the bv:nsetstt. 

Head word is basically defined by the right most cou­
tent word in the each bunsetsu. 

By using these features, we define two models of 
head-collocation probabilities. The first is the gener­
ation probability of features and the second is the col­
location probability of features. 

In the first model, -..ve assume J a.pa.ucsc dependency 
structure is the re::;ult of sclectiomt.l process of which 
each modifier selects a modifict'. The sclectiona.l prob­
ability is writteu as F.,r1(11j,'tj,JJj I h;,TidJi)· ht this 
ex:pn•ssion, the modifieels features arc hj,Tj,fJj t~iven 

that modifier's features are hi, 'l'i,Pi· The symbols 
hi, 1'i,w!.d]Ji stand for head feature, rdation typc, and 
punctuation~ respectively. \Vith this seuing, we make 
t.h(' following approxinmtion: 

dd 

I'h<' ma.xiunun-likelilwod estimate of 1~1 i::; givc11 as 
follows: 

1;, (l,;,l'j,Jlj 1 h;,l';,p;) 

C(Dcp(i) = j, h;, ,.,, p;, h;, l'j .. p;) 

----ern cp(i) = j' -:r;:,-,:7, J! i) 

C(Dcp(i) ::::::j, hi,l'i,]Ji,llj,ThJJj) is the HuUlber of 
times tha.t. feature pairs of hi, 'l'i,JJ; and hj, Tj,}-Jj a.re 
ill a dependeiH'J' relation in th{' training da.t<-L 

I11 tiH~ second model, we ddin(' the the t:><>le<"tioua.J 
probability as F~.(Dep(i)=.i I h;,r;,p;,hj,l'j,J!j). This 
is t.lte probability that b"Unsetstt b; modifies btwsets·a bj 
\\'heu those b-unsetsu.'s appear ia the sa.r11e s<?nteHcc. 

Ph (Dep(i)=j I f1, ... ,fm) 
def 

Tll<' maximnm-likclilwod estilllat:e of F·c· is givc_'ll as 
follows: 

F,. (Dep(i)=.i I h;,r;,p;,hj,l'j,J!j) 

C'(Dq{i)=.i, h;,r;,p;,h1,rj,}Jj) 
--·~-C(hiJilPi,h~j,·!'j~Pj) .. 
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Cs( h;, 'l'i 1 Pi 1 hj, rj ,JJ j) is the n umbcr of times h;, r i dJi 
and hjl ~'hPj appon in the saHH' senU'rtcc in tl1c traiu­
iHg data. Cs(Dep('i)::::::j 1 h;, '~'i,Pi, hj, "l'jdJj) is the mnn­
bcr of times h;, ri,]Ji awl hj, 'l'j,JJj are seeu in tlH' same 
sentence ill the trainiug data <Hid bi modifies bj with 
the relation 1'i· 

For the head feature h;, we can usc the head word, 
as w<·ll as the POS tag or the word cla.ss of a head 
word. \Ve use the .lapa.nesc thesa.urus ' Bunrui Coi 
Hyou'(l3GH)[l2J to define word dasses. DGH has a 
six-layered abstraction hierardty, iu which lllOH' than 
80/)00 words arc assigHed at the leaves. 

For each of those probabilities explained allOY<', we 
tested the followiag models for feature selection. 

POS model uses POS tags for the hea.d 
feature. 

LEX model uses POS tags aud lexical forms 
for the head feature. 

DGH model uses POS tags~ lexical forms 1 and 
word classes for t.h<· head feature. 

To acquire tlt<' statistics, we hav(' to resolve the fol­
lowing ambiguities: 

e \Vhich level of thesaurus hierarchy is appropriat<' as 
the rla.ss for htad-wonl 

0 liow much infonnation from the function words 
should be <'Ollsidered to ddine the depcudency re­
lation narnes. 

For t.ll(' liwitati011 of comput.<'l' resources) Wl' could 
HOt usc· all the combinatiou of word classes (the combi­
IW.tion of modifier and modifiee ). The collocation of 
word classes in th<' sa.nw lap'r i11 BGH wa~ h'arncd 
(from the 2nd to 6t.li la.yer) aud used separately. 

In the current impleuwnt.atiou, we count tlH' statb­
tks for various kngth of dcpeH<kn<'y rdatiou muucs. 
Cowsider the ('Xampks in Table 1. 

Helation feature of nw<lifier in 3 __, 4 lll<tY bl· "~ -c'­
(,:" or ''(,,: 1

'. Relation feature of modifice iu 3......, 4 may 
be ''-It .0" or empty. 

Then, head collocation fcatUl'(' combinations defined 
fo 3 _, 4 a.re as follows (in th<' case of LEX model}: 



[:fL, ii]! [-t-tL i-], ['ll' ;t-c- 1:[:, ['icollli: ~-\J:~]-1 (I complete it until! this spring) 

modifier 1s features rnodiflee 1s featun~s 
' 

relation name head head relation name 

1 ->4 ;fl. ii (particle) 'D!i: ~-{):~ 

2 ->4 -z- fL (demonstrative t (case pmtidc) 7GJlli: ~ -1!_· ~ 

pronoun) 
··--

3 ->4 '$ i ·c (particle )-1: 7cllli: ~ -1!_· ~ 

( "'"e particle) 

Table 1: Example of dependency relations. Each square bracket represents a bunsets·u 

modifier's feature modifiee\ feature --
n:lation name head head relation name 
:n-r: ' 

-~ ~f!l( C' -tt· 0 
:t ·c-r: '{~ ifr&: -
I' - ~ J\:r& ~-tl: -0 
r: ~ 7tJOC 
"'('.[: Noun :fo& ~ -li' 6 
'l' ·c--r: Noun XI& -
[: Noun J\:1& !'-\!.' 0 
r: Noun Jtr& -
"'('.[: ~ Noun ~ -ti- ;;:) 
'l''C-l: ~ Noun 
[: ~ Noun 0 -ti· 0 
[: ~ Noun 
'l' ·c-r: Noun Noun ti- -tt· ;;:) 
'l''C-l: Noun Noun -
r: Noun Noun 6 -tt- 0 
[: Noun Noun -------

The Distance Probability 
Distance tn<'<lSure of dependency relations is an inlpor­
t.ant factor to clisarnbiguate d('pcndenry structure. For 
in::;taH('C 1 relation type "ha/pa.rticle1

' has a t.en<~7-ncy to 
modify a distaut phra.c;al unit. ... 

For the distance mc<:t.':itlH' of a pajr of bunsst.sn 1s, we 
use the Humlwrs of the lmnsets't~ '5 a.nd punctuations be­
tWN'H the1n. 

Two types of probabilities are considered for the 
probabilities of head¥collocation d<'Scribed ahove. 

Generation probability model of the distann' features 
is as follows: 

Pd(Dep(i)=j [ fJ, ... ,fm) "' F,;1(r;,d;;,!Jij [ r;) 

C'( Dep{j_2=:J, r;~l_;; ,p;;)_ 
C(Dep(i) = j', r;) 

Collocation probability version of th<' distauce f<'a.­
tnn's is as follows: 

Pd(Dep(i)=j) "' F;1(Dep(i)=j I r;,</;J,JJ;j) 

C(Dep( i)=j, r;, d;j ,JJ;;) 
C( r i 1 dij, Pij) 

di}l and Pij indica.t.<' the number of lFunsets·u's and tlH' 
Humlwr of punct.uations 1 rcspcctivd;y. 
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Same a.s the case of estimation of head collocation 
probabilities, modification relations of various length 
wa .. s extracted from each modification pair. 

3. The Algorithm 
Full Parse 

1. Tokcnization and POS-tagging is applied to the input 

2. Construct bnnsetsu' a.nd defi11e its fe<.ttures, 

3. Calculate the probabilities of every bnnsetsu pair, by 
using statistics derived from the EDH. corpus. 

4. Compose the most likely (or n-best) de.peudeacy 
structure ba.<.;ed oH the statistical mod<'l describ<'d i11 

, section 2. 

