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FOREWORD

The Third Conference on Empirical Methods in Natural Language Processing offers a
general forum for novel research in corpus-based and statistical natural language processing.
This year, EMNLP is held in conjunction with the First International Language Resources
and Evaluation Conference in Granada, Spain, which is concerned with existing and
required resource development to support language processing work in an increasingly multi-
lingual setting. Indeed, the development of natural language applications that handle multi-
lingual information is the next major challenge facing the field of computational linguistics.

Given this context, this year’'s EMNLP conference is focused on work that describes and
evaluates the strengths, weaknesses, and recent advances in corpus-based NLP as applied
to multi-lingual applications. In particular, many of the papers in this volume consider
questions such as the following: how well do techniques for lexical tagging, parsing,
anaphora resolution, etc., handle the specific problems of multi-lingual applications? What
new methods have been developed to address the deficiencies of existing algorithms for
these tasks or to address problems specific to handling multi-lingual applications? What
probiems still lack an adequate empirical solution” Conversely, how can data-driven NLP
methods be improved with the help of multi-lingual data?

It is appropriate that this is the first EMNLP conference to be held outside the U.5. We are
very encouraged to see the participation of so many researchers from Europe and Asia, which
will result, we hope, in greater communication and collaboration across the international
NLP community.

Many people are owed thanks for their contributions to setting up this conference. In
particular, Atro Voutilainen, EMNLP3 co-chair, and David Yarowksy, SIGDAT chair,
provided continual and indispensable help and support throughout. The EMNLP3 Program
Committee enabled us to work within a very brief time frame, by quickly turning around
all the reviews for the substantial number of submissions to the conference. Finally, the
LREC conference organization committee at the University of Granada, the LREC program
organizers at the Istituto di Linguistica Computazionale in Pisa, and the Department of
Computer Science at Vassar College provided administrative and organizational support.
All of them are responsible for the success of EMNLP3,

Nancy Ide, EMNLP3 Chair
Poughkeepsie, New York
May, 19898
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Dynamic Coreference-Based Summarization

Breck Baldwin
Institute for Research
in Cognitive Science

Thomas S. Morton

Department of Computer

and Information Science

University of Pennsylvania University of Pennsylvania
{breck,tsmorton}@iinc.cis. . upenn.edu

Introduction

We have developed a query-sensitive text sunumariza-
djont technology well suited for the task of determining
whether a document is relevant to a query. Enough
of the document is displayed for the user to determine
whether the document should be read in its entirvety.
Lvaluations indicate that summaries are classified for
relevance nearly as well ag full documents. This ap-
proach is based on the concept that a good symmary
will represent each of the topics in the query and is
realized by selecting sentences from the document un-
til all thwe phrases in the gquery which are represented
in the summary are ‘covered.” A phrase in the docu-
ment s considered to cover & phrage in the qugzl'fk if it is
coreferent with it. This approach maximizes the space
of entities retained in the swmnmary with minimal re-
dundancy. The software is built upon the CAMP NLP
system [2].

Problem Statement

Given the relative immaturity of summarization tech-
nologies and thelr evaluation, it {s worthwhile to de-
seribe our approach in detail and the problems it is
intended to solve. An important aspect of our tech-
nique is that we produce senfence extraction summaries
which are constructed by selecting sentences from the
source document. In addition, our swmmaries are fo-
cused on providing relevant information about a query.
We {eel that the current state-of-the-art techniques are
better equipped $o produce high quality query-sensitive
summaries than generic summaries. Our goal is to pro-
duce ‘indicative’ summaries [4] which allow a user to
determine whether the document is relevant to his or
Lier query. The summary is not intended to replace the
dacnment or provide answers to questions divectly but
may have this effect.

Casting our technology in terms of a product, we sec
the application as an intermediate step between view-

ing entire documents and the output of an information
retrieval engine. Instead of looking at either headlines
or an entire document, the user would look at the sum-
maries of the documents and then decide whether the
document merited further reading,

Approach

We conducted a simple experiment with summaries pro-
duced in the TIPSTER summarization dry run [6]. For
5 queries with 200 documents each, we took the set
of summaries produced by the 6 dry-run participants
and retained only those sunumaries that were frue-
positives, i.e., the summary was judged ‘relevant’ and
the full docwinent was judged ‘relevant’. Gwer all the
gueries, at least one of the six systems produced a true-
positive summary for 96.6% of the documents, although
no individual system performed nearly at that level.
This meant that some existing technology produced a
correct summary for almost every relevant document.
Hence we viewed the problem as one of bajancing the
capabilities of our system to behave like the amalga-
mated system implicit in joined output. Based on this
result we are confident that this class of summariza-
tion is tractable with current techinejogies and this has
strongly motivated our design decisions.

Upon  encountering a query like “Reporting
on possibility of and search for extra-terrestrial
life/intelligence.”, we assume that the user has defined
a class of actions, ideas, and/or entities that he or she
is interested in. The job of an information retrieval
engine ig to find instantiations of those classes in text
documents in some database. We view summarization
as an additional step in this process where we attempt
to present the user with the smallest collection of
sentences in the docwment that instantlate the user
specified classes and do not mistead the user about
the overall content of the document. By doing so, we
can greatly shorten the amount of the document that



the user must read in order to determine whether the
document, is relevant for the user’s needs.

Just as information retrieval algorithms approxi-
mate document relatedness by examining various string
matchings between the query and the text, we approx-
imate certain classes of coreference hetween the query
and the text by examining linguistic information. These
coreference relations include identity of reference and
part-whole relations for nominal and verbal phrases.!
This moves us a step closer to reasoning at a more
appropriate level of generalization, for summarization,
which is still technologically feasible. Below are exam-
ples indicating the classes of relatedness that we are
trying to capture,

The identity relation between the query
and the document

Noun phrase coreference is the best understood class
of reiations that we compute. For example, there is
corveference between Tederal Imergency Management
Apency’ in the query and the acronym ‘FEMA in the
r{()('lllll(‘.l)f. l.)(“.l(’)\’\"'.

Query: What 15 the main function of the Fed-
eral Emergency Management Agency and the
funding level provided to meet emergencies?
Documnent: . FEMA agrees that “fine-tuning” is
needed to the 1974 act establishing a coordinated
federal program to prepare for and respond to hur-
ricanes, tornadoes, storms and floods. ...

Stnree these noun phrases refer to the same entity in the
world, sentences that mention the organization would
be particularly valuable in a summary. This class of
coreference can include people, companies and objects
such as automobiles or aluminum siding. It need not
be vestricted to proper nouns as it is possible to refer
to an entity using common nouns, i.e. ‘the agency’ and
pronouns.

Identity also holds between events mentioned in the
query and document. Sometimes the event, that a query
desceribes is the best indicator of what document should
be retyieved, and correspondingly what sentences are
appropriate for a summary, Consider the following:

Cuery: A velevant document will provide new the-
ories about. the 1960°'s assassination of Presi-
dent Kennedy.

Pocument: ... The House Assassinations Commit-

tee concluded in 1978 that Kennedy was “prob-

ably” assassinated as the result of a conspiracy

't is not clear whether more sophisticated annotations
are appropriate for information retrieval, and perhaps more
to the poing, it is not clear that there are sufficient resources
to process 2 GB collections of data.

involving a second gunman, a finding that broke
from the Warren Commission’s belief that Lee Har-
vey Oswald acted alone in Dallas on Nov. 22, 1963,

The noun phrase ‘the 1960’s assassination’ refers to an
event, which is the same as the one referred to in the
document with the verb ‘assagsinated’. Note also that
there is coreference between 'President Kennedy’ and
‘Kennedy’ i the document.

The part-whole relation between the query
and the document
In addition to the identity relation, phrases in a text
which refer to parts of an entity or concept mentionad
in the guery will likely provide useful information, and
therefore should be included in a summary. Finding
these relations in in general is beyond the scope of
this paper, however, our approximation of & subclass of
these relations proved helpful for a number of queries.
A strorg example of the part-whole relation oc-
curs when a couniry is mentioned in the query and a
province or city within that country is mentioned in the
document. For exampie:

Query: Document will discuss efforts by the hlack
majority in South Africa to overthrow domina-
tion by the white minority government.

Document: About 90 soldiers have been arrested
and {face possible death sentences stemming from a
coup attempt in Bophuthatswana, ... Rebel sol-
diers staged the takeover Did Wednesday, detain-
ing homeland President Lucas Mangope.

Bophuthatswana is inside South Africa, and sentences
that mention it are clearly good candidates for inclusion
in a swnmary.

We also consider part-whole relations between events
as in the relation hetween ‘overthrow’ and ‘staged’ and
‘detained’. Those events are sub-parts of overthrow
events, and as such, sentences that contain sub-parts
of the events are reasonable candidates for inclusion in
summaries.

Implementation
The summarization techaigque was developed within the
CAMP NLP framework. This system provides an in-
tegrated environment in which to access many levels
of linguistic information as well as world knowledge.
Its main components include: named entity recogni-
tion, tokenization, sentence detection, part-of-speech
tagging, morphological analysis, parsing, argument de-
tection, and coreference reschition. Many of the tech-
niques used for these tasks perform at or near the



state of the art and are described in more depth in
112, 9,8, 7,5, 1, 2]. The system produces coreference
annotated docwmnents which serve as the input to the
summarization algorithm.

Relating the query to the document

The relatlonships discussed previonsly are approxi-
mated via a series of associations between tokens in the
query, headline, and the body of the document. Event
references are captured by associating verbs or nominal-
izations in the query with verbs and nominalizations in
the documnent.

Given three verbal forms vy in the query, ve in the
document, and vy in the set of all verbal forms, where
a verbal form is the morphological root of a verh or
the verl root corresponding to a nominalization, vy is
associated with vg if at least one of the following criteria
are met:

{or # v} Aplo, w)/(ple)plea}) 2 5

2. (v = va) A (Fug # vy | ploy, ) /plv)plus) > 5)
{
(

va) A {(subject{n) =
abject{vr) = object{)))

Py o=

subject(vy)) v

Here pluy) 1s the probability that v; cccurs i a docu-
ment and plu;, v;) is the probability that v; and U5 oceur
i the same document. These probabilities are based on
[requencies gathered from approximately 45,000 Wall
Street Journal articles. Criterion 1 is a measure of mu-
tual information between two verbs. Criterion 2 is used
to rute out frequently occurring verbs such as “be” and
“make”. Criterion 3 allows for verbs which are ruled cut,
by criterion 2 to be associated wlhen additional context
is available. This is Important since some queries only
contain verbal forms which arve ruled out by criterion 2.

Relationships between proper nouns are made on the
basis of string matches, acronym matching, and dictio-
nary lookup. Acronyms are determined either through
a table lookup or an appositive construction occurring
i the document which designates the acronym for a
specific proper neun. A proper noun in the guery is
considered assoclated with a proper noun in the docu-
ment if it matches the string or acronym of the proper
noun in the document or it appears in the definition
of the proper noun in the document. A reverse dictio-
nary lookup often allows cities to be associated with the
country they are in.

A token in the query which is a lowercase noun or
adjective is associated with any token in the docu-
ment which matches its morphological root and part
ol speech.

Tokens which occur in the headline are associated
with tokens in the document body using the same cri-
teria as the query, with the exclusion of the dictionary

lookup. The dictionary lookup was excluded becaunse
the headline will ikely use the same lexicalization of &
proper noun as that used in a document. This is less
likely to be the case with the query.

Selecting a sentence

The associations discussed in the previous section are
used to rank and select sentences from the document.
Every token in the documnent which is associated with
the same token in the query or headline is considered
to be in the same coreference chain. A sentence which
contains any token in a given coreference chain is said
to cover that chain.

The following scores are computed for each sentence
in the document:

1. The number of coreference chains from the query
which are covered by the sentence and haven’t been
covered by a previcusly sclected sentence.

2. The number of noun coreference chains from the
query which are covered by the sentence and the mun-
ber of verbal terms in the sentence which are chained
to the query.

3. The number of coreference chains from the headline
which are covered by the sentence and haven’t been
covered by a previously selected sentence.

4. The number of noun coreference chaing from the
headline which are covered by the sentence and the
namber of verbal terms in the sentence which are
chained to the headline.

5. The number of coreference chains which are covered
by the sentence and haven’t been covered by a previ-
ously selected sentence.

6. The number of noun coreference chains which are cov-
ered by the sentence.

7. The index of the sentence in the document; sentences
are sequentially numbered.

The sentences are sorted based on the above scores,
where the ith scoring criteria is only considered in case
of a tie for all criteria less than 4. Scores 1-6 are ranked
in descending order while score 7 is ranked in ascending
order. The top-ranked sentence Is selected, and scores
1, 3, and 5 are recomputed in order to select the next
sentence. Selection halts when all coreference chaing in
the query have been covered and the summary containg
at least 4 sentences.

Scores 1 and 2 are used to select sentences which are
related to the query. Scores 3 and 4 are motivated by
documents which have 1 or 2 sentences which appear



related to the query but if presented alone would give
a false impression of the true content of the document.
Thus sentences related to the headline are presented to
provide additional background. Consider the following
example:

Query: What evidence is there of paramilitary ac-
tivity in the U.8.7

Summary: ... Last month the extremists used
racket-propelled grenades for the fivst time in three
attacks on police and paramilitary units. ...

This sentence was selecied because it contains tokens
which are in coreference chains with tokens in the query;
however, alone it is potentially misleading because the
place of the attack is not mentioned. This ambigaity is
resolved when the following sentence is selected because
it. is well associated with the headline.

Summary: .. .Sikh militants may have acquired
one or two U.S.-made Stinger anti-aircraft missiles
and hidden them inside the Golden Temple, the
Sikh faith’s holiest shrine, Punjab police officials
said Saturday....

This provides enough background information for the
reader to realize that the para-military activity is not
taking place in the U.S. and thus that the document is
irrelevant to the query.

Likewise, scores § and 6 act similarly to 3 and 4 for
documents which do not contain a headiine. We found
this particularly important for advertisements which of-
ten don’t state a product or company name in the be-
pinning of the document, but will repeat these names
numerouns times throughout the document.

Generating the summary

Ouce sentences have been selected, they are presented
in the order they occurred in the document. Pro-
nouns which do not have a referent in the previous sen-
tence of the summary arve filled with s more descriptive
string whenever a referent can be determined. If space
is of concern, prepositional plhirases attached o nouns
(which are not nominalizations), appositives, conjoined
noun plirases and relative clauses are removed, provided
they contain no tokens associated with the query or the
headline. Since determining pronoun referents and the
selection of clauses for removal are subject to errors,
filled pronouns are placed in square brackets and re-
moved clauses are replaced with an ellipsis to indicate
to the reader that the original text has been modified.

Example summary

An example smirmary which demonstrates many of the
features of our system appears below. It has been con-

strained to be approximately 10% of the original docu-
ment length, so it is not representative of the summaries
used in the evaluation, but it contains examples of the
of both pronoun filling and clause deletion.

The last sentence in the summary was selected first
because the tokens “death” “sentence”, “kill”, and
“term” were agsociated with the nominalization “pun-
ishment”. The stranded pronoun “it” has also been
filled. Sentence 2 was selected next because of the
match-up between the verb “is” and the object “deter-
rent” in the document and the query. Finally, the first
gentence was chosen because there is another mention
of the prison name “Marion” in the document. This
summary differs from the one generated when the 10%
length constraint is not imposed, because some higher
ranked sentences were passed over since their inclusion
would have exceeded the length restriction,

Guery: Is there data available to suggest that cap-
ital punishment is a deterrent to crime?

Summary:  “Marion is bhasically the end of the
line,” Bogdan said.

... There is no deterrent ...
ing this again.
Additionally, [the pending Senate hill] would cre-
ate five new death penalty offenses; murder by a
federal inmate serving a life sentence; drug king-
pins in a continuing crirminal enterprise even if no
murders oceur; drug kingpins who try to kill to ob-
struct justice; drug felons who unintentionally kill
with aggravated recklessness; and people who kill
with a firearm during a violent ... erime,

to keep them from do-

Evaluation

In order to evaluate our sunumarization algorithm, we
selected 10 unseen gueries from the Text REtrieval Con-
ference {TREC) document collection. Summaries were
generated for 200 documents, 20 per query, and asses-
sors? were asked to make relevance judgments based on
the summaries. A document was considered relevant if
it contained the information reguested in the query or if
the agsessor believed that the full document would likely
contain this information. The relevance judgments were
then compared to those made by the TREC assessors
using the full document. This comparison places a swn-
mary in one of the following categories:

o a = judpged relevant, full document is relevant

s b

i

judged relevant, full document is irrelevant
e ¢ = judged nrelevant, full document is relevant

*Each author served as an assessor making judgments for
100 documents across 10 querics,



o « = judged irrelevant, full document is irrelevant

Precision, recall, and aceuracy are then computed as
follows:

precision = af{a-+b)
recall = af{a-tc)
accuracy = (a+d)/ (a-+htctd)

Compression is computed over the number of non-
whitespace characters in the summary and the original
document. Heve compression is defined as the percent-
age of the document that was not included in the sum-
1ALY:

{lenghgocument —dengthsumary }
lengthgocument

The results from our experiment are shown in the fol-

lowing table:

COom ])l‘(‘,SSiOll ==

| Precision 82.8% 101/(101+21)
| Recall % 101/(101+29)
[ “Compression | 82.8% | (704686-121272) /704686
L Aceuracy 75.0% (1014-49) /200

A second evaluation on 910 decuments was performed
for [4]. These results superficially appear significantly
worse than those from the initial evaluation however a
wmore carelul analysis {provided in the discussion sec-
tion) shows that they are in fact similar to the resules
of the previous evaluation.

Precision 80.3% | 322/(322+79)
Recall 57.6% | 322/(322-4-237)
__g}f}m pression | 83.0%
Accuracy G5.3% | (322--272)/910
Discussion

Woe view the results of the first evalustion as promising
in that they compare favorably with inter-assessor con-
sistency wsing the engire document. {11] reports unani-
mous relevance judgments by three assessors for 71.7%
ol the documents. Interpolating this figure to two as-
sessors yields an 80.1% agreement figure. Using sum-
uaries which on average are only 17.2% of the original
docwment, our assessors maiched the TREC assessors
{or 76.0% of the docwments.

The second evaluation yielded a much lower recall
figure while precision remained comparable. This, how-
ever.is also the case when the same assessors judgments
on ithe full documents are compared to those of the

TREC assessors. These results ave as follows:

" Precision 83.5% | 167/{(167+33)
Recall 63.5% | 167/{167+96)
Compression | 100.0%

Accuracy 69.3% | (167+124)/420

We view these results as favorable as well since our ac-
chracy is 65.3% using 17.0% of the document. on average

compared to 69.3% accuracy using the entire document.
The discrepancy between the two evaluations appears
to be based on the assessors in the second evaluation
using a stricter criteria for relevance than that used by
the previous evaluation’s assessors or the TREC asses-
SOrS.

It wag noted after the fivst evaluation that different
criteria for relevance accounted for some of the disagree-
ment between our assessors and the TREC assessors.
Many documents considered relevant were marked as ir-
relevant due to different notions of relevance and not be-
cause the summary failed Lo provide material on which
t0 base a correct decision. These difficulties only hin-
der the evalvation of a summary system and not its use
in an application, since a user will have a clear idea of
lis or her intentions when detenmining a document’s
relevance.

As we mentioned previously, our approach has been
to balance methods of relating the query to sentences
in the document. The nearly 100% recall of the dry-run
summaries encouraged us, and we even used the output
of those summaries to provide a test-bed for evaluating
our summaries. Although we never actively sought to
emulate aspects of other systems divectly, owr final algo-
rithim does share some basic ideas and approaches from
those systems. Some of the siimilarities are Hsted below:

In [3], they eliminate redundant information from
summaries by classifying sentences according to Max-
imal Marginal Relevance (MMR)., MMR ranks text
chudnks according to their dissimilarity to one another.
Suminaries can then be produced with sentences that
are maximally dissimilar, thereby increasing the likeli-
hood that distinguishing information will be in the sum-
mary. One can view our coverage requirement for terms
in the query as an attempt to pick dissimilar sentences
from the document. Instead of MMR, we use the fact
that a sentence which does not confain redundantly re-
ferving phrases to the query 1s more highly ranked than
a sentence that does.

Our individual sentence scoring algorithm shares
some properties with [10].  Their approach includes
scores for anaphoric density, string equivalence with the
title or headline of a document,, and position of the sen-
tence in the document. However, we do nol take ad-
vantage of overt cues for summary sentences, such as
‘in summary’ or ‘in conclusion’, nor do we use tempo-
ral information in generating a swmmmary.

Like many systems, we do a form of word expan-
sion in attempiing to relate the guery to the document.
However, the fact that we restrict expansion to proper
nouns and verbs and their nominalizations is notable.
We found this limited set of expansions restricts the re-
lations between the text and the query well and also fits



within the framework of part-whole relations n coref
crence.  We did not consider part-whole relations for
common ncuns, because in practice we have net had
very good results Hmiting over-generation i that do-
M.

Conclusions and Future Work

We have developed and tested a query-sensitive text
summarization system that is nearly as effective as full
text documents for determining whether a document is
velevant to the query. The system uses a limited class of
coreference-based relations between the query and the
document to select sentences which represent instanti-
ations of entities, events, or concepts articulated in the
query, The algorithm is implemented within the CAMP
NLP system and utilizes linguistic generalizations like
part-of-speech, parsing and predicate~-argument strue-
e,

An issue in evaluating our system is that the input
data has been selected by an information retrieval en-
pine. Asg such, we have no data on how well our sum-
maries would work on relevant documents that the in-
formation retrieval engine fails to retrieve. These en-
gines tend to select documents based on string matching
ad we have shown that owr summarization technology
does an excellent job of summarizing them. However,
the information retrieval engine may be acting as an ad-
vautageous filter on the space of documents. I wouald
be interesting to do experiments on relevant documents
rhat contain very few string mafches with the query.

I the future we hope to improve the accuracy of the
corclerence relations. Specifically, we will focus on the
recognition of events which we believe are very impor-
tant Lo a large class of queries.
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Abstract

Most traditional approaches to anaphora resolution
rely heavily on linguistic and domain knowledge. One
of the disadvantages of developing a knowledge-based
system, however, is that it is a very jabour-intensive
and time-consuming task. This paper presents a ro-
bust, knowledge-poor approach (o resolving pronouns
in technical manuals. This approach is a modification
of the practical approach (Mitkov 1998a) and operates
on texts pre-processed by a part-of-speech tagger, In-
put is checked against agreement and a nurhber of an-
tecedent indicators, Candidates are assighied scores by
each indicator and the candidate with the highest ag-
gregate score is returned as the antecedent. We pro-
pose this approach as a platform for multilingual pro-
noun resolution. The robust approach was initially de-
veloped and tested for English, but we have also
adapted and tested it for Polish and Arabic. For both
languages, we found that adaptation required mini-
mum modification and that further, even if used un-
modified, the approach delivers acceptable success
rates. Preliminary evaluation reports high success rates
in the range of and over 90%

1, Introduction: robust, knowledge poor
anaphora resolution and multilingeat NLP

For the most part, anaphora resolution has focused on
iraditional linguistic methods (Carbonell & Brown
1988; Carter 1987; Hobbs 1978; Ingria & Stallard
1989; Lappin & McCord 1990; Lappin & Leass
1994; Mitkov 1994; Rich & LuperFoy 1988; Sidner
1979; Webber 1979). However, to represent and
manipulate the various types of linguistic and domain

knowledge involved requires considerable human
input and computational expense.

While various aiternatives have been proposed,
making use of e.g. neural networks, a sitvation se-
mantics framework, or the principies of reasoning

. with uncertainty {e.g. Connoly et al, 1994; Mitkov

1995; Tin & Akman 1993), there is still a strong need
for the development of robust and effective strategies
to meet the demands of practical NLP systems, and
to enhance further the automatic processing of
growing language resources.

Several proposals have already addressed the
anaphora resolution problem by deliberately limiting
thiz extent to which they rely on domain and/or lin-
guistic knowledge (Baldwin 1997; Dagan & Itai
1990; Kennedy & Boguragv 1996; Mitkov 1998,
Nasukawa 1994, Williams et al. 1996). Our work is a
continuation of these latest trends in the search for
inexpensive, rapid and reliable procedures for anaph-
ora resolution. It shows how pronouns in a specific
genre can be resolved quite successfully without any
sophisticated linguistic knowledge or even without
parsintg, benefiting instead from corpus-based NLP
techniques such as sentence spiitting and part-of-
speech tagging.

On the other hand, none of the projects reported so
far, has looked at the multilingual aspects of the
approaches that have been developed, or, in particu-
lar, how a specific approach could be used or adapted
for other languages. Furthermore, in addition to the
monolingual orientation of all approaches so far
developed, mest of the work has concentrated on
pronoun resolution in one language alone {(English).



While anaphora resolution projects have been re-
ported for French (Popescu-Belis & Robba 1997,
Rolbert 1989), German (Dunker & Umbach 1993,
Fischer et al, 1996; Leass & Schwall 1991; Stuckardt
1996; Stuckardt 1997), Japanese (Mori et al. 1997,
Nakaiwa & lkehara 1992; Nakaiwa & Ikehara 1995;
Nakaiwa et al. 1995; Nakaiwa et al. 1996; Wakao
1994}, Portuguese (Abragos & Lopes 1994), Swedigh
(Fraurud, 1988) and Turkish (Tin & Akman, 1994),
the research on languages other than English consti-
tutes only a small part of ail the work in this field.

In contrast to previous work in the field, our proj-
ect has a truly multilingual character. We have de-
veloped a knowledge-poor, robust approach which
we propose as a platform for multilingual proncun
resolution in technical manuals. The approach was
initially developed and tested for English, but we
have also adapted and tested it for Polish and Arabic.
We found that the approach could be adapted with
minimum modifications for both languages and fur-
ther, even if used without any modification, it deliv-
ers acceptable success rates. Evaluation shows a
success rate of 89.7% for English, 93.3% for Polish
and 95.2% for Arabic.'

2. The approach: general overview

With a view to avoiding complex syntactic, semantic
and discourse analysis, we developed a robust,
knowledge-poor approach to pronoun resolution
which does not make use of parsing, syntactic and
semantic constraints or any other form of linguistic
or non-linguistic knowledge. Instead, we rely on the
efficiency of sentence segmentation, part-of-speech
tagging, noun phrase identification and the high per-
formance of the antecedent indicators (knowledge is
limited to a small noun phrase grammar, a list of
terms, a list of (indicating) verbs, a list of genre-
specific synonyms, and a set of antecedent indica-
tors),

The core of the approach lies in activating a list of
multilingual® "antecedent indicators" after filtering
candidates (from the current and two preceding sen-
tences) on the basis of gender and number agreement.
Before that, the text is pre-processed by a sentence
splitter which determines the sentence boundaries, a
part-of-speech tagger which identifies the parts of the
speech and a simple phrasal grammar which detects
the noun phrases (In addition, in the case of complex

'Given that the evaluation of the English version was more
extensive, the figures for English are expected to be statis-
tically more representative.

*We term the antecedent indicators “multilingual" because
they work well not only for English, but also for other
languages (in this case Arabic and Polish).

sentences, heuristic "clause identification™ rules track
the clause bourdaries). Non-anaphoric occurrences
of "it" in constructions such as "It is important", "It is
necessary” etc,, are elitinated by a "referential fil-
ter”,

After passing the "agreement filter", the genre-
specific antecedent indicators are applied to the re-
maining candidates (see section 2.2). The noun
phrase with the highest aggregate score is proposed
as antecedent; in the rare event of a tie, priority is
given to the candidate with the higher score for im-
mediate reference. If immediate reference has not
been identified, then priority is given to the candidate
with the best collocation pattern score. If this does
not help, the candidate with the higher score for indi-
cating verbs is preferred. If stiij no choice is possible,
the most recent from the remaining candidates is
selected as the antecedent.

2.1 Agreement filter

The detected noun phrases (from the sentence where
the anaphor is situated and the two preceding sen-
tences, if available) are passed on to a gender and
number agreement test. In English, however, there
are certain coliective pouns which do not agree in
number with their antecedents {e.g. "government”,
“team", “parliament” etc. can be referred to by
"they"; equally some plural nouns such as "data" can
be referred to by "it") and are exempted from the
agreement test, For this purpose we have drawn up a
comprehensive list of all such cases; to our knowl-
edge, no other computational treatment of pronomi-
nal anaphora resolution has addressed the problem of
"agreement exceptions”.

The gender and number agreement of an anaphor
and is antecedent in Polish is compulsory. Polish
gender distinctions are much more diverse than in
English (e.g. feminine and masculine do not apply to
a restricted number of nouns). Moreover, one pro-
nominal form can potentially refer to nouns of differ-
ent gender. For instance, the singular genitive form
"jego” can equally well refer to either masculine or
neuter nouns. In addition, certain pronouns such as
the accusative form “je” can refer to either singular
neuater or plural feminine nouns. Finally, uniike Eng-
Hsh, zero anaphors (in subject position) are typical in
Polish in declarative sentences.

Agreement rules in Arabic are different. For in-
stance, a set of non-human items {(animals, plants,
objects) is referred to by a singular feminine pro-
noun. Since Arabic is an agglutinative language, the
pronouns may appeat as suffixes of verbs, nouns (e.g.
in the case of possessive pronouns) and prepositions.
In particular, in the genre of technical manuals there
are five "agglutinative” pronouns. The pronoun "ho"
is used to refer to singular masculine persons and



objects, while "ha" refers to singular feminine ones.
There are three plural anaphoric pronouns: "homa”
which refers to a dual number {(a set of two elements)
of both masculine and feminine nouns, "hom" which
refers to a plural number (a set of more than two
clements) of masculine nouns and "honna" which
refers to a plural number of feminine

2.2 Antecedent indicators

Antecedent indicators (preferences) play a decisive
role in tracking down the antecedent from a set of
possible candidates. Candidales could be given pref-
erenlial treatment, or not, from the peint of view of
each indicator and assigned a score (-1, 0, 1 or 2)
accordingly; the candidate with the highest aggregate
score is proposed as the antecedent. The antecedent
indicators have been identified on the basis of em-
pirical studies of numerous hand-annotated technical
manuals (referential links had been marked by human
experts). These indicators can be related to salience
(definiteness, givenness, indicating verbs, indicating
noun phrases, lexical reiteration, section heading
preference, "non-prepositional” noun phrases, rela-
tive pronoun), to structural matches (collocation,
immediate reference, sequential instructions), to
referential distance or to preference of terms. Whilst
some of the indicators are more genre-specific {term
preference) and others are less genre-specific (“im-
mediate reference”, "sequential instructions” and to a
much lesser extent “indicating noun phrases"), the
majority of them appear to be genre-independent. In
the following we shall outline the indicatogs used and
shalf illusirate some of them by examples (the indi-
cators are used in the same way for English, Polish
and Arabic unless otherwise specified).

Definiteness

Definite noun phrases in previous sentences are more
likely antecedents of pronominal anaphors than in-
definite ones (definite noun phrases score 0 and in-
definite ones are penalised by -1). In English we
regard a noun phrase as definite if the head noun is
modified by a definite article, or by demonstrative or
possessive pronouns. This rule is ignored if there are
no definite articles, possessive or demonstrative pro-
nouns in the paragraph (this exception is taken into
account because some Eaglish user’s guides tend to
omit articles).

Since in Polish there are no definite articles,
definiteness is signalled by word order, demonstra-
tive pronouns or repetition,

In Arabic, definiteness occurs in a richer variety of
forms {Galaini 1992), In addition to the definiteness
triggered by the definite article "al" (the), demonstra-

tive and possessive pronouns, a noun phrase in Ara-
bic is also regarded as definite if it is followed by a
definite noun/noun phrase®. For example, the noun
phrase “kitabu al-rajuli” {Jit. book the man) which
means "the book of the man”, is considered definite
since the non-definite noun “"kitabu" (book) is fol-
fowed by the definite noun "al-rajoli" (the man). This
form of definiteness is called in Arabic "Al-ta'rif bi-
al-idhafa" (definiteness by addition).

Givenness

Noun phrases in previous sentences representing the
"given information” (theme)’ are deemed good can-
didates for antecedents and score 1 (candidates not
representing the theme score Q). In a coherent text
(Firbas 1992), the given or known information, or
theme, usually appears first, and thus forms a co-
referential link with the preceding text. The new
information, or theme, provides some information

Indicating verbs

If a verb is a member of the Verb_set = {discuss,
present, illustrate, identify, summarise, examine,
describe, define, show, check, develop, review, re-
port, outline, consider, investigate, explove, assess,
analyse, synthesise, study, survey, deal, cover}, we

.consider the first NP following i{ as the preferred

antecedent (scores 1 and 0). Empirical evidence sug-
gests that because of the salience of the noun phrases
which follow them, the verbs listed above are par-
ticularly good indicators.

The Verb_set in Polish contains the Polish equiva-
lents of the above verbs and their synonyms,

Indicating noun phrases

If the head of the NP preceding the verb is the noun
“chapter”, “"seclion”, "table” then consider the NP
following the verb as the preferred antecedent (scores
1 and 0)

The last two preferences can be illustrated by the
example:

This table shows a minimat configuration;. it; does not
leave much room for additional applications or other
sofiware for which you may require additional swap
space.

*There are other forms of definitencss in Arabic which we
shall not discuss in this paper since they are not typical of
technical manuals,

*We use the simple heuristics that the given information is
the first noun phrase in a non-imperative sentence.



Lexical reiteration

Lexically reiterated items are likely candidates for
antecedent (a NP scores 2 if is repeated within the
same paragraph twice or more, 1 if repeated once and
0 if not). Lexically reiterated items include repeated
synonymous noun phrases which may often be pre-
ceded by definite articles or demonstratives. Also, a
sequence of noun phrases with the same head counts
as lexical reiteration (e.g. "toner bottle", "bottle of
toner”, "the bottle™).

Secrion heading preference

if a noun phrase occurs in the heading of the section,
part of which is the current sentence, then we con-
sider it as the preferred candidate (1, 0).

"Non-prepositional” noun phrases

A "pure", "non-prepositional” noun phrase is given a
higher preference than a noun phrase which is part of
a prepositional phrase (0, -1)

Insert the cassette; into the VCR making sure it; is
suitable for the fength of recording.

Here "the VCR" is penalised (-1) for being part of the
prepositional phrase "tnto the VCR",

This preference can be explained in terms of sali-
ence from the point of view of the centering theory,
The latter proposes the ranking "subject, direct ob-
ject, indirect object" (Brennan et al. 1987) and noun
phrases which are parts of prepositional phrases are
usually indirect objects.

This criterion was extended in Polish to frequently
occurring genitive constructions (e.g. liczba kom-
puterow = number of computers}). Nouns which are
part of such genitive constructions and which are not
in genitive form are penalised by "-1",

In Arabic the antecedent and the anaphor can be-
long to the same prepositional phrase (see next sec-
tion). Therefore, we have modified this indicator for
the "Arabic version" accordingly: if an NP belongs to
a prepositional phrase which doesn't contain the
anaphor, we penalise it by -1; otherwise we do not
assign any score to it (0).

Relative pronoun indicator

This indicator is used only in the Arabic version and
is based on the fact that the first anaphor following a
relative pronoun refers exclusively to the most recent
NP preceding it which is considered as the most
likely antecedent (2,0).
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Example:

Al-tahakkok min tahyiat al-moakkit

Yomkino-ka a'rdh tabyiat moakkitoka li-at-tahakkok
mina al-baramij; al-lati targhabo fi tasjili-ha;,
(Literal translation)

Checking the Timer Settings

You can display your timer settings to confirm the
programmes; that you wish to recording if;.
Checking the Timer Settings

You can display your timer settings to confirm the
programmes you wish to record,

In this example the pronoun "ha" {it) is the first pro-
nominal anaphor which follows the relative pronoun
"al-lati" (that) and refers to the non-animate feminine
plural "al-baramij" (the programmes; for agreement
rules in Arabic see section 2.1) which is the most
recent NP preceding "al-lati".

Collocation pattern preference

This preference is given to candidates which have an
identical colfocation pattern with a pronoun (2,0),
The collocation preference here is restricted to the
pattern  “noun/pronoun, verb" or "verb,
noun/pronoun” (owing to lack of syntactic informa-
tion, this preference is somewhat weaker than the
collocation preference described in (Dagan & Itai
1990).

Press the key; down and turn the volume up... Press it;
again.

The collocation pattern preference in Arabic has been
extended to patterns "(un)V-NP/anaphor", i.e. verbs
with a "undoing action” meaning are considered for
the purpose of our approach to fall into collocation
patterns along with their "doing action" counferparts.
This extended new rule would help in cases such as
"Loading a cassette of unloading it". This rule is soon
to be integrated into the English and Polish versions,

Immediate reference

In technical manuals the "immediate reference” clue
can often be useful in identifying the antecedent. The
heuristics used is that in constructions of the form
"...(You) V| NP ... con (you) V, it (con (you) V5 if)",
where con e {and/or/before/afier...}, the noun phrase
immediately afier V, is a very likely candidate for
antecedent of the pronoun "it" immediately following
V, and is therefore given preference (scores 2 and 0).

This preference can be viewed as a modification of
the collocation preference. It is also quite frequent
with imperative constructions.

To print the paper, you can stand the printer; up or lay
it; flat
; flat.



To turn on the printer, press the Power buiton; and
hold it; down for a moment.

Unwrap the paper;, form #; and align it;, then load it;
into the drawer.

Sequential instructions

This new antecedent indicator has recently been
incorporated for Arabic but it works equally well
for English and is to be implemented in the English
version soon as well, It states than in sequential in-
structions of the form "To V| NP, V, NP, (Sen-
tence}. To V5 it, V4 NP,» the noun phrase NP is
the likely antecedent of the anaphor "it" (NP is as-
signed a score of 2).

Example:

T'o turn on the video recorder, press the red button. To
programme if, press the "Programme” key.

To turn the TV set ON, press the mains ON/OFF
switch. The power indicator illuminates to show that
the power is on. To turn the TV set off, press it again,

Referential distance

In English comPlex sentences, noun phrases in the
previous clause” are the best candidate for the an-
tecedent of an apaphor in the subsequent clause,
followed by noun phrases in the previous sentence,
then by nouns siluated 2 sentences further back and
finally nouns 3 sentences further back (2, I, 0, -1).
For anaphors in simple sentences, noun phrases in the
previous sentence are the best candidate for antece-
dent, followed by noun phrases situatéd 2 sentences
further back and firally nouns 3 seniences further
back (1, 0, -1} )

Since we found out that in Arabic the anaphor is
more likely to refer to the most recent NP, the scor-
ing system for Arabic gives a bonus to such candi-
dates: the most recent NP is assigned a score of 2, the
one that precedes it immediately 1 and the rest 0.

Term preference

NPs representing terms in the field are more likely to
be the antecedent than NPs which are not terms
{score 1 if the NP is a term and 0 if not),

As already mentioned, each of the antecedent indi-
cators assigns a score with a value e {-1, 0, 1, 2}.
These scores have been determined experimentally
on an empirical basis and are constantly being up-
dated. Top symptoms like "lexical reiteration” assign
score "2" whereas "non-prepositional” noun phrases

Stdentification of clauses in complex sentences is done
heuristically.
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sentence

are given a negative score of "-1", We should point
out that the antecedent indicators are preferences and
not absolute factors. There might be cases where one
or more of the antecedent indicators do not "point” to
the correct antecedent, For instance, in the sentence
"Insert the cassette into the VCR; making sure it; is
turned on", the indicator "non-prepositional noun
phrases" would penalise the correct antecedent.
When all preferences {antecedent indicators) are
taken into account, however, the right antecedent is
still very likely to be tracked down - in the above
cxample, the "non-prepositional noun phrases" heu-
ristics (penalty) would be overturned by the "collo-
cational preference” heuristics.

The antecedent indicators have proved to be rea-
sonably efficient in assigning the right antecedent
and our resuits show that for the genre of technical
manuals they may be nc less accurate than syntax-
and centering-based methods (see Mitkov 1998b).
The approach described is not dependent on any
theories or assumptions, in particular, it does not
operate on the assumption that the subject of the
previous utterance is the highest-ranking candidate
for the backward-looking center - an approach which
can sometimes lead to incorrect results. For instance,
most centering-orientated methods would propose
"the utility" incorrectly as the antecedent of "it" in the
"The utility (CDVU) shows you a
1.I8T4250, 1.IST38PP, or LIST3820 file on your
terminal for a format similar to that in which it will
be printed” because of the preferential treatment of
the subject as the most salient candidate (e.g. RAP,
see Dagan et al. 1995). The "indicating verbs" prefer-
ence of our approach, however, would give prefer-
ence to the correct antecedent "LIST4230,
LIST38PP, or LIST3820 file".

3. Evaluation

For practical reasons, the approach presented does
not incorporate syntactic and semantic knowledge
{other than a list of domain terms} and it is not real-
istic to expect its performance to be as good as an
approach which makes use of syntactic and con-
straints and preferences. The lack of syntactic infor-
mation, for instance, means giving up c-command
constraints and subject preference (or on other occa-
sions obiect preference, see Mitkov 1995) which
could be used in center tracking. Syntactic parai-
lelismn, useful in discriminating between identical
pronouns on the basis of their syntactic function, also
has to be forgone. Lack of semantic knowledge rules
out the use of verb semantics and semantic parallel-
ism. Our evaluation, however, suggests that much
less is lost than might be feared. In fact, our evalua-
tion shows that the resulis are comparable to and



even better than syntax-based methods (Lappin &
Leass 1994). The evaluation results also show supe-
riority over other knowledge-poor methods (Baldwin
1997; see also below)’. We believe that the good
success rate is due to the fact that a number of ante-
cedent indicators are taken into account and no factor
is given absolute preference. In particular, this strat-
egy can often override incorrect decisions linked with
strong centering preference (see 2.2) or syntactic and
semantic parallelism preferences (Mitkov 1998b).

We have carried out evaluations on sample texts
from fechnical user's guides both for English and
Arabic and the results show comparable success
rates. The success rate for Arabic is slightly higher
and we should mention that in addition to tuning the
approach for Arabic, the "Arabic improved" version
uses 2 new indicators recently introduced which have
not been included in the "Robust English” version
yet.

3.1 English

The first evaluation exercise for English (Mitkov &
Stys 1997) was based on a random sample text from
a technical manual (Minolta 1994), There were 71
pronouns in the 140 page technical manual; 7 of the
pronouns were non-anaphoric and 16 exophoric. The
resolution of anaphors was carried out with a suc-
cess rate of 95.8%. The approach being robust (an
attermpt is made to resolve each anaphor and a pro-
posed antecedent is returned), this figure represents
both "precision” and "recall” if we use the MUC
terminology. To avoid any terminological confusion,
we shall therefore use the more neutral term “success
rate” while discussing the evaluation.

We conducted a second evaluation” of the robust
approach on a different set of English sample texts
from the genre of technical manuals (47-page Port-
able Style-Writer User's Guide (Stylewriter 1994).
Qut of 223 pronouns in the text, 167 were non-
anaphoric (deictic and non-anaphoric "it"). The
evaluation carried out was manual to ensure that no
added error was generated (e.g. due to possible
wrong sentence/clause detection or POS tagging).
Another reason for doing it by hand is to ensure a fair
comparison with other knowledge-poor methods
(Baldwin 1997), which not being available to us, had
to be hand-simulated.

The second evaluation indicated an 83.6% success
rate for our robust approach. Baldwin's CogNIAC

§ This applies to the genre of technical manuals; for other
genres results may be different

"We are indebted to Lowenna Ansell for carrying out the
second evaluation
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scored 75% on the same data, while J. Hobb’s algo-
rithm achieved 71% (Mitkov 1998b).

On the basis of both evaluation experiments a suc-
cess rate of 89.7% could be regarded as a statistically
more representative figure for the performance of
"English version" of the robust approach®. In addi-
tion, our evaluation results indicate 82% ‘“critical
success rate”, which we consider quite a satisfactory
score (for definition of the concept “critical success
rate” which is Iimited to the evaluation of the so-
called "critical cases” - the resolution of "tough"
anaphors which have already passed the agreement
filter, see Mitkov 1998b). Finally, in order to evalu-
ate the effectiveness of the approach and to explore
whether or by how much it is superior to the baseline
models for anaphora resolution, we also fested the
sample texts on (1) a Baseline Model which checks
agreement in number and gender and, where more
than one candidate remains, picks as antecedent the
most recent subject matching the gender and number
of the anaphor and (ii) a Baseline Model which picks
as antecedent the most recent noun phrase that
matches the gender and number of the anaphor, The
evaluation results suggest a success rate of 48.55%
for the first baseline model and a success rate 65.95%
for the second (Mitkov 1998b),

If we regard as "discriminative power” of each an-
tecedent indicator the ratio "number of successful
antecedent identifications when this indicator was
apphied"/"number of applications of this indicator”
(for the non-prepositional noun phrase and
definiteness being penalising indicators, this figure is
calculated as the ratio "number of unsuccessful ante-
cedent identifications"/"number of applications"), the
immediate reference emerges as the most discrimi-
native indicator (100%), foliowed by non-
prepositional noun phrase (92.2%), collocation
{90.9%), section heading (61.9%), lexical reiteration
(58.5%}), givenness (49.3%), term preference (35.7%)
and referential distance (34.4%). The relatively low
figures for the majority of indicators should not be
regarded as a surprise: firstly, we should bear in mind
that in most cases a candidate was picked (or re-
jected) as an antecedent on the basis of applying a
number of different indicators and secondly, that
most anaphors had a relatively high number of can-
didates for antecedent.

In terms of frequency of use ("aumber of non-zero
applications"/"number of anaphors”), the most fre-
quently used indicator proved to be referential dis-
tance used in 98.9% of the cases, followed by term
preference (97.8%), givenness (83.3%), lexical reit-

¥please note that we have recently modified some of the
rules/added some more rules but we have not evaluated the
improved English version yet.



eration {64 4%), definiteness (40%), section heading
(37.8%), immediate reference (31.1%) and colloca-
tion (11.1%). As expected, the most frequent indica-
tors weare not the most discriminative ones,

3.2 Arabic

We evaluated the robust approach for Arabic operat-
ing in two modes: the first mode consisted of using
the robust approach directly, without any adapta-
tion/modification for Arabic, whereas the second
mode used an adapted/enhanced version which in-
cluded modified rules (see section 2.2) designed to
capture some of the specific aspects of Arabic plus a
few new indicators,

The evaluation was based on 63 examples from a
technical manual (Sony 1992), The first mode (i.e,
using the robust approach without any adaptation for
Arabic - this version is referred to as "Arabic direct"
in the table below) reported a success rate of 90.5%
(57 out of 63 anaphors were correctly resolved),
Typical failures were examples in which the antece-
dent and the anaphor belonged to the same preposi-
tional phrase:

Tathhar al-surah fi awal kanat; ta-stakbilo-ha; fi
mintakati-ka.

Appears the-picture on first channet; you-receive-it; in
area-your. (Literal translation)

The picture appears when Lhe first channel received in
your area is detected.

Such failure cases were not detected in the improved
version for Arabic in which the "non-prepositional
phrase” rule was changed (see section 2.2).

Another typical problem which was rectified by
changing the referential distance in Arabic was the
case in which the anaphor appearcd as part of a PP
modifying the antecedent-NP:

Kom bi-taghtiat thokb al-lisan bi-sharit plastic aw
ista'mi} kasit akhar; bi-hi; lisan al-aman,

Cover slot the-tab with-tape plastic or use cassetie
another; in it; tab the~ safety.

Cover the safety tab slot with plastic tape, or use an-
other cassetle with a safety tab.

The candidates for antecedent in this example are the
noun phrases "safety tab slot”, "plastic tape" and
"another cassette". If we use the robust approach
without any modification, each candidate gets 2 for
referential distance; the aggregate score for "safety
tab slot" is 3, for "plastic tape" it is 2 and for "another
cassette” is 2 as well (they all get an additional 1
score for "term preference”). Using the new referen-
tlal distance scores, however, the correct candidate
"another cassette” scores an aggregate of 2 as op-
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posed to the other two candidates which are assigned
an aggregate score of 1.

The second evaluation mode (evaluating the ver-
sion adapled and improved for Arabic which is re-
ferred to as "Arabic improved” in the table below)
reported a success rate of 95.2% (60 ocut of 63 ana-
phors were correctly resolved).

The evaluation for Arabic also showed a very high
“critical success rate" as well. The robust approach
used without any meodification scored a "critical
success rate” of 78.6%, whereas the improved Arabic
version scored 89.3%,

The most digcriminative indicators for Arabic
proved to be immediate reference, collocation and
sequential instructions with 100% discriminative
power, followed by non-prepositional noun phrase
(89.2%), term preference (82.1%), definiteness
(78.6%), referential distance_score_2 (67.9%) and
section heading (63.6%). The higher contribution of
referential distance for Arabic is in tune with our
empirical finding that referential distance is a more
important indicator for Arabic than for English and
that in particular, the most recent NPs in Arabic are
more likely to be antecedents than in English (see
section 2.2, indicator "referential distance").

The most frequently used indicators for Arabic
were referential distance (100%, of which 34.6%
with score 2 and 34.6% with score 1) and term pref-

“erence (87.7%). Again, the most discriminative indi-

cators could not be frequently used: collocation was
applied in only 2.5% of the cases, whereas immediate
reference and sequential instructions could be acti-
vated in 1.2% of the cases only.

3.3 Polish
The evaluation for Polish was based technical manu-
als available on the Internet (Internet Manual, 1994;
Java Manual 1998). The sample texts contained 180
pronouns among which were 120 instances of exo-
phoric reference (most being zero pronouns). The
robust approach adapted for Polish demonstrated a
high success rate 0f 93.3% in resolving anaphors.

Similarly te the evaluation for English, we com-
pared the approach for Polish with (i) a Baseline
Model which discounts candidates on the basis of
agreement in number and gender and, if there were
still competing candidates, selects as the antecedent
the most recent subject matching the anaphor in gen-
der and number (ii) a Bascline Model which checks
agreement in number and gender and, if there were
stiil more than one candidate left, picks up as the
antecedent the most recent noun phrase that agrees
with the anaphor,

The Polish verston of our robust approach showed
clear superiority over both Polish baseline models,



The first Baseline Model (Baseling Subject) was
successful in only 23.7% of the cases, whereas the
second {Baseline Most Recent) had a success rate of
68.4%. These results demonstrate the dramatic in-
crease in precision, which is due to the use of antece-
dent tracking indicators.

The Polish version also showed a very high "criti-
cal success rate” of 86.2%. Used without any modifi-
cation ("Polish direct"), the approach scored a 90%
success rate.

The most discriminative an{ecedent indicators for
Polish appear to be the sequeniial instructions, im-
mediate reference and indicating verbs (100%}), {ol-
lowed by referential distance (84.1%) and givenness
(80 %).

The most frequently used indicators for Polish
were definiteness (97.2% of the cases), referential
distance (94.4%), givenness {(61.1%) and non-
prepositional noun phrase (52.8%). The least fre-
quently used indicators proved io be indicating verbs
(16.7%), lexical reiteration (13.9%) and immediate
reference (2.8%).

The success rates obtained can be summarised as
follows:

Success rate
Robust English 89.7%
Polish direct 0%
Polish improved 93.3%
Arabic direct 90.5%
Arabic improved 95.2%

Table 1: Success rates of the robust approach

Success rate

31.6% /48.6%

Baseline subject English

Baseline most recent English 65.9%
Baseline subject Polish 23.7%
Baseline most recent Polish 68.4%

Table 2: Success rates of the baseline models

Since the approach is robust, the success rates equal
both recall and precision except for "Baseline subject
English": since there are cases in which "Baseline
subject" may not be able to pick up an antecedent
(c.g. paragraphs with zero subjects), this version can
be measured in terms of both precision (the higher
figure in table 2) and recall (the lower figure),
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4. Future work

Future work includes adapting the approach for
French, Spanish and Bulgarian as well as testing it on
(and if necessary, modifying it to cover) a wider
variety of gemres. In addition, we plan to use the
statistically-based multicriteria approach (Pomerol &
Barbara-Romero, 1992) to fine-tune scoring,

5. Conclusion

We have described a genre-specific modification of
the practical approach to pronoun resolution (Mitkov
1998a)} and have shown its multilingual nature: we
have adapted and tested the approach for Polish and
Arabic. The evaluation reports success rates which
are comparable to (and even better than) syntax-
based methods and show superiority over other
methods with limited knowledge.
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Abstract

This paper describes a method for the automatic align-
ment of paraliel texts at clause level. The method fea-
tures statistical techniques coupled with shallow linguis-
tic processing. It presupposes a parallel bilingual corpus
and identifies alignments between the clauses of the
source and target language sides of the corpus. Parallel
texfs are first statisticaily aligned at sentence level and
then tagged with their part-of-speech categories. Regular
grammars functioning on tags, recognize clauses on both
sides of the parallel text. A probabilistic mode} is ap-
plied next, operating on the basis of word occurrence and
co-occurrence probabilities and character lengths. De-
pending on sentence size, possible alignments are fed
into a dynamic programming framework or a simulated
anngaling system in order to find or approximate the best
alignment. The method has been tested on @ small Eng-
lish-Greek corpus consisting of texts relevant to software
systems and has produced promising results in terms of
correctly identified clause alignments.

Introduction

The availability of large collections of texts in electronic
form, has given rise to a wide range of applications aim-
ing at the elicitation of linguistic resources such as
translation dictionaries, transfer grammars and retrieval
of translation examples {Dagan et al,, 1991; Matsumoto
et al., 1993), or even the building of fully-blown machine
translation systems (Brown et al,, 1990). The purpose of
this paper is to describe a technique for extracting trans-
lation correspendences at bellow sentence level by em-
ploying statistical techniques coupled with shallow lin-
guistic processing catering for the segmentation of sen-
tences into clauses.

Statistical processing has proved powerful for the
extraction of translation equivalences at sentence and
intra-sentence level. Brown et al. (1991) described a
method based on the number of words contained in sen-
tences. The general idea is that the closer in length two
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sentences are, the most likely they are to align. Moreo-
ver, certain anchor points and paragraph markers are
considered. Dynamic programming and HMMSs are pipe-
fined to produce alignments at senmtence level The
method has been applied to the Hansard-Corpus, achiev-
ing an accuracy of 96%-97%. Gale and Church (1991)
proposed a method that relies on a simple statistical
mode! of character lengths. The model is based on the
observation that longer sentences in one language tend to
be translated into longer sentences in the other language
while shorter ones tend to be translated into shorter ones.

‘A probabilistic score is assigned to each pair of proposed

sentence pairs, and a dynamic programming framework
calculates the most probable alignment.  Although the
apparent efficacy of the Gale-Church algorithm is unde-
niable and validated on different pairs of languages, it
faces problems when handiing complex alignments(1-0,
1-2, 2-2).

Simard et al. (1992) argue that a small amount of lin-
guistic nformation is necessary in order to overcome the
inherited weaknesses of the purely statistical fechniques.
They proposed using cognates, which are pairs of tokens
of different languages sharing "obvious" phonological or
orthographic and semantic properties, since these are
likely to be used as mutual translations. Papageorgiou et
al. (1994) proposed a generic alignment scheme invoking
surface linguistic information coupled with information
about possible unit delimiters depending on the level at
which alignment is sought. Each unit, sentence, clause or
phrase, is represented by the sum of its content part of
speech (POS) tags. The results are then fed into a dy-
namic programming framework that computes the opti-
mum alignment of text units.

Brown (1988) uses a probabilistic measure to esti-
mate word similarity of two languages in the context of
statistically-based machine translation. Kay and Ro-
escheisen {1993) present an algorithm for aligning bilin-
gual texts on the basis of internal evidence. Processing is
performed in many iterations and cach new iteration
uses the results of the previous one in order to calculate
more accurate word and sentence correspondences. In



cach iteration, processing consists of caleulating corre-
spondences between sentences on the basis of their rela-
tive positions, and then calculating word correspon-
dences on the basis of word co-occwrences in related
sentences. 'Fhe Dice coefficient is used as the similarity
measure between words of two languages in an attempt
to secure the comectness of the alignment of parallel texts
at sentence level. Kitamura and Matsumoto (1995) have
used the same Dice coefficient to calculate the word
similarity between Japanese-English parallel corpora,
Single word correspondences have also been investigated
by Gale and Church (1991b) using a statistical evaluation
of contingency fables. Piperidis et al. (1997) and Boutsis
and Piperidis (1996) describe methods for extracting sin-
gle and mulii-word equivalences based on a parallel cor-
pus statistically aligned at sentence level and employing
a similarity metric along the lines of the Dice coefficient
with comparable performance.

Collocational correspondences have been studied by
Smadja (1992) and Smadja et al. (1996}, in an attempt to
find franslation patterns for continucus and discontinuous
collocations in English and French. Meaningful colloca-
tions are first extracted in the source language while their
corresponding French ones are found by calculating the
muiual information between instances of the English
collocation and various single word candidates in Eng-
lish-French aligned corpora. Recent work has broad-
ened the scope identifying correspondences between
word sequences. Kupiec (1993) proposes a method for
extracting translation patterns of noun phrases from Eng-
lish-French parallel corpora. The compus is tagged at part-
of-speecl: (POS) level and then finite-state recognizers
specified by regular expressions defined in terms of POS
categories detect noun phrases on either side. Probabili-
ties of correspondences are then calculaied using an it-
erative EM-like algorithm. Kumano and Hirakawa
(1994) presuppose an ordinary bilingual dictionary and
non-parallel corpora, attempting to find bilingual corre-
spondences in a Japanese-English setting at word, noun
phrase and unknown word level. Exiending previous
work, Kitamura and Matsumoto (1996} apply the Dice
coefficient on word sequence correspondence extraction,

This paper describes a method for the automatic
alignment of parallel texts at clause level. Texts are first
aligned at sentence level using statistical techniques.
Part-of-speech tagging takes place next annotating each
word form with the appropriate part of speech. Process-
ing in this step and the next one is monolingual, so each
language side of the text is treated independently of the
other. Surface syntactic analysis is performed next on
the basis of regular grammars. Shallow parsing results in
the recognition of clauses. Statistical processing foliows
taking into account different sources of information,
aiming at identifying intra-sentence alignments formed
by the clauses of the parallel sentences of the bitext. The
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method caters for alignments of type 1-0, 1-1, 1-2, 2-1,
and 2-2. A first pass through the text computes occur-
rence and co-occurrence probabilities for content words
on both language sides. A probabilistic score, expressing
the probability that a clause (or a pair of clauses) of the
source language is translated into a clause (or a pair of
clauses) of the target language, is computed on the basis
of the previously calculated word probabilities, and a
model of character lengths. Possible clause alignments
are examined by a dypamic programming framework
deciding on the best alignment. Avoiding combinatorial
explosion requires that large sentences be channeled into
a moduie that approximates the optimal alignment
through shinufated annealing, operating in polynomial
time. EM iterative training caters for the estimation of
the model’s parameters, given the lack of hand-aligned
training material. The overview of the processing is
pictured in Figure 1.

Test Corpus

The corpus used to develop and test the proposed algo-
rithms consists of text from the HP-VUE software plat-
form documentation set. The Greek text contains 35726
wordforms and the English text 28872. The number of
different words is 4512 for the Greek text and 3219 for
the English text. The richer morphology of the Greek
language accounts for the approximately 30% difference
between these two figures.

Text Handling

Recognizing and labeling surface phenomena in the text
1s a necessary prerequisite for most Natural Language
Processing (NLP) systems. In order to be able to make
full use of the corpus, texts should be rendered in an ap-
propriate form. To this end, paralle! texis are normalized
and handled. In the framework of the presented method,
basic text handling is performed with the use of a
Muitext-like tokeniser, (Di Christo et al., 1995). Identifi-
cation of word boundaries, sentence boundaries, abbre-
viations etc. takes place. Following common practice, the
tokeniser makes use of a regular-expression based defi-
nition of words, coupled with downstream precompiled
lists for the Greek and English language and simple heu-
ristics, This proves to be quite successful in recognizing
sentences and words effectively.

Sentence Alignment

Alignment consists in establishing correspondence links
between units in a bilingual text. At this stage, the
method aligns input text at sentence level. Processing
caters for sentence substitution (one sentence translates
into one), deletion (a sentence is not translated at all),
insertion (a seatence with no equivalent in the source text
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is introduced by the translater), contraction {two con-
secutive sentences transiate into one), expansion (one
sentence translates into two) and merging (two sentences
translate jointly into two).

The heart of the alignment scheme, employed at this
stage, is a method for aligning sentences based on a sim-
ple statistical model of character lengths, (Gale and
Church, 1991). The method relies on the assumption that
longer sentences in the source language tend to be trans-
lated into longer senfences in the target and vice-versa. A
probabilistic score is assigned to each pair of proposed
sentence pairs, based on the ratio of lengths of the sen-
tences and the variance of this ratio. This probabilistic
score is used in a dynamic programming framework in
order to find the maximum likelihood alignment of sen-
tences.  Additionally, following (Brown et al, 1991)
certain poinis of the texts can be anchored thus dividing
them into smaller sections that need to be aligned. Be-
sides anchors, paragraph markers are also fonsidered.
Anchor poinis are specific to the text to be aligned and
they usanally appear in both texts. They are divided into
major and minor anchors and alignment proceeds in two
steps, first aligning major anchor points and then minor
anchor points, followed by sentence alignment. The
alignment algorithm has been tested in the setting of a
multilingual text processing system and has been re-
ported to yield accuracy between 96% and 100%,
(Piperidis, 1995).

Part of speech tagging

Both English and Greek texts are analyzed morphosyn-
tactically. The words in the paraliel sentences are tagged
with their corresponding POS categories. The corpus is
thus represented as a bitext of tagged mutual sentence
translations where every word is accompanied by its cor-
responding POS tag.

For Greek

Tagging with part-of-speech information for Greek takes
place in two steps. First, each word is endowed with all

possible tags through lexicon lookup, and then a disam-
biguation module decides on the most probable annocta-
tion.

Lexicon lookup operates on a morphological lexicon
of modern Greek. It endows the words of the text with
the characteristics found in the lexicon. The tagset used
has been devised for the morphological annotation of
Greek corpora and conforms to the guidelines set up by
EAGLES and PAROLE, trying, at the same time, to
capture the morphological peculiarities of the Greek lan-
guage.

Text produced at the output of lexicon lookup is an-
notated with below POS information ie. subcategorisa-
tion information for each POS category. Each wordform
recognised as noun, for example, is annotated for case,
number, gender ete. Ambiguous wordforms are endowed
with all possible annotations. However, not all available
morphological information is necessary for later proc-
essing. In addition, wordforms grammatically fully char-
acterized with below POS information are highly am-
biguous. Retaining all such information would impose a
heavy burden on the disambiguation process. Experi-
mentation has proved that performance of next stages is
not seriousty affected by reducing the tagset. To this end,
a simplified tagset has been used helping reduce ambigu-
ous wordforms notably. In addition, words not found in
the lexicon are assigned possible tags on the basis of a
probabilistic model operating ont word suffixes. In case

~of multiple tagging, a disambiguator based on frigrams
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and contextual rules trained on Greek texts, suggests the
tag that is most likely to be the correct, (Papageorgiou,
1996). This stage produces around 95% correct results.