For the first st.<'p, we usc the morphological analyz<~r, 
C:!taSeH[ll]. 

For tlt<' sccoad step, tokens arc a.mt.lized into bnn­
sets·u' based on pre-defined regular expres::;ions, and 
then bunsetsn fea.tun.•s ar<' extracted. The ba..,-:;ic rules 
for a:<.;signing features a.re a.c; follows: 

• The right most content word in the lmnsetsn becomes 
the h<'ad fntturc. 

• l'vlorplwlogica.l information (such a.s word, tag, aud 
iHflectiou form) of functiou words iu the b-unsetstt. de­
fitt<'S the depeud<'ll<"J' relation. 

Th<'re is a. room to customize the rules by a. user 
to cope with exceptional cases which do not fall into a 
general pattern, and to cope with conceptual differences 
between s:,rstem clesig11.s. 

For the fourth step, we consid<'r tlH' <h:'IH'udcncy 
structure such that: 

e Every bnnsdstt in S <'xcept tlt<~ right most one mod­
ifi.es Oll<' of its succeeding b~msdsu's iu the scutence 

e No two modifications may cross ea.ch other (crossing 
constraiat) 



UndN tho:':>e constra.iuts, we use CYK algorithm to ef­
fectively select tlH~ most likely (n-best) combination of 
depeitdency relations. 

Partial Parse 

\Vc propose three types of partial pa.rHing, which focuses 
on the probabilities of each depcndcucy pairs (pO), the 
probabilities of whole dependency structure (pl), and 
sorne sp<:•cific dependency relatious (p2). 

(pO) Output depcmlency rclatious of which probabil­
ity is higher than a particular threshold. Th(' rc:·mlt 
is the set of dependcnci('S. 

(pl) N-best parses me firstly obtained. Then, the 
depcndcncks that are included in a.ll of the N-best 
parses are sdccted a.s the result. 

(p2) Only the dependencies of the sp(•cified rdaticms 
arc produced. 

Iu the pO algoritluu\ we do not usc G)lJ( algorithm. 
1f there arc more than two modifiees whose clepcmll'ncy 
probabilities are higher than the threshold, the highest 
one i:; choSl'II (in other words, do uot care about "cross­
ing coustra.int''). Although t-his method i::> very sirnple 1 

it is useful 1 for <'xampk, to help iutera.ctivc correction 
proc<~durc of trcc-ba1tk constructioit. 

To use the p2 algorithm) we must. evaluat<' tlw pre­
cisimt for each relation typcf. Some cxpcrimen t.s are 
givca iu the followillg section. 

4. System Evaluation 

For thc training a.ml test corpora~ we used EDH 
.Japaue.sc bracketed corpus (GL ·which contains about 
208)000 scutcu<:c-s collected from articles of IW\vspapl'l's 
a.nd ma.ga;;:ines. 

\\.'c splittcd the :;entence.s into tweuty fill's. OJH' of 
th<'S\' files is held out for c·valuation and others are used 
for t ra.iniug. 

Full par!->e accuracy is cvaluaJed by the prccisiou of 
correct dependency pairs. Pa.rtia.l parse accuracy is 
evaluated by the precisioH and recall of correct dcpcll­
dcitcy pairs. 

PH•cision aud l'('call are ddiHed as follows: 

Preci:;ion = 
Number of correct dependencies gt~nerated by th<:> systeu1 
--~J-\J~nnbe~f system's output. of dependencies- -·­

Re('(d/ :::: 
N nmher of correct dependencies generated by t-he system 
-------"-·---T~tal numhel~-:;fdcpcnd~ucics 
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Evaluation of Full Parse 
The precision of the numlwr of dependency pain; wa,<:> 
calculated uuder th<' followiag models. 

(a) Base-line 

(b) POS model 

(c) LEX model 

(d) BGH model 

The model (a) is used as the basc-liHe 1 ill whicl1 all 
modifiers modify its immNliatc right b-ansetsu. ''POS 
model'' mea11s that POS tags of head-words are used as 
the lH'ad feature. "LEX moclc-r' means that POS tags of 
head-words aud lexical items a,re used. "BGH modcr' 
mea.ns that POS tag.s 1 lexica.l items, and word classes 
an.' used as the head feature. Thc level of the layer:-; i11 
th(' thesaurus is altered from 2 to 6 (leaf htJ'l'r). 

For e<tch of (b), (c), (d) models, we applied two prob­
ability models described in section 2 (generation prob­
ability and collocation probability) to each of head­
collocation probability and dista.uce probability. Theu 
e<tch (<t), (b), (c), a.ncl (c!) models has four different 
modeb. But. we only shows the result of the followiug 
t\vo models) for the each POS 1 LEX) and BGH model. 

e head-collocation (collocatimt HlOdd) + distaue<' (g('ll-
l'ra.tion model) -+ model-1 

0 head-collocation (collocation mod d) + dista.uce (col-
location model) .......,. modcl-2 

Since the other two models giv(' th<' performallC(' (pre­
cision) as ]ow as 70 %, we will not go into ntorc dl'ta.il of 
those modds. T'hc amount of training data was cha11ged 
a.nd evaluated iu terms of thl' prccisiou of correct lk· 
peiidency relations. 

Figure 1 shows the result of the precision for tlw 
inside and outside data uiider "11HHld-r~ 1 Figure 2 
shows the result of tlw precision for thC' in:::;idc and th(' 
outside data. uuder "modcl-2". 

·'BGH:61
: in the figmT nwaHs that the sixtl!··laycr of 

the t.hesa.urus is used for the word da:-:>s. It slightly 
outperforms other models that use higher layers in t.he 
thesaurus. 

\Vhen evalnating with outsid(• data1 we imposed cl'l'­
tain frequcllC.Y threshold on the stati.':ltical data. that is, 
the collocation data whose occurr<'HC<' frequency is less 
than i-tintes was dis<·a.rdcd, where i is a predetermined 
threshold. 

Figure 3 sllow the resultiug cltcutg<' of precisions under 
the POS, LEX 1 BGH modds. The vahH' of ·'i'. was 
changed from 2 to 10. 

1 I3y '·inside data", w0 mean that. t.hc training data is used 
also for t-he tesl da.ta, \vhereas ·'outside data'· means that 
th~ held-out data is used for the test data. 
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From this experiment, we decided to set the value of 
i to 4. 

The LEX model shows the highest performance in 
both cases, and the result of rnodel-1 outperforms that 
of model- 2 constantly. 

Surprisingly, the BGH model shows poor perfor­
mance than the POS model. A part of the reason may 
comes from the fact that we only used one layer of word 
da..':lses for each experiments. Other reason may be that 
the hierarchy of "Bunrui Goi Hyou'1 is not adequate for 
the syntactic analysis. 

The graph shows tha..t the performance of the inside 
data decreases when the size of training data incrt~<t..<.>es. 

The precision of the outside data in "rnodel-1'1 con­
stantly close up to the precision of the inside data.. 

We use "rnodel-11
l for further analysis. 

Contribution of Head-Collocation 
Probability and Distance Probability 
To test which features of head-collocation and distance 
feature contribute to the accuracy of pa.rsing 1 the fol­
lowing models arc tested. 

(e) Distmtcc probability 

(f) POS model without the distance probability 

(g) LEX without the distance probability 

(h) BGH without the distance probability 

Each model is trained by 190,000 scntences 1 and evalu­
ated by 11000 sentences held out from the training data. 

model precision % correct/ total 
(c) 66.07 5087/7610 
(f) 79.09 6019/7610 
(g) 80.09 6095/7610 
(h) 77.58 5819/7610 

Table 2: Precision for 1,000 sentences. 

The distance probability makes little contribution to 
the parsing accuracy cornpared to the head collocation 
probability. This is because the features used for the 
distance probability is too sirnpl(~. 

Sentence Level Evaluation 
\Vc evaluate sentence level accuracy in this section. A 
sentence is regarded as correct if the correct structure 
is found in the n-best parse of the parser1 where n is a 
predet.ennined value. 