For English

Tégging for English is based on mainstream statistical
processing. A tagger implementing hidden markov mode}
techniques is employed. The tagger has been trained on
a large preannotated text collection and is then used to
tag the HP-VUE test corpus. For training purposes, a set
of technical texts annotated at POS level, drawn from the
British National Corpus (BNC), has been used, {Burnard,
1995). Texts classified under the field codes: “Written:
Domain: Informative: Natural and pure sciences” and
“Written: Domain: Informative: Applied Science” have
been selected. The size of the text collection is ca.
5,000,000 words. Text is annotated with POS tags ac-
cording to the BNC tagset (Leech, 1995). This text col-
lection is used to train the Acquilex HMM tagger (El-
worthy, 1997) and estimate model parameters. After
training, the HP-VUE corpus is tagged by application of
the Viterbi algorithm.



Clause recognition

This stage, like the previous one, processes each lan-
guage side of the text independently of the other. It aims
at breaking sentences of both languages into clauses with
well-defined boundaries.

In order to recognise clauses, this stage takes advan-
tage of a shallow parser equipped with grammars for
Greek and English. Syntactic analysis consists of parsing
via finite state autormata. Under this approach, a text can
be analysed syntactically on the basis of grammars con-
taining non-recursive rules written in the form of regular
expressions. Rules are numbered in order {o be applied
in a certain order. The grammar is translated into finite-
state automata with standard techniques (Aho et al,
1986) and automata are connected in a pipeline in order
to form a cascade, which is used {o annotate fext in an
incremental way. Each rule (regular expression} de-
scribes a specific phenomenon and higher-order rules can
be expressed on the basis of the already described ones.
Rules are designed to be reliable when they are applied
using longest match, in order to avoid the need for dis-
ambiguation between different length instances of the
same constifuent type.

A basic characteristic of this method is that parsing is
deterministic and no backtracking takes place. No ambi-
puity is produced since each automaton tekes a definite
decision about a constituent’s existence or non-existence.
This doesn’t mean that ambiguities are resolved but that
they are enclosed inside syntactic chunks, whose bounda-
ries have been recognised, although their internal struc-
ture may have not been decided. Enclosure of ambiguity
helps generate only one partial parse for each sentence,
since ambiguity 1s kept local and does not cause the pro-
duction of multiple parses for the whole sentence.

It should be noted that the method doeg not depend on
the exact method adopted for clause recognision. Another
system performing clause recognition could be used in-
stead. This has also to do with the availability of the rele-
vant linguistic processing modules. On the other hand,
being aware of the complete partial parse can be very
useful, if one is up to extend the method to cover other
types of sub-sentence alignments (e.g. alignment of
np’s). It is also significant that the additional processing
of shaflow parsing does not impose serious speed over-
heads since the speed of analysis is measured m tens of
lundreds of words/second. Clause boundaries for each
analysed sentence are channelled into the next stages of
processing. No distinction 1s made between different
clause types. A sample output of this stage is shown i
Figure 2.
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[l SEVERAL UTILITIES HELP YOU ¢l [el DIAGNOSE
CONFIGURATION AND DATABASE ERRORS cif

fel TOAAA BOHOHTIKA [IPOTPAMMATA BOHGOYN clf [l
NA ATAPNQIETE TPAAMATA AIAMOPORIHE KA BAXHE
AEAOMENGN clf

{cl IF YOUR SYSTEM IS PROPERLY CONFIGURED clf [cl TO
AUTOMATICALLY RUN HP VUE cif , fcl YOU WILL SEE THE
HP VUE LOGIN SCREEN el} fel WHEN YOUR SYSTEM IS
BOOTED cl}

fol AN TQ DYITHMA ZAX EINAT ZQITA AIAMOPPLMENG
clf {ol ITA NA EKTEAEI AYTOMATA TO HP VUE clf [l ©4
ARITE THN O80ONH LYNAEZHY TOY HP YUE clf [el OTAN
TO LYETHMA ZAX EKKINET clf

fel IF YOU HAVE NO CONSOLE clf , [ef YOU MUST LOG IN
FROM A REMOTE SYSTEM ci}

[cl AN AEN YITAPXE] ¢} fel TPENEF NA EISEAGETE AHO
ENA ATHOMAKPYEMENQ EYITHMA clf

Figure 2: Parallel text with marked clause
boundaries

Translation model
Parta

In this section we present the basic translation model,
which is used for the purposes of clause alignment. Let’s
consider two corresponding sentences of the parallel text
which are franslations of each other, the source sentence

- 8Cy and its translation into the target

language T{‘:mfl 17 t_c—@_ where §¢; and l.‘_(:i are
clauses identified during the previous stage. We
approximate senfence translation with the assumption
that clauses can be translated from the source into the

target language in the following ways:

A. 1-0 and 0-1, when a clause of the source or the target
sentence has no equivalent clause in the other
language.

1-1, when a clause of the source sentence is translated

into one clause of the target sentence.

C. 1-2 and 2-1, when a clause of the source is transiated
into two clauses of the target or two clauses of the
source transiate into one of the target.

D. 2-2, when two clauses jointly translate into two
clauses of the other language.

B.

We view each group of aligned senfences of the par-
allel text as a sequence of clause-beads {after sentence-
beads in (Brown et al,, 1991)) where a bead accounts for
a group of clauses that align with each other according to
one of the above mentioned ways. A clanse-alignment



A; ={ @ o - Ay } for a given pair [ of sentences

is a set of clause-beads @ covering all clauses of the

source and target sentence under the condition that each
clause participates to one and only one clause-bead.
Figure 3 shows a schematic example of a clause-
alignment between two sentences containing four and
three clauses each. Making the assumption that transla-
tion of clauses in a bead is independent of clauses be-
fonging to other beads we seek the alignment that maxi-
mises the joint distribution:

Pr(S;,7;, 4; ) = Pr(n) II Pr{a; (O

and assuming that Pl(n) (whele n 1s the number of beads

A z’ y)

in the alignment) is independent of §;, 7; and # we get:

"
Pr(ﬁ,g’}_, A)=¢ _]El Pr(aij) 2)

¢ ts ignored for the rest of the analysis, since it is a mul-
tiplicative constant factor having the same value for all
clause-alignments,

Partb

Finding the correct alignment requires that we estimate
clause-bead probabilities Pr(alj) which express the

probability for the source sentence clauses of the bead to
be translated into the corresponding farget sentence
clauses. We consider a 1-1 bead covering the source and
target clauses: -

SCig = SWiq SWien Swiw and
{E‘}l = Iwm th’t.2 . Iwit.q

(where sw,_is the p” word of the s" clause of the i"

isp
source sentence of the parallel text etc.) A {irst writing

ofPl(a -} can be as follows:

Pl(a =P Il(s.c”,

it) (3)

where ‘01—1 is the probability of a *1-1° clause alignment,

Referring to the second factor of (3), in order to ap-

proximate Pr(sc, 'it) we take info account two pa-

Shigs
rameters: a} the length of the source and target clauses
and b) the source language and target language words

contained in SCis and tc;; . We model the probability

that source text thh character length I(sc; )} is trans-
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Bead 1 Bead 2

oloe

Figure 3: An alignment with three beads
(SC:Source sentence Clause
TC:Target sentence Clause)

Bead 3

lated into target text with length I(fe;,) with a distribu-

tionPr(i(scfS }, l(tcit)). Under the assumption that the

model used by the sentence aligner (“Sentence Align-
ment” section , (Gale and Church, 1991)) expressing
sentence alignment probabilities on the basis of character
lengths ('s valid when applied to clause-lengths, we esti-

mate Pri/(se;, ) I (1c; t) with the same model.

Furthermo;e, we approximate clauses by unordered
sets focusing on content camying words i.e. content
words, which are taken to be verbs, nouns, adjectives and
adverbs. Thus, we assume that content words contribute

the most to the examined probability. 7c;, and sc;, are

represented by the unordered sets of the content words
they contain. Following that, equation (3} can be written

- as:

P1(a )= P11 P[(l(sc )l(tc”,))
Pr({scwml 3o Scw.isv i {tcwit1 youns Icwitw }) ®

where scw stands for source clause content word and
few stands for target clause content word. To approxi-
mate the third factor of Eq. (4) we assume that the con-
tent words of the source clause are independent events
and the same is valid for the words of the target clause.
That 1s:

PL({SCWI.S‘E PHEW g2 e SEWigy }) = )
Pr(scwisi) Pr(scwl. 32) Pr(scwz w)
Pr({tcwl-r],tcwitz,...,tcwitw} -

(6)

Pr(tew,,y ) Prltew;,5) ... Pr(tcwitw)

Under this model each word of the target clause de-
pends on zero or one word of the source clauge. To il-



the clause

the

lustrate, let’s consider source

sc = { SEWY, SCWy, SeWy } target  clause

o= { fewy, [eWs , few, } and a word alignment W ;80
that tewy depends on sewy, few, depends on SCWy

while few; and scwy are independent events. In this
case,

Pl‘W _ ({ SCW), SCWy, SCWq },{ few), lewy , Towy }) =
J

Pr(tew,, sowp ) Pr(fews, , scwy ) Prl{lews ) Pr(sewy)  (7)
given the computation of Figure 4.
Consequently, when estimating bead probabil-

ity Pr{aij) , we need to sum probabilities over all possi-

ble word alignments W iz This would require however o

inspect an exponentially large set of possible word-
alignments. Thus, we would like to approximate the sum
with its biggest term. This is not feasibie, either. So, a
greedy-like technique is followed, which does not guar-
antee to find the best word alignment but usnally comes
up with a big enough value to distinguish between good
and not so good clause alignments. The largest word-
pair probabilities are selected first while probabilities of
any unmatched words are taken into account next. In
order to select a pair of words for Eq. (7) two heuristic
conditions must be met: 1) the ocourrence frequencies of
the two words should not differ more than 50%, 2) their
co-occurrence frequency in the bitext should not differ
more than 50% from their occirence frequencies in the
fexts.

In case of a non ‘1-1" alignment between clauses, the

same model is used, where F_, is substituted by F_,,
P, P, Pyamd P Wetake F_,=P, , and

2-2>
P_,=PF,_,. The distribution on character lengths is also
taken to be independent of the alignment type.

Model Training

In order to calculate clause-alignment probabilities, given
the model presented in the previous section, estimations
for several model parameters should be available. At this
stage, parameters are estimated on the basis of simple
corpus statistics. The probability of a single word of the
source or target text is taken to be:

Pr(w)y = -—M— &

2 f(w)

w
where the denominator of Eq. (8) is the sum of the fre-
quencies of all words i1.e. the length of the source or the
target text in words. Correspondingly, the probability
relating a word of the source text with a word of the tar-
get text is estimated by:

Ssw,tw)
> fsw, )

(sw' )

Pr(sw, tw) =

®

For the presented application of the method, these
probabilities are computed over the whole corpus. In
very large texts it is adequate to estimate the probabilities
in a representative large portion of the text. It would be
also possible to use pre-computed probabilities from an-
other text of the same domain, given that both texts share

PL'W_({ SCWy, SCWs, STy b tewy, tewy , 0wy h
J

J
Pr( sew, ) Pr(scw2 ) Pr(scw3 )=

Pr(tcw1 yscwy ) Pr(tews , sewy )

Pr(scw; ) P1r(sew, )

Pi‘(wwl ssewy) Pr(tewsy , sews ) Pr(tcw3) Pr{sews )

PrW‘({ tcwl, oWy , Wy }r{ SCW, SCWy , SCWy }} Pr({ SCWy, SCWy, SCWy }) =

Per (rcwl‘{ SCWY 5 SCWy , STy }) Per (tcw2|{ SCWy, SCWo , SCWq }) Per (tcw3 F{ SCW], SCW , SCWy })

Pr(fcwl Tscwi) Pr(tcw2 Iscwz) Pr(tcw3) Pr(scwl) Pr(scwz) Pr(scwq) =

Pr(tcwg ) Pr(scwy ) Pr(scws, ) Pr(scwy } =

Figure 4: Computation of Pry ({ SCWy , SCWy , SCW7 },{ 1ewy, 1wy | fewy

(Eq.(3), (6))
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the same characteristics with respect to language use,
coverage and translation.

Estimating £_,,F,.,, P, and F,, is less
straightforward. Given the lack of training material, that
is marked-up text aligned at clause level, no safe set of
values can be computed for these parameters. To work
around this, we first make an educated guess and then
apply the EM (Expectation-Maximization) algorithm.
The EM algorithm consists of two major steps: an ex-
pectation step followed by a maximization step. The ex-
pectation uses the current estimates of the parameters to
process input data and the maximization provides next a
new estimate of these parameters. These two steps iter-
ate until convergence. EM is not guaranteed to converge
to a global maximum; if many peints of local conver-
gence exist, the point where the method will convergence
will depend on the initial parameter estimations. The
initial parameter values we used and the estimated ones
after the process converged are displayed in the Table 1.

If an alignment type does not occur in the output {*1-
0’ alignment in this case), the relevant probability takes a
very small value (1E-4).

Best Clause-Alignment Selection

This stage aims at finding the best alignment between the
clauses of two parallel sentences {or in the case of a non
‘I-17 sentence alignment e.g. ‘1-2°, an alignment is
sought between the clauses of the source sentence and
the clauses of the two target sentences). Two schemes
are considered, dynamic programming and simulated
annealing.

Dynramic programming is a generalizatjon of the
greedy technique. It can be used to solve problems,
whose solutions can be considered as a sequence of deci-
sions. Usually dynamic programming is used to address
an optimization problem, seeking the sequence of deci-
stons giving the optimal solution.  In many problems,
decisions taken on the basis of local data always lead to
optimal solutions; this is the case of problems solved by
greedy techniques. On the other hand, there are prob-
fems, including alignment, for which this doesn’t hold
true. In this case one would have to generate all possible
decigion sequences and evaluate them. Dynamic pro-
gramming can be used to exclude sub-optimal decision
sequences so that they may not be considered. The prin-
ciple of optimality governing dynamic programuming is:
“Any sub-sequence of the optimal decision sequence is
optimal for the sub-problem corresponding to this sub-
sequence of decisions”.

Although dynamic programming is successfully ap-
plied to sentence alignment, it comes close to its limits
when dealing with sub-sentence alignments given that
the assumption of the left-to-right translation made for
sentence alignment, i1s not valid at the bellow sentence
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Alignment Initiai Probability | Probability

Type Estimation after Conver-
gence

1-0 0.05 0.0001

1-1 0.8 0.6986

1-2 0.1 0.2465

2-2 0.05 0.0548

Table 1 : Initial and estimated probabitities

level, or in other words, the order of the clauses in the
source language is not the same in the target language.
To handle cases of clause-alignments involving a number
of clauses in the order of ten or more, we use a simulated
annealing framework to approximate the optimal align-
ment. Simulated annealing (Metropolis et al, 1953),
(Kirkpatrick et al. 1983), is a2 method for optimising
functions depending on a large number of parameters.
Annealing is a metaflurgical term and the method is in-
spired by the conirolled cooling of metals getting from
the liquid to the solid state. The algorithm has been suc-
cessfully applied for optimization purposes, including the
approximate solution of TSP (Traveling Salesman Prob-
lem). This algorithm does not guarantee to find the best
solution, but it may come up with a good approximation
of it in non-exponential time. Processing starts with a
random clause-alignment 4. Initial temperature setting is
=45 and after each iteration it is reduced by 0.9, Each

‘iteration is performed through 1000 steps. In each step, a

randomt change in A is proposed and the cost function
(negative logarithm of the clause-alignment probability)
is computed. If the new alignment is better, the change is
' AE
adopted, if not, it is adopted with probability P=¢ ” ,
where AE is the change in the cost function. Once the
loop is computed with no change in the configuration, or
10 iterations have been performed, the best alignment
that has been found till that time is proposed.

Results

The method has been applied to the corpus presented in
section 2, A sample output of the method is displayed
hereunder. Each table contains a source senfence, a tar-
get sentence and the set of proposed clause alignments
{underlined alignments are wrong):

Alignment type:2-2, Dynamic Programming (DP)

fcl IF YOU HAVE NO CONSOLE ¢ff, fol YOU MUST LOG IN
FROM A REMOTE SYSTEM cl]

Jol AN AEN YTTAPXE! cff [el FIPEFTEI NA EIZEAGETE AlMO
ENA ATTOMAKPYZMENOQ XYZTHMA ¢l]

IF YOU HAVE NO CONSOLE <-> AN AEN YIIAPXE!

YOU MUST LOG IN FROM A REMOTE SYSTEM <-= [TPENE!
NA EIZEAQETE ATQ ENA ATTOMAKPYIMENQO EYXTHMA




Alignment type:3-3, DP

el THERE ARE SEVERAL REASONS cff fol THAT HP VUE
MIGHT FAIL ¢if [l TC START ¢i]

fet YOIAPXOYN MOAAOI AOFO! ¢ff fcl TIA TOYZ OfIQIOYE
TO HP VUE MITOPE! NA ANTOTYXE! cl] fcl NA ZEKINHZE! ¢f]

THERE ARE SEVERAL REASONS <-> YIIAPXOYN NOAACI
ACMO!

THAT HP VUE MIGHT FAIL <-> [A TOYZX ONCIOYZ TO HP
VUE MIMOPE!I NA AMTOTYXE!

TO START <-» NA ZEKINHZEI

Alignment {ype:4-3, DP

{cl WHEN HP VUE FAILS cl] [c! TO BEHAVE ¢l jcl AS
EXPECTED ¢ff, fo YOU SHOULD OPEN THE
APPROFPRIATE ERROR-MONITORING FILE cf]

[ct OTAN TO HP VUE AMTOTYIXANE! off fof NA
SYMIEPIGEPRE! KATA TO ANAMENOMENQ cf] fcl @A
MPEFETI NA ANOIZETE TO KATANHAG APXEIC
MAPAKOAQYOHIHE SPAAMATON cif

WHEN HP VUE FAILS <-> OTAN TO HP VUE
ANOTYTXANE!

TO BEHAVE AS EXPECTED <-> NA ZYMIEPIQEPOE!
KATA TO ANAMENOMENO

YOU SHOULD OPEN THE APPROPRIATE ERROR-
MONITORING FILE <-> QA MIPENE! NA ANOIZETE TO
KATAAAHAO APXEIO NAPAKOAQYOHZHI SPANMATON

Alignment type:3-2, DP

[ol CREATING A SIMPLE ACTION cff fci COVERS off [of
HOW TO USE CREATEACTION cl]

[T H AHIAIOYPTIA WIAS ATTAHS ENEPFETAS RAAYVITTEI TO
cll fol 10X NA XPHSIMOMOIHIETE TH " CREATEACTION *
o]

CREATING A SIMPLE ACTION <> H AHMIQYPIIA MIAL
ANAHE ENEPIEIAY KAAYATEI TO

COVERS HOW TO USE CREATEACTION <->
XPHZIMONOIHEETE TH " CREATEACTION ”

105 NA

Alignment type:6-6, Simulated Annealing(SA)

fetiF YOU PREVIOUSLY USED SOFTBENCH cl} [cf AND
HAVE A PERSONAL <DIR>/HOMEDIRECTORY/ .SOFTINIT
</DIR> FILE ¢l}, fo! YOU MAY NEED cf] [cl TO REMOVE THE
FILE ¢l [cl OR EDIT IT cff fef TO INCLUDE THE HP VUE
TOOLS cff

el AN TIPOHITCYMENQZE XPHEIMOMNCGIHEATE TO
SOFTBENCH ci] [cl KA EXETE ENA NPOIOMKO ARPXEIO
<DIR>/HOMEDIRECTORY/. SOFTINIT</DIR> cif [cl MMTIOPE!
NA XPEIAZTE! off fol NA APAIPEZETE TO APXEIO cif fol H
NA TC TPOIIOMNOIMEETE cff fol NZTE NA NEPIAAMBANE]
TA EPFAAEIA HP VUE ¢f]

IF YOU PREVICUSLY USED SOFTBENCH <-> AN
MPOHIOYMENQZ XPHZIMOMOIHZATE TQ SOFTBENCH

AND HAVE A PERSONAL <DIR=/HOMEDIRECTORY
LSOFTINIT</DIR> FILE <-> KAl EXETE ENA MPOZ(MNKO
APXEIO <DiR>/HOMEDIRECTORY/. SOFTINIT</DIR>

YOU MAY NEED <-> MMOPE! NA XPEIAZTE]
TQ REMOVE THE FILE <-> NA AQAIPEZETE TO APXEIQ
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OR EDITIT <-> H NA TO TPOMOMNOIHEETE

TO INCLUDE THE HP VUE TOOLS <-> QXTE NA
NEPIAAMBANEI TA EPIAAEIA HP VUE

The performance has been evaluated on a text portion
containing ca. 250 sentences and overal] precision of the
oufput has been calculated to be 85.7%. If we exclude
cases of misalignments due to errors in stages of proc-
essing preceding clause-alignment, we can calculate the
precision of the last stage. In this case, precision is higher
than 96%, so the error-rate introduced during clause-
alignment is less than 4%. In addition to the low error-
rate, clause-alignment corrects some of the errors caused
by the previous stages, as it is merntioned in the next sec~
tion.

Discussion

Given the incremental and engineering approach
adopted, the results obtained so far are quite encouraging.
The accuracy of the output lies around +85%, making the
method quite reliable and suitable to be used in real
world application systems.

Most of the errors were introduced by the first three
primary processing stages, that is sentence-alignment,
POS tagging and clause recognition. Major improve-
ments in performance will certainly require further opti-
mization of some or all of these stages along with any
refinements to the statistical clanse-alignment model
uscd in the last stage. Regarding refinements to clause-
alignment, there are several sources of information that
could be readily taken into account. For example, pre-
compiled bilingual dictionaries could be of help in order
to establish reliable word associations in very short texts,
which do not allow the safe estimation of the required
word probabilities, while preference rules on clause types
could be used to reduce search space, favoring align-
ments between certain clause types and penalising others.
Future developments are believed to help improve accu-
racy and performance and broaden the coverage of the
system in order to cover additional types of sub-sentence
alighments. An interesting remark is that errors intro-
duced by preceding stages are sometimes repaired by
clause-alignment. For example, it may happen that a
sentence is mistakenly chunked into clauses due to tag-
ging or other errors. Then ‘1-2° and ‘2-2° clause-
alignments may function in such a way that illegally
separated sentence pieces are brought back together.

It 1s well understood that linguistic resources building
is one of the important stumbling blocks in the localiza-
tion/internationalization exercise. Methods approximat-
ing the automatic generation of such resources prove to
be effective on a cost/time basis. Besides gains in speed
and efficiency, the data driven approach improves con-
sistency, which is an important requirement for systems



operating in a multilingual setting. By adopting a data
driven approach and exploiting existing linguistic proc-
gssing moedules, the method produces textual parallel data
of high resolution which can give a competitive advan-
tage to multilingual processes and systems, such as semi-
automatic fexicon builders, machine aided translation
systems and retrieval of mubtilingual material.
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Abstract

Automatic accent insertion {AAIY is the problem of
re-inserting accents (diacritics) into a text where they
are missing, Unaccented French texts are still quite
common in clectronic media, as a result of a long his-
tory of character encoding problems and the lack of
well-established conventions for typing accented char-
acters on computer keyboards. We present an AAI
method for French, based on a stochastic language
model. This method was implemented into a program
and €' library of functions, which are now commer-
cially available. Our experiments show that French
text processed with this program contains less than
one accent error per 130 words. We also show how our
AATl method can be used to do on-the-fly accent in-
sertions within a word-processing environment, which
makes it possible to write in French without having
to type accents. A prototype of such a dystem was
integrated into the Emacs editor, and is now avail-
able to all students and employees of the Université
de Montréal’s computer science department.

1

Even in this era of flashy, high-speed multimedia in-
formation, unaccented French texts (i.e texts without
diacritics) are still routinely encountered in electronic
media. Two factors account for this: first, the com-
puter field has long suffered from a lack of sufficiently
widespread standards for encoding accented charac-
ters, which has resulted in a plethora of problems in
the electronic transfer and processing of French texts.
Even now, it is not uncommon for one of the soft-
ware links in an E-mail distribution chain to delib-
erately remove accents in order to avoid subsequent
problems. Secendly, when using a computer keyboard
that is not specifically designed for French, keying
in French accented characters can turn out to be a
taborious activity. This is a matter of both stan-
dards and ergonomics. Ag a result, a large number of
French-speaking users systematically avoid using ac-
cented characters, at least in informal communication.

If this situation remains tolerable in practice, it is
essentially because it is extremely rare that the ab-

Introduction
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sence of accents renders a French text incomprehen-
sible to the human reader. Cases of ambiguity do
nonetheless occur: for instance, “Ce chantier ferme
a cause des emeutes” could be interpreted as “Ce
chantier ferme ¢ cause des dmeutes” (“This work-site
is closing because of the riots”) or “Ce chantier fermé
o causé des émeutes” (“This closed work-site {more
naturaily put, this work-site closure] has caused riot-
§”). From a linguistic point of view, the lack of accents
in French simply increases the relative degree of am-
biguity inherent in the language. At worst, it slows
down reading and proves awkward, much as a text
written entirely in capital letters might do.

The fact remains, however, that while unaccented
French text may be tolerated under certain circum-
stances, it is not acceptable in comrmon usage, espe-
cially in the case of printed documents. Furthermore,
unaccented texts pose serious problems for automatic
processing: NLP-based applications such as informa-
tion retrieval, information extraction, machine trans-
lation, human-machine conversation, speech synthe-
sis, as well as many others, will usually require that
French texts be properly accented to begin with.

Actually, for human readers, unaccented texts is
probably the most benign of a more general class of iil
treatments to which French texts are subjected. For
example, it is not uncommon for older programs that
are not “8-bif clean” to “strip” the eighth bit of each
character, thus irreversibly mapping French charac-
ters onto the basic ASCII set. When this treatment
is applied to an ISO-Latin text, ‘¢" becomes ‘4’, ‘é’
becomes ‘h’, ete. Other programs will simply delete
accented characters, or replace them with a unique
character, such as a question mark. The texts that
result rapidly become unreadable.

All of the above factors prompted the initial in-
terest in methods of automatic accent insertion (or
AAT). Of course, as standards such as Unicode (mul-
tilingual character-coding standard) and MIME (mul-
tipurpose Internet mail extensions) gain ground, the
accent legacy problem slowly disappears. The prob-
lem of typing accents, however, is likely to remain.
For this reason, we have become interested in meth-



ods that would perform automatic accent insertion on-
the-fly, in real time. It appears to us that such a tool
would be a valuable addition to any word-processing
environment, equally useful for native and non-native
speakers of French.

In what follows, we first present a general auto-
matic accent insertion method, based on a stochas-
tic language model. This method was implemented
into a program called Réace, which is now commer-
cially available through Alis Technologies'. We then
examine how this method can be adapted to perform
accent ingertions on-the-fly within a word-processing
environment. As we go along, we describe the various
experiments we designed to evaluate the performance
of the system in different contexts, and present the
results obtained. Finally, we briefly describe how a
prototype “on-the-fly accentuation” (OTFA) system
was implemented within the Emacs text-editor.

Although our research focuses on unaccented
Freach texts, we believe that our approach could be
adapted to other languages that use diacritical marks,
as well as to other types of text corruption, such as
those mentioned above. The AAI problem and the
solutions that we propose are also related to the more
general problems of word-sense disambiguation and
spelling and grammar checking.

2 Basic Automatic Accent Insertion

In its simplest form, the automatic acceni insertion
problem can be formulated this way: we are given as
input an unaccented French text, in the form of a se-
quence of unaccented words wyws ... w,. To every one
of these input words w; may correspond any number
of valid words {accented or not) w;; ... wip: our task
is to disambiguate each word, i.e. to select the correct
words 1w, at every position in the text, in order to
produce a properiy accented text.

An examination of the problem reveals that the vast
majority (approximately 85%) of the words in French
texts carry no accents at all, and that the correct form
of more than hall of the remaining words can be de-
duced deterministicaily on the basis of the unaccented
form. Consequently, with the use of a good dictionary,
accents can be restored to an unaccented text with a
success rate of nearly 95% (i.e., an error in accen-
tuation will occur in approximately every 20 words).
The problems that remain at this peint mostly re-
volve around ambiguous unaccented words, i.e. words
to which more than one valid form may correspond,
whether accented or not?.

Obviously, for many such ambiguities in French, a
simple solution is to systematically select the most
frequent alternative. For instance, the most frequent

TAlis Technologies: http://vww. alis,com
2As we will see later on, other problems are caused by un-
known words , 1.e. words for which no valid forms are knowrn.
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word in most French texts is usually the preposition
de, which turns out to be ambiguous, because there is
also a French word dé, meaning either dice or thimble.
If we simply ignore the latter form, we are likely to
produce the correct form over 99% of the time, even
in texts related to gambling and sewing! This general
strategy can be implemented by determining a pri-
ort the most frequent alternative for each set of am-
biguous words in a dictionary, by means of frequency
statistics extracted from a corpus of properiy accented
French text. Using this simple method, we achieve a
success rate of approximately 97%, i.e. roughly one
error per 35 words.

Clearly, to attain better performances than these,
an automatic accent insertion system will need to ex-
amine the context within which a given ambiguous
word appears, and then resort to some form of lin-
guistic knowledge. Statisticel language models seem
to be particularly well fit to this task, because they
provide us with quantitative means of comparing al-
ternatives. :

We propose an automatic accent insertion (AATl}
method that proceeds in two steps.

1. Hypotheses generation: identify for each in-
put word the list of valid alternatives to which it
may correspond;

2. Candidate Selection: select the best candidate
in each list of hypotheses.

This is Hlustrated in Figure 1.

2.1

Hypotheses generation produces, for each word w; of
the input, a st of possible words wy ... win Lo which
it may correspond. For example, the form pousse
may corvespond to either pousse or poussé; cote to
cote, céte, coté or c¢6té;, the only valid form for fran-
cais is francais (with a cedilla), and ordinafeur is its
own utique correct form. In theory, nothing precludes
generating fnualid as well as valid hypotheses at this
stage: for instance, for cofe, also generate cdté and
cote. But to limit the number of possibilities that the
system must consider, hypotheses are produced using
a list of known French word-forms, indexed on their
unaccented version. On the other hand, when the hy-
potheses generator encounters word-forms that it does
not know, it simply reproduces them verbatim.

2.2 Candidate Selection

Once lists of hypotheses have been identified for each
input word, the best candidate of each list must be
identified. For this, we rely on a stochastic lan-
guage model, which can assign a score to any sequence
of words, corresponding to the probability that the
model generate this sequence. Given an input se-
quence of words wyws ... w,, and for each word w;

Hypotheses Generation



[nput text;

Hypotheses generation:
Lo
fob— 1a

Mais

Hais

Candidate selection:
i I
! 14

Maisg

Mais

Mais, la cote une fois rejointa,il noud eut fallu retrouver 1’escale.

cote
coté
cdte -
cété

cote
coté
céte

chté

une " foim rejointe. ..

une = foig*™ rejointe...

Figure 1. Automatic

in the sequence, a list of hypotheses {wi,..., Wim)s
our goal can be reformulated as finding the sequence
of hypotheses wig, wag, . . - Wnp, that maximizes the
overall likelihood of the output sequence.

The stochastic model we use is a Hidden Markou
Model (HMM), within which a text is viewed as the re-
sult of two distinet stochastic processes. The first pro-
cess generates a sequence of abstract symbols. In our
case, these symbols correspond to morpho-syntactic
tags, e.g. “cominon noun, masculine-singular”, “perd,
present indicative form, third persen plural”. In an
N-tag HMM, the production of a tag depends on the
N —~ 1 preceding tags, so that the probability of ob-
serving a given tag ¢; in a given context follows a con-
ditional distribution Pt n ... ti—1).

Then, for each tag in this first sequence, a second
stochastic process generates a second symbol: in our
case, these symbols correspond to actual words in the
language.

The parameters that define the model are:

e P(t;)hi=1): the probability of observing tag ti,
given the previous N — 1 tags (h;.., designates
the series of &V — 1 tags ending at position ¢ — 1);

e FP(w;lt;): the probability of observing word wy
given the underlying tag t;.

Given these parameters, the probability of generat-
ing some sequence of words w = wywe ... w, can be
evaluated. If 1" is the tag alphebet, and T denotes
the set of ali possible sequences of n tags of T, then:

Plw) = Z HP(tiihi—l)P(”‘Uifti)

tET™ =]

The direct calculation of this equation requires a
number of calculation that is exponential in the length
of the sequence. However, there exists an algorithm

accent insertion method

that computes the value of P(w) in polynomial time
(Rabiner and Juang, 1986).

To find the sequence of hypotheses that maximizes
the probability of the text, each individual combina-
tion of hypotheses is examined. Because the number
of possible combinations grows exponentially with the
length of the text, we will want to segment the text
into smaller pieces, whose probabilities can be maxi-

" mized individually. Sentences are usually considered
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te be syatactically independent, and so we may as-
sume that maximizing the probability of each sentence
will yield the same result as maximizing the whole
text. Even within sentences, it is sometimes possible
to find subsegments that arve “relatively” independent
of one another. Typicaily, the inner punctuation of
sentences (semicolons, commas, etc.) separates seg-
ments that are likely to be independent of one an-
other. In the absence of inner punctuation, it is still
possible to segment a sentence around regions of “low
ambiguity”.

Our AAT method relies on a heuristic segmentation
method, which cuts up each sentence into a number of
segments, such that the number of combinations of hy-
potheses to examine in each segment does not exceed
a certain fixed threshold, while minimizing dependen-
cles between segments. This segmentation strategy
effectively guarantees that the accent-insertion can be
done in polynomial time. But we sometimes end up
segmenting the text at “sub-optimal” locations. This
will have consequences on performance, as we will see
in the next section.

Segments are processed in a left-to-right fashion. In
practice, we have realized that one way of minimizing
the negative impact of sub-optimal segmentations is
to prepend to each segment the last few words of the
previous segment, as output by the AAJY system. This
seems to have the effect of “priming” the model. The
prepended words are then simply dropped when the



final result is pieced together.

2.3 Implementation

The method presented in the previous section was
implemented in a program called Réacc. This pro-
gram, given a hypotheses generator, the parameters
of & HMM and an input, unaccented French text, pro-
duces an accented version of that text on the output.

The hypotheses generator we used was produced
from a list of over 250 000 valid French words, ex-
tracted from our French morpho-syntactic electronic
dictionary.  Such a large dictionary is probably
overkill, and in fact, it may even be the case that
it uselessly slows down processing, by proposing ex-
tremely rare (although probably valid) words. (The
only francophones we tnet that had heard of a [¢ were
crossword puzzle addicts.)

The language model used is a 2-tag HMM, based
on a set of approximately 350 morpho-syntactic tags.
The parameters of the HMM were first estimated by
direct frequency counts on a 60 000 words, hand-
tagged extract of the Canadian Hansard. The pa-
rameters were then refined, using Baum-Welch reesti-
mation (Baum, 1972}, on a 3 million word (untagged)
corpus consisting of equal parts of Hansards, Cana-
dian National Defense documents and French press
revues {Radio-France International).

2.4 Performance Evaluation

One of the interesting properties of the AAT prob-
lem is that the performance assessment of a given
program is a very straightforward affair: all we need
ts a corpus of correctly accented French text, and a
“de~-accentuation” program. Performance can be mea-
sured by counting the number of words that differ in
the original text and its re-accented counterpart.

For the purpose of our evaluation, we used & test
corpus made up of various types of text. It contains
Hansard, National Defense and RFI documents (dis-
tinct from those used in training), but alsoc United
Nations documents, court transcripts, computer man-
uals as well as sorne literary texts. The whole corpus
contains 57 966 words (as counted by the standard we
UNIX program).

Apart from the hypotheses generator and the lan-
guage model parameters, a number of parameters af-
fect the performance of the program. The most im-
portant of these is the maximum number of combina-
tions per subsegment, that it used in the segmentation
heuristic. In what follows, we refer to this parameter
as 5. The results obtained for different values of 5 are
presented in Table 1. All tests were done on a Sparc-
STATION 10 computer, with 32 MB of memory.

A cursory look at the results reveals that there is
much to be gained by allowing the system to work on
longer segments. However, beyond a certain limit, the

quality of the results tends to levei off, while the run-
ning time increases radicatly. Depending on the con-
text of application of the program and the resources
available, it would seem that acceptable results can be
obtained with S set at around 16 or 32. In this set-
ting, the system will process anywhere between 10 000
and 20 000 words per minute.

It is interesting to look at where Réacc goes wrong.
Table 2 provides a rough classification of accent-
restoration errors made by the program on our test
corpus with 5 set at 16. The largest category of ac-
centuation errors includes a rather liberal grouping of
errors that have a common feature: they are the resuit
of an incorrect choice pertaining to an acute accent on
a final e. In most cases {although not all), this corre-
sponds to an ambiguity between a finite and participle
forms of a verb, e.g. aime as opposed to eimé. The
next group of errors are those that stem from inad-
equacies in the hypotheses generator - ie. cases in
which the generator simply does not know the correct
accented form. In most cases (nearly half), proper
nouns are involved, but, especially in more techni-
cal texts, there are also many abbreviations, non-
French words and neologisms {e.g. réaménagement,
séropositivité). The next category concerns a unique
word pair: the preposition ¢, and e, the third person
singular present indicative form of the verb avoir.

2.5 Related Work

El-Béze et al. (1994) present an AAI method that
is very similar to ours. It also proceeds in two steps:
hypotheses generation, which is based on a list, of valid
words, and candidate selection, which also relies on a
Hidden Markov Model. The main difference between
their method and ours is how the HMM is used to
score competing hypotheses. While we segment the
text into “independent segments” and maximize the
probability of these segments, thelr program processes
the text from left to right, using a fixed widsh “sliding
window™:

e For sach word w;, the hypotheses generator pro-
duces a list of possible word/tag alternatives:
(wiz, 1)y« (Wi, tar ),

¢ Candidate Selection proceeds by selecting a spe-
cific pair (wiy, t;;) at each position; the goal is to
find the sequence of word/tay pairs whose prob-
ability is maximum according to the model:

n

T Plwijiltas ) Ptiiltizajion s tio2si o)

de=]

s To avoid combinatorial problems, instead of com-
puting this product for all possible sequences, the
system finds at each position ¢ in the sequence
the pair (wy;,t;;) that locelly maximizes that part
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Max. no. of Running time | Total number of | Average distance
combinations (seconds) errors (words) between errors
per segment (5] {words)
2 68 821 70
4 85 560 103
8 132 466 124
16 169 441 130
32 277 429 134
64 429 425 136
128 731 420 137

Table 1: Results of AAY Experiments on 58K-word Test Corpus

Type of error Number of occurrences | Percentage
-¢ VS, € ending 171 383%
Unknown words i1t 25.9%
aVS. ¢ 69 15.7%
Other 90 20.4%
L Fotal 441 100.0%

Table 2: Classification of Accent Restoration Errors (S = 16)

of the global computation within which it is in-
volved:

P x P x Py
where Pt' = .P(’!Uij‘. ltij‘- )P(iij; Itiﬁlji--uti-'-zji—z)'

2 These computations proceed from left to right, so
that the optimal tag found for position i will be
used in the computation of the optimal word/fag
pairs at positions i + 1 and ¢ + 2. |

The experimental results reported in El-Beze et al.
{1994) indicate success levels slightly superior to ours,
This may be explained in part by the use of a better
language model (their HMM is three-tag, ours is two-
tag). It must be said, however, that their test-corpus
was relatively small (in all, a little over 8000 wards),
and that the performances varied wildly from text to
text, with average distances between errcrs varying
hetween 100 and 600 words.

A method which exploits different sources of infor-
mation in the candidate selection task is described in
Yarowsky (1994b): this system relies on local context
(e.g., words within a 2- or 4-word window around the
current word), global context (e.g. a 40-word window),
part-of-speech of surrounding words, etc. These are
combined within a unifying framework known as de-
cision lists. Within this framework, the system bases
its decision for each individual candidate selection on
the singie most reliable piece of evidence.

Although the work described in Yarowsky (1994Db)
does address the prohlem of French automatic accen-
tuation, it mostly focuses on the Spanish language.
Furthermore, the evaluation focuses on specific am-
biguities, from which it is impossible to get a global
performance measure. As a result, it is unfortunately

not currently possibie to compare these findings with
ours in a quantitative way.

In Yarowsky (19%4a), the author compares his
method with one based on the stochastic part-of-
‘speech tagger of Church (1988}, a method which ob-
viously has a number of points in common with ours.
In Mr Yarowsky’s experiments, this method is clearly
outperformed by the one based on decision lists. This
is most apparent in situations where competing hy-
potheses are “syntactically interchangeable”: pairs
of words with identical morpho-syntactic features, or
with differences that have no direct syntactic effects,
e.g. present/preterite verb tenses. Such ambiguities
are better resolved with non-local context, such as
temporal indicators. As it happens, however, while
such situations are very common in Spanish, they are
rare in French. Furthermore, Mr Yarowsky’s language
model was admittedly quite wealk: in the absence of
a hand-tagged training corpus, he based his maodel on
an ad hoc set of tags.

3 On-the-fly Automatic Accent
Insertion

As mentioned earlier, the existence of unaccented
French texts can in' part be explained by the lack
of a standard keying convention for French accents:
conventions vary from computer to computer, from
keyboard to keyboard, sometimes even from program
to program. Many users type French texts without
accents simply because they are unfamiliar with the
conventions in a particular environment, or because
these conventions are too complicated (e.g. hitting
three keys in sequence to type a single accented char-
acter).
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Clearly, in some situations, automatic accent inser-
tion offers a simple solution to this problem: type the
text without accents, run an AAI program on the text,
and revise the output for accentuation mistakes. Of
course, such a solution, if acceptable for one-time pro-
duction of short texts, is not very practical in general.
If a text is subjected to a number of editions and re-
editions, or if it is produced cooperatively by several
authors working in different environments, then it may
need to go through a series of local re-accentuations.
This process, if managed by hand, is error-prone and,
in the end, probably more laborious than typing the
accents by hand.

If, however, the accents are antomatically inserted
on-the-fly, as the user types the text, then accent re-
vision and corrections can also be done as the text
is typed. I such an on-the-fly accentuation {OTFA)
system is capable of producing acceptable results in
real-time, it may become a realistic alternative to the
manual insertion of accents. In what follows, we ex-
amine how this may be done,

3.1 Methed

How does OTFA differ from the basic AAI problem?
In Section 2, the input was considered to be a static
and (hopefully) complete text. In OTFA, the fext is
dynamic: it changes with every edit operation per-
formed by the user. Therefore, the OTFA method
that is conceptually the simplest is to re-compute the
accentuation of the whole text after each edit, L.e. re-
peatedly apply to the entire text an AAI method such
as that proposed earlier.

Of course, such a method is impractical, mainly be-
cause it will likely be computationally excessively ex-
pensive. It is also overkill, because changes in one
region of the text are unlikely to affect the accentu-
ation of the text in more or less distant regions. In
fact, #f we use the AAI method of Section 2, changes
in one location will have no effects cutside the sen-
tence within which the edit occurs, because sentences
are all treated independently. Because sentences are
themselves sub-segmented, it is tempting to think that
the effect of a given edit will be even further restricted,
to the segment of the sentence within which it takes
place. This, however, is not generally true, firstly be-
cause an edit is likely to affect the sub-segmentation
process itself, and also because changes in one seg-
ment can have cascading effects on the subsequent seg-
ments, as the last words of each segment are prefixed
to the following segment as additional context.

S0 a more practical sclution is to process onty the
sentence within which the latest edit occurred. There
are still problems with this approach, however. While
the user is editing a sentence, chances are that at any
given time, this sentence ig “incomplete”. Further-
more, although modern text-editors allow insertions
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and deletions to be performed in any order and at
any position of the text, in a normal text-editing con-
text, given the natural tendency of humans to write in
a beginning-to-end fashion, the majority of the edits
in a French text will be left-to-right insertions at the
end of sentences. This means that at any given time,
the text to the left of the latest edit is likely to consti-
tute relevant context for the AAT task, while the text
to the right is likely not to be relevant. In fact, taking
this text into consideration could very weil mislead
the AAT process, as it may belong to a completely
different sentence.

This suggests a further refinement: after each edit,
process only that part of the current sentence that lies
to the left of the location where the edit took place.

Also, it seems that there is no real need to take any
action while the user is modifying a given word, and
that it would be wiser to wait until all edits on that
particular word are finished before processing it. By
doing so, we will not only save computational time, we
will also avoid annoying the user with irrelevant accen-
tuations on “partial” words. Notice, however, that de-
tecting the exact moment when the user has “finished”
typing or modifying a word can be a tricky business.
We will deal with this question in Section 3.4.

One of the potential benefits of performing accen-
tuation on-the-fly, as apposed to o posteriori AAL is
that the user can correct accent errors as they hap-
pen. In turn, because accentuation errors sometimes
cascade, such on-the-fly corrections may help the AAI
“stay on the right track”.

If we want to capitalize on user-corrections, we will
need to:

1. somehow distinguish “corrections” from other
types of edits: the reason is that we don’t want
to override the user’s decisions when performing
AAY This question will also be dealt with when
we discuss implementation detalls (Section 34).

limit the scope of the AAls to a small number of
words around the location of the last edit: the user
can only correct the error that he sees; in theory,
the effect of AAT after each edit is limited to the
current sentence, but sentences come in all sizes.
If a given “round” of AAT affects text too far away
from the site of the last edit, which is usually also
the focus of the user’s attention, then he is likely
not to notice that change. For this reason, it
seems reasonable to restrict the actual scope of
the AAT process to just a few words: intuitively,
three or four words would be reasonable. Note
that this doesn’t imply restricting the amount of
context that we provide the AAT with, but only
limiting the size of the region that it is allowed to
modify.



To summarize, the OTFA method that we propose
essentially follows these lines:

e OTFA is performed by repeatedly applying an
AAT method (such as that of Section 2) on the

text.

« AAIl rounds are triggered every time the user fin-
ishes editing a word.

e The scope of AAT (which we call the AAI win-
dow) is limited to a fixed number of words to the
left of the last word edited.

s If this can be uselul to the AAT process, more con-

text can be given, in the form of additional words
belonging to the same sentence to the left of the
AAT window {what we call the context window).

3.2 Performance Evaluation

The ultimate goal of OTFA is to facilitate the editing
of French texts. 'Therefore, it would be logical to eval-
uate the performance of an OTFA system in those
terms. Unfortunately, the “ease of typing” is a no-
tion tlat is hard to quantify. In theory, typing speed
would seem to be the most objective criterion. But
measuring performance using such a criterion would
obviously require setting up a complex experimental
protocol. On the other hand, the number and nature
of parameters involved prohibits a “theoretical” eval-
uation in these terms.

What we can reliably evaluate, however, is the ab-
solute performance of an O TFA system, in terms of
the number of accentuation errors, for a giyen editing
“session”. Such a measure gives us an intuitive idea
of the impact of the OTFA system on the “case of
typing”. '

We conducted a number of experiments along this
line, to evaluate how an OTFA system based on the
AAI system of Section 2 would perform. All experi-
ments were done by simulation, using the same corpus
that was used in Section 2.4. The editing “session” we
simulated followed a very simple scenario: the user
types the whole test corpus, from beginning to end,
without typing accents, without maling errors, and
without correcting those made by the OTFA system.

As was the case with the Réacc program, several
parameters affect the quality of the results and the
computation time required. The only parameter that
is specific to our OTFA method, however, is the size
of the AAI window. This parameter, which we refer
to as W, is measured in words. We conducted distinct
experiments with various vatlues for W, the results of
which are summarized in Table 3. In all of these ex-
periments, the segmentation factor 5 was set at 16.

The first conclusion that we can draw from Table 3
is that there is much to be gained in using an AAI
window of more than one word: setting W = 2 al-
lows to cut down the number of errors by almost 60%.

Performance quickly levels off, however, so that near-
optimal results are obtained with a three- or four-word
window. This is encouraging, because it seems reason-
able to assume that the user can effectively monitor a
window of that size, and therefore detect accentuation
errors when they occur.

Another point that is very encouraging, and per-
haps surprising, is that with W = 3, the performance
of our OTFA system rivals with that of the basic AAI
experiments reported in Section 2.4. One possible ex-
planation is that because the OTFA works with only
a small number of words at sach round (i.e. only the
words iz the AAT window), the system never has more
than S5 = 16 combinations to examine, and therefore
never needs to segment sentences into smaller pieces.
In the end, both ways of procesding are probably
more or less equivalent, although more experimenta-
tion would be required to determine this for sure. The
major difference, of course, is that since OTFA recom-
putes accentuation with every new word, its compu-
tational cost is accordingly higher. However, as seen
in Section 2.4, our AAT system can process 20 000
words per minute. Since very few typists can enter
more than 160 words per minute, even a straightfor-
ward OTFA implementation should be able to handle

the required computations in real-time.
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3.3 User-feedback

We mentioned earlier that one of the expected benefits
of OTFA, as opposed to applying AAT on a text o pos-
teriori, is that the user can spot accent errors as soon
as they happen, and correct them right away. In fact,
we believe that this form of user-feedback can even be
further exploited, to improve the performance of the
system itself. As pointed out in Section 2.4, about a
quarter of AAI errors are caused by unknown words,
t.e. words in the correctly accented version of the text
which are unknown to the hypotheses generator. This
suggests an easy way of exploiting user-feedback: sys-
tematically add to the hypotheses generator all user-
corrected words whose form is unknown.

In principle, if we add such a mechanism to our
OTFA system, and if the user corrects the AAT er-
rors as soon as they happen, unknown words will be
lexicalized right after their first appearance, and the
system should only make one error per unknown word,
In preliminary experiments with this idea, the average
distance between errors passed from 138 to 156 words,
a reduction of almost 12% on the total number of er-
rors. Qur test corpus being heterogeneous by design,
unknown words do not repeat very often. We suspect
that even better improvements would be observed on
homogeneous texts of similar size.

This idea of exploiting user-feedback to modify the
parameters of the OTFA dynamically can actually be
pushed further. One of the current problems with



[ AAT window (W) | Total errors | Average distance
{words) between errors
(words)
1 1125 a2
2 461 126
3 420 138
4 417 139
8 417 139
15 | 417 139

Table 3. OTFA Simulation Resulis

our OTFA system is its sometimes annoying tendency
to systematically select the most frequent alternative
when confronted with syntactically interchangeable
words. For example, the two French words cote and
edte have similar morpho-syntactic features {common
noun, feminine singular} and so, from a grammatical
point of view, are totally interchangeable. It so hap-
pens, however, that in the language model’s training
corpus, the second form, which is highly polysemous,
is much more frequeni. Therefore, the OTFA will sys-
tematically produce that form rather than the other.
If the user of the system is writing about the stock
market for example, he is likely to want to use the
first form cote, and therefore to react negatively to
the system’s insistence on putting a circumflex accent
where none should appear.

To solve this problem, some form of dynamic lan-
guage modeling is reguired. We have hegun experi-
menting with an approach initially proposed by Kuhn
and Mori {1990) to solve a similar problem in speech
recognition applications. Essentially, they suggest us-
ing local context to estimate the parameters of a un-
igram Markov model, and to use this model in con-
junction with the static HMM to evaluate competing
alternatives. Preliminary results with this approach
are encouraging, although much work remains to be
done.

3.4

As mentioned earlier, the AAI method presented in
Section 2 has been implemented as a program and C
function library. Based on this implementation, a pro-
totype OTFA system was developed and integrated to
the Emocs text-editor. Althcugh Emacs is not gen-
erally viewed as a true word-processing environment,
it was a natural choice for prototyping because of its
openness and extendibility.

In our implementation, the user of Finaes has access
to a special editing mode called Réacc-mode (techni-
cally speaking, a minor-mode). When in this mode,
the user has access to all the usual editing functions:
he can move the cursor around, insert, delete, ete.
The main difference with the normal “fundamental”
mode is that now, accents are automatically inserted

Implementation
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as words are typed, without the user having to explic-
itly type them.

The implementation follows the general lines of the
OTFA method presented in Section 3.1: every time
a new word is inserted, the system identifies the AAY
window, submits the words that fall within this win-
dow to the AAI system, and replaces the content of
the window with the newly accented words.

In practice, Emacs and the AAI program run as
separate processes, and communicate asynchronously:
when a new word is typed, Emacs sends the AAT win-
dow to the AAI process, along with other relevant
information (context, position, etc.), and returns the
control to the user. The AAT program processes the
“accentuation request” in the background, and sends
the results back to Emacs as soon as they are ready.
When this happens, Bmacs interrupts whatever it was
doing, and replaces the original contents of the AAI
window with the newly arrived words. Thig way, user-
interaction is not significantly slowed down by the AAI
process, because time-consuming computations typi-
cally take place during the editor’s idle time, between
keystrokes.

It is the editing process’ responsibility to initi-
ate AAI rounds, and therefore to determine when a
new word has been typed. After experimenting with
various strategies, we opted for a relatively simple
method, based on the possibility to mark individual
characters of the text with specific “properties” in
Emacs. When words are processed by the AAI pro-
gram and re-inserted into the text, they are systemat-
ically marked as euto-aceented. By contrast, charac-
ters typed by the user do not carry this mark. Every
time the user types a space or newline character, we
examine the word immediately preceding the cursor:
if all its characters are unmarked, then a new AAI
round must be initiated.

We mentioned earlier that it was important for an
OTFA system not to override the user’s decisions.
Two situations are particularly important to consider:
when the user manually types an accent within a new
word, and when the user corrects the accentuation of a
word. In both cases, it is undesirable that the OTFA
modify the words in question. The character mark-



ing capabilities of Emacs are also used to detect these
situations. The first case (new word with accents)
will be identified easily by the presence of accented
characters within an unmarked word. The second sit-
uation (accent corrections) is more difficult to detect,
but in general, a mix of marked and unmarked char-
acters within a single word s a good indicator that
corrections have taken place.

When these two situations occur, not only do we not
initiate an AAI round, we also inhibit any further re-
accentuations on these words, by marking their char-
acters as user-velidoted. Words bearing this mark will
never be touched by AAL This type of marking is not
limited to user-inserted accents and user-corrections:
when the user turns Réacc-mode on, all existing text is
initially marked that way. Later on, when AAI rounds
are initiated and the system locates the AAT window,
all text outside this window is also marked as user-
validated. This way of proceeding, while allowing the
OTFA system to do its work during simple text inser-
tions, limits the possibility of “unpleasant surprises”
when more complex interactions take place {deletions,
corrections, cut-and-paste operations, etc.).

4 Conclusion

We have presented a method for automatically insert-
ing accents into French text, based on a stochastic
language model. This method was implemented into
a program and ¢ library of functions, which are com-
mercially available from Alis Technologies. We have
alse shown how this method can be used{te do on-
the-fly accent insertions within a word-processing en-
vironment. A prototype OTFA system was also im-
plemented and integrated into the Emacs editor.

Text processed with our system contains less than
one accent error per 130 words on average, regardless
of whether the system is used on its own or within
an OTFA envivonment. On a Sun SparcSTATION
1G computer, with 32 MB, the system will process
approximately 20 000 words per minute. Within the
Emacs OTFA prototype, because AAI is performed
asynchronously, the performance of the editor itself is
not affected, and accents are inserted faster than this
typist can type®.

The program has been made available to students
and employees of the Université de Montréal’s com-
puter science department, and initial feedback has
been positive. We are currently examining the pos-
sibility of integrating our OTFA method to a “real”
word-processor, such as Microsoft Word.
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Introduction

Either directly or indirectly, the lexicon for a natu-
ral language specifies complementation frames or va-
lences for open-class words such as verbs and nouns.
Constructing a lexicon of complementation frames
far large vocabularies constitutes a challenge of scale,
with the further complication that frame usage, like
vocabulary, varles with genre and undergoes ongo-
ing innovation in a Hving language. This paper ad-
dresses this problem by means of a learning tech-
nigue based on probabilistic lexicalived context free
gramumars and the expectation-maximization (EM)
algorithm. Given a hand-written grammar and a
text corpus, frequencies of a head word accompanted
by a frame are estimated using the inside-outside ai-
gorithm, and such frequencies are used to compute
probability parameters characterizing subcategoriza-
tion. The procedure can be iterated for improved
models. We show that the scheme is practical for
large vocabularies and accurate enough to capture
differences in usage, such as those characteristic of
different domains.

A grammar and formalism

The core of the grammar is an X grammar {Jackend-
off [1977]) of phrases including noun phrases, preposi-
tional phrases, and verbal clusters. A representative
verbal structure is given on the left in Figure 1. The
symbol vFC is read “finite verb chunk”; similarly we
work with noun chunks {NC), prepositional chunks
{rc), and so forth. Our use of the chunk concept
follows Abney [1991], Abney [1995]. Categories are
interpretable in terms of a feature decomposition, but
are treated as atomic in the formalism. We depart
from a standard context-free formalism in that heads
are marked on the right hand sides of rules, using a
prime (7).

The grammar includes complementation rules for
verbs, nouns, and adjectives. Complements are at-
tached at a level above the chunk, which we call the
phrasal level. For instance, the category vrp is ex-
panded as a finite verb chunk vFC and a sequence

36

of complements. This is Hlustrated on the right in
Figure 1, where the vFC headed by decided takes a
VvTCP complement, the vroC headed by emphasize
takes an NP complement, and so forth.

Finally, the least standard part of the grammar is a
targe set of state or n-gram rules which form a parse
without constructing a standard clause-level analy-
sis. Instead, phrasal categories are strung together
with context-free rules modelling a finite state ma-
chine, where the states are categories consisting of
an ordered pair of phrasal categories. This results
in right-branching structures, ag llustrated Figure 2.
Note that the entire tree on the right in Figure 1
could be substituted for the finite verb phrase viep in
the tree on the left in Figure 2. The state rules allow
almost all the sentences (about 97%) in the corpus to
be parsed, at the price of not assigning linguistically
realistic higher-level structure.

We now define headed congext-free grammars in
the sense employed here.

Definition. A headed context free grammar is a
tuple (N, T, W £ R,s), where: (i) N and T are dis-
joint sets, interpreted as the non-terminal and ter-
minal categories respectively, (i) W is a set, in-
terpreted as the set of words. (iii) £ is a relation
between W and T, indicating the possible terminal
categories (parts of speech) for a given word. (iv)
The set of headed productions R is a finite subset of
N x N* x {NUT)x N*, such that each non-terminal
occurs as the left hand side of some rule and each
terminal occurs on the right hand side of some rule.
(v} s € N, with the interpretation of a start symbol.

We typically use 7 as a variable for mother cate-
gories, n for head daughter categories, and « and 3
for the category sequences flanking the head on the
right hand side, so that {1, @, n, 3) represents a rule.
@ is used as a variable for non-head categories.

A category ft in N is a projection of a category n
in NUT if there is some rule of the form (A, o, 1, ).
The set of lexicalized nonterminals N C W x N is
the composition of £ with the transitive closure of the
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Figure 1: llustrations of a finite verb chunk and complementation.

projection relation. We have (w,n) eA if the word w
can be the lexical head of the nonterminal category
n (in a complete or incamplete tree).

Lexicalization and the probability
model

This section defines a parameterized family of proba-
bility distributions over the trees licensedtby a head-
lexicalixed CFG. The main ideas on the parameter-
ization of a lexicalized context free grammar which
are employed here derive from Charniak [1995]; see
also the remarks on lexicalization in Charniak [1993,
section 8.4].

The head marking on rules is used to project lexical
items up a chain of categories. In the transitive verb
phrase on the right in Figure 2, guestion is projected
to the NP level, and asked is projected to the vrp
level. In this tree, the non-terminal nodes are lexi-
calized non-terminals, while the terminal nodes are
members of £. The point of projecting head words
is to make information which probabilistically condi-
tions rules and lexical choices available at the rele-
vant level. At the top level in this example, the head
asked 1s used to condition the choice of the phrase
structure rule VIp - vICT NP as well as the choice
of question, the head of the object.

We now define events which characterize choices of
rules and of lexical heads.

Definition. Given
a grammar G = (N, T, W, L, R,s) with lexicalized
non-terminals A, the set of rule events ER(G) is the
set of tuples (w, @, q,n, 3) such that (w, )} is an el-
ement of A and (fi, o, n, B8} is an element of R. The
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set, of lexical choice events EL((GF) 13 the set of tuples
{(w, A, z,v) such that (1) (w,f) and (v, z) are elements
of A;! (it) in some rule of the form (A, o, m, 3), @ is
an element of one or both of the category sequences
a and g; and

By virtue of the length of tuples, ER{G) and
EL(G} are disjoint, and the union E{G) can he
formed without confusing lexical with rule events.

A head-lexicalized PCFG is represented as a func-
ition mapping events to real numbers.
Definition. Let & be a headed context free gram-
mar. A head-lexicalized probabilistic context f{ree
grammar with signature & is a function p with do-
main E{G) and range [0,1] satisfying the condi-
tions: (i) Fixing any lexicalized non-terminal (@, 7),
YoanpPoaeng = 1; (i) Fixing any lexicalized non-
terminal {@,#) and possible non-head daughter «,
Em,w Do = 1. Here the value of the function
p on a rule event is written as pg s 0.2, and on a
lexical event as pg sz 0

Toe assign probability weights to trees, we use
a tree-licensing and labelling interpretation of the
grammar; a node in a tree analysis is labeled with
event corresponding to the rule used to expand the
node, and the list of lexical events for the non-head
daughters of the node. Where 7 is a labeled tree li-

Tn the events, conditioning factors are ordered in the
way they are dropped off in the smoothing procedure de-
scribed below. In a lexical event {w, ft,z, v}, the choice of
the word v is conditioned on the parent lexical head w,
the parent category #, and the child category z. In the
first smoothing distribution, the first conditioning factor,
i.e. the parent head w, 15 dropped.
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Figure 2: Left: finite-state structure; Right: Lexicalization.

censed by G, we define e(r} 1 BE(F) = IV to be a
function counting occurrences of events as labels in
7. Algebraically, we think of e(r) as a monomial in
the variables E{G); the exponent of a given variable
(or event) z is the number of ocecurrences of z in 7.
We denote the evaluation of a polynomial or mono-
mial ¢ in the variables E(G) by subscripting: ¢, is
the value of ¢ at the vector of reals p. Relative to
a parameter setting p, [e(7}], is interpreted as the
probabilistic weight of the labeled tree 7.2

These notions are exemplified in Figure 3, which
is a phrase structure tree for the N1 {read: N-bar)
big big problem in a grammar where N1 is the sen-
tence category. Fach non-terminal is labeled with a
phrase structure rule, and with lexical choice events
for non-head daughters. In this case, the only non-
head daughters are the two Al’s headed with bead
big. (problem,N1,Albig) is a lexical choice event
where big is selected as the head of an Al with par-
ent category NI, and parent head problem. An event,
monomial corresponding to the event tree is obtained
as the symbolic product of the events labeling the
tree.

Parameter Estimation

Given a grammar G, the inductive problem is to es-
timate a head-lexicalized PCFG with signature G.
We work with the standard method for estimat-
ing PCFGs, based on the Expectation-Maximization

%As with ordinary PCFGs, depending on the parame-
ters, the construction may or may not define a probability
measure on the set of finite trees licensed by G. For the
general case, infinite trees can be included in the sam-
ple space. This requires an extension in the definition of
the measure but does not affect the probabilities of finite
trees.
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framework (Baum & Selt [1968]; Dempster, Laird &
Rubin {1977]).

Above, we defined the event polynomial e(r) for
an event tree r licensed by &. The event polynomial
for a sentence o is the surn of the event polynomi-
als for the event trees with yield o. Where corpus
C is a sequences of sentences, the corpus eveni poly-
nomial e(C) is the (polynomial) product of the event
polynomials for the sentences in €. In these terms,
maximum likelihood estimation selects a parameter
setting p such that the value [e(C)], of the corpus
polynomial is maximized; this corresponds to select-
ing & parameter setting which maximizes the proba-
bility of the corpus.