Figure 4 shows the ra.t.c of correct parses appearing 
in the n-best parses, where n is changed from 1 to 10. 
The average number of b·unsetsu}s in a sentence is 7. 



= 
' 
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FigurE' 4: Distribution of correct parses (out of 10,000 
sentences). Trained under LEX model by 190,000 sen­
teHces. 

When n is 5 the precision is 65.21 %, and when n 1s 

10, it becomes 73.40 %. 

Evaluation of Each Relation Types 
\iVc also check the precision of relation types. The re­
sults are shmvu in Table 5. The first column spccifi<~s 
the ty})e of dependency, \vhich consists of a. word, a tag 
or an iufie<:tion form. The s<.~cond column iu Table 5 in­
dicates the ratio of correct dependencies over the total 
system output. 

It is seen that the frequencies of relatio11 type, noun 
base-form-verb, aud ha-particle are high, and infiuC'ncc 
system's pcrfonnancc, siuce the precisions for th(;'oe 
relations are bad. The particle "ha', "v<:rb/renyou", 
and "verb/tckei'' ran construct subordinate clauses iH 
Japau<'S(' 1 and in some cas('S 1 it is difficult eveu for hu­
man to consistently detennin<~ its modifiee. 

A uouu + punctuation patter11 is also a problematic 
case, because it can be a. part of coHjunction phrases. 
They behave like adverbs (temperaJ noun and adverbial 
noun) or form subordinate clauses. 

In these cases, it is reasona.ble to leave these modifiees 
unsp<~cified. This doesn 1t conflict the purpose of nsiug 
the :;ystern for practical fields or preprocessor of higher 
NLP, because it is favorable to output relia.bl<; partial 
parsen rath<~r than output unreliable full parocs. 

Evaluation of Partial Parsing 
The results of full parsing accuracy show that model-1 
under the LEX model outperforms other models. 

For the rnodel 1 W(' further examined partial parsing 
methods explained in section 3, and evalna.ted its pre­
cision and recall. 

Table 3 shows the result of pO algorithm. The first 
colnmu iu Table 3 indicates the threshold 011 the prob-
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Figure 6: Evaluation of pi algorithm. LEX model 
learned from 190,000 sentences was used. 

ability of each dependency relation. The degree of the 

0.5 8(i.l~--\6:l;l~~~-:377) 8:l.52 (6:156/7610) 
0.6 88.2:l (619:lj7019) 8Ll8 (6193/7610) 
0.7 90.2,1 (5999/!Hi48) 78.8:l (5999/7610) 
o.s n.n (5705/6179) 74.97 (570.<:i/76to) 

L_o".""-_1 ___ ,'0:g 5!c·c_J ::c9 ( !?..!~!.QLM 0 ~.L __ ,_ --''"i 7'-'. ""'""-' 0( oe_' ''''"":Lic_7<"1l'-'O")_...J 

Table 3: Evaluation of pO algorithm. LEX model 
learned from 190,000 sentences was used. 

reliability (hence the degree of the precision) can be 
controlled by the value of the threshold ou the proba­
bilities. 

Figure 5 shows the result of pi algoritlnn. The value 
of "11

11 in the pl algorithm is varied from 2 to 10. 
The degree of the precision can be controlled by the 

'~.ra.lue of "u)). Figure 6 depicts the l'<'Sults in graphs. 

Q:0t:.-h ·o.:-'c:;s"h ':c' ':::"--+-''cc"c::':c' ';;';::'o~n:,_'il:;";;,( 'c;o;;'c',""7'?'!,/;;to:.-t:-_n,_,l l--+_.:'.o.'o;'";;';.-1 .;,%;.-;(<:or rcc t j to t.a I 
2 88.7~ Fll1!l/5'Hl_:!~ 77.14 (5l•IH/7fil?.! 
:l 91.0:J (570f>/617ll) fi9.9l (570;1/7610) 

92.53 (5!)99/{Hi48) 6."1.80 (59!19/7610) 
5 ll:JA7 {6UJ:lj70Hl) 61.<16 (61H:J/7610) 

" 9:l.99 (H:lfl(i/7377) 58.fJ9 (6:JS6/7610) 
7 fl-1.71 (fl:l56/7377) 5fi.'2:l ((\;J;J6/7610) 

fl5.26 (6356/?a77) 51.11 (6:lf>6j7fll0) 
9 95.78 (63fl(l/7:l77) fJ2.:!0 (6356/7610) 

·~-_!_~~~~-~~- _IJ5.99 (6:356/7:177) ."J0.38 (6:JS6j761(~-

T'a.bl<' 4: Evaluation of pi algorithm. LEX model 
learned frorn 190,000 sentenc(~S \Vas used. 

Table 5 ~hows the result of p2 algorithm. p2 algo­
rithm achieves slightly better precision than full pars<', 
but. is 11ot a.s good a,<.;; pO and pi algorithms. 

\Vheu comparing three methods) pO algorithm shows 
highe~t perfonna.nc<', in tenus of the precision and re·· 



r relation name (lexicon/POS/infiectiou form) predsion (%) I correct total I 
J adjectivc/rentai 95.41 1019 1068 
/demonstrative/ 93.72 1329 1418 

wo cp 93.32 7000 7501 
nojp 92.15 11040 11980 
nijcp 91.51 5769 6304 

jadjectivejrcnyou 88.14 959 1088 
-· 

gajcP( 87.94 5025 5714 
;verbjbac;e 87.32 1344 1539 

tojcpf 85.49 1585 1854 
mojp/ 83.54 1680 2011 

·--··-
de7cP7 81.83 991 1211 

;verb jtekei 79.55 926 1164 
/temporal noun/ 

--
78.20 1155 1477 -

da/ declarative/tekei 77.96 902 1157 
ha/p/ 

···-· 75.32 5790 7687 -
75.29 1182 1570 jnour:J_ 

jverblfenyou 72.43 796 1099 

Figure 5: System's outputs were classified according to the right most constituent of relation type! and sorted with 
their precisions. The symbol cp, <:utcl p in the first column mean C<L'W-particle and particle. Renyou, rcntai tckei and 
base arc the mtmes of infkction forrns. 

rc l;;\:tio~·tJ};-;<:> 
·without "ha'1 

without "verb/renyou,t.<,kci" 
without ;;V(~rbf.~-cll)'ou,t.ckci, lm" 

precision% 
86.21 (5904/6808) 
85.56 (6333/7402) 
86.~7 (5748/6640) 

·Dthl<' 5: D<'pcndency relations without sorne types of 
relations. Trained by 100,000 scutenccs. Evaluated by 
other 1,000 scHtences. 

calL \Vlu.'n pO and pi algorithm shows sam~nSrcci~ion, 
pO a.lgoritlmt slww~ higher n'calL 

pO ami p.l algorithms ca.n be controll<.'d 'by a siugle 
parameter. 

5. Conclusion and Future Works 
\~;<' showed that the statistical method incorporating 
lexical kv('l iufonua.t.ion without any grammar rule is 
effective iu .Japanes<' dependeucy structure a.naJysb. 

lu~tea.d of lexical it<'lll::>, W<' also tested word classes 
of tllt' thesaurus a.':> lH•ad features of phrasal uuits (BGH 
model). But. that. modd showed poor perfonuatLcc than 
the POS model (which uses part-of-SlH'ech ta.gs 1 a.s head 
features). This m<t:y be because that the hierarchy of 
applied th<'saurns is not appropriate for the syntactic 
<utal}·sio. 

85% of precioion (the munlwr of correct d('pcndency 
relations) is achieved by using LEX model. 

In those cxpcrinwuts, th<' combiuations of features 
a.rc dct.cnnin('(l manually by hmnau. There is a room 
to sdcct tlH' combinations of f<'a.tures automatica.ll,y. 
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One reason of this comes from the fact that we ap­
plied various kinds of distance features, such as the 
mnnlwr of nou11 phrases, the Humber of case pa.rtides, 
the number of verbs and other kinds of gra.mmatica..l fea­
tures between t.vm bnnsetsn's, but finally it turned out 
that simple featnres 1 such il$ the numl.K'r of b-unsetsv.\ 

·and punctuations bet"w<'CH two b·unsdS1t\) shows good 
performance. This ma.y imply the limit.aion of man­
ua.l sekction of combinations of features. Aut.ornatica.l 
sdection of appropriate features is one of our future 
works. 