The E step of the EM algorithm computes an ex-
pected event count function which can be defined in
terms of the corpus polynomial. In the estimation
of PCFGs using the inside-outside algorithm, event
counts are computed iferatively, sentence by sen-
tence. The computation uses a packed parse forest, a
compact and-or graph representing a set of trees and
the sentence event polynomial, and which allows ef-
ficient computation of expected event counts. Some-
what more formally, we use the Inside-outside algo-
rithm {Baker {1979]). to compute E,(z{o) : E{G) —
IR where z ranges over events in the join rule and
lexical event space E((), defined earlier. ¢(e, p}(2)
has the probabilistic interpretation of the expected
number of occurrences of the event z in the set of
trees with yield o.

Given a parameter setting p, event counts are com-
puted and summed over the sentences in the corpus.
In the algorithm of Baum and Sell, new parame-
ter values would be defined as relative frequencies
of event counts, i.e. maximum-likelihood estimation
based on hidden data in the EM framework. We
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Figure 3: On the left, an event tree, On the right, the corresponding lexicalized tree. On the bottom, the event
monomial obtained as a symbolic product of the event labels. The lexical choice event involving START-CAT
chooses the head of the sentence, in this case problem.

use instead a modified M step involving a smooth-
ing scheme in order to deal with the size of the pa-
rameter space and the resulting problems that (i)
counts are zero for the majority of events, and {ii)
the parameter space is too large to be represented
directly in computer memory. Lexicalized rules are
smoothed against non-lexicalized rules in a standard
back-off scheme (Katz [1980]). The smoothed proba-
bility is defined as a weighted sum of the maximum-
likelihood estimates for the lexicalized and unlexi-
calized rule probabilities. The smoothing weight is
allowed to vary through five discrete values as a func-
tion of the frequency of the word-category pair. The
parameters give greater weight to the lexicalized dis-
tribution when enough data is present’to justify it.
The smoothing parameters are set using the EM al-
gorithm on reserved data.

For the lexical choice distributions, an absolute dis-
counting scheme from Ney, Essen & Kneser [1994] is
used, which is similar to Good-Turing, but somewhat
simpler to work with.

The experiment

We estimated a head-lexicalized PCFG from parts
of the British National Corpus (BNC Consortium
[1995]), using the grammar described in the first see-
tion and the estimation method of the previous sec-
tion. A bootstrapping method was used, in which
first a non-lexicalized probabilistic model was used
to collect lexicalized event counts. On the next iter-
ation, counts were estimated based on a lexicalized
welghting of parses, as described in the previous sec-
tion.

Analyses were restricted to those consistent with
the part of speech tags specified in the BNC, which
are produced with a tagger. In each lexicalized iter-
ation, event counts were collected over a contiguous
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five million word segment of the corpus. Parameters
were re-computed in the way described above, and
the procedure was iterated on the next contiguous
five-million word segment. Results from all iterations
were pooled to form a single model estimated from
50M words. Table 1 iilustrates lexical distributions
in this model.

This training scheme aillows the frame distribu-
tions for high-frequency words a chance to con-
verge on their true distributions, whereas a single
50M word iteration would not. The strategy de-

" rives from a variant generalized EM algorithm pre-

sented in Neal & Hinton [1998]. In a nutshell, re-
estimating the parameters during the course of a sin-
gle training iteration will still lead to convergence
on a maximum-likelihood estimate, provided certain
conditions are met. Foremost among these is the re-
quirement that no parameter setting can be prema-
turely set to zero; this is met by our smoothing strat-
egy. This is not to say that precisely the same strat-
egy, pursued across multiple iterations, would pro-
duce a maximum-likelihood estimate; it would not.
However, “classical” EM, requiring repeated itera-
tion over the entire training set, is both relatively
inefficient and infeasible given our present computa-
tional resources.

Dictionary Evaluation

The comparison to frames specified in a dictionary
we use was introduced by Brent [1993] and subse-
quently used by Manning [1993), Ersan & Charniak
[1995] and Briscoe & Carroll {1996]. The measure
uses precision and recall to compare the set of in-
duced frames to those in the standard. Precision is
the percentage of frames that the system proposes
that are correct (i.e. in the standard). Recall is the
percentage of frames in the standard that the system



PNP satisfactory, ADIP,w PVEP address NP,w

adverhb prob noun prob
entirely 0.17 question 0.086
highty 0.11 issue 0.086
most, 0.09 themselves  (.059
very 0.075 issues 0.031
quite 6.055 structure 0.631
wholly G.032 argument  0.014
uncommonly  3.0037 | questions (L0043
especially 0.0037 i electorate  0.0043

Table 1: On the left: the eight largest parameters
in the lexical choice distribution describing modify-
ing adjectives selected by satisfactory. On the right:
parallel information for the distribution describing
heads of objects of the verb addiess.

proposes. If the results are broken down into true
positives (TP), false positives (FP), true negatives
(TN}, and false negatives {FN), precision is defined as
TEP/TP+EFP)and recallis TP/{(TP+FN). To pro-
duce measurements from our system, we must first
reduce our distributions to set membership. Brent
proposed a stochastic filter for this reduction, consist-
ing of a set of per-frame probability cutoffs, which are
applied independently of the lexical head. Although
though the independence assumption is certainly du-
bious, we have adopted this method, without change,
except for the introduction of a heuristic for finding
the frame cutoffs.

The key property of cutoffs is that they control the
tracdeofl of precision versus recall. Ralsing the cutoff
will generally produce a higher precision, but lower
recall, and contrariwise. As we are neutral about this
tradeoff, we set the cutoffs at the crossover point,
where the difference in precision and recall changes
sign. This is not entirely deterministic, as the mea-
sures may cross more than once; in that case, we
optimize for the best precision.

For our dictionary, we used The Ozford Advenced
Learner’s Dictionary (Hornby [1985]), also used by
Ersan/Charniak and Manning. We reduced our
frame set and the dictionary’s to a common set, map-
ping some frames and eliminating others. For evalu-
ation, we selected 200 verbs at random from among
those that occurred more than 500 times in the train-
ing data; half were used to set the optimal cutoff
parameters, and precision and recall were measured
with the remainder.

Table shows results broken down by frame. The
targest source of error is the intransitive frame. It
is not hard to understand why: our robust parsing
architecture resolves unparsable constructs as intran-
sitives. In addition to sentences where verbs are not
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cutof [ TP | FI* | FN | prec rec
Intrans 0.15 20 1 24 | 12 | 0.6471 | 0.78!
NP 0.021 3 5 1 (.9479 | 0.98¢
ADJ) 0.079 92 0 6 1 0.2¢
PP 0.045 27 | 15 6 (.7761 | 0.89¢
PART 0.027 { 60 5 14§ 0.8077 0.6
VTOP 0.079 83 1 7 0.9 0.56%
NP PP 0040 | 26 | 11 10 | 0.8281 | 0.84:
NP PART 0.0099 | 68 6 12 0.7 0.53¢
NP NP 0.036 | 81 6 8 0.4545 | 0.38¢
NP VTOP 0.018 84 1 6 0.9 0.6
VING 0.019 | 86 3 6 0.625 | 0.45¢
NP VING 0.017 | 93 3 2 0.4 0.5
NP VINF 0.019 99 1 0 0 -
NP ADJ 0.016 85 1 12 | 0.6667 | 0.14%
PP VTOP 0.014 a7 1 1 3.5 g.h

{310 | 83 | 103 [ 0.7888 | 0.75(

Tahle 2: Precision /recall broken down by frame.

linked up with their complements because of interjec-
tions, complex conjunctions or eliipses, this includes
frames such as s8AR and wil-complements which are
not included in the chunk/phrase grammar. While it
would be possible in principle to extract these from
the present word collocation statistics, we plan in-
stead to pursue a solution involving extensions in the
gramimar.

A second major source of error is prepositional
phrases. The complementation model embodied in
the PCFG does not distinguish complements from
adjuncts, and therefore adjunct prepositional phrases
are a source of false positives. Thus the NP pp frame
is scored as a false positive for the verb meet, be-
cause the OALD does not list the frame, although
the combination appears often in the corpus data.
While such frames lead to a loss of precision in the
dictionary evaluation, we do not necessarily consider
them a flaw in the information learned by the system,
since the argument/adjunct distinction is often ten-
uous, and adjuncts are in many cases lexically con-
ditioned.

Lastly, there are many false negatives for the par-
ticle frame and noun plus particle. This is mainly
due to disagreements between BNC particle tagging
and particle markup in the QALD.

Despite these difficulties, the summary shown in
table shows results that are on the whole favorable.
in comparison with other work with a comparable
number of frames (Manning, Ersan/Charniak), the
system is well ahead on recall and well behind on
precision. If one takes the sum of precision and re-
call to be the final performance indicator, than we
are slightly ahead: 1.54 vs. 1.44 for Ersan and 1.33



precision% | recall % | no. of frames
lex PCFG 79 75 15
Briscoe 66 36 159
Charniak 92 52 16
Manning 90 43 19*

Table 3: Type precision/recall comparison. Some of
Manning’s frames are parameterized for a preposi-
tion.

for Manning. Briscoe and Carroll’s work, with ten
times as many target frames, is so different that the
nurmbers may be regarded as incomparable.

Obviously, precision and recall measured against
a standard relies on the completeness and accuracy
of that standard. In checking false positives, Ersan
and Charniak found that the OALD was incomplete
enough to have a serious impact on precision. Sym-
metrically, false negatives conflate deficiencies in the
corpus with poor learning efficiency. It is impossible
to say based on table which of the gystems is more
efficient at learning. While our system shows the best
recall, this could be attributed to our having the best
training data. Charniak used 40M words of training
data, comparable to our 30M, but his data was homo-
geneous, all taken from the Wall Street Journal. As
we will show below, frame usage varies across genres,
so the BNC, which includes texts from a wide vari-
ety of sources, shows more varied frame nsage than
the WSJ, and thus provides better (i&&{f' for frame
acquisition. ‘

Cross entropy evaluation

The information-theoretic notion of cress entropy
provides a detailed measure of the similarity of the
acquired probabilistic lexicon to the distribution of
frames actually exhibited in the corpus (whick we
cail the empirical distribution). The cross entropy of
the estimated distribution ¢ with the empirical dis-
tribution p obeys the identity

CE(p,q) = H(p) + D(pllg)

where H is the usual entropy function and D is the
relative entropy, or Kullback-Leibler distance. The
entropy of a distribution over frames can be con-
ceptualized as the average number of bits required
to designate a frame in an ideal code based on the
given distribution. In this context, entropy measures
the complexity of the observed frame distribution.
The relative entropy is the penalty paid in bits when
the frame is chosen according to the empirical distri-
bution p, but the code is derived from the model’s
estimated distribution, ¢. Relative entropy is always
non-negative, and reaches zero only when the two
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obs freq est freq
imag | natscl | frame imag | natsci
51 39 | NP VTOP 40.4 34.2
21 43 | NP 20.7 33.1
13 6 NP NP 8.8 3.9
6 1] NP PP 3.2 4.7
5 1 | NP PART 1.7 1.0
2 11| PP 18 10.2
] 0 | $BAR ] 0
1 0 i Intrans 9.3 7.6
[2130 ] 1.913 [ entropy [ 2.476 [ 2.423 |

Table 4. True and estimated frame frequencies for
allow.

distributions are identical. Qur goal, then, is to min-
imize the relative entropy. For more in-depth dis-
cussion of entropy measures, see Cover & Thomas
[1991], or any introductory information theory text.

For relative entropy to be finite, the estimated dis-
tribution ¢ must be non-zero whenever p is. How-
ever, some observed frames are not present in the
grammar, for one of two reasons. Some well-known
frames such as SBAR require high-level construcgs
not available in the chunk/phrase grammar and un-
usual/unorthodox frames turn up in the data, eg.
PART PP PP. Since the model lacks these frames,
smoothing against the unlexicalized rules is insuffi-
cient. Instead, for all the estimated distributions,
we smooth against a Poisson: distribution over cat-
iegories, which assigns non-zero probability to all
frames, observed or not. This allows us to spell out
the unknown frame using a known finite alphabet,
the grammar categories, while retaining a reasonable
average length over frames.

Tor our entropy measurements, we selected three
verbs, allow, reach, and suffer and extracted about
200 occurrences of each from portions of the BNC
not used for training. Half of each sample was drawn
from “imaginative” text and the other half from the
natural or applied sciences, as indicated by BNC text
mark-up. The true frame for each verb occwrrence
was marked by a human judge®. The empirical dis-
tribution was taken as the maximum-likelihood esti-
mate from these frequencies. Tables 4 and b indicate
the observed frequencies and the entropy of the re-
sulting distributions.

Alongside the observed frequencies, we indicate a
set of estimated frequencies. These were generated
by taking the 50M word model described above, pars-
ing the test sentences, and extracting the estimated
frequencies. The sum of estimated frequencies is gen-

3For this judgment, the frame set was unrestricied,
i.e. included frames not in the grammar.



obs freq est freq
imag | natsci | frame imag | nafsci
63 88 I NP 50.1 1 745
13 15 | NP PP 5.9 10.9
9 1| PARY 5.9 0.8
6 0 | PART PP 2.7 0
5 3| pp 6.7 3.4
4 I | Intrans 15.2 6.8
2 0 | PARYT NP 0.5 G
1 Q| wnPPART | O 0.1
[T20] 0979 entropy | 2101 ] 1473 |
" obs freq est freq
[ tmag | natsci | frame imag | natsdl |
41 6 | Intrans 34.9 13.4
31 54 | pp 274 50.5
21 36 | np 18.9 | 23.0
4 1| NpvTOP | 2.1 0.7
3 4 | np PP 0.9 5.2 |

1 1.936 ] 1.580 Jentropy | 1.936 | 1.907 ]

Table 5: True and estimated frame frequencies for
reach (top) and suffer (bottom).

erally less than the observed frequencies due to tag-
ging errors, parse failures, and frequency assigned to
frames not shown in the tables. However, an eyeball
inspection of the tables shows that the parser does a
good job of reproducing the target distribution.

One striking feature in the tables is the variation
across genre. In particular, suffer used in the imagi-
native genre shows a very different distribution than
suffer in the natural sciences. A chi-squared test ap-
plied to each pair indicates that the samples come
from distinct distributions (confidence > 95%).

The colunn labeled “50M lex” in Table 6 provides
a quantitative measure of the agreement between the
56M word combined model and the empirical distri-
butions for the three verbs in two genres in the form
of relative entropy. The first column repeats the en-
tropy of the data distributions. For purposes of com-
parison, the second column indicates the relative en-
tropy of one data distribution with the other data
distribution filling the role of the estimated distribu-
tion (i.e. ¢) in the discussion above. The relative
entropy is lower when the estimated distribution is
used for ¢ than when the data distribution for the
other genre is used for ¢ in each case but one, where
the figures are the same. This suggests the combined
model contains fairly good overall distributions.

To nmumerically evaluate whether the system was
able to learn the distribution exhibited in a given col-
lection of sentences, we tuned the lexicon by parsing
the test sentences for each genre separately with the

a2

D(plig) for various ¢

Gther | 50M | 50M

head, genre  H(p) | genre | lex | unlex
“oag 1906 | 050 | 0407 3.13
allow tsct | 178 | 0.49 | 0.42 | 227
4 imag | 1.99 | 0.01 | 0.35 | 1.07
veach | tsci | 0.90 | 0.37 | 0.37 | 1.36
. . imag | 186 | 0.87 | 0.24 | 0.70
suffer acsei | 151 | 059 | 0.37 | 119
mean | 1.68 | 0.62 | 0.36 | 1.62

Table 6: Frame relative entropy for three verbs in
two genres. The first column names the lexical head
and genre, and the second the entropy (H) of the
empirical diséribution over frames, p. By empirical
distribution we mean the relative frequencies from
examples scored by a human judge. Columns three
through five give the relative entropy D(pliq) for var-
ious related distributions. In column three, ¢ is the
empirical frame distribution for the same head, but
with the complementary genve. In column four ¢
is the (genre-independent) distribution derived from
the 30M word lexicalized model. Column five uses
the unlexicalized frame distribution derived from the
50M model, i.e. a distribution insensitive to the head
verh. Lower relative entropy is better.

50M word model, extracting the frequencies, and es-
timating the distribution from these. The results are
the column 4 labeled “50M lexicalized extraction™ in
7. The following columns give the same figures for
freqency extraction with other models. Ixtraction
with the large lexicalized model gives the best re-
sults, and gives better relative entropy than the 50M
lexicalilazed model itself (in column 2). Notice that
only the distributions estimated with the two 50M
models are better than the 50M lexicalized model,
though the unlexicalized one is only marginally bet-
ter. In this sense, only the 50M lexicalized parser
proves to be a good enough parser for genre tuning.
Notice that with this model, tuning in no case gives
worse relative entropy, and in five out of six cases
give an improvement.

Notice algo that relative entropy for the distribu-
tions obtained by tuning with the 50M model are a
good deal lower than the cross-genre figures from Ta-
ble 6. This suggests that if we wanted to have a good
probabilistic lexicon for, say, the imaginative genre,
we would be better off using the automatic extrac-
tion procedure on data drawn from that genre than
using a perfect parser (or a lexicographer) on data
drawn from some other genre, such as the natural
sciences. This provides a calibration of the accuracy
of the lexicalized parser’s estimates, and conversely
demonstrates that words are not used in the same



Dipilg)

b0M [B50M | 5M | 50M | &M

lex lex | lex | unl. | unl

head,genre | mod | extr | extr | extr | extr
allow imag | 0.40 1 0.32 | 1.32 | 047 | 1.32
natsci | 0.42 | 0.28 | 0.28 | 0.52 | (.86
reach imag | .35 } 0.35 1 0.63 | 0.32 | 0.63
natsci | 0.37 § 0.19 | 0.34 | 0.28 | 0.34
suffer 1mag 1 0.24 1 011} 0.38 | 0.12 | 0.38
natsci | 0.37 | 6.20 { 0.88 | 0.34 | 0.88
mean | .36 | 0.24 ;1 0.64 | 0.34 | 0.74

Table 7: Relative entropy of distributions estimated
by parsing the test sentences with various models,
and using the Inside-outside algorithm to produce
estimated distributions ¢. The first column names
empirical distributions p. The second column repeats
relative entropy for the 50M lexicalized model from
the previous table. The third gives relative entropy
where g is obtained by parsing and estimating fre-
quencies in the test sentences with the 50M lexical-
ized model. The following columns give the corre-
sponding figures for a ¢ obtained by following the
same procedure with a 5M word lexicalized model, a
30M word unlexicalized model, and a M word un-
lexicalized model.

way in different genres.

Optimal parses ./

Although identifying a unique parse does not play
a role in our experiment, it is potentially useful for
applications. A simple criterion s to pick a parse
with maximal probability; this is identified in a parse
forest by iterating from terminal nodes, multiply-
ing child probabilities and the local node weight ag
and-nodes (chart edges), and choosing a child with
maximal probability at or-nodes {chart constituents).
Figures 1 and 4 give exampies of maximal probability
probability parses.

Other optimality criteria can be defined. The
structure on noun chunks is often highly ambiguous,
because of bracketing and part of speech ambiguities
among modifiers. For many purposes, the internal
structure of an noun chunk is irrelevant; one just
wants to identify the chunk. ¥rom this point of view,
a probability estimate which congiders just one anal-
ysis might underestimate the probability of a noun
chunk. In what we call & summ-max parse, probabil-
ities are summed within chunks by the inside algo-
rithm. Above the chunk level, a highest-probability
tree is computed, as described above,
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Notes on the implementation and
parsing times

Software is implemented in C++. The parser used
for the bootsirap phase is a vanilla CFG chart parser,
operating bottom-up with top-down predictive filter-
ing. Chart entries are assigned probabilities using the
unlexicalized PCFG, and the lexicalized frequencies
are found by carrying out a modified inside-ouiside
algorithm which simulates lexicalization of the chart.

In the iterative training phase, an unlexical-
ized context-free skeleton is found with the same
parser. We transform this into its lexicalized form—
categories become {w,n) pairs and rules acguire
lexical heads—and carry out the standard inside-
outside using the more elaborate head-lexicalized
PCFG model. Average speed of the parser during
iterative training, including parsing, probability cal-
culation, and recording observations, is 10.4 words
per second on a Sun SPARC-20. The memory re-
quirements for a model generated from a 5M word
segment are about 90Mbyte. The upshot of ali this
is that we can train about 1M words per day on one
machine, and a single 5M word iteration requires one
machine work week,

Discussion

We believe the formalism and methodology described
here have the following advantages:

¢ The grammar is under the control of the compu-
tational linguist and is of a familiar kind, making
it. possible to incorporate standard linguistic anal-
yses, and making results interpretable in terms of
linguistic theory. In contrast, approaches where
context free rules are learned are likely to produce
structures which are uninterpretable in terms of
linguistic theory and practice.

¢ Because of the context free framework, efficient
parsing algorthims (chart parsing) and probabilis-
tic algorithms (the inside-outside algorithm) can
be applied. With an efficient implementation, this
makes it possible to construct representations of
all the tree analyses for the sentences in corpera
on the scale of ten to a hundred million words, and
to map such a corpus to a probabilistic lexicon.

o With the robustness introduced by the state
model, almost all sentences in the corpus can be
parsed.

e The model assigns probabilities to sentences and
trees, which is useful for applications independent
of the lexicon-induction problem discussed here.

e The word-selection model, which threads a word
bigram mode] through head relations in the syn-
tactic tree, allows a large body of word-word col-
locations to be learned from the corpus, and put
to use in weighting of competing analyses.
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¢ The valence information learned, rather than be-
ing simply a set of subcategorization frames, is a
probability distribution which reflects the fregency
of frames in a given training sample, and which can
be plugged back into the parser and used to ana-
lyze further text.

Some of these benefits are purchased at the cost
of a lack of sophistication in the grammar formal-
ism, compared to constraint-based formalisms used
in contemporary computational linguistics. This
compromise is made in order to make large-scale ex-
periments achievable; our interest is in conducting
scientific experiments—observational and modeling
experiments—with large bodies of language use. It
is natural that this should require incorporating ap-
proximations in computational models. Notably, the
compromises made in our approach are not so se-
vere that the grammatical analyses identified and the
probability parameters learned are out of touch with
linguistic reality. This is in contrast to the situa-
tion with other approaches using similar mathemat-
ical methods, such as terminal-string n-gram model-
ing.

Conclusion

We have presented a statistically-based method for
valence induction, based on the idea of automatic
tuning of the probability parameters of a grammar,
On the standard precision/recall measures, our sys-
tem performs betler on precision, worsejon recall,
and on the whole somewhat better than’ other pub-
lished systems. We have provided a more precise
evaluation via entropy measures, showing that the
model learns efficiently and builds accurate models
of frame distributions. The cross-domain entropy of
the data frame distributions provides numerical evi-
dence that frame usage varies across domains, simitar
to word usage. This, in turn, suggests that auto-
matic acquisition and stochastic tuning are a must
for large-scale NLP applications and computational
linguistic models,

Bibliography
Abney, $.[1991], “Parsing by Chunks,” in Views on
Phrase Structure, D. Bouchard & K. Leffel,
eds., Kluwer Academic Publishers.

(1995], “Chunks and dependencies:
Bringing processing evidence to bear on syn-
tax,” in Linguistics and Computation, Jen-
nifer 8. Cole, Georgia M. Green & Jerry L.
Morgan, eds., CSLI Publications.
BNC Consortium [1995], The British National Cor-
pus, Oxford University,
http://info.ox.ac.uk/bac/.

45

Baker, J. K. [1979], “Trainable graminars for speech
recognition,” Proceedings of the Spring Con-
ference of the Acoustical Society of America,
Cambridge, MA.,

Baum, L. E. & Sell, G. R. [1968], “Growth Transfor-
mations for Functions on Manifolds,” Pacific
Journal of Mathematics 27.

Brent, M. R.[1993], “From Grammar to Lexicon:
Unsupervised Learning of Lexical Syntax,”
Computational Linguistics 19, 243-262.

Briscoe, T. & Carroll, J.[{1996], “Automatic Extrac-
tion of Subcategorization from Corpora,”
MS |, htep:/ /www.cl.cam.ac.ul /users/ejb/.

Charniak, E.[1993], Statistical Language Learning,
MIT, Cambridge, MA.

[1995],
“Parsing with Context-free Grammars and
Word Statistics,” Department of Computer
Science, Brown University, Technical Report
(5-95-28.

Cover, T. M. & Thomas, J. A.{1991], Elements of
Information Theory, John Wiley and Sons,
Inc., New York.

Dempster, A. P., Laird, N. M. & Rubin, D. B.[1977],
“Maximum likelihood from incomplete data
via the EM algorithm,” Journal of the Royal
Statistics Society 39, 138, Series B.

Ersan, M. & Charniak, E. [1995], “A Statistical Syn-
tactic Disambiguation Program and what it

! learns,” Brown CS Tech Report C5-95-29.

Hornby, A. 5.[1985], Oxford Advanced Learner’s

’ Dictionary of Current English, Oxford Uni-
versity Press, Oxford, 4th Ed..

Jackendoff, R.[1977], X syntax: A study in phrase
structure., MI'T Press, Cambridge, MA.

Katz, S. M. [1980], “Estimation of probabilities from
sparse data for the language model compo-
nent of a speech recognizer,” IEEE Transac-
tions on Acoustics, Speech and Signal Pro-
cessing 35, 400-401.

Manning, C. [1993], “Automatic acquisition of a large
subcategorization dictionary from corpora,”
Proceedings of the 31st Annual Meeting of
the ACL.

Neal, R. M. & Hinton, G. E.{1998], “A New View of
the EM Algorithm that Justifies Incremental
and Other Variants,” in Learning in Graph-
ical Models, Michael 1. Jordan, ed., Kluwer
Academic Press.

Ney, H., Essen, U. & Kneser, R.[1994], “On struc-
turing probabilistic dependences in stochas-
tic language modelling,” Computer Speech
and Language8, 1--38.



Measures for corpus similarity and homogeneity

Adam Kilgarriff*
ITRI, University of Brighton

Abstract

How similar are two corpora? A measure of corpus
similarity would be very useful for NLP for many pur-
poses, such as estimating the work involved in porting
a system from one domain to another. First, we dis-
cuss difficulties in identifying what we mean by ‘corpus
similarity’: human similarity judgements are not fine-
grained enough, corpus similarity is inkerently multi-
dimensional, and similarity can only be interpreted in
the light of corpus homogeneity, We then present an op-
erational definition of corpus similarity which addresses
or circumvents the problems, using purpose-huilt sets
of “known-similarity corpora”. These KSC sets can be
used to evaluate the measures. We evaluate the mea-
sures described in the Hterature, including three vari-
ants of the mformation theoretic measure ‘perplexity’.
A y%-based measure, using word frequencies, is shown
to be the best of those tested.

The Problem

How simitar are two corpora? The question arises on
many occasions. In NLP, many useful results can be
generated from corpora, but when can the results de-
veloped using one corpus be applied to another? How
much will it cost to port an NLP application {rom one
domain, with one corpus, to another, with another? For
linguistics, does it matter whether language researchers
use this corpora or that, or are they similar enough for it
to make no difference? There are also questions of more
general interest. Looking at British national newspa-
pers: is the Independent more like the Guardian or the
Telegraph?!

What are the constraints on a measure for corpus
similarity? The first is simply that its findings coz-
respond to unequivocal human judgements. It must

*Kilgarriff's part of the work was undertaken under EP-
SRC grant GR/K /18931
!Phe work presented here develops and extends that pre-
sented In Kilgarriff {1997).
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match our intuition that, eg, a corpus of syntax papers
is more like one of semantics papers than one of shop-
ping lists. The constraint is key but is weak, Direct
human intuitions on corpus similarity are not easy to
comae by, firstly, because large corpora, unlike coherent
texts, are not the sorts of things people read, so people
are not generally in a position to have any intuitions
about them. Secondly, a human response to the gues-
tion, “how similar are two objects”, where those objects
are complex and multi-dimensional, will themselves be
multi-dimensional: things will be similar in some ways
and dissimilar in others. To ask & human to reduce a
set of perceptions about the similarities and differences
between two complex objects to a sigle figure is an
exercise of dubiocus value.

This serves to emphasise an underlying truth: corpus
sirnilarity is complex, and there is no absolute answer
to “is Corpus 1 more like Corpus 2 than Corpus 377,
All there are, are possible measures which serve par-
ticular purposes more or less well. Given the task of
costing the customisation of an NLP system, produced
for one domain, to another, a corpus similarity measura
is of interest insofar as it predicts how long the porting
will take. It could be that a measure which predicts
well for one NLP system, predicts badly for another.
It can only be established whether a measure correctly
predicts actual costs, by investigating actual costs.?

Having struck a note of caution, we now proceed on
the hypothesis that there is a single measure which cor-
responds to pre-theoretical intuitions about ‘similarity’
and which is a good indicator of many properties of
interest - customisation costs, the likelihood that lin-
guistic findings based on one corpus apply to another,
ete, We would expect the limitations of the hypothesis
to show through at some point, when different measures
are shown to be suited to different purposes, but in the
current situation, where there has been almost no work

2(if. Ueberla (1997), who looks in detail at the appro-
priateness of perplexity as a measure of task difficulty for
speech recognition, and finds it wanting.
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Corpus 1 | Corpus 2 | Distance | Interpretation

aqual equal equal same language variety /ies

equal equal high different language varieties

high low high corpus 2 is homogeneous and falls within
the range of ‘general’ corpus 1

high low higher corpus 2 is homogeneous and falls outside
the range of ‘general’ corpus 1

high high low impossible

low low a bit lower | overlapping; share some varieties

high high a bit lower | similar varieties

Table 1: Interactions between homogeneity and similarity: a similarity measure can only be interpreted with

respect 1o homogeneity.

High means a large distance between corpora, or large within-corpus distances,

8o the corpus is heteroge-

neous/corpora are dissimilar; low, that the distances are low, so the corpus is homogeneous/corpora are similar.
High, low and equal are relative to the other columns in the same row, so, in row 2, ‘equal’ in the first two columns
reads that the within-corpus distance (homogeneity) of Corpus 1 is roughly equal to the within-corpus distance of
Corpus 2, and ‘high’ in the Distance column reads that the distance between the corpora is substantially higher than

these within-corpus distances.

on the question, it is a good starting point.

Similarity and homogeneity

How homogeneous is a corpus? The question is both
of interest in its own right, and is a preliminary to any
quantitative approach to corpus similarity. In its own
right, because a sublanguage corpusg, or one contain-
ing only a specific languape variety, has very different
characteristics to a general corpus (Biber, 1993) yef it is
not obvious how a corpus’s position on this scale can be
assessed. As a preliminary to measuring corpps similar-
ity, because it is not clear what a measure of similarity
would mean if a homogeneous corpus (of, eg, software
manuals) was being compared with a heterogeneous one
{eg. Brown). Ideally, the same measure can be used
for similarity and homogeneity, as then, Corpus 1/Cor-
pus 2 distances will he directly comparable with het-
erogeneity (or “within-corpus distances”) for Corpusl
and Corpus2. This is the approach adopted here.

Not all combinations of homogeneity and similar-
ity scores are logically possible. A corpus cannot be
much more similar to something else than it is to itgeif.
Some of the permutations, and their interpretations,
are shown in Table 1.

The last two lines in the table point to the differences
between general corpora and specific corpora. High
within-corpus distance scores will be for general cor-
pora, which embrace a number of language varieties.
Corpus similarity between general corpora will he a
matter of whether all the same language varieties are
represented in each corpus, and in what proportions.
Low within-corpus distance scores wili typically relate
10 corpora of a single language variety, so here, scores

a7

may be interpreted ag a measure of the distance between
the two varieties,

Related Work
There is very little work which explicitly aims to
measure similarity between corpora.  Johansson and

"~ Hofland (1989) aim to find which genres, within the

LOB corpus, most resemble each other. They take the
89 most common words in the corpus, find their rank
within each genre, and calculate the Spearman rank
correlation statistic (‘spearman’).