;\\-"e also proposed several partial parse rncthods. 
/\.mong them, pO algorithm is exhibit('d highest tWl'·· 

f01'mancc in terms of precision a.ud rcca.ll 1 in spite of its 
:-:;implicit.y of algorithm. 

In pO algorithm, the d('grec of reliability (in other 
wor<L <h'gree of precision) is controllable by a. single 
pa.ntlll('tcr. 

Partial p<.l.l"S(' tnethod ca.n be used for other NLP ap­
plicatioHS1 such ::ts iufonnatiou retrieval or prepron'ss­
ing of corpus <umotation. 
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Abstract 
In this paper we study the gain, a naturally-arising 
statistic from the theory of MEMD modeling [2], as 
a figure of merit for selecting features for an MEMD 

language model. We compare the gain with two 
popular alternatives-empirical activation and mutual 
information-and argue that the gain is the preferred 
statistic, on the grounds that it directly measures a fea­
ture's contribution to improving upon the base modeL 

Introduction 
Maximum entropy / minimum divergence (MEMD) 
modeling is a powerful technique for building statisti­
cal models of linguistic phenomena. It has been applied 
to problems as diverse as machine translation [2], pars­
ing [10], word morphology [5] and language modeling 
[6, 11, 3, 9]. The heart of the method is to ~ljoose a 
collection of informative features, each encodi'llg some 
linguistically significant event, and then to incorporate 
these features into a family of conditional models. 

A fundamental issue in applying this technique is the 
criterion used to select features. The work described in 
(3], for instance, incorporates every feature which either 
appears with above-threshold count in a training cor­
pus, or which exhibits high mutual information. In [11] 
and [1], the authors select features based on a mutual 
information statistic. As we argue below, both these 
methods have drawbacks. 

In this paper, we examine a statistic for selecting 
MEMD model features, called the gain. The gain was 
introduced in [4], and studied in greater detail in [5] 
and [2]. We present intuition, theory and experimen­
tal results for this statistic, as a criterion for selecting 
features for an MEMD language model. We believe our 
work marks the first time it has been used in MEMD 

language modeling, and the first side-by-side compar­
ison with other selection criteria. Though our experi­
mental results concern language models exclusively, we 
note that the gain can be used to select features for any 
MEMD model on a discrete space. 

The language model we present is based on depen­
dency grammars. It is similar to, but extends upon, 
the work reported in [3]. Two important differences 
between that work and ours are that ours is a true 
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minimum-divergence model, and ours incorporates both 
link and trigger features. 

The paper is organized as follows. In Section Struc­
ture of the Model we give a briefreview of MEMD models 
in general, and of our dependency grammar model in 
particular. In Section Linguistic Features we describe 
and motivate the types of features we chose to inves­
tigate. In Section Expe1'imental Setup we describe our 
experimental procedure. In Section Selection of Fea­
tU?·es we discuss feature selection; it is here that we 
develop the notion of gain. In Section Additivity of the 
Gain we discuss the additivity of gain, which measures 
the extent to which features contribute independently 
tO a modeL In Section Tests and Results we report our 
test results. Section Summary concludes the paper. 

Structure of the Model 

Use of a Linkage 

Let 's = w0 .•. wN be the sentence in question, and 
let K(S) or just K stand for its linkage. A linkage 
is a planar graph, in which the nodes are the words 
of S, and the edges connect linguistically related word 
pairs. A typical sentenceS, with its linkage J(, appears 
in Figure 1. The relationship between the linkage of 
a sentence, and the familiar notion of a parse tree, is 
described in Section Experimental Setup below. 

<s> 

0 

one (}oz·e~ b(uimia cr~a'!"' pies <Is> 

2 3 4 5 6 7 8 9 

Figure 1: A Sentence S and its Linkage K. The 
shaded area represents the history h7 , which is the 
conditioning information available to the model at 
position 7. h 7 consists of the complete linkage K, 
and words w 0 through w 6 inclusive. 

Our model, written P(S I K), is not a language 
model proper, since it is conditioned upon the linkage. 
In principle we can recover P(S) as I;K P(S I K)P(K); 
in practice we simply take P(S) "'P(S I K). Moreover 



since K itself depends upon S, the model cannot be ap­
plied incrementally, for instance in a real-time speech 
recognition system. However, such a model can be used 
to select from a list of complete sentences. 

The value P(S I K) computed by our model is formed 
in the usual way as the product of individual word prob­
abilities; that is 

N N 

P(S I K) = ITp(w' I w~- 1 K) = ITp(w' I h'). (1) 
i=O i=O 

Here we have written hi :::: (w~~ 1 , K) for the history at 
position i; this is the information the model may use 
when predicting the next word. Here and below the 
notation wi, with i S j, stands for the word sequence 
wi , , . wj. Thus for the models in this paper, the his­
tory consists of the words w 0 . .. wi-I, plus the complete 
linkage K. 

Fundamentals of MEMD Models 
The individual word probabilities p(w' I h') appearing 
in equation (1) above are determined by a minimum 
divergence model. Here we review of the fundamentals 
of such models; a thorough description appears in ref­
erence [2]. 

As above, let w stand for the word or fu·ture to be pre­
dicted, and let h stand for the history upon which this 
prediction is based. Suppose that f( w h) is a binary­
valued indicator function of some linguistic event. For 
instance, f may take the value 1 when the most recent 
word of h is the definite article the and the word w is 
any noun; otherwise f is 0. Or f might be 1 when h 
contains the word dog in any location and w is the word 
barked. Any such function f( w h) is called a binary fea­
ture function; clearly we can invent a large number of 
such functions. 

Now suppose C is a large corpus. C can be regarded 
as a very long sequence of word-history pairs wi hi, 
where w~ is the word at position i and ht is the history 
at that position. We can use C to define the empirical 
expectation E,;[J] of any feature function J; it is given 
by 

E,;[f] =I: J(w' hi)/N (2) 

where i runs over all the positions of the corpus, and N 
is the number of positions. The sum AJ =I;, f(wi h') 
is called the empirical activation of the feature f; it 
is the number of corpus positions where the feature is 
active (attains the value 1). 

Finally, let q(w I h) be some selected statistical lan­
guage model, for instance a trigram model. We call q 
the base model. When q is a trigram, it predicts w based 
exclusively upon the two most recent words appearing 
in h. Note however that an arbitrary feature function f 
can inspect any word of h, or the linkage itself if it com­
prises part of h. It is the enlarged scope of information 
available to f that we hope to exploit. 

We can now enunciate the principle of minimum di­
vergence modeling. Let f = (J, ... fM) be a vector of 
binary feature functions, with a known vector of em­
pirical expectations (Eft[h] ... Ep[fM ]). We seek the 
model p(w I h) of minimal Kullback-Liebler divergence 
from the base model q(w I h), subject to the constraint 
that 
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That is, the expectation of each fi, according to the 
model p, must equal its empirically observed expecta­
tion on the corpus C. 

By familiar manipulations with Lagrange multipliers, 
as detailed in [2], the solution to this problem can be 
shown to be 

p(w I h)= --
1 

-q(w I h)e•·f(w h) (4) 
Z(ii h) 

where 
Z(ii h)= I; q(w I h)e".f(w h)_ (5) 

wEV 

Here f( w h) is a vector of Os and 1s, depending upon 
the value of each feature function at the point w h. 
Likewise & is a vector of real-valued exponents, which 
are adjusted during the training of the model so that 
equation (3) holds. V is a fixed vocabulary of words, 
and Z( & h) is a normalizing value, computed according 
to equation (5). Finally q(w I h) is the base model, 
which represents our nominal prediction of w from h. 
When q is the constant function 1/jVI, the resulting 
model p is called a maximum entropy model; when q is 
non-constant, p is called a minimum diveTgence model. 
However the defining equations (4, 5) are the same, 
regardless of the nomenclature. 