. Rose, Haddock, and Tucker (1997) explore how per-
formance of a speech recognition system varies with the
size and specificity of the training data used to build the
language model. They have a small corpus of the target
text type, and experiment with ‘growing’ their seed cor-
pus by adding more same-text-type material. They use
spearman and log-likelihood (Dunning, 1993) as mea-
sures to identify same-text-type corpora. Spearman is
evaluated below.

There is a large body of work aiming to find words
which are particularly characteristic of one text, or cor-
pus, in contrast to another, in various flelds including
linguistic variation studies (Rayson, Leech, and Hodges,
1997), author identification (Mosteller and Wallace,
1964) and informagion retrieval {(Salton, 198%; Dun-
ning, 1993). Biber (1988, 1995) explores and quantifies
the differences between corpora from a sociolinguistic
perspective. While all of this work touches on corpus-
similarity, none looks at is as a topic of itself.

Sekine (1997) explores the domain dependence of
parsing. He parses corpora of various text genres and
counts the number of occurrences of each subtree of



depth one. This gives him & subtree frequency list
for each corpus, and he is then able to investigate
which subtrees are markedly different in frequency be-
tween corpora. Such work is highly salient for cus-
tomising parsers for particular domaing. Subtree fre-
quencies could readily replace word frequencies for the
frequency-hased measures below,

In information-theoretic approaches, perplexity is a
widely-used measure. Qiven a language model and a
corpus, perplexity “is, crudely speaking, a measure of
the size of the set of words from which the next word is
chosen given that we observe the history of ... words”
(Roukos, 1996). Perplexity is most often used to assess
how good a language modelling strategy is, so is used
with the corpus held constant. Achieving low perplex-
ity in the language model is crisical for high-accuracy
speech recognition, as it means there are fewer high-
likelihood candidate words for the speech signal to be
compared with.

Perplexity can be used to measure a property akin
to homogeneity if the language modelling strategy is
held constant and the corpora are varied. In this case,
perplexity is taken to measure the intrinsic difficulty
of the speech recognition tagk: the less constraint the
domain corpus provides on what the next word might
he, the harder the task. Thus Roukos (1996) presents
a table in which different corpora are associated with
different perplexities.

Perplexity measures are evaluated bhelow.

“Known-Similarity Corpora”
A “Known-Similarity Corpora® (KSC) set is built as
follows: two reasonably distinct text types, A and B,
are taken. Corpus 1 comprises 100% A; Corpus 2, 90%
A and 10% B; Corpus 3, 80% A and 20% B; and so
on. We now have at our disposal a set of fine-grained
statements of corpus similarity: Corpus I is more like
Corpus 2 than Corpus 1 is like Corpus 3. Corpus 2 is
more like Corpus 3 than Corpus 1 is like Corpus 4, etc.
Alternative measures can now be evaluated, by deter-
mining how many of these ‘gold standard judgements’
they get right. For a set of n Known-Similarity Corpora

there are
- NAICES)
) — - =1
E (n —1) ( 5 )

=1
gold standard judgements (see Appendix for proof) and
the ideal measure would get sall of them right. Mea-
sures can bhe compared by seeing what percentage of
gold standard judgements they get right.

Two limitations on the validity of the method are,
first, there are different ways in which corpora can be
different. They can be different because each represents
one language variety, and these varieties arve different,
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or because they contain different mixes, with some of
the same varieties. The method only directly addresses
the latter model.

Second, if the corpora are small and the difference
in proportions between the corpora is also small, it is
not ciear that all the ‘gold standard’ assertions are in
fact true. There may be a finance supplement in ons
of the copies of the Guardian in the corpus, and one
of the copies of Acccuntancy may be full of political
stories: perhaps, then, Corpus 3 4s more like Corpus
5 than Corpus 4. This was addressed by selecting the
two text types with care so they were similar enough
30 the meagures were not 100% correct vet dissimilar
enough to make it likely that all gold-standard judge-
ments were true, and by ensuring there was enough data
and enongh KSC-sets so that oddities of individual cor-
pora did not obscure the picture of the best overall mea-
sure.

Measures

All the measures use spelt forms of words. None male
use of linguistic theories. Comments o an earlier ver-
sion of the paper included the suggestion that lemmas,
or word senses, or syntactic constituents, were more ap-
propriate objects to count and perform computations
on than spelt forms. This would in many ways be
desirable. However there are costs to be considered.
To count, for example, syntactic constituents reguires,
firstly, a theory of what the syntactic constituents are;
secondly, an account of how they can be recognised in
running text; and thirdly, a program which performs
the recognition. Shortcomings or bugs in any of the
three will tend to degrade performance, and it will not
be straightforward to allocate blame. Different theories
and implementations are likely to have heen developed
with different varieties of text in focus, so the degrada-
tion may well effect different text types differentially.
Moreover, practical users of a corpus-similarity mea-
sure cannot be expected to invest energy in particular
linguistic modules and associated theory. To be of gen-
eral utility, a measure should be as theory-neutral as
possibie.

While we are planning to explore counts of lemmas
and part-of-speech categories, in these experiments we
consider only raw word-counts.

Word Frequency measures

Two word frequency measures were considered. For
each, the statistic did not dictate which words should be
compared across the two corpora. In a preliminary in-
vestigation we had experimented with taking the most
frequent 10, 20, 40 ... 640, 1280, 2560, 5120 words in
the union of the two corpora as data points, and had



achieved the best results with 320 or 640. For the ex-
periments below, we used the most frequent 500 words.

Both word-frequency measures can be directly ap-
plied to pairs of corpora, but only indirectly to measure
homogeneity. To measure homogeneity:

1. divide the corpus into ‘slices’;

2. create two subcorpora by randomly allocating half
the slices to each;

3. measure the similarity hetween the subcorpora;
4. iterate with different random allocations of slices;

5. calculate mean and standard deviation over all iter-
ations.

Wherever similarity and homogeneity figures were to
be compared, the same method was adopting for calcu-
lating corpus similarity, with one subcorpus comprising
a random half of Corpus 1, the other, a random half of
Corpus 2.

Spearman Rank Correlation Co-efficient

Ranked wordlists are produced for Corpus 1 and Corpus
2. For each of the n most commeon words, the difference
in rank order between the two corpora is taken. The
statistic is then the normalised sum of the squares of
these differences,

B 65d°
n{n? - 1)

Comment  Speannan is easy to compute andiis inde-
pendent of corpus size: one can directly compare ranked
lists for large and small corpora. However there was an
a priovi objection to the statistic. For very frequent
words, a difference of rank order is highiy significant: if
the is the most comumon word in corpus 1 but anly 3rd
in corpus 2, this indicates a high degree of difference be-
tween the genres. At the other end of the scale, if bread
is in 400th position in the one corpus and 500th in the
other, this is of no significance, yet Spearman counts
the latter as far more significant than the former.

X2

For each of the n most common words, we calculate
the number of occurrences in each corpus that would
be expected if both corpora were random samples from
the same population. If the size of corpora 1 and 2 are

N1, Ny and word w has observed frequencies 0y 1, 0w 2,
le(()m.l+0\l'.2)

then expected value ey = NN

for e 2; then

and likewise

(0—e)?

e

x* =3
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Commeni The inspiration for the statistic comes
from the y2-test for statistical independence. As Kil-
garriff (1996) shows, the statistic is not in general ap-
propriate for hypothesis-testing in corpus linguistics: a
corpus is never a random sample of words, so the null
Lypothesis is of no interest. But once divested of the
hypothesis-testing link, ¥? is suitable. The (o — ¢)*/e
term gives a measure of the difference in a word’s fre-
guency between two corpora, and, while the measure
tends to increase with word frequency, in contrast to
the raw frequencies it does not increase by orders of
magnitude.

The measure does not directly permit comparison he-
twean corpora of different sizes.

Perplexity and Cross-entropy

Irom an information-theoretic point of view, prima fo-
cie, entropy is a well-defined term capturing the infor-
mal notion of homogeneity, and the cross-entropy ba-
tween two corpora captures their similarity. Entropy
is not a quantity that can be directly measured. The
standard problem for statistical language modelling is
to aim to find the model for which the cross-entropy
of the model for the corpus is as low as possible. For
a perfect language model, the cross-entropy would he
the entropy of the corpus {(Church and Mercer, 1893,
Charniak, 1993).

With language modelling strategy held constant, the
cross-entropy of a language model {LM) trained on Cor-
pus 1, as applied to Corpus 2, is a similarity measure.
The cross-entropy of the LM based on nine tenths of
Corpus 1, as applied to the other ‘held-out’ tenth, is
& measure of homogeneity. We standardised on the
‘tenfold cross-validation’ method for measures of both
similarity and homogeneity: that is, for each corpus,
we divided the corpus into ten parts® and produced ten
LMz, using nine tenths and leaving out a different tenth
each time. (Perplexity is the log of the cross-entropy of
a corpus with itself: measuring homogeneity as self-
similarity is standard practice in informasion theoretic
approaches.)

To measure homogeneity, we calculated the cross-
entropy of each of these LMs as applied to the left-out
tenth, and took the mean of the ten values, To mea-
sure similarity, we calculated the cross-entropy of each
of the Corpus 1 LMs as applied to a tenth of Corpus 2
(using a different tenth each time). We then repeated
the procedure with the roles of Corpus 1 and Corpus 2
reversed, and took the mean of the 20 values.

3For the KSC corpora, we ensured that each tenth had
an appropriate mix of text types, so that, eg, each tenth of a
corpus comprising 70% Guardian, 30% BMJ, also comprised
70% Guardian, 30% BMJ.



All LMs were trigram models. Al LMs were
produced and calculations performed using the
CMU/Cambridge toolkit {Rosenfeld, 1995).

The treatment of words in the test materisl but not in
the training material was critical to our procedure. It is
typical in the language modelling community to repre-
sent such words with the symbol UNIK, and to caleulate
the probability for the occurrence of UNK in the test
corpus using one of three main strategies.

Closed vocabulary The vocabulary is defined to in-
clade all items in training and test data. Probabili-
ties for those items that occur in training but not test
data, the ‘zerotons’, are estimated by sharing out the
probability mass initially assigned to the singletons
and doubtetons to include the zerotons.

Open, type 1 The vocabulary is chosen indepen-
dently of the training and test data, so the probability
of UNK may be estimated by counting the occurrence
of unknown words in the training data and dividing
by N (the total number of words).

Open, type 2 The vocabulary is defined to include all
and only the training data, so the probability of UNK
cannot be estimated direcily from the training data.
It is estimated instead using the discount mass cre-
ated by the normalisation procedure.

All three strategies were evaluated.

Data

All KSC sets were subsets of the British National Cor-
pus (BNC)4. A number of sets were prepared as follows.

For those newspapers or periodicals for which the
BNC contained over 300,000 running words of text,
word frequency lists were generated and similarity and
Lomogeneity were calculated (using x?). We then se-
lected pairs of text types which were moderately dis-
tinet, but not too distinet, to use to generate KSC sets.
(In initial experiments, more highly distinct text types
had been used, but then both Spearman and ¥* had
scored 100%, so ‘harder’ tests involving more similar
text types were selecied.)

For each pair a and b, all the text in the BNC for
each of a and b was divided into 10,000-word tranches.
These tranches were randomly shuffled and allocated as
follows:

first 10 of a into  bla
next 9of a, first 1 of b into  bla
next 8 of a, next 20of b into  h2a
next 7Tof a, next 3of b into bhla

*http:/ finfo.ox.ac.uk/bnc
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until either the tranches of a or b ran out, or a complete
tl-corpus KSC-set was formed. A sample of KSC sets
are available on the web.® There were 21 sets containing
between 5 and 11 corpora. The method ensured that
the same piece of text never occurred in more than one
of the corpera in a KSC set.

The text types used were:

Accountancy (ace); The Art Newspaper (art); British
Medical Journal (omj); Environment Digest (env); The
Guardian (gua); The Scotsman (sco); and Today (‘low-
brow’ datly newspaper, tod).

To the extent that some text types differ in content,
whereas others differ in style, both sources of variation
are captured here. Accountancy and The Art News-
paper are both trade journals, though in very different
domains, while The Guardian and Today are both gen-
eral national newspapers, of different styles.

Results

For each KS5C-set, for each gold-standard judgement,
the ‘correct answer’ was kaown, eg., “the similarity 1,2
is greater than the similarity 0,3”. A given measure
either agreed with this gold-standard statement, or dis-
agreed. The percentage of times it agreed is a measure
of the quality of the measure. Results for the cases
where all four measures were investigated are presented
in Table 2.

2

spear x° | closed | type 1 | type 2
KSC-set
accgua | 93.33 | 91.33 | 82.22 | 81.11 | 8044
art.gua | 95.60 | 93.03 | 84.00 | 83.77 | 84.00
bmj.gua | 95.57 | 97.27 | 88.77 | &9.11 | 88.77
env_gua | 99.65 | 99.31 | 87.07 | 84.35 ] 86.73

Table 2: Comparison of four measures

The word frequency measures outperformed the per-
plexity ones. 1t is also salient that the perplexity mea
sures required far more computation: ca. 12 hours on ¢
Sun, as opposed to around a minute,

Spearman and x? were tested on all 21 KSC-sets, anc
x* performed better for 13 of them, as shown in Table 3

2 total

21

spear y° tie
Highest score 5 13 3

Table 3: Spearman/x* comparison on all KSCs

Shitp://www.itri.bton.ac.uk/ Adam Kilgarriff/KSC/



The difference was significant (related t-test: t=4.47,
20DF, significant at 99.9% level). x* was the best of
the measures compared.

Conclusions and further work

We have argued that computational linguistics is in ur-
gent need of measures for corpus similarity and homo-
geneity, Without one, it is very dificult to talk ac-
curately about the relevance of findings based on one
corpus, to another, or to predict the costs of porting
an application to a new domain. We note that corpus
gimilarity is complex and multifaceted, and that differ-
ent measures might be required for different purposes.
However, given the paucity of other work in the field,
at this stage it is enough to seek a single measure which
performs reasonably.

The Known-Simijarity Corpora method for evaluat-
ing corpus-similarity measures was presented, and mea-
sures discussed in the literature were compared using it.
For the corpus-size used and this approach to evalua-
tion, x? and Spearman both performed better than any
of three cross-entropy measures. These measures have
the advantage that they are cheap and straightforward
to compute. x° cutperformed Spearman.

Farther work is to include:

o developing a scale-independent y?-based statistic

e investigating a 2-dimensional measure for similarity,
with one dimension for closed-class words and an-
ather for open-class words, to see whether diffevences
in style and in domain can be distinguished

o evaluation of a log-likelihood-based Il'l(-!élﬁl_:ll’é, and of
different. vocabulary-sizes for open models., Then it
will be possible to compare the 500-word measure for
spearman and x* more directly with the perplexity
Ineasures

e gathering data on the actual costs of porting systems,
for correlation with resuits piven by shmilarity mea-
sures

s comparing the method with Biber's feature-set and
analysis.
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Appendix

The proof is based on the fact that the number of simi-
larity judgements is the triangle namber of the number
of corpora in the set (less one), and that each new sim-
ilarity judgement introduces a triangle number of gold
standard judgements {once an ordering which rules out
duplicates is imposed on gold standard judgements).

o A KSC set is ordered according to the proportion of
text of type 1. Call the corpora in the set 1...n.

e A similarity judgement (’sim’} between a and b {a,b)
compares two corpora. To avoid duplication, we
stipulate that a<b. Each sim is associated with a
number of steps of difference between the corpora:
dif{a,b)=Db-a.

e A pold standard judgement (‘gold’) compares two
sims; there is only a gold between a,b and c,d if
a<b and c<d (as stipulated above) and also if a<=c,
b>=d, and not {a=c¢ and b=d). Each four-way com-
parison can only give rise to zero or one gold, as en-
forced by the ordering constraints. Each gold has
a difference of difs (‘difdif”} of (b-a)-(d-c) {so, if we
compare 3,5 with 3,4, difdif=1, but where we com-
pare 2,7 with 3,4, difdif = 4). difdif(X,)Y) = dif(X)-
Jif (Y).

e Adding an nth corpus to a KSC set introduces n-1
sims. Their difs vary from 1 {for (n-1},1) to n-1 (for
L,n).

s The number of golds with 2 sim of dif m as first term
is a triangle number less one, .7, 4 or TAIL
For example, for 2,6 {dif=4) there are 2 golds of difdif
1 {eg with 2,5 and 3,6), 3 of difdif 2 (with 2.4, 3,5,
4,6), and 4 of gifdif 3 (with 2,3, 3,4, 4,5, 5,6).

¢ With the addition of the nth corpus, we iniro-
duce n-1 sims with difs from 1 to n-1, so we add
Sl ML golds. For the whole set, there
are y_o ;;11 3—(3-;—”1)" 1.a‘nd collecting up repeated
terms gives 3.7, (n — ) (2L 1)
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Abstract

It is common in NLP that the categories into which
text is classified do not have fully objective def-
initions. Examples of such categories are lexical
distinctions such as part-of-speech tags and word-
sense distinctions, sentence level distinctions such
ag phrase attachment, and discourse level distine-
tions such as topic or speech-act categorization.
This paper presents an approach to analyzing the
agreement among human judges for the purpose
of formulating a refined and more reliable set of
category designations. We use these techniques to
analyze the sense tags assigned by five judgfzs to
the noun inferest. The initial tag set is taken from
Longman’s Dictionary of Contemporary English.
‘Through this process of analysis, we automatically
identify and assign a revised set of sense tags for
the data. The revised tags exhibit high reliabil-
ity as measured by Cohen’s . Such techniques
are important for formulating and evaluating both
human and automated classification systems.

Introduction

It is common in Natural Language Processing
{NLP) that the categories into which text is classi-
fied do not have fully objective definitions. Exam-
ples of such categories are lexical distinctions such
as part-of-speech tags and word-sense distinetions,
sentence level distinctions such as phrase attach-
ment, and discourse level distinctions such as topic
or speech-act categorization. This paper presents
an approach to analyzing the agreement among hu-
man judges for the purpose of formulating a refined

o This research wag suppaorted by the Office of Naval Re-
search under grant number N00(014-95-1-0776.
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and more reliable set of category designations.

We performed a case study of the classification
process, involving multiple judges performing a
word-sense disambiguation task., Table 1 presents
the data for two judges assigning one of six senses
fo each instance of interest used as a noun in the
corpus. The data is represented as a contingency
table, often referred to as a confusion matrix; it
depicts the “confusion” among the judges’ classi-
fications. Evidence of confusion among the classi-
fications in Table 1 can be found in the marginal
totals, nyy and nyy, where ¢ and § range from 1 to
6. We see that, on average, judge A has a higher
preference for senses 1 and 3 than judge E does,
while judge E has a higher preference for sense 2
than judge A does. These biases are one aspect of
agreement (or the lack of it) among judges.

A second aspect of agreement is the extent to
which judges agree on the tags of individual words
(category distinguishability). We see from the diag-
onal frequencies in Table 1 that these judges agree
on 2097 out of 2369 of them, which is 88.5% of the
individual tags.

Cobhen (1960) proposed the coeflicient of agree-
nment, &, for measuring the agreement between two
judges. s compares the actual agreement to that
which would be expected if the decisions made
by each judge were statistically independent (i.e.,
“chance agreement”). A number of previous stud-
ies have used x to evaluate inter-coder reliability
(e.g., Carletta 1996, Litman & Passonneau 1995;
Moser & Moore 1995; Hirschberg & Nakatani 1996;
Wiebe et al. 1997). However, in looking at agree-
ment among judges, we are often not as concerned
with describing how well two particular judges



sense 1 “readiness to give attention®

sense 2 “quality of causing attention to be given”

sense 3 “activity, subject, etc., which one gives
time and attention to”

sense 4  “advantage, advancement, or favor”

sense 5 “a share (in a company, business, etc.)”

sense §  “money paid for the use of money”

¥Figure 1: Noun Semses of Interesi in LDOCE

agree as in measuring how well any observer can
distinguish the categories from one another. In
other words, the issue is the precision of the clas-
sification process.

In this paper, we present a study of a classi-
fication process. The section Agreement Among
Judges presents an analysis of the patterns of
agreement among the judges. Agreement is a
function of the differences among the judges (i.e.,
their biases) and the distinguishability of the cate-
gories themselves. We study bias using the models
for symmetry, marginal homogeneity, and quasi-
independence {in the subsection Observer Differ-
ences). We study category distinguishability us-
ing Darroch & McCloud’s {1986) degree of distin-
guishability, 6;; {in the subsection Category Dis-
tinguishability). Guided by these analyses, in the
section Modification of the Classification Process
we investigate modifications to the classification
process that improve reliability. We analyze the
effects both of removing judges and collapsing cat-
egories. A technique is presented for formulating
a tag set which can be automatically derived from
the original tag set. The technigue is successful in
the study presented here: the derived tag set yields
improved rellability, as measured by Cohen'’s «.

The Data

The classification process performed in this study
involved five human judges independently assign-
ing sense tags to 2369 instances of the noun interest
taken from the Wall Street Journal Treebank Cor-
pus {Marcus et al. 1993). The senses given to the
taggers, shown in Figure 1, are from the Longman’s
Dictionary of Contemporary English (LDOCE).
The annotation instructions were minimal. They
were asked to use their judgment in assigning to
each usage of interest the single tag that best
characterizes its meaning. It is likely that more
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explicit tagging instructions including examples
and default rules would improve agreement among
judges. Indeed, an analysis of the clagsification
process such as performed here could be used to
formulate and interactively revise a set of tagging
instructions, but this application is not considered
here.

Five human judges, referred to as A through
E, participated in the study. Two of the judges
(judges C and D) were involved in the project and
had participated in previous sense tagging exper-
iments. The remaining three judges (judges A, B
and E} were not members of the project and had
no previous background in NLP or linguistics.

Agreement Among Judges

All of the technigues that we present for the analy-
sis of agreement are appropriate for category classi-
fications assigned to multiple objects (in this case,
words) by two judges.! We analyze the agreement
among all five judges by evaluating the agreement
between all pair-wise combinations of these judges.
We exclusively use maximum lkelihood estimates
of model parameters.

The Basics

Tables 1-b present half of the data, in con-
tingency table format. Fach table i3 for one
pair-wise corbination of the five judges. The
rest of the data, for the other five combina-
tions, is available on the World Wide Web at
http://crl.nmsu. eduw/Research/Projects /graphling.
In each table, the rows correspond to the senses
agsipned by the first judge while the columus cor-
respond to those assigned by the second judge. Let
n;; denote the number of words that judge one clas-
sifies as ¢ and judge two classifies as sense 7. If we
let py; be the probability that the judges will agree
that a randomly selected usage is sense 4, then
S pi 18 the total probability of agreement across
all senses. pi; can be estimated as ff; (a maximum
likelihood estimate), and the total probability of
agreement can be estimated as ;5 = ¥
where n44 = 37,5y = 2369,

LT
T gy

'Several of these techniques are also applicable to the
analysis of multiple judges,



The simplest measure of agreement is the esti-
mated probability of agreement, i.e., >, f;;, where
the possible values are affected by the marginal
totals {(i.e., the row and column totals). Cohen’s
x compares the total probability of agreement to
that expected if the ratings were statistically inde-
pendent {i.e., “chance agreement”). That value is
then normalized by the maximum possible level of
agreement given the marginal distributions. The
marginal distributions can be estimated from the

. A ;. - LN"
marginal counts as: B4 = g’ﬁ and py; = %]if

The complete formulation of & is:

_ 2P = 2 Pit P
1= 37 DitPsi

K

(1)

i 18 0 when the agreement is that expected by
chance, and is 1.0 when there is perfect agreement,

An extension of « for the case of multiple judges
(three or more} is presented in Davies and Fleiss
(1982) and used in this study.

Analyzing Patterns of Agreement

In a clagsification experiment, the two judges are
assumed to classify any given usage independently
of ecach other, but it is clear in the formulation of
k that we expect the data to exhibit depe{r_&ﬁence,
Le., Py # Pig X Py Where does this dependence
come from? It arises from three factors and their
possible interactions: (1) the heterogeneity of the
objects being classified (i.e., the usages of interest),
{2) the heterogeneity of the judges, and (3) the
distinctions made in the category definitions.

We focus on the latter two factors and their in-
teraction. Rather than simply measuring agree-
ment we measure the contributions to agreement
made by these two factors and propose changes
to the classification process based on the analy-
sis. Just as overall agreement can be assessed as
a function of the counts in the pair-wise confusion
maftrices, so can the measwres of observer differ-
ence (bias) and category distinguishability.

Observer Differences (Bias) The hypothesis
of no difference between two judges is the hypoth-
esis of complete symmetry (Sym in Table 6}, that
18, Pij = fiji OF ;;—;J = 1 for all 4, 4. If this ratio equals
one for all 4, § then it follows that the observers’ in-

terprefations are indistinguishable,

bb

Complete symmetry implies marginal symmetry,
that is, i1 = Py DBilas of one judge relative
to another is evidenced as a discrepancy between
these marginal distributions. Bias decreases as the
marginal distributions become more nearly equiva-
lent. The measure of bias is the test for marginal
homogeneity (M H. in Table 6), p;4. = P4 for all
i

It is possible to access the similarity of two
judges even when there is evidence of bias. The
model for quasi-independence (@.7. in Table 6)
(Bishop et al. 1975) tests whether two judges’ de-
cisions are independent if we consider only the off-
diagonal counts—the counts corresponding to dis-
agreement (Le., Py = Piy X Py for ¢ # 7). Quasi-
independence holds when, given that the judges
disagree, there is no pattern of association in the
categories they assign.

In the tests for symmetry, marginal homogene-
ity, and quasi-independence, a model is formu-
lated that enforces the hypothesized constraing,
e.g., Pij = P4 in the case of symmetry. The degree
to which the data is approximated by a model is
called the fit of the model. In this work, the fit of
each model is reported in terms of the likelihood
ratio statistic, G*, and its significance. The higher
the G? value, the poorer the fit. The fit of a model
Is considered acceptable if its reference significance
level is greater than 0.001 (i.e., if there is greater
than a 0.001 probability that the data sample was
randomly selected from a population described by
the model).

Category Distinguishability The ratio 7 =
%;—fﬁ, referred to as the diagonal cross-product-
ratio, represents the odds for disagreement over
agreement on categories 4,7. Darroch and Mc-
Cloud (1986) define the degree of distinguishability,
dij, for categories ¢, 7 as:

Dij X Pji

dig=1—m=1—"= -
K N Dai X Py

(2)
If é;; = 1, we say that the categories are completely
distinguishable, and, if §;; = 0, they are completely
indistinguishable.

Majority Consensus  When multiple judges are
involved in a study, it is possible to formulate a



majority tag for each object, that is, the tag that
the majority of the judges assign to each object. 1%
represents majority opinion and is useful in iden-
tifving outlyers, as shown in the next section.

Results

Table 6 presents the results of the tests for ob-
server differences and Table 7 presents the mea-
sures of category distinguishability. All evaluations
are performed on each pair-wise confusion matrix.
The columns labeled M|A through M E refer to
similar tables comparing the majority tag to the
assignments made by each judge (e.g., judge A, in
the case of M|A). These tables are not included in
the paper.

While the s values in Table 6 are reasonably
high, the judges display bias and cannot be con-
sidered interchangeable. The only exception is the
strong similarity between the majority tag and the
agsignments made by judge C {i.e., the column la-
beted M|C in Table 6); these tags are symmet-
ric and unbiased. Among the five judges, the
most similar are judges C and D, the two ex-
perienced judges. While their scores for symme-
try and marginal homogeneity are not significant,
indicating a relative bias, their score for quasi-
independence is significance {i.e., 0.004 > 0.00%,
the cutoff we use to judge significance). This indi-
cates that, although judges C and D are not indis-
tinguishable, there is no systematic difference of
opinion between them. Judge D also shows some
similarity to the majority tag.

The judge that is least similar to the others is
judge B this is particularly evident when judge B
is compared to the majority tag.

The distinguishability, d;;, of all pair-wise combi-
nations of tags are evaluated in Table 7. All scores
are ab or near the maximum of 1.0, with the ex-
ception of those measuring the distinguishability
of tags L and 2. Tt is particularly low in Table A|B
(i.e., Table 2).

Modification of the Classification
Process

Based on the resuits presented above, we modified
the classification process in two ways: (1) judge &
is removed, and {2) sense tags 1 and 2 are conflated
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to form a single sense distinction. The poor marks
for distinguishability between these senses seem to
be reflected in a closeness in meaning (see in Figure
1), supporting the decision to conflate them.

Removing judge E from the study removes the
tables with the lowest x scores. As a result, the
agreement among all judges increases from 0.874 to
{(.898, as measured by Davies and Fleiss’ extension
of .

The process of conflating two tags is accom-
plished using the latent class model {Goodman
1974)2. This procedure has historically been used
to identify a set of latent categories that explain
the interdependencies among the observable cat-
egories. In this case, the observable categories
are the sense tags assigned by the remaining four
judges, while the latent categories correspond to
the unobservable true meanings of the noun inter-
est. Once the desired number of latent categories
has been specified, these categories are assigned
via the EM algorithm as described in Goodman
(1974) and applied in Pedersen & Bruce (1997)%.

Using the BM algorithm as described above, all
usages of inferest are assigned to one of five latent
sense groupings. The mapping between the derived
(i.e., latent) categories and the observed senses is
established to maximize the correlation between
latent categories and observed senses. This corre-
lation for each judge, is estimated as part of the
process of assigning latent categories. As an ex-
ample, Table 10 presents the correlation for judge
C. The values recorded in the table are the proba-
bilities of judge C assigning sense tag i and the
EM algorithm assigning latent tag j. As can
be seen, correlation is maximized when the map-
ping of observed tags to latent tags is as follows:
b= 1, 2=1,3=2 423 5=4, and 6= 5
This mapping conflates senses 1 and 2 white leav-
ing all other senses intact. This corresponds to
our expectations based on the study of agreement
presented in the previous section. Using this map-
ping, the observer difference measures among the

2Also referred to as the Naive Bayes model (Langley et
al. 1992).

®This is a well known unsupervised learning alobserved
tagsgorithm; other notable references $o this procedure are
La.za)rfeld {1966), Pearl (1988), and AutoClass (Cheeseman
1990).



Latent Tag
1 2 3 4 5

1 0142 | 0.01¢ | 0,001 | 0.001 | 0.002
210003 1 0.601 1 0.000 | 0.00070.000

Judge 3 | 00600 [ 0.024 | 0.005 | 0.000 | 0.000
C 4 | 0.601 10,006 1 0,074 1 0.001 | 0.000

5 | 0.001 | 0.003 | 0.0007]0.206 | 0.600

6 | 0.000 | 0.000 [ 0.006 | 0.000 | 0528

Table 10: Tag Correlation for Judge C

four judges for the latent tag set are presented in
Table 8, and the distinguishability of latent tags
is presented in Table 9. As compared to the origi-
nal classification process, the agreement among all
judges increases from 0.874 to 0.916 for the revised
tag set with four judges.

Recent work has proposed various methods for
pruning senses for word instances and tuning tag
sets to a particular domain using corpus infor-
mation and existing linguistic knowledge sources
(e.g., Yarowsky 1992, Jing et al. 1997, Basili et al.
1997). We have presented an automatic method
for refining a tag set using an important additional
source of information: the manual annotations as-
signed by human judges. o}

Conclusion

There is increasing awareness of the need to man-
age the uncertainty inherent in many classification
systems. We have presented procedures that can
be used to analyze and refine any classification sys-
tem that makes use of nominal categories. These
techniques can be used to study and improve the
reliability of human judges as well as refine catego-
rizations that can be applied automatically and, in
the process, establish an upper bound on the accu-
racy of antomatic classification, i.e., the agreement
among the human judges. In future work, we will
apply these techniques to the analysis and evalua-
tion of automated classification systems.
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Judge 2= F

sensel sense sensed sensed senseb sensel
sensel [ mia =174 | mo =110 | ni3 =11 N4 = 8 Tiis = O g = 2
sensel Moy =7 gy == 8 gy = 1 Nag = 2 Tigs =1 nge = 1
Judge 1 sensed | na = 25 T3y = 24 nay = &4 Taq = 12 Thys = 4 N3s = 3
= A sensed Ti4] = 3 Tga = 1 N4z = 4§ 44 = 106 s = 8 Tigg == 1
senseb 5] = 1 Tigy = | 53 == 6 Ny = 12 gy = 474 Tisg = O
senset 61 = nge = 0 Ngs = 1 TG4 = 2 Tigs = 0 nee = 1245
N1 = 210 Tign = 149 Tig3 = 62 Tgqg = 192 iy = 499 s = 1257
Table 1: Confusion Matrix for Judges A and E
Judge 2 = B
1 2 3 4 5 6
11242 137 1 2% 7 8 1 316
2 13 2 1 1 1 1 18
Judge 1 3 32 5 53 ih 1 2 108
= A 4 2 0 1 161 6 2 172
5 3 0 1201 16 1 458 3 500
G 0 G I |1 6 1245 ] 1254
202 44 97 201 480 1265 2369

Table 2: Confusion Matrix for Judges A and B

Judge 2 = C

1 2 3 4 5 6
1730312 (0 6 3 2 316
2116 6 1 1 1 0 19
Judge 1 3 [ 42 3 156 5 1 1 108
= A 4[4 0] 8114 6 0 172
51 4 11 13 | 480 2 ;[ 500
6 5 1 1 1 9 1241 | 1254 i
368 12 67 180 496 1246 2369
Table 3: Confusion Matrix for Judges A and C
Judge 2 = D
1 2 3 4 5 6
173421 1 2 2 12 9 368
2 1 1710 1 0 1 12
Judge 1 3 2 1 148 ¢ 12 3 1 67
=C 4 8 1 3 1 16D 7 1 180
5[4 0170 0 1489 3 496
] 1 0 0 0 U 12457) 1246
358 18 83 174 oli 1260 2369
Table 4. Confusicn Matrix for Judges C and D
Judge 2 = E
1 2 3 4 5 6
1 {7206 T 131 |11 5 7 7 368
210 11 0 i} 0 1 12
Judge 1 3 1 6 42717713 2 3 67
= 4 1 1 f] 164 3 1 180
5 1 0 4 7 | 481 3 496
6 1 0 0 ] 1 1242 1 1246
210 149 62 192 499 1257 2369

Table 5 Confuston Matrix for Judges C and E

59

niy = 316
Ngq = 19
N34 = 108
44 = 172
nsi = H00
ng4 = 1254
Ny = 2360



Test

AlE

Al

AlC AlD BIC BID BIE (& ClE DR MlA M|B M|C M|D MIE
Sym.

32 165 70 77 75 105 Hl 109 46 226 214 81 84 22 39 212
w5'1g. 4.000 0.000 0.660 0.000 0.000 0.000 0.000 0.000 0.000 G.000 0,000 0.000 0.102 0.001 0.000
MOH

G*? 150 30 47 58 69 78 90 37 213 210 64 42 15 3G 206
Sig. 0.000 0.000 0.000 0.000 0.000 0.000 {1.000 0.000 0.000 0.000 0.000 0.000 0.010 0.000 0.000
Q.5
® 154 143 79 51 a4 81 185 a2 135 120 G7 82 34 25 120
Sig. $.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 G.000 0.000 0.000 0.000 0.016 0.051 $.000
Kappa | 0.82% 0.864 G918 | 0.903 | 0882 0.873 0.821 0,851 0,858 0.849 0.929 6.601 G877 0.964 0.874
Table §: Tests of Obscrver Differences {Bias) for Five Judges and Six Senses
Senses
AlE AjB AC AP B¢ BID  BIE P ClE  DIE M|A MB M MD ME
1 -2 0.422 0.006 0.989 0.986 {3.765 0.662 0.183 1.000 1.000 1.000 0.990 0.575 1.000 1.000 1.000
1 -3 0.960 0.948 1.000 0,997 3,959 0.964 0.950 1.000 (.999 0.997 1.000 0.968 1.460 1.000 0,999
T4 0.999 0,999 1.000 (.999 0.9494 0.909 0,999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1--5 1000 1.000 1.0D0 1,000 1.600 1).999 1.000 1.000 1.000 1.000 17000 1.000 1.00% 1.000 1.000
1 -G 1.000 1.GC0 1.000 1.000 1.000 1.000 1.600 1.500 1.000 1.000 1.000 1.000 1.000 1.000 1.000
23 0.925 0.953 [EN 0.978 0.964 0.970 1.000 14500 1.000 1.000 0.988 0.966 1,000 1.000 1.000
2 A 0.998 1.000 1.000 1.6G0 1.000 1.000 0,899 1.000 1.000 1.000 1,000 1.000 1.000 1808 1006
2 — A 1.000 1.000 1,000 1.000 1.000 1.000 1.060 1000 1.000 1.G00 1.000 1.000 1.000 1.000 1.000
R T.000 1.000 1.000 1.000 1.000 1600 1,000 1.000 17000 1.000 1.000 1.000 1T840 1,000 1.000
3 0.994 0.998 0.99% 0,081 0.997 0,994 1.986 0.995 0,991 .553 0.999 0.898 0,949 0.999 0.996
3 -5 0.994 0.9949 1.000 1.000 1.G00 1,000 0.994 1.000 1.000 0.969 1.000 1.000 1.000 1.000 1.000
3— € 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
) .999 0.999 0.999 0.999 1.000 o006 {.99¢ 1.000 0,049 1.000 1.600 1.000 1,600 1.600 1.000
4 3 1.508 1000 1.000 1.000 1.000 1.000 T.500 1.000 1.000 1,000 1,000 1.000 1.000 1.000 1.000
- G | 1.000 1.000 1.000 1.000 1.000 | 1.000 | 71.000 1.000 1.000 ] 1.000 1.000 1000 T 1.0007771.000 § 1.000
Table 7: Measure of Category Distinguishability for Five Judges and Six Senses
Fest
AlD Al AID BIC  BIP CID MA MIB MG M|D
Sym
G2 56 63 63 T2 T0 44 T2 72 17 36
IS{;:}. 0.000 0.000 0.000 0.000 $.000 0.060 0,000 £$.000 0.068 C.000
MH
G? 19 39 52 38 53 37 57 43 7 29
Sig 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.136 0,000
[
o2 T2 68 50 46 23 ar 60 ar 26 19
Sig. 0.000 0.000 $.000 {.000 $.016 0.000 G.000 0.000 0.006 0.017
Kappa {3.808 (3.524 0.910 0.909 0.902 0.952 0.943 0.920 0.978 G564
Table 8; Tests of Observer Differences {Bias) for Four Judges and Five Senses
Senses
A AlC AR Blo BID clr MlA MIB MIC MDD
I 0.948 0.997 0.994 0.957 0.964 1.000 1.000 0.968 1.000 1.00G
=3 1.000 0.999 0.999 0.999 (0.999 1.000 1.000 1,000 1.000 1.000
P-4 1.0600 1.000 1.0600 1.600 0.9499 1.000 1.000 1.000 1.000 1.000
1 — 5 1.000 1.800 PR 1.000 1.000 1,000 1.000 1.000 1,000 1.0D0
2 — 3 0.908 0.995 0.992 a,.0687 0.994 0.0086 0.999 0.908 1.000 0.997
2 — 4 BRER] 1.000 1.00G 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T -5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3~ 4 0.909 0.999 0.988 4.999 1.000 1.0060 1.000 1.000 1.000 1000
3 -5 1.000 1.000 1,000 1.000 1.000 1.000 1.000 1,000 1.000 1,000
q -5 1.000 1,000 1.000 1.000 1.00G 1.000 1.000 1.000 1.000 1600
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Table 9: Measure of Category Distinguishability for Four Judges and Five Seuses
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Abstract

We consider the problem of assigning level numbers
{weights) to hierarchically organized categories during
text categorization. These levels control the ability of
the categories to attract documents during the catego-
rization process. The levels are adjusted to obtain a
balance between recall and precision for each category.
If a category’s recall exceeds its precision, the category
is too strong and its level is reduced. Conversely, a cat-
egory’s Jevel is increased to strengthen it if its precision
exceeds its recall. g

The categorization algorithm used is a su]:;ervised
learning procedure that uses a linear classifier based
on the category levels. We are given a set of categories,
organized hierarchically. We are also given a training
corpus of documents already placed in one or more cat-
egories. From these, we extract vocabulary, words that
appear with high frequency within a given category,
characterizing each subject area. Fach node’s vocab-
ulary is filtered and its words assigned weights with
respect to the specific category. Then, test documents
are scanned and categories ranked based on the pres-
ence of vocabulary terms. Documents are assigned to
categories based on these rankings. We demonstrate
that precision and recall can be significantly improved
by solving the categorization problem taking hierarchy
into account. Specifically, we show that by adjusting
the category levels in a principled way, that precision
can be significantly improved, from 84% to 91%, on
the much-studied Reuters-21578 corpus organized in a
three-level hierarchy of categories.
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1 Introduction and Background

The volume of online information has drastically in-
creased with the explosive use of the Internet and online
databases. Text retrieval systems employed by search
engines for accessing this information have difficulty
keeping pace with the growth in the amount of data
that needs indexing and searching., Categorization of
the original text is a method of organizing and mak-
ing more efficient, the retrieval task by sorting informa-
tion into pre-specified "category bins” that can then be
queried against using natural language processing sys-
tems.

The document categorization problem is one of as-
signing newly arriving documents to categories within
a given hierarchy of categories. In general, lower levet
categories may be part of more than one higher level
category. Moreover, a document may belong to more
than one low-level category. While the techniques de-
scribed here can be applied to this more general prob-
lem, the experiments we have conducted, to date, have
been carried out on a corpus where each document is a
member of a single category and the categories form a
tree rather than a more general directed acyclic graph.
We limited the investigation to this more specific prob-
lem in order to focus the investigation on the effect of
adjusting the category level numbers.

Most computational experience discussed in the lit-
erature deals with hierarchies that are trees. Indeed,
unti! recently, most problems discussed dealt with cate-
gorization within a simple (non-hierarchical) set of cat-
egories (Frakes and Baeza-Yates, 1992). The Reuters-
21578 corpus (available at David Lewis's home page:



http://www.research.att.com/ lewis) has been studied
extensively. Yang (Yang, 1997) compares 14 categoriza-
tion algorithms applied to this Reuters corpus as a flat
categorization problem on 135 categories. This same
corpus has been more recently studied by others treat-
ing the categories as a hierarchy {Chakrabarti et al.,
1997)(Koller and Sahami, 1997){Ng et al., 1997}{Yang,
1996). Yang examines a portion of the OHSUMED
(Hersh et al., 1994) corpus of medical abstracts, a part
of the National Library of Medicine corpus that has over
9 million abstracts organized into over 10,000 categories
in a taxonomy (called MeSH) which is seven levels deep
in some places.

We describe an algorithm for hierarchical document
categorization where the vocabulary and term weights
are associated with categories at each level in the tax-
onomy and where the categorization process itself is
iterated over levels in the hierarchy. Thus a given term
may be a discriminator at one level in the taxonomy
receiving a large weight and then become a stopword
at another level in the hierarchy.

There are two strong motivations for taking the hi-
erarchy into account. First, experience to date has
demonstrated that both precision and recall decrease as
the number of categories increases (Apte et al., 1994)
(Yang, 1996). One of the reasons for this is that as
the scope of the corpus increases, terms become in-
creasingly polysemous. This is particularly evident for
acronyms, which are limited by the number of 3- and
4-letter combinations, and which are reused from one
domain to another.

The second motivation for doing categorization
within a hierarchical setting is it affords the ability to
deal with very large problems. As the number of cat-
egories grows, the need for domain-specific vocabulary
grows as well. Thus, we quickly reach the point where
the index no longer fits in memory and we are trading
accuracy against speed and software complexity. On
the other hand, by treating the problem hierarchically,
we can decompose it into several problems each involv-
ing a smaller number of categories and smaller domain-
specific vocabularies and perhaps yield savings of sev-
eral orders of magnitude.

Feature selection, deciding which terms to actually
include in the indexing and categorization process, is
another aspect affected by size of the corpus. Some
methods remove words with low frequencies both in or-
der to reduce the number of features and because such
words are often unreliable. Depending on the size of the
corpus, this may still leave over 10,000 features, which
renders even the simplest categorization methods too
slow to be of use on very large corpora and renders the
more complex ones entirely infeasible.
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Methods that incorporate additional feature selection
have been studied (Apte et al., 1994) (Chakrabarti et
al., 1997) (Deerwester et al. 1990} (Koller and Sahami,
1996) (Lewis, 1992) (Ng et al., 1997) (Yang and Peder-
son 1997). The effectiveness of these feature selection
methods varies. Most reduce the size of the feature set
by one to two orders of magnitude without significantly
reducing precision and recall from what is obtained with
larger feature sets. Some approaches assign weights to
the features and then assign category ranks based on
a sum of the weights of features present. Some weight
the features further by their frequency in the test docu-
ments. These methods are all known as linear clagsifiers
and are computaiionally simplest and most efficient,
but they sometimes lose accuracy because of the as-
sumption they make that the features appear indepen-
dently in documents. More sophisticated categorization
methods base the category ranks on groups of terms
{Chakrabarti et al.,, 1997} (Heckerman, 1996) (Koiler
and Sahami, 1997) (Sahami, 1996) (Yang, 1997). The
methods that approach the problem hierarchically com-
pute probabilities and make the categorization decision
one tevel in the taxonomy at a time.

Precision and recall are used by most authors as a
measure of the effectiveness of the algorithms, Most of
the simpler methods achieved values for these near 80%
for the Reuters corpus (Apte et al., 1994) (Cohen and
Singer, 1996). More computationally expensive meth-
ods using the same corpus, achieved results near 90%
{Koller and Sahaini, 1997) while methods that used hi-
erarchy obtained small increases in precision and large
increases in speed (Ng et al., 1997). As the number of
categories increased in a corpus (OHSUMED), precision
and recall decline to 60% (Yang 1996).

In a previous paper (D’Alessio et al., 1998) we show
that it is possible to obtain more significant improve-
ments in precision and recall by making use of the hier-
archy. We describe an earlier version of the algorithm
discussed here and show that treating the categoriza-
tion problem within the context of a hierarchy is ef-
fective in realizing these improvements. The principal
focus there was on the effect of the hierarchy itself and
in refining the hierarchy. In some cases, moving cate-
gories from one place within the hierarchy to another
within it can further improve the accuracy of the cate-
gorization. Here we extend that investigation and focus
on the effect of adjusting the category levels to further
improve accuracy. We are particularly interested in ex-
ploring the situations where one approach (hierarchy
modification or level modification) works best.



2 Problem Definition

2.1 General Definition of Categories

We are given a set of categories where sets of categories
may be further organized into supercategories. We are
given a training corpus and, for each document, the cat-
egory to which it belongs. Documents can, in general,
be members of more than one category. In that cass, it
is possible to consider a binary categorization problem
where a decision is made whether each document is or is
not in each category. Here, we examine the M-ary cat-
egorization problem where we choose a single category
for each document.
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Figure 1 Reuters basic hierarchy

2.2 Document Corpus and Taxonomy : '
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We use the Reuters-21378 corpus, Distribution 1.0,
which is comprised of 21578 documents, representing
what remaing of the original Reuters-22173 corpus af-
ter the elimination of 593 duplicates by Steve Lynch
and David Lewis in 1996. The size of the corpus is
28,329,337 bytes, yielding an average document size of
1,313 bytes per documens. The documents are " cate-
gorized” along five axes - topics, people, places, organi-
zations, and exchanges. We consider only the catego-
rization along the topics axis. Close to half of the docu-
ments (10,211) have no topic and as Yang (Yang, 1996)
and others suggest, we do not include these dacuments
in either cur training or test sets. Note, that unlike
Lewis (acting for consistency with earlier studies), the
documents that we consider no-category are those that
have no categories listed between the topic tags in the
Reuters-21578 corpus’ documents, This leaves 11,367
documents with one or more topics. Most of these doc-
uments (9,493} have only a single topic. The average
number of topics per document is 1.26.

The Reuters-21578 collection uses 1335 topics cate-
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gories organized as a flat taxonomy. Although the col-
lection does not have a pre-defined hierarchical classi-
fication structure, additional information on the cat-
egory sets available at Lewis's site describes an orga-
nization that has 5 additional categories that become
supercategories of all but 3 of the original topics cat-
egories. Adding a root forms a 3-level hierarchy (see
Figure 1}. The number of categories per supercategory
varies widely from a minimum of 2 to a maximum of
78. All of the documents in the Reuters collection are
assigned to O or more of the original 135 topics cat-
egories. In this case, documents are assigned only to
leaf categories of the hierarchy while, in general, this is
not necessarily the case.

root
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The number of training documents per category also
varies widely, from a minimum of 0 (for 71 such cate-
gories) to a maximum of 2,789 {earnings). On the other
hand, document size does not vary greatly across cate-
gories. In the experiments described in this paper, we
only considered categorizing test documents into cat-
egories having 20 or more training documents. This
was done in order to focus on a problem where there
was enough statistical significance in the features we
extracted to make comparisons among different cate-
gory levels meaningful. This limited the investigation to
27 categories and actually removed only 94 documents
(less than 3.5%) from the test corpus. This increased
the overall precision and recall by about 1.5%. How-
ever, since we are principally interested here in study-
ing the effect of varying the category level numbers, this
is not a problem as ail the experiments described were
carried out on the same corpus.

2.3 Performance Metrics

We measure the effectiveness of our algorithm by us-
ing the standard measures of microaveraged precision



and recall; i.e., the ratio of correct decisions to the to-
tal number of decisions and the ratio of correct deci-
sions to the total number of documents, respectively.
We do, however, sometimes leave documents in non-leaf
categories and then, in measuring precision and recall,
count, these as "no-category”, reducing recall but not
precision.

3 Algorithm Description

3.1 Overview

We begin by creating training and test files using
the 9,495 single-category documents from the Reuters-
21578 corpus. While this led to somewhat higher pre-
cision and recall than would have been obtaimed by
including multicategory documents, our 91% precision
and 90% recall is also higher than the roughly 80% typi-
cally reported for categorization methods of comparable
speed and complexity. Thus, our approach is compara-
ble to those methods and serves as a reasonable baseline
against which to study the effects of the hierarchy.

The corpus is divided randomly, using a 70%/30%
split, into a training corpus of 6,753 training documents
and 2,742 test documents. Documents in both the
training and test corpora are then divided into words
using the same procedure. Non-alphabetic characters
(with the exception of "-") are removed and all char-
acters are lowercased. Stopwords are removed. The
document is then parsed into "words™: 1.e., character
strings delimited by whitespace, and these words are
then used as features.

Next, we count the number of times each feature ap-
pears in each document and, from that, we compute the
total number of times each feature appears in training
documents in each category. We retain only features
appearing 2 or more times in a single fraining docu-
ment or 10 or more times across the training corpus.
All other features are discarded as being insufficiently
reliable.

Next we use a variant of the ACTION Algorithm
(Wong et al. 1996}, described in detaill in Section 3.2
below, to associate features with nodes in the taxon-
omy. This is one of the two aspects that make our ap-
proach novel, By eliminating most features from most
categories, we gain several advantages. First, by lim-
iting the appearance of a feature to a small number of
categories {usually, just one) where it is an unambigu-
ous discriminator, we improve the precision of the cat-
egorization process. Second, by working with a smail
number of features, we avoid optimization over a large
number of features, and have a procedure with low com-
putational complexity that can be applied to large prob-
lems with many categories. (Currently the number of
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features is set to 50). Our feature selection procedure
most closely resembles rule induction (Apte et al., 1994)
but it differs from that approach in that it considers
the interactions among a larger number of features for
& given amount of computational effort.

Weights are now assigned to the surviving features in
each category. We associate a weight, Wy, , with each
surviving feature, f , in category ¢. We define Wy, by:

Tae (1)
M,
where Ny, is the number of times f appears in ¢, M,
is the maximum frequency of any feature in ¢, and is a
parameter {currently set to 0.4).

We also assign a negative weight to features associ-
ated with siblings (successors of the same parent node)
of each category. A feature appearing in one or more
siblings of ¢ but not in ¢ itself, is assigned a negative
weight

Wie=(A+(1-4A)

Ry @
M,

where p is the parent of ¢ in the hierarchy. Thus Ny, is
the number of times f appears in the parent of ¢, which
is in turn the number of times f appears in all siblings
of ¢ since it does not appear in c itself at all. M, is the
maximum frequency of any feature in ¢'s parent.

Finally, we filter the set of positive and negative
words agsociated with each category, both leaf and inte-
rior, retaining the most significant words. This process
is described in the next section.

We now have an index suitable for use in the cate-
gory ranking process. ‘The index contains features and
a weight, Wy, , associated with each feature in each
category. Note that Wy, is implicitly 0 for any feature
not associated with a particular category.

Given a document, d, a rank can now be associated
with each category with respect to d. Let F be the
set of features, f, in D. The ranking of category ¢ with
respect to document d, Req, is then defined to be:

Reg = Z NpaWy,
F

where the sum is over all positive and negative features
assoclated with ¢ and Nyg i1s the number of times f ap-
pears in d. Note that, in practice, the sum is taken only
over features that are in the intersection of the sets of
features actually appearing in d and actually associated
with ¢. Note that R.q may be positive, negative or zero.

Test document d is now placed in a category. Starting
at r, the root of the hierarchy, we compute R4 for all ¢
which are successors of r. ¥ all B 4 are zero or negative,
dis left at r. If any R.4 is positive, let ¢’ be the category
with the highest rank. If ¢’ is a leaf node, d is placed
in ¢’. If ¢ is an interior node, the contest is repeated

Wiee = -(A+{1-2)

(3)



at node ¢’. Thus, d is eventually placed either in a leaf
category which wins a contest among its siblings or in
an interior node none of whose children have a positive
rank with respect to d. In this latter case, we may
say that d is actuaily placed in the interior category,
partially categorized or not categorized at all. Which
of these we choose is dependent upon the application
and on how much we value precision versus recall.

3.2 The ACTION Algorithm

The ACTION Algorithm was first described in (Wong
et al., 1996) as a method of associating documents with
categories within a hierarchy. Here, we use it to asso-
ciate vocabulary with nodes in a hierarchy and asso-
ciate documents with the nodes using the procedure
described in Section 3.1 above. The criginal algorithm
applied to problems with documents at interior and leafl
nodes. Akthough our adaptations apply to the more
general case also, we describe the algorithm with re-
spect to that simpler case since the corpus we are using
has documents only at leaf nodes.

The algorithm begins by counting Ny., the number
of times feature f appears in documents associated with
category ¢ in the training set, for all f and ¢. There
is a level, , associated with each category, ¢, in the
hierarchy. By convention, the root is at level 1; its
immediate successors are at level 2, ete.

We then define EF;., the effective frequency of a
subtree rooted at node ¢ with respect to feature f as

EFye= ) Ny @
JjeSc
Thus, EFy. is the total number of cccurrences of fin ¢
and all subcategories, S. of node c¢.
Finally, we define Vy,, the significance value of ¢ with
respect to f, as

Vie = Lo x EFy, {3)
Thus, a node gets credit, in proportion to its level, for
occurrences of { in itself and in its suceessors. The far-
ther down the tree a node is, the more credit it is given
for its level, but the higher up the tree a node is, the
larger the subtree rooted at ¢ and the larger the credit
it gets for effective frequency. A competition thus takes
place between each node and its parent {immediate pre-
decessor). For each feature, f, EFy. is compared with,
EFy, , where p is the parent of ¢ and if EFy, is smaller
then f is removed from node ¢. Thus a parent can re-
move a feature from a child but not vice versa. In the
case of a tie, the child loses the feature. All this com-
petition proceeds from the leaves upward towards the
root.
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The net effect of this is that if a feature occurs in only
a single child of a given parent, then the child retains the
feature (as does the parent), but if the feature occurs
significantly in more than one child of the same parent,
then only the parent retains the feature.

Several advantages accrue from all this. First, com-
mon features, including stopwords, will naturally rise to
the root, where they will not participate in any rank-
ings. Thus, this algorithm is a generalized version of
removing stopwords. If a feature 1s prominent in sev-
eral children of the same node, the parent will remove
it from all of them. Ideally, words that are important
for making fine distinctions among categories farther
down in the category hierarchy, but are ambiguous at
higher levels, wili participate only in places where they
can help,

Note that we never directly remove a feature from the
parent even when the child retains it., The reason for
this is that we may need the feature to get the document
to the parent; if it doesn’t reach the parent it can never
reach the child. In the case where a feature strongly
represents only one category, there is no harm in the
parent retaining it. In the cases where it is ambiguous
at the level of the parent, the grandparent removes it
from the parent (its child).

Thus, at the end of the algorithi when we filter the
feature set for each category (leaf and non-leaf) retain-
ing only the 50 most highly ranked positive and negative
words, at non-leaf categories we also retain any words
retained by their children,

3.3 Assignment of Category Level Values

The focus of the experiments described in Section 4 is
to investigate the effect of modifying the category levels
in the ACTION Algorithm and in the ranking process
which actually selects document categories. We begin
with the root at level 1 and with all other categories at
a level one higher than that of their parents. We run a
categorization and measure the resultant precision and
recall for each category and for the corpus as a whole.

Next, we consider the effect of varying the levet of the
root, observing the effect on accuracy, and setting the
level of the root (and all other categories, since their
levels are set relative to that of the root) to the best
value found. A simple, linear search is carried out at a
fairly coarse scale (increments of .25). Experiments we
carried out using a finer scale did not yield significantly
better results and we thus limited all the experiments
here to this stepsize of .25. Even with such a simple
search, we obtained significant improvements in accu-
racy, over 7% overall. It is our intention in the future,
after examining the effects of the interaction between
hierarchy modifications and level modifications in more



detail, to return to the issue of searching over a nar-
rower grid. At this stage in the investigation, however,
we felt that doing so would only obscure the main re-
sults.

Actually, the category level numbers serve two pur-
poses: word selection and document ranking. First,
during the ACTION Algorithm (see Equation §), they
affect the competition (between parents and children)
for words. A parent at level L will compete success-
fully with a child at level L+D, removing a word from
the child's wordlist, if the Fy,/F¢, the frequencies of the
word in the subirees rooted at the parent and child,
respectively, exceeds (L+D)/L. Thas, the difference in
the level number of the parent and child directly affects
how high the relative frequency of the word must be,
in the child relative to the parent, in order for the child
to retain the word. Making D smaljer strengthens the
parent with respect to the child. Similarly, making L
smaller while leaving D the same, weakens the parent
with respect to the child. But altering L is fundamen-
tally different from altering D as altering L also affects
the parent’s strength with respect to its own parent.

Thus, in modifying level numbers we must consider
this interaction. We do so simply by looking for cat-
egories where the precision and recall are very differ-
ent and where the interaction with other categories is
marked. At each step, we consider the performance of
a node relative to its parent, strengthening or weaken-
ing it as appropriate to balancing the node’s precision
and recall, specifically, its ability to attract the correct
documents to its subtree.

Changing a node’s level number alsc affects the rank-
ing process. Again, the higher the level number, the
stronger the node. Now, however, the change in level
number also affects a node’s strength with respect to
its siblings as siblings compete directly for documents
reaching their parent. We deal simply with this prob-
lem too. By examining the dispersion matrix, we ob-
serve which categories in the group under a common
parent are too strong, aggressively stealing documents
from their siblings, and which are victims. We begin by
adjusting the node most out of kilter, or several nodes
that are all out of kilter in the same direction and are
not directly competing with one another. In practice
this was found to be effective; experiments with more
complex modification procedures did not produce sig-
nificantly betier results.

Actually, it is possible to consider two different level
numbers, one for word selection and another for docu-
ment ranking. In fact, the motivations for modifying a
node’s level number for word selection and for document
ranking coincide thus making it reasonabie to consider
making similar adjustments. We plan to return o this
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issue as part of a broader investigation of refinements
to the overall algorithm, preferring to concentrate here
on the simpler case. Even using this simple approach,
however, we obtained significant gains.

4 Computational Experience

There are a number of ways that the performance
of a hierarchical categorization system can be tuned.
Here we describe experiments performed in order to
understand the effects of adjusting the level numbers
{weights) of the categories within the hierarchy.

The purpose of this research is to investigate the role
of a hierarchical organization of categories on the text
categorization task. In particular we are considering a
tree of categories with each node in the tree assigned
a level number. As described above, this level number
is used in evaluating the significance of features during
the feature selection process, and in weighting of doe-
ument features during the categorization process. The
experiments reported here were conducted to determine
the impact of this level number on feature selection and
categorization of documents.

We begin with a base line case. We use the topics
hierarchy supplied with the Reuters-21378 corpus, and
consider only the leaf categories. We add a root cat-
egory to make a simple tree structure. We assign the
root a level number of O and the leaves a leve] of 1.
With this organization of categories and level numbers
the root is unable to remove any features from a node
during the feature selection process. Therefore, it effec-
tively becomes a set of nodes rather than a tree. When
we apply our categorization algorithm to the test doc-
uments we achieve a precision of 83.6% and a recall of
83.5%. We refer to this case as Flat-0. Note that if no
category gives a document a ranking above our thresh-
old, currently set to zero, then the document remains
unclassified. In the Flat-0 cage there are 2 unclassified
documents.

We modified the base case by giving the root a level of
1, and all leaves a level of 2. The root is now capable of
extracting features from the leaves during the feature
selection process. When we apply our categorization
procedure to the same test data as above we achieve a
precision of 90.6% and a recall of 87.2%. We refer to
this case as Flat-1. In Flat-1 there are 99 unclassified
documents, but the precision and recall are significantly
improved.

With a level number of 1, the root aggressively re-
moves features from the leaves, The result is that 97
more documents receive rankings below the threshold
and remain unclassified in Flat-1 than in Flat-0. We
hypothesize that if the root were less aggressive in re-



moving features from the leaves, the leaves would retain
better features, resulting in better recall and precision.
On the other hand, if the root has too low a level num-
ber the root does not remove any features from the
leaves, and as a result the leaves retain features that
are noisy. We tested this hypothesis by assigning the
root a level of .75 and the leaves levels of 1.75. We refer
to this case as Flat-75. Applying our feature selection
and categorization algorithms as above resulted in a
precision of 91.2% and a recall of 89.2%. In this case
60 documents were unclassified but both precision and
recall were improved when compared to Fiat-1. The
results of the experiments on the test data for the three
Flat hierarchy cases are in the summary Table 3.

These results support our hypothesis that the value
of the level numbers affects the ability of the root to
remove features. We conducted a further experiment
to confirm this conclusion. Normaily our program re-
moves stopwords from the training and testing docu-
ments. Since we restrict the number of features at each
node to 50, this insures that the retained features are
useful. We modified our programs so that stopwords
were not removed, then ran the feature selection and
categorization processes. If our conclusions regarding
the level numbers were correct, then using a level num-
ber of .75 should result in precision and recall approxi-
mately equal to the results described above for Flag-75.
However if we run the program with a root level of 0 the
precision and recall should deteriorate since the stop-
words will impede performance. When we performed
these experiments we achieved a precision of 90.7% and
a recall of 88.9% with a root level of .73 and a precision
and recall of 78.3% with a root level of 0. These results
confirm that our feature selection algorithm together
with appropriate level values significantly reduces noise
and improves performance.