Use of a Base Model 
In the work reported here, the base model q is decid­
edly not a constant: it is a linearly-interpolated trigram 
model, trained on a corpus of 44,761,334 words. This 
approach, while not novel [1], is one of the key depar­
tures of our work from [3]. 

This departure is significant for three reasons. First, 
it gives us a computationally efficient way to incorpo­
rate a large amount of valuable information into our 
model. 'l'o put this another way, we already know that 
the 14,617,943 trigrams, 3,931,078 bigrams and 56,687 
unigrams that together determine q are useful linguistic 
predictors. But if we should try to incorporate each of 
these word-grams into a pure maximum entropy frame­
work, via its corresponding feature function, we would 
be faced with an intractable computational problem. 

Second, the use of raw word-gram feature functions, 
without some discounting of expectations, is believed 
to be problematic for maximum entropy models, since 
it can force solutions with unbounded exponents. By 
incorporating word-gram information via a linearly in­
terpolated trigram model, we are less likely to encounter 
this problem. 



Third, using a trigram base model raises a new and 
challenging version of the feature selection problem. 
How can we determine which features, when incorpo­
rated into the model, will actually yield an advance 
upon the trigram model? This is the central problem 
of this paper, which we proceed to address by using the 
gain statistic. 

Linguistic Features 
We now take up the question of how to exploit the 
information in the history hi to more accurately esti­
mate the probability of word w'. We remind the reader 
that the base model already provides such an estimate, 
q(w' I h'). But because in this case q is a trigram 
model, it discards all of hi except the two most recent 
words, wi- 2wi-l. Our aim is to find informative binary 
feature functions f(w' h') that are clues to especially 
likely or unlikely values of w'. We chose to use two 
different kinds of features: triggers and links. 

Trigger Features 
As every speaker of English is aware, the appearance of 
one given word in a sentence is often strong evidence 
that another particular word will follow. For instance, 
knowing that computer appeared among the words of 
hi, one might expect that nerds is more likely than nor­
mal to appear among the remaining words of the sen­
tence. Some words are in fact good predictors of them­
selves: seeing Japanese once in a sentence raises the 
likelihood it will appear again later. Word pairs such 
as these, where the appearance of the first is s.tfongly 
correlated with the subsequent appearance of ·'the sec­
ond, are called trigger pairs [1, 11]. Note that ,the trig­
ger property is not necessarily symmetric: we would 
expect a left parenthesis { to trigger a right parenthesis 
}, but not the other way around. 

Our model incorporates these relationships through 
trigger features. Let u, v be some trigger pair. A trigger 
feature fuv is defined as 

fuv(w h)= { 6 if w = v and h3 u with luvl2: dmin 
otherwise 

(6) 
Here h 3 u, read "h contains u/1 means that u appears 
somewhere in the word sequence of h. The notation 
luvl 2: dmin means that the span of this pair, defined 
as the number of words from u to v, including u and v 
themselves, is not less than a predetermined threshold 
dmin· Throughout this work we have used dmin ::::: 3. 

Link Features 
One shortcoming of trigger features is their profligacy. 
In a model built with the feature !computer nerds 1 an ap­
pearance of computer will boost the probability of nerds 
at every position at distance dmin or more to its right. 
This will be so whether or not a position is a linguis­
tically appropriate site for nerds. Moreover, if a model 
contains a large number of trigger features, there will 
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be many triggered words at each position, and their 
heightened probabilities will tend to wash each other 
out. 

For instance consider the sentence of Figure 2. The 
plausible trigger feature !stocks rose will boost the prob­
ability of rose at every word from position 4 onward, 
in particular at position 6. But here the acoustically 
confusable word woes appears, and so increasing the 
probability of rose at this position could yield an error. 
Thus the boost that !stocks ?'ose gives to rose, which we 
desire in position 8, is just as clearly not desired in 
position 6. Unfortunately the trigger is blind to the 
distinction between these two sites, and it boosts rose 
in both places. 

<s> Nasdaq stocks , despite Asian woes rose shmply . <Is> 

0 I 2 3 4 5 6 7 8 9 10 II 

Figure 2: Links versus Triggers. The trigger fea­
ture for stocks and rose boosts the probability of 
rose at each position from 4 to 11, inclusive. The 
link feature also boosts rose, but only at positions 
4 and 8. The linkage shown here is the actual one 
computed by our parser. 

These considerations have led us and others to con­
sider features that use the linkage. The aim is to focus 
the effect of words in the history upon the particular 
positions that are appropriate for them to influence. 
Figu:re 2 shows how the linkage of this sentence con­
nects stocks1 the headword of the subject noun phrase, 
with i'ose, the main verb of the sentence; note there is 
no such link from stocks to woes. These are precisely 
the linguistic facts that we wish to exploit, using an ap­
propriate feature function. To do so, we will construct 
a feature function that (like a trigger) turns on only for 
a given word pair, and in addition only when the named 
words are connected by an arc of the linkage. 

Because such features depend upon the the linkage 
of the sentence, we refer to them as link features. Such 
a feature f,.... 1 for words u and v, is defined as uv 

J~(wh)= { 1 
u v 0 

if w = v and h3uv with luvl 2: dmin 
otherwise 

(7) 
The notation h :Ju,.......,v, read "h contains u, linking v/1 

means that word u appears in the history's word se­
quence, that an arc of K connects u with the current 
position, and that word v appears in the current po­
sition. In the example given above, the link feature 
f ~ attains the value 1 at position 8 only. 

stocks rose 

Experimental Setup 
Here we describe the 
work in this paper. 

computation that underlies 
Figure 3 is a schematic of 

the 
the 



complete computation, which divides into three phases: 
(1) prepare the corpus and train a parser and base 
model, (2) identify and rank features, and (3) select 
features and train an MEMD model. Our experiments, 
which we report later, concerned phases (2) and (3) 
only. We include a discussion of phase ( 1) for com­
pleteness, and to place our experiments in context. 

In the first phase we trained a parser and base model, 
and parsed the corpus text. By parsed we mean that for 
each sentence S of the corpus text T, we have its linkage 
f( ( S) at our disposal. The parser we trained and then 
used was a modified version of the decision- tree parser 
described in [7]. Our parser training corpus consisted 
of 990,145 words of Tree bank Release II data, and our 
base model corpus consisted of 44,761,334 words of Wall 
Street Journal data, both prepared by the Linguistic 
Data Consortium. 

This parser constructs a conventional parse tree. 
Since we needed linkages, we used the method of head­
word propagation to create them from the parser out­
put; we now explain this method. To each parse tree we 
apply a small collection of headword propagation rules, 
which operate leaves-to-root. The result is a tree la­
beled with a headword at each node, where each head­
word is selected from the headwords of a node's chil­
clren. (At the leaves, each word is its own headword.) 
The desired linkage is then obtained by drawing an arc 
from the headword of each child node to the headword 
ofits parent, excluding self-loops. A conventional parse 
tree for the sentence of Figure 2 above, labeled with 
propagated headwords, appears in Figure 4. 

SBW 
<.,> 

<s> 
(I 

s 

ADJ NOUN PREP ADJ NOUN yp ADV 
Nmdaq .\'lock.\ de>piw A,,·,·au \WJ('.\' !'OS<~ sluuply 

I I I I 
Nasdaq stocks despite Asian woes rose shmply 

2 3 4 5 6 7 8 9 10 

Figure 4: Conventional Parse Tree, with Propa­
gated Headwords. The text explains how this head­
word-labelled tree can be transformed into the link­
age of Figure 2. 

EBW 
<Is> 

<Is> 
11 

For the base model q1 we chose to use a linearly inter­
polated trigram language model, built from the same 
regularized WSJ corpus as the dependency grammar 
model itself. 