Our next objective was to determine if the level num-
bers could be tuned to improve performance in the case
of a more elaborate hierarchy. For this set of experi-
ments we also used the topics hierarchy provided with
the Reuters-21578 corpus (Figure 1). This time we
included the intermediate categories, corporate, com-
modities, economic indicators, energy and currency. We
first established a base line for performance by assigning
the root a level of .75 and increasing the level numbers
by 1 at each lower level of the tree. We refar to this or-
ganization as Base-Hier. We ran our feature selection
program using the training data, and our categorization
program using the same test data as above. The result
was a precision of 87.1% and a recall of 85.2%. This
result is reported in the summary Table 3. In crder to
sune the level numbers we repeated a process of first us-
ing the training data to select a set of features for each
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node. then categorizing the training data and using the
results to select new level numbers, then repeating the
feature selection/categorization process on the training
data until we arrived at an appropriate set of level num-
bers. At that point we could judge the effectiveness of
the training by comparing our results against the base
line case.

We began the process by using the training data
for feature selection and categorization with Base-Hier.
Based on our analysis of the results from the previ-
cus experiments we hypothesize that we could improve
the categorization performance in two ways. First, if
a category is achieving high precision and low recall,
we could raise its level number; and second, if a cate-
gory is achieving high recall and low precision we could
lower its level number. For our first experiments we
selected simple cases of nodes that were experiencing
poor performance, and as we learned more about the
tuning process moved onto more involved cases.

When we apply our feature selection and categoriza-
tion programs to our training data using Base-Hier we
get & precision of 89.2% and a recall of 87.5%. When
we examine the results more closely we see that the cat-
egories of interest and money-fx are candidates for tun-
ing. Interest has a precision of 95% but a recall of only
23% while money-fx has a precision of 89% and a recall
of 60%. Both of these categories are direct descendents
of the root and have no descendents. In both cases rais-
ing the level numbers should allow us to improve recall.
We changed both level numbers from 1.75 to 2.75 and
ran our feature selection and categorization procedures
with the new hierarchy. Overall the precision and recall
improved to 90.8% and 89.3% respectively. Interest has
a precision of 98% and recall of 62% and money-fx has
a precision of 83% and recall of 84%. Of course these
results are from categorizing the training data, however
they do indicate significant improvement.

If we look at the results of the previous experiment
we see that with a precision of approximately 90% and a
training set of 6493 documents, we are making approx-
imately 630 errors. The largest single source of these
errors occurs in the corporate subtree. Corporate has
two subcategories, earnings and acquisitions. Earnings
has a precision of 91% and 4 recall of 99% while ac-
quisitions has a precision of 94% and a recall of 84%.
The corporate category has a precision of 97% and a
recall of 98%. These categories account for approxi-
mately 2/3 of the training data. From these results
we can see that almost all of the earnings and acquisi-
tions documents are correctly placed in the corporate
category. Our categorizer must then decide if the doc-
uments are earnings or acquisitions documents. Qur
program is placing 22 earnings documents in the acqui-



sitions category and 211 acquisitions documents in the
earnings category. In addition, 42 earnings and acquisi-
tions documents are left in the corporate category since
there was no positive rank. In all, this is a total of 275
mistakes, which accounts for a substantial portion of
the total 650 mistakes. Cleariy this set of categories is
a good candidate for tuning. This case is more complex
than the interest/money-fx case since earnings and ac-
quisitions are not descendents of the root. As we tune
their level values we want to improve the performance
of earnings and acquisitions without having a negative
impact on the performance of the corporate category.

Since many more acquisitions documents are being
classified as earnings documents than the reverse and
acquisitions’ recall is significantly lower that its preci-
sion (see Table 1}, we should lower the level number of
earnings relative to acquisitions in order to make ac-
quisitions stronger, At this point corporate is at level
1.75, and both earnings and acquisitions are at level
2.75. There are a number of ways that we might tune
these levels, we explored three possibilities. The first
alternative leaves corporate at 1.75 and acquisitions at
level 2.75 but lowers earnings to 2.5. Call this A1, The
second alternative leaves corporate at 1.75 and lowers
both earnings and acquisitions, earnings to 2.25 and
acqguisitions to 2.53. Call this A2. The final possibility
lowers corporate to 1.5 and earnings to 2.5 and leaves
acquisitions at its 2.75 level. Call this A3,

We would expect that using Al would result in ac-
quisitions getting better features and consequentiy also
getting more of its own documents, with the possible
side effect of having more earnings documents classified
as acquisitions. A2 makes corporate stronger relative to
both earnings and acquisitions. As we saw in the flat
cases this would mean that corporate would remove fea-
tures more aggressively. We would expect therefore that
acquisitions would have fewer of its documents classi-
fied as earnings, but there is the possibility that many
more documents from both earnings and acquisitions
wiil be unciassified. A3 makes both earnings and ac-
quisitions stronger relative to corporate and we would
expect to have fewer unclassified documents. We would
also expect that fewer acquisitions documents wouid be
classified as earnings. Since both Al and A2 leave cor-
porate at level 1.75 we would also expect that corporate
would continue to achieve both high recall and preci-
sion. In fact, other branches of the hierarchy should
be unaffected by the changes inside the corporate tree
{one of the strengths of a hierarchical approach). A3
changes the tevel of corporate so there is the possibility
that the performance of corporate relative to the rest
of the hierarchy will deteriorate in this case.

We ran our feature selection and classification proce-
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dure for all three cases. The results are shown in the
Table 1 below.

As we can see Al allows acquisitions to retain bet-
ter features and its recall improves significantly. By
making earnings weaker it classifies fewer acquisitions
documents as earnings and earnings achieves a higher
precision with a slight decrease in recall. The weaker
value for earnings also results in more unclassified cor-
porate documents. A2 produces similar improvements
in the precision of earnings and the recall of acquisi-
tions but results in many more unclassified corporate
documents resulting in a slightly lower overall recall.
A3 gives the fewest unclassified corporate documents.
Since corporate has a lower level number in this case it
does not remove features as aggressively as in the other
two cases. One side effect however is that many more
documents are incorrectly classified as acquisitions, and
the overall performance deteriorates. Of course there
are other adjustments that could be made, but our ob-
jective was not to find the optimum combination, but
rather to understand the effects of changing the levels,
We selected Al as the best alternative.

The next case we consider is the economie indica-
tors subtree. This is a more complex case than those
described above. Nine of the categories in this subtree
have more than twenty training documents and are used
in these experiments. Together there are 663 training
documents for the categories in the subtree. Using the
Al hierarchy above the subtree achieves a recall of 88%
and a precision of 84% on the training data. Within
the subtree the performance is quite varied. Five of the
nine subcategories have a precision of over 90% while
four of the categories have recall below 70%. In some
cases the difference between precision and recall is very
large. The category cpi for example has a precision of
100% but a recall of only 40%. Balance of payments
has a recall of 88% and a recall of only 29%. On the
other hand, trade has a precision of only 73% and a
recall of 88%.

All the categories within economic indicators have
level 2.75. We tested our hypotheses regarding the ef-
fects of level numbers by adjusting the levels within the
subtree. We increased the level of the two nodes with
very low recali and high precision from 2.73 to 4.75. We
increased the level of one node to 3.75 and we decreased
the level of trade from 2.75 to 2.5, Nodes with recall
and precision approximately equal were left unchanged.
With these adiustments, our overall performance on the
training data was a 93.0% precision and a 91.7% recall.
Using our guidelines we performed a final round of tun-
ing throughout the hierarchy (cailed Final-Hier) using
the training data with a precision of 93.2% and a re-
call of 92.0%. The results of these experiments on the



Level Numbers

Corp Acq Eamn Overall Earn Acq Unclass Earn Acq

Prec/Rec Prec/Rec Prec/Rec Corp Does as Acqg  as Eamn

Before i75 275 2.75 91/89 91799 94784 ) 22 31T
Al 175 275 250 93/91 96,/98 92/93 55 47 55
A2 1.75 250 2.25 92/90 97/97 91/91 96 65 39
AJ 1.50 275 250 91/89 97/94 88/93 15 160 30

Table 1: Precision, Recall, Unclassified Corporate Documents, Earnings Documents Classified as Acquisitions and
Acquisitions Documents Classified as Earnings for Different Levels Number for Corporate, Acquisitions and Earnings

using Training Data.

Prec(%) | Rec(%)
Base-Hier 89.2 87.5
Interest/Money-fx at 2.75 90.8 89.3
FEarnings at 2.5 (A1) 92.7 91.0
Adjusting Econ Inds 93.0 91.7
Final-Hier 93.2 92.0

Table 2: Results Using Training Data

training data are reported in Table 2.

Woe then used the resulting hierarchy, Final-Hier, to
categorize the test data. The result was an overall pre-
cision of 91.5% and a recall of 89.9%. This compares
favorably with our results on the test data using Base-
Hier where we achieved a precision of 87.1% and a recall
of 85.2%. See Table 3 for a summary of selected corre-
sponding results using the test data.

We performed additional experiments to test the ro-
bustness of our final hierarchy. In all of the experiments
above we restricted ourselves to categories that had at
least 20 training documents. In the first test of ro-
bustness we relaxed this condition and only required 10
training documents. When we applied our categorizer
to the test data we achieved a precision of 91.0% and
a recail of 89.4%. In our second test we relaxed the
condition further and considered all the categories re-
gardiess of the number of training documents. When
we applied the categorizer in this case we achieved a
precision of 90.0% and a recall of 88.4%. In our next
test we kept the level values of the categories the same
but retrained the graph using only 30% of the data as
training data. We then fested the categorizer on the
remaining 70%. In this experiment we again required
20 training documents for a category. The result was
a precision of 89.8% and a recall of 83.4%. Finally, we
tested the categorizer on an alternate 7(/30 random
split of the corpus and obtained similar resuits. This
final result is also reported in Table 3.
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Prec(%) | Rec(%)
Flat-0 83.6 83.5
Flat-75 91.2 89.2
Flat-1 90.6 87.2
Base-Hier 87.1 85.2
Final-Hier 91.5 89.9
Final-Hier (Alt split) 911 89.9

Table 3: Results Using Test Data

5 Summary and Conclusions

In this paper, we have explored the effect of modifying
the category level numbers in an algorithm for hier-
archical text categorization and have shown that it is
possible to obtain substantial improvements in precision
and recall by doing so. Specifically, we improved preci-
sion and recall from an 84% level to over a 91% level, by
adjusting the category level numbers. The procedure
we uged was a simply, greedy search heuristic guided
by the principle that categories whose precisions signif-
icantly exceeded their recall were too weak and those
whose recall exceeded their precision were too strong.

In a previous paper (D'Alessio et al., 1998) we ex-
plored the effect of modifying the hierarchy itself, mov-
ing categories from one part of the hierarchy to another,
in order to achieve similar objectives. We found that
approach effective also and have now shed additional
light on the role of hierarchy in the categorization pro-
cess and in the interaction between hierarchy modifica-
tion and level modification. Close examination of the
dispersion matrix has been very useful in this regard.
We found that level modification was most useful in
cases where a category was generally too weak or gen-
erally too strong. The row or column in the dispersion
matrix containing many off-diagonal elements charac-
terized these cases. On the other hand, when the prob-
lem was a single large off-diagonal element, moving a
category from one part of the hierarchy to another was
more effective. In some cases, both approaches were
effective.



We have seen examples of all these cases. We illus-
trated we could achieve improvements by modifying the
level numbers for earnings and acquisitions or, alterna-
tively {in our previous work (D’Alessio et al., 1998))
by altering the hierarchy by removing the intermedi-
ate corporate category. The former approach, however,
worked somewhat better. We found that we could gain
by altering the level numbers of interest and money-fx
or, alternatively making them children of economic in-
dicators. Both approaches worked, but in this case, the
latter worked better.

Based on our computational experience to date, our
conclusion is that both types of adjustment are useful
and that much of the obtainable gain can be achieved by
making adjustments individually, focussing on simple
adjustments and on those with large potential gains.
Our next goal is to explore this interaction more closely
and to automate the process of category level number
modification. We also plan to explore the use of these
technigues in problems with multi-category documents.
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Abstract

In this paper, we propose a method for text calegoriza-
tion task using term weight learning. In cur approach,
learning is to learn true keywords from the error of clus-
tering results. Parameters of term weighting are then
estimated so as to maximize the true keywords and min-
imize the other words in the text. The characteristic of
our approach is that the degree of context dependency
is used in order to judge whether a word in a texi is
a true keyword or not. The experiments using Wall
Streel Journal corpus demonstrate the eflectiveness of
the method.

Introduction

With increasing numbers of machine readable docu-
ments becoming available, an automatic text catego-
rization which is the classification of text with respect
to a sel of pre-categorized texts, has become a trend in
IR and NLP studies. ot

One of the imporfant issues In text citegoriza-
tion task is how to characterize texts which are pre-
categorized. There are at least two statistical ap-
proaches to cope with the issue, 1.e. statistical approach
that relies mainly on {1} surface information of words in
texts, and (2) semaentic mmformation of words m texts.

Statistical approach based on surface information of
words has heen widely studied in IR. One represen-
{alive 1s a vector model. In this model, each text is
represented by a wvector, 1.e. every text which should
be classified and texts which are pre-categorized in a
training phase are characterized by a vecior, each di-
mension of which is associated with a specific word in
texts, and every coordinate of the text is represented
by term weighting. Then, some similarity measure
is used and the fext 1s assigned to the most seman-
tically similar set of texts which are pre-categorized.
Term weighting method is widely studied [Luhn1958],
[Salton and Yangl973], [Saltonl988], [Jones1973].
Guthrie and Yuasa used word frequencies for weight-
ing [Guthrie and Walker1894], [Yuasa et al.1995], and
Tokunaga used weighted inverse document frequency
(WIDF) which is a word frequency within the docu-
ment divided by its frequency throughout the entire
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document collection [Tokunaga and Iwayamal994].

The other approach is based on a probabilistic
model. This approach is widely used, since it has
solid formal grounding in probability theory. Iwayama
el. al. proposed a probabilisiic mode!l calied Sin-
gle random Veriable with Multiple Values (SVMV)
[Iwayama and Tokunagal994]. They reported that the
result of their experiment using SVMV was better than
other probabilistic models; Component Theory(CT)
(Kwaok1989), Probabilistic Relevance Weighting{ PRW)
[Robertson and Jones1976] and Retricval with Probe-
bilistic Indezing(RPI) [Fuhr1989) in the task of catego-
rizing news articles from the Wall Street Journall WSJ).
Most previous approaches seem to show the effect in en-
tirely different texts, such as ‘weather forecasts’, ‘medi-
cal reports’ and ‘computer manuals’. Because each dif-
ferent text is characterized by a large number of words
which appear {requently in one text, but appear sel-
dom in other texts. However, in some texts from the
same domain such as ‘weather forecasts’, one encoun-
ters quite a large number of words which appear fre-
quezltly over texts. Therefore, how o characterize every
tex{ is a serious problem in such the restricted subject
domain.

The other statistical approachk is based on seman-
tic information of words. The technique developed
by Walker copes with the discrimination of polysemy
[Walker and Amisler1986]. The basic idea of his ap-
preach is that to disambiguate word-senses in articies
might affect the accuracy of context dependent classi-
fication, since the meaning of a word characterizes the
domain in which it is used. He used the semantic codes
of the Longman Dictionary of Contemporary English
to determine the subject domain for a set of texts. For
a given lext, each word is checked against the dictio-
nary to determine the semantic codes associated with
it. By accumulating the frequencies for these senses
and then ordering the list of categories in terms of fre-
quency, the subject matter of the text can be identified.
However, Fukuinoto reported that when using disam-
biguated word-senses within texts (49 different texts,
each of which consists of 3,500 sentences) were up to
only 7.5% as those when using word frequencies for



welghting, since in a restricted subject domain such as
Wall Streel Journal, lots of nouns in articles were used
with the same sense. As a result, the results of word-
sense disambiguation did not sbrongly contribute to an
accurate classification [Fukwmoto and Suzukil996].

Blosseville et. al. proposed an automated method
of classifying research project descriptions using tex-
tual and non-textual information associated with the
projects. Textual information is processed by two meth-
ods of analysis: a NL analysis followed by a statisti-
cal analysis, Non-textual information is processed by
a symbolic learning technique. The results using two
classification sets showed ihat 90.6% for 7 classes and
79.9% for 28 classes could be classified correctly. Their
method, however, requires a great effort, since the in-
put data are not raw texiual data, but rather the result
of deap syntactic and semantic analysis of textual data.

In this paper, we propose an alternative method for
an automatic classification, ie. a method for term
welght learning which is used to characterize texts. In
our approach, learning is (o learn true keywords from
the error of clustering resulis.  Paramesters of term
weighting are then estimated so as lo maximize the true
keywords and minimize the other words in the text. The
characteristic of our approach is that the degree of con-
text dependency is used in order to judge whether a
word in a text 15 a true keyword or not. We applied our
technique to the task of categorizing news articles from
1989 W5J in order to see how our method can be used
effectively to classify cach text into a suitable category.

In the following sections, we first present a basic idea
of context dependency, and describe how to recognize
keywords. Next, we describe methods for term weight
learping and for classifying texts using term weight
learning. Then, we present a method for categoriza-
tion task. Finally, we report on some experiments in
order to show the effect of the method.

Training the Data
Recognition of Keywords
In our approach, learning is to learn true keywords from
the arvor of clustering results. The basic idea of our
term weight learning is to use the fact that whether a
word is a key in a text or not depends on the domain
Lo which the text belongs.

We will focus on the WSJ corpus. Let ‘stake’ be
a keyword and ‘today’ not be a keyword in the text
(article). If the text belongs to a restricted subject
domain, such as ‘Econormic news’, there are other texts
which are related to the text. Therefore, the frequency
of ‘stake’ and ‘today’ in other texts are similar to each
other. Let us further consider a broad coverage domain
such as all texts of the W5J, ie. the text containing
the words ‘stake’ and ‘today’ belongs to the WS5J which
consists of different subject domains such as ‘Economic
news’ or ‘International news’. “Today’ should appear
frequently with every text even in such a domain, while
‘stake’ should not. Our technigue for recognition of
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true keywords explicitly exploits this feature of context
dependency of word: how strongly a word is related to
a given context?

Like Luhn’s assumption of keywords, our method is
based on the fact that a writer normally repeats cer-
tain words (keywords) as he advances or varies his ar-
guments and as he elaborates on an aspect of a subject
[Luhn1958]. Figure 1 shows the structure of the WS5J
Corpus.

Economic  International
news news
xxxx YYYY v
Kyl o T
257 .
Text e @0 [N ) 6 6 0
o . 0
Ll
.
L]
S
& ]
Paragraph!  Paragraph2 Paragraph3
T '02: A
Paragraphjo o | o s oo

Q

o Keyword
Figure 1: The structure of the W5/ corpus

In Figure 1, “oox’ and ‘yyyy’ shows a title name of
a text which belongs to the category, ‘Fconomic news’
and ‘International news’, respectively.

We introduce a degree of context dependency inte
the siructure of the WSJ corpus shown in Figure 1 in
order to recognize keywords. A degree of context de-
pendency is 8 measure showing how sirongly each word
1s related to a particular paragraph or text. In Figure
L, let ‘()" be a keyword in the text ‘xxxx’. According
to Lubhn’s assumption, € frequently appears through-
out paragraphs. Therefore, the deviation value of ‘()
in the paragraph is small. On the other hand, the de-
viation value of ‘() in the text is larger than that of
the paragraph, since in texts, {0’ appears in the par-
ticular text, ‘xxxx’. We extracted keywords using this
feature of the degree of context dependency. In Figure
1, if a word is a keyword in a given text, it satisfies
that the deviation value of a word in the paragraph is
smaller than that of the text, and is shown in formula
(1) [Fukumoto el al.1997].
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In formula {1), w of xP? and x¥72 is a word in para-
sraph and text, respectively. x P2 and x7?2 is the devi-
ation value of a set of paragraph and text, respectively,
In formula (2), n is the number of paragraphs, and 4,
is the mean value of the total frequency of word w in
paragraphs which consist of n. In formula (3}, @w; is
the frequency of word w in the j-th paragraph. 9,; in
formula (3) is shown in (4) where m is the number of
different words and n is the number of paragraphs ®.

Term Weight Learning

In our method, non-overlapping group average cluster-
ing algorithm based on frequency-based term weight-
ing is applied to every text which is pre-categorized.
If a text which could not be clustered correctly in the
process of clustering, then, recognition of keywords is
petformed.

Let 7% and Ty be the same category and Ty not he
the same one with T,. Let also T, and T, be judged
to be the same category incorrectly. Recognition of
keywords 1s shown i Figure 2.

In Figure 2, (a-1) and (b-1) are the procedures to ex-
tract keywords, and (a-2) and (b-2} are the procedures
to extract other words. In (a), for example, when w
is Judged to be a keyword, term weighting of w is o x
Jlw), where f(w) 1s a frequency of w. On the other
kand, when w is judged not to be a keyword, term
weighting of wis B x f(w). Here, & and § is a variable
which is concerned with a true keyword and the other

.P’l . .
iﬁ < 1 shown in Figure 2,

words, respectively®. In

the texts are T and T}

Clustering Texts based on Term Weight
Learning
The clustering algorithm for pre-categorization of texts
15 shown in Figure 3.
As shown in Figure 3, the algorithm is composed
of three procedures: Make-Initial-Cluster-Set,
Apply-Clustering and Term-Weight-Learning®.
1. Make-Initial-Cluster-Set
The procedure Make-Initial-Cluster-Set produces
all possible pairs of texts in the input with their sim-
arity values. Firstly, every text which is the pre-
categorization of texts is represented by a vector. Us-
ing a term weighting method, every text would be

"Tn formulae (2), (3) and (4), we can replace x P2 with
T2

2In the experiment, two procedures are performed alter-
natively; (1) increment value of o is sel to 0.001 and 2 is a
constant value, (2) decrease value of 8 is set to 0.001 and o
is 2 constant value,

*The largest value of o is empirically determined.
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“iar Ty and Ty, Tor texts I, --

begin
do Make-Initial-Cluster-Set
for i:=1to B2zl do
do Apply-Clustering
if Ty such that Tx does not belong to
the correct cluster
then do Term-Weight-Learning
do Make-Initial-Cluster-Set
1= 1
end_if
end _for
end

Figure 3: Flow of the algorithm

represented by a vector of the form

To= (X, X, Xig) (8)
where @ is the number of nouns in a text and Xj; is
a frequency with which the noun X; appears in text
T;.

Given a vector representation of texts Ty, -+, Ty
(where m is the number of fexts) as in formula (5), a
similarity between two texts T; and T would be ob-
tained by using formula (8). The similarity between
75 and T is measured by the inner product of their
normalized vectors and is defined as follows:

T 1

minn o ©

Stm{T3,T;) = o7

The greater the value of S#m(73, 15) is, the more sim-
o Ty and Ty, we
catculate the similarity value of all possible pairs of
texts. The result is a list of pairs which are sorted in
the descending order of their similarity values. The
hist is called ICS (Initial Cluster Set). In the FOR-
loop in the algorithm, a pair of texts is retrieved from
ICS, one at cach iteration, and passed to the next two
procedures.

. Apply-Clustering

In this procedure, the clustering algorithm is applied
to the sets and produces a set of clusters, which
are ordered in the descending order of their seman-
tic simitarity values. We adopled non-overlapping
group average methed in our clustering technigue
[Jardine and Sibson1968]. Let T; and T be the
same category and T, not be the same one with
Te. Let also T and Ty be judged to be the same
category incorrectly, The next procedure, Term-
Weight-Learning is applied to T, T3 and 7.

3. Term-Weight-Learning

For Ty, Ty and Ty (Ty:), recognition of keywords
showt: in Figure 2 is applied, and every text would
be represented by a vector of the form

"Fi - (}"JISXVJEJ"'!X;J:) (7)



begin
for all w such that T; N T,

X0

(a-1)

(a-2)
end_if
end_for
(b) else
for all w such that 7o N1,

N . x T 2
if w satisfies =53
xTs

{a) if Ty such that Ty and Ty be the same category exists

2
if w satisfies X508 < 1 and w is the element of Te NV or Ty 0Ty
then wis judged to be a keyword and parameter of term weighting of w is set to o (1 < o < 10)
P2 . orp1 X el Al
else if w does nol satisfy i%s: < 1 and wis the element of T3 N1 or Ty N1y
then wis judged not to be a keyword and parameter of term weighting of wis set to § {0 < 8 < 1)

< 1 and wis the element of Ty N T

then w is judged to be a keyword and parameter of term weighting of w is set to o (1 < a < 10)

then w is judged not to be a keyword and parameter of term weighting of w is set to F (0 < § < 1)

(b-1)
32 s Pra)

else if w does not satisfy i—,i.-‘f < 1 and w is the element of T2 N T,
{b-2)

end_if

end_for
end.if

end

Figure 2: Recognition of keywords

where @ is the number of nouns in a text and Xj; is
as follows,

0 X J’ does not appear in 7T}
ax f{X]) X; isakeyword and
appears in T3
Bx f(X])  Xj is not a keyword and

appears In 1

> F —
Xl =

where f(X]) is a frequency with which the noun X

appears in lext 73,

o and f are estimaled so as to maximize Sim (1, Ty)

and Stm(1y,, Ty} among all possible pairs of texts,

Ty, oo, Ty and Ty,
Make-Initial- Cluster-Set where every lext excopt
Ty Tor, Ty and Ty would be represented by a vector
of the form shown in formuia (5) and 7%, 7%, T, and
1y would be represented by a vector shown in formula
(7}, is applied to an arbitrary pair in texts, and the
procedures are repeated.

If the newly obtained cluster contains all the texts in
input, the whaole process terminates.

Category Assignment

For the training data, Ty, - - -, Ty, (where m 1s the num-
ber of texts), clustering algorithm which is shown in
Iigure 3 1= applied, and all texts are classified into a
suitable category. Given a new text T which should
be classified, T" would be represented by a term vee-
tor of the forin shown in formula (5). The similarities
between T and each text of the training data are caleu-
lated by using formula (6. Then, 71, -, Tin ave sorted
in the descending order of their similarity values. T is

74

assigned to the categories which are assigned to 1y, -,
T with the descending order of their similarity values,
Lewis proposed the proportiondl essignment stral-
egy based on the probabilistic ranking principle
[Lewisi992]. Each category is assigned to its Lop scor-
ing texts in proportion to the number of times the cat-
egory was assigned in the training data. For example,
a category assigned to 2% of the training texts would
be assigned to the top scoring 0.2% of the test texts if
the proportionality constant was 0.1, or to 10% of the
Lest texts il the proportionalily constant was 5.0. We
used this strategy for evaluation.

Experiments

We have conducted two experiments to examine the ef-
fect of cur method. The first experiment, Text Cate-
gorization Experiment shows how the results of term
weight learning can be used effectively Lo categorize new
texts. The second experiment, Comparison to Other
Methods, we applied chi-square method as a veclor
model and Iwayama’s SVMV as a prebabilistic model to
classify texts [Iwayama and Tokunagald94], and com-
pared them with our method.

Data

The training data we have used is 1989 Wall Sireet
Journal (WSJ) in ACL/DCI CD-ROM which consists
of 12,380 texts [Libermanl991]. The WSJ are indexed
with 78 categories. Texts having no category were ex-
cluded. 8,907 texts remained. Each having 1.94 cate-
gories on the average. The largest category is “Tender
Offers, Mergers, Acquisitions {TNM)” which encom-
passed 2,475 texts; the smallest one is “Rubber {RUB),



assigned to only 2 texts. On the average, one category
is assigned 1o 443 texts. All 8,907 texts were tagged
by the tagger {Brill1992). We used nouns in the texts.
Inflected forms of the same words are treated as single
units. For example, ‘share’ and ‘shares’ are treated as
the same unit. We divided 8,907 texts into two sets; one
for training(4,454 texts), and the other for testing(4,453
texts).

Text Categorization Experiment

Term weight learning is applied to 4,454 texts, and cach
word in the texts was weighted. For the result, we ap-
plied category assignment to the 4,453 test data. The
best known measures for evaluating text categorization
models are recell and precision, calculated by the fol-
lowing equations [Lewis1992].

the number of categories that
are correctly assigned fto texts
the number of categories that
should be assigned to texts

the

Recall

I

number
arc correctly
the number
are assigned

of categories that
assigned to texts
of categories thal
Lo texts

Precision =

Note that recall and precision have somewhat mutually
exclusive characteristics. To raise the recall value, one
can simply assign many categories to each text. How-
ever, this leads to a degradation in precision, i.e. almost
all the assigned categories are false. A breckeven point
might be used to summarize the balance between recall
and precision, the point at which they are equal. We
calculated breakeven points in the experiment. The re-
sult of Text Categorization Experiment ik shown
in Table 1. o

H

Table 1: The result of the experiment

Category | Traiming data | Test data | Breakeven
10 2,399 1,457 0.80
20 3,893 2,452 0.77
30 5,178 3,508 0.77
40 5,828 3,994 0.76
50 7,344 4,598 0.77
60 8,470 5,076 0.76
70 11,489 0,148 0.75
78 11,649 7,305 0.75

In Table 1, ‘Category’ shows the number of categories
which are extracted at random. “Fraining data’ shows
the number of training texts which are included in each
category shown in the ‘Category’. Most of the texts in
WSJ are classified into more than one category. Fach
having 1.94 categories on the average, ‘Test data’ in
Table 1 shows the total number of the texts which is
classified into ‘Category’.

75

Comparison to Other Methods

We reported on the results of cur method compar-
ing with other two methods, i.e. chi-square value for
term weighting and Single random Variable with Multi-
ple Values(SVMV) which is proposed by Iwayama et.al.
[Iwayama and Tokunagal994].

The reason why we compared cur method with chi-
square method s the following two points:

o Chi-square value is one of the conventional text clas-
sification {Iwadera and Kikui1997).

e In our method, chi-square value is used in order to
introduce a degree of context dependency.

Iwayama et. al. proposed a new probabilistic model
for text categorization called SVMV. The probability
that the document d is classified into the category ¢ is
shown in formula (8).

PT=t]e)PT=1t]d
P(T =1

Pleldy = P}y

¢

{8)

where,

P(T =1t |c) = & NG is the frequency
of the term t; in the category ¢, and NC'is the
total frequency of terms in c.

P(T=t|d) = ’—Vj\%u ND; is the frequency
of the term ¢; in the document d, and ND is
the total fl‘equenc:}y\/ of terms in d.

P(T" = 1) = T’,L: N; is the frequency of
the term ¢; in the given training documents,
and N is the total frequency of terms in the
training documents.

P(c) = %e: D, is the frequency of documents
that is categorized to ¢ in the given training
documents, and I is the frequency of docu-
ments in the training documents.

They reported that in their experiment using WS/J,
the result of the breakeven points of TF#+IDF which
was proposed by Salton et. al. was 0.48, while the
result of SVMV was 0.63. Furthermore, their method
1s similar to our technique when the following two points
are considered:

e Text categorization is defined as the classification of

texts with respect to a set of pre-categorized texts.

o Category assignment is based on surface information

of words in texts.

Therefore, we implemented Iwayama et. al.’s method
and compared i with our method. The results are
shown in Figure 4.

Figure 4 shows the recall/precision trade off for each
method with proportional assignment strategy. 'learn-
ing’, 'SVMV" and "¥?’ shows the result of our method,
Iwayama’s method and x? value, respectively. Table
2 lists the breakeven points for each methed. All the
breakeven points were obtained when proportionality
constant was about 1.0.
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Figure 4: The result of comparative experiment

Table 2; Breakeven Polnts

Method | Breakeven Foints

learmng 0.75

SVMV 0.64

x? 0.56
Discussion

Text Categorization Experiment

Effectiveness of the Method  According to Table 1,
there are 7,305 test data in all which are classified into
78 categories, and the value of the breakeven points
was 0.75. Comparing the ratios of correct judgments
when the number of categories is large with when the
number of it is small, the correciness of the former was
higher in some cases. For example, when the number
of categones was 40, the correct ratio was .76, while
the nurmber of categories was 50, the correct ratio was
0.77. This shows that cur method can be used effec-
tively to characterize each fext without depending on
the number of categories.

Table 3 shows the first top five of the highest