In the second processing phase we identified and 
ranked features. The details of this phase, and in par­
ticular the figure of merit used for ranking 1 are the sub­
ject of Section Selection of Features. Here we explain its 
place in the overall scheme. By inspecting the parsed 
corpus C, we identify a set F of trigger and link candi­
date features. These are then ranked according to the 
chosen statistic. In this paper we advocate the use of 
the gain as the rank statistic. The gain depends upon 
both the corpus and the base model, and for this rea­
son these are shown as inputs to the box rank features 
in Figure 3. The output is the same set of candidate 
features, ranked according to the figure of merit. It 
happens that the gain computation also yields initial 
estimates of the MEMD exponents; abbreviated exps in 
the figure. 

In the final phase of processing, we inspected the 
ranked list of features and selected those to incorpo­
rate into the model. We then used the selected fea­
tures, their initial exponent estimates, the corpus 1 and 
the base model to train the MEMD model. Different 
choices of features yield different models; Section Tests 
and Results below gives details and performance of the 
various models we built. 

Selection of Features 
Once the model's prior and feature types have been 
chosen-choices generally dictated by computational 
practicality, and the information available in the train­
ing corpus-the key open issue is which features to in­
corporate in the model. In general we cannot and will 
not want to use every possible feature. For one thing, 
we usually have too many features to train a model 
that includes all of them: the processing and memory 
requirements are just too great. Moreover 1 rescoring 
with a model that has a very large number of features 
is itself time-consuming. Finally1 many features may be 
of little predictive value, for they may seldom activate, 
or may just repeat information that is already present 
in the prior. 
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In this section we describe a method for selecting 
precisely those features of greatest predictive power, 
over and above the base model q. The key idea of our 
method is to seek features that improve upon q's pre­
dictions of the training corpus itself. The measure of 
improvement is a statistic called the gain, which we 
define and motivate below. As we will demonstrate, 
computing the gain not only yields a principled way of 
selecting features; it can also be of great help in con­
structing the MEMD model that contains the selected 
features. 

Our method proceeds in three steps: candidate iden­
tification, ranking, and selection. We now describe each 
step in greater detail. 

Candidate Identification 
By candidate identification we mean a pass over the 
training corpus (or some other corpus) to collect po-



Figure 3: Corpus Preparation, Feature Ranking, and Model Training 

tential features for the model. The result of this pass 
is a candidate feature set1 denoted F. The candidate 
features are those that we will rank by gain in the next 
step. 

Nate that one or more criteria may be applied to 
decide which features, out of the many exhibited in the 
corpus, are placed into F in the first place. In the 
work reported here, we scanned the parsed colfus to 
collect potential features, both triggers and links. Since 
we were building a model using a trigram prior, we 
had good reason to believe that adjacent wOrds were 
well-modeled by this prior, and so we ignored links or 
triggers of span 2. To keep from being swamped with 
features of no semantic importance, and which arise 
purely because the words involved are common ones, we 
likewise ignored triggers where either word was among 
the 20 most frequent in the corpus. Moreover we did 
not include any trigger pair with an empirical activation 
below 6, nor any link pair with a count below 4. 

In this way we collected a total of 538,998 candi­
date link features (which were all those passing the cri­
teria above) and 1,000,000 candidate trigger features 
(which were those passing the criteria above, and then 
the top 1,000,000 when sorted by mutual information). 
We supplied the resulting candidate set F, containing 
1,538,998 features, to the next stage of the feature se­
lection process. 

Ranking 

In this section we will motivate and develop the central 
feature of this paper, which is the notion of gain. First 
introduced in [2], and further developed in [5], the gain 
is a statistic computed for a given feature j, with re­
spect to a base model, over some fixed corpus. We will 
argue that the gain is the appropriate figure of merit 
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for ranking features. 

Motivation At the heart of the issue lie the following 
two questions. First, how much does a feature f aid us 
in modeling the corpus? Second, to what extent does 
this feature help us to improve upon the base model? 
By giving quantitative answers to these questions, we 
will be led to the gain. 

We begin by establishing some notation. Let P( C) 
stand for the probability of the corpus, according to 
the base model q; that is P(C) = rr;;:,o q(w' I h'). For 
the model developed here, this should more properly 
be written P(T I K), where T represents the collected 
text of the corpus, and K consists of the linkage of each 
sentence of T. However since our meaning is clear, for 
typographic simplicity we will use the shorter notation. 

Now we remind the reader of the connection be­
tween MEMD training and maximum-likelihood estima­
tion. Suppose we construct an exponential model, from 
base model q, that contains one single feature f(w h). 
The form of this model will be 

Pa(w I h)= Z(~ h) q(w I h) eaf(w h) (8) 

where Z(a h) is the usual normalizer, and a is a free 
parameter. For any given value of a, the probabil­
ity PJa( C) of the entire corpus C, as predicted by this 
model, is 

N-1 

PJa(C) = II Pa•(w' I h'). ( 9) 
i=:O 

The MEMD trained value of a, denoted a*, is determined 
as 

a*= argmaxPJa(C). (10) 
a 

That is, the particular a that makes expression (8) the 
MEMD model is precisely the value a* given by (10). 



This fact is demonstrated in [5], along with a proof 
that the maximizing a* is unique. 

Thus the probability of the complete corpus, accord­
ing to the MEMD model p,~, is just Pjo•(C). When the 
identity of the feature is clear 1 we will abbreviate this 
by P,~ (C). 

We proceed to motivate and define the gain. At many 
positions of the corpus, the models q and Pa• will yield 
the same value. But in those positions where they dis­
ag:ree1 we would hope that Pc(•· does a better job 1 in 
the sense that Po•(wi I hi) > q(wi I hi). That is, we 
wish that Pa• distributes more probability mass than 
q on the word that actually appears in corpus position 
i. The extent to which this occurs is a measure of the 
predictive value off, the feature that underlies Po•· 

Of course, we do not want to gauge the value of f 
by a comparison of models on this or that particular 
corpus position. But we can judge the overall value of 
f by comparing P,, (C), the probability of the entire 
corpus according to a model that incorporates both q 
and /, with P(C), the probability of the entire corpus 
according to q alone. 

VVe can quantify the degree of improvement by writ­
ing 

* 1 Po* (C) 1 , 1 
a,(cx ) = N log P(C) = N logP,.(C)- N logP(C). 

(11) 
We refer to G f ( <>*) as the gain of feature f. By the 
rightmost equality above, the gain measures the im­
provement in cross-entropy afforded by f, or more sim­
ply, the information content of f. When it is clear which 
feature we mean, we will write just G( a*) for its gain. 
Likewise we will write Gj when we don't need to dis­
play the exponent. The seemingly ancillary quantity 
a* is in fact of value, since it is an initial estimate of 
the feature's associated exponent, and may be used as 
a starting point in an MEMD training computation that 
includes this and other features. 

Clearly, computing a feature's gain is intimately re­
lated to training an MEMD model containing this single 
feature. But because the model Pcx* involves only one 
feature, substantial computational speedup is possible. 
A fast algorithm for computing the gain appears in [8]. 

The notion of gain extends naturally to a set of fea­
tures M. If PM(C) is the corpus probability according 
to a trained MEMD model built with feature set M, then 
we define GM = (1/N)log(PM(C)/P(C)). 

Comparison with Other Criteria A key advan­
tage of the gain as a figure of merit is that it overcomes 
shortcomings of two competing criteria: the feature's 
empirical activation, and the mutual information of its 
history with its future. There are clear rationales for 
both alternatives, but also clear drawbacks. 

Selecting by empirical activation ensures that we are 
choosing features that could significantly reduce the 
corpus perplexity, for they are active at many corpus 
positions, and hence can often alter the base model 

probability. But there is no guarantee that they change 
the MEMD model much from the base model, since the 
selected features might simply express regularities of 
language that the base model already captures. Of 
course there is no harm in this, but it does not yield 
a better model. 

Likewise, the mutual information criterion could 
choose features that coincide with, rather than depart 
from, the base modeL Moreover this criterion can suffer 
from inaccurate estimates of its constituent probabili­
ties, when the feature is rare. 

The gain remedies these problems. It finds features 
that cause the MEMD model to depart, in a favorable 
way, from the base modeL And if a feature is rarel it is 
ignored, unless it is very valuable in those cases where 
it appears. 

To test this claim, we computed the gain, empiri­
cal activation, and mutual information of the 538,998 
candidate link features that we collected earlier from 
our corpus. We then plotted the gain against empir­
ical activation, and against mutual information; these 
plots appear in Figure 5. It is clear that gain is only 
weakly correlated with these competing statistics. In 
Section Models Trained below, we compare the perplex­
ities of models built by selecting features with these 
three criteria. 
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Final Selection 
Ranking places the features ofF in order, from most to 
least gainful. However, though it is clear that we wish to 
choose features from F in rank order, say retaining the 
top 10,000 or 100,000 features, the ranking algorithm 
does not indicate how many features to select. Thus this 
last step-choosing where in the ranked list to draw the 
line-must be decided by hand by the modeler. 

Since part of our aim was to compare the relative 
value of link and trigger features, we elected to build 
models containing the top T triggers and the top L 
links, for various values of T and L. We also built 
a model in which we simply retained the top 10,000 
features by rank, without regard to their type. 

For illustration, we provide in Table 1 a list of 25 
selected trigger and link features, of the 1,538,998 in F, 
ranked by gain. The table also gives the value of<>* for 
each feature f; this number is reported as eo:~-, since this 
roughly corresponds the probability boost the future of 
each feature receives, when the feature is active. 

Comparison with Feature Induction 
In selection by ranking, we form a set F of candidate 
features, rank them by gain with respect to the base 
model q, and retain some number of top-ranked features 
to build the MEMD model p. We regard this approach 
as eminently reasonable. But there is this danger of 
inefficiency: we may incorporate two or more features 
that capture essentially the same linguistic information. 

As a prophyllaxis against this, some authors [2] have 
advocated feature induction. Feature induction is an 
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Figure 5: Comparison of 2Link Feature Gain with Empirical Activation and Mutual Information. Left: 
Scatterplot of feature gain against empirical activation. Right: Scatterplot of feature gain against mutual 
information. 

iterative algorithm for choosing features; it selects one 
new feature on each iteration. One iteration consists of 
( 1) complete training of an MEMD model using a current 
set of selected features, initially empty, (2) ranking all 
remaining candidates against this just-trained model, 
and (3) removing the single top-ranking feature from 
the candidate set, and adding it to the set of selected 
features. Feature induction terminates after _ip.corpo­
rating some fixed number of features, or wheri'the gain 
of the highest-ranked feature, with respect to the cur­
rent model, drops below some threshold. In' this way, 
if two features f and f' encode essentially the same in­
formation, only one is likely to be incorporated into the 
final model. This is so because after (let us say) fea­
ture f is selected, f' will probably have low gain with 
respect to the model that includes f. 

We will show that at least for syntactic features, the 
feature induction computation is of little benefit. We 
begin our treatment of this issue by developing the 
notion of gain additivity in the next section. In Sec­
tion Empirical Study of Gain Additivity we present re­
sults to support this claim. 

Additivity of the Gain 
A natural question is whether a selected collection of 
features M C F will be as informative as the sum of 
its parts. For instance, suppose the words stocks and 
bonds are both informative as triggers of the word rose. 
We might reasonably doubt that these are really in­
dependent predictors of rose, since stocks and bonds 
themselves tend to occur together. Put another way, 
since the gain is a numerical measure of the value of 
a feature, we are asking if the value of these (or any) 
two features, when both are used in a model, equals the 
sum of the individual value of each. In this section we 
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give a theoretical treatment of this issue, introducing 
the notion of additivity. 

To begin we consider why it might be plausible that 
the gains would add. Consider a set M = {J,, J,} of 
just two features. By equations (8, 9, 11) above and 
the associated discussion we have 

1 Pho;(C) 
Gh = N log P(C) . 

(12) 
Let us write Pfo' for the MEMO model defined by fea­
ture~ j = {fl, h} and exponents&*= {&t, an, yield­
ing a gain 

(13) 

Note that &I, &~ are decidedly not necessarily equal to 
a1 and "'~• as determined by equation pair (12) above. 

Now let us write 

which yields 

G- = G + _!:_ lo lj't.ho;a;(C) (15) 
f h N g Pt.a;(C) 

Here we have written Pf,..(C) out in full as 
Pt.h•;·•; (C), and simplified using the definition of G h. 
Thus the heart of the matter is how well the second 
term on the right hand side is approximated by G h. 
We proceed to give a sufficient condition to ensure that 
the equation G f = G h + G h is exact. 

The key idea we will need for our argument is the 
potential activation vector of a feature f with respect to 
a corpus C, written :jjC (f). In what follows we will relate 



word pair gain e"' active word pair gain e" active 
(mbits) (X 106 (mbits) (X 102 

words)_ wordsd 
( ) 0.708 3.6 931 (s) (/ s) 9.639 10.7 16937 

Mr. Mr. 0.678 1.8 3351 said 4.919 10.4 1561 
Japanese Japanese 0.472 8.1 276 (s) said 2.920 3.8 1969 

his Mr. 0.431 1.7 2501 would 1.112 17.5 290 
Reserve Fed 0.371 18.0 137 dollars cents 0.934 70.6 230 
Motors G. 0.264 9.8 140 yesterday closed 0.261 67.1 39 

Gorbachev Soviet 0.261 15.6 104 rose to 0.226 4.4 121 
Pennzoil 'l'exaco 0.257 47.7 69 rose from 0.197 5.3 84 

Tokyo Japanese 0.211 7.0 136 its unit 0.176 14.2 37 
Exporting OPEC 0.207 46.3 56 allow to 0.164 38.1 36 

Lambert Drexel 0.198 19.4 73 A spokesman 0.145 29.3 36 
currency dollar 0.191 3.9 233 increased percent 0.123 29.6 30 

pTices million 0.160 0.5 484 yield percent 0.091 78.8 17 
auto Ford 0.153 10.6 75 prevent from 0.067 89.3 9 

Eastman Kodak 0.148 163.2 31 pence cents 0.062 221.8 7 
trigger features link features 

Table 1: Selected Trigger and Link Features. These features are ranked according to gain, reported here 
in thousandths of a bit (mbits). The third column, e"'*, represents the approximate boost (or deflation) of 
probability given to the second word of each pair, when the feature is active. The rightmost column lists 
the feature's empirical activation. Note that trigger features are active far more often than link features. 
The units used for column active differ by 104 words. 

(i,C (f) and the gain G. Note that both quantities are 
defined relative to a corpus. For typographic clarity, we 
elide the superscript from ~c, with the understanding 
that our claims hold only when~ and G share the same 
underlying corpus C. 

As above, suppose the corpus C contains N positions, 
numbered 0 through N - 1, with hi the history at po­
sition i. Then we define ¢i(f), the ith component of 
¢(!), by 

{ 
I 

¢i(f) = 0 
if 3w E V such that f(w hi)= 1 
otherwise. 

(16) 
Thus, ¢i (f) is non-zero if and only if feature f does 
or could attain the value 1 at corpus position i. More 
succinctly, ¢i(f) = max.wEv f(w hi); note that ¢i does 
not depend upon the word w~ that actually appears at 
position i. The potential activation vector ~(f) is then 
defined componentwise as anN-element vector, the ith 
component of which is <Pi (f). 

I,emm>J. 1 Let h and j, be binary-valued features. If 
¢(h) ·¢(h)= 0, then 

Ghh = Gh +Gh. (17) 
Proof: The set of corpus positions I= {0 .. . N- 1} 
can be split into three sets 

Ij, {i I ¢;(h)= 1} 

Ij, {i I ¢i(h) = 1} 
Io {i I ¢i(h) = 0 and ¢;(/2) = 0}. 

Since f(h) ·~(h) = 0, these three sets are mutually 
disjoint; by definition they cover I. 
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Observe that G h depends only upon the posi­
tions that appear in I hi likewise G h depends only 
upon Ih· Moreover the maximization of & 1 in 
argmaxa log Phf-Ja 1 a: 2 (C) depends only upon positions 
appearing in Ih, since the log sum splits into indepen­
dent terms just as I splits into Ij,, I~o and Io. Indeed, 
the term that corresponds to Ih is precisely the non­
constant term in the maximization that yields o:f; thus 
cq = o:1. A similar argument holds for &j. A simple 
calculation then yields the desired result. I 

When ~(h)·f(h) = 0, we write hJlj,. If M = {!;} 
is a collection of features, and g is a feature such that 
gJlf; for each f; EM, we write gJlM. Finally, if for 
every f; EM, we have f;Jl(M\{f;}), where the right 
hand side stands for M with f; removed, then we say 
the collection M is ¢-orthogonal. 

Theorem 1 Let M be a ¢-orthogonal collection of fea-
tures. Then 

( 18) 

Proof: By induction on the size of M. I 
Of course, we do not mean to suggest that many prac­

tical feature collections are ¢-orthogonal. And it should 
be clear that since ¢ is defined relative to a particular 
corpus C, it is entirely possible that a collection M that 
is ¢-orthogonal for one corpus may not be for another. 

Tests and Results 
Our experiments were designed to address three issues. 
First, given a training corpus over 20 times larger than 



the Switchboard transcripts used in [3], we were curi­
ous to see how large a model we could feasibly train. 
Second, we wanted to conduct an experimental study 
of the gain as a criterion for feature selection, compared 
to empirical activation and mutual information. Third, 
we wished to investigate the addivity of the gain. To 
answer these questions, we trained a number of models, 
varying the number of features, and the selection cri­
terion, and measuring the resources the training con­
sumed, and the perplexities of the resulting models. 

Models Trained 
We trained a total of fifteen models; in all cases we 
trained on the complete corpus. We performed MEMD 

training using the improved iie1•ative scaling algorithm 
of [5], using the relative change in conditional perplex­
ity, Rt, as a stopping criterion. This quantity is de­
fined as R, = (11't·-1- 11't)/,.t-1, where,., is the condi­
tional perplexity (that is, 11't = P,(T I /C)-lfN, where 
P,(T I /C) is the corpus probability according to our 
model at training iteration t). We required R, < .01 
before stopping. We write 1i'M for the perplexity of the 
final model M. 

Table 2 summarizes our models, the characteristics of 
the training computation, and the model perplexities. 
Column tseg is the time to complete one improved iter­
ative scaling iteration on one segment (!/40th) of the 
complete training corpus on an IBM RS/6000 POW­
ERstation, model 590H. Column mem is the total data 
memory required to process one segment of the corpus. 
The columns for GM, GM and bM are discusseQ./below. 

We draw three conclusions from the perplexitY results 
in this table. First, models constructed only vyith 2link 
features have lower perplexity than those constructed 
only with 2trig features, when we compare models of the 
same size. This is evident in the comparison between 
10k.2trig and 10k.2link, and also between 50k.2trig and 
50k.2link. We believe this reflects the higher additivity 
of 2link gains, a point we discuss further in the next 
section. However, another possible explanation is that 
the training converges faster for 2link features than for 
2trig features. 

Second 1 the best performance is obtained by includ­
ing both feature types. This can be seen by comparing 
among models lOk, 10k.2trig and 10k.2link, and like­
wise among 50k, 50k.2trig and 50k.2link. 

Finally, models selected by gain do better than those 
selected by mutual information or empirical activa­
tion. This is evident from the perplexities of mod­
els lOk, lOk.mi and lOk.eact, and likewise 50k.2link, 
50k.2link.rni and 50k.2link.eact. 

Empirical Study of Gain Additivity 
To investigate the additivity of the gainl we first com­
puted the actual gain of each model M, defined as 

1 PM(C) 
GM = N log P(C) . (19) 

Here PM( C) is the probability of the corpus, as given 
by model M. Note that the gain and the perplexity 
are ~elated by GM = log(11',/11'M), where 11'q is the per­
plexity of the base model. We then compared G M with 
the gain as predicted by summing the individual feature 
gainsl written 

GM"' L Gt. (20) 
/EM 

Table 2 reports both these values, and also their defect 
OM, which is defined as OM = GM- GM. The defect 
measures the extent to which the model fails to realize 
its potential gain. The smaller the defect, the more 
nearly the gains of the underlying features are additive. 

We have argued that the additivity of the gain is 
related to the ¢-orthogonality of the feature set, and 
we believe this is borne out by the figures in the table. 
Trigger features are clearly highly non-additive. This is 
to be expectedl since in any collection of gainful trigger 
features 1 we would expect a large fraction of them to 
be potentially active at any one position. 

By contrast 1 the link features appear to be very 
nearly additive. Moreover 1 the defect OM does not grow 
monotonically with the number of link features in the 
model. It would seem that the stanza of 300,000 lower­
ranked link features are more nearly ¢-orthogonal than 
the 200 1000 higher-ranked ones. This is reasonable 1 

since on balance the lower-ranked features are probably 
less often active 1 hence more likely to act independently 
of one another. 

Summary 
In this paper we have investigated the use of gain as a 
criter.ion for selecting features for MEMD language mod­
els. We showed how the gain of a feature arises natu­
rally from consideration of the feature's predictive value 
in an MEMD model, compared to the predictions made 
by the base model. We argued that the gain is the 
prefered figure of merit for feature selection, since it 
identifies features that improve upon the base model. 
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We then applied this statistic to the problem of se­
lecting features for a dependency grammar language 
model. We showed that when comparing models con­
structed from the same number of features 1 using gain 
as the figure of merit yields models of lower perplexity 
than either empirical activation of mutual information. 
Moreover 1 among models built exclusively from either 
trigger or link features, but having the same number 
of features, those built exclusively from links had lower 
perplexity. However l we achieved the lowest perplex­
ity when we picked the most gainful features without 
regard to their type. 

Finally1 we showed that sets of link features have very 
low gain defect; this is defined as the gap between the 
set's true and predicted perplexity gains, where the pre­
diction is the sum of individual feature gains. Thus the 
computationally expensive feature induction procedure 
appears dispensable 1 at least for link features. 



model name 
M 

I baseline ( q) 
lOk 
lOk.mi 
lOk.eact 
10k.2trig 
10k.2link 

50k 
50k.2trig 
50k.2link 
50k.2link.mi 
50k.2link.eact 

lOOk 
100k.2link 
150k.2link 
200k.2link 
500k.2link 

.5 20 

.3 19 
1.6 23 

.8 20 

.4 18 

2.4 37 
2.6 38 

.9 21 

.8 21 

.9 21 

4.2 64 
1.2 25 
1.4 28 
1.6 32 
3.8 53 

22.769 
24.195 
25.860 
24.483 
23.835 

21.647 
23.706 
23.114 
23.379 
23.324 

21.212 
22.805 
22.607 
22.507 
22.232 

actual, predicted gain 
GM (bits) GM (bits) 

.233196 .558733 

.145558 .159312 

.049545 .143026 

.128487 .454672 

.167206 .202876 

.306100 1.140826 

.175015 1.007069 

.211472 .256284 

.195054 .213165 

.198452 .208937 

.335386 1.524190 

.230900 .278472 

.243499 .291138 

.249903 .299675 

.267657 .316176 

.325537 

.013754 

.093481 

.326185 

.035670 

.834726 
.832054 
.044812 
.018111 
.010485 

1.188804 
.047572 
.047639 
.049772 
.048519 

Table 2: Model Features, Training Characteristics, Perplexities, Gains. Models are named by the following 
convention. The first part of the name gives the number of features; the letter k denotes a factor of 1 ,000. 
Thus 10k is a model built of the 10,000 highest-ranking features of the candidate set F. The notation 2trig 
or 2link means that we used only trigger or link features respectively. Thus 1 Ok.2link is built of the 10,000 
highest-ranking 2link features of F. Additional letters identify the figure of merit used for the ranking: eact 
stands for empirical activation, mi stands for mutual information. If neither appears, the figure of merit 
was the gain. 

We hasten to point out that our results concern per­
plexity only. It remains to be seen if these conclusions 
carry over to word error rate, in a suitable speech recog­
nition experiment. 
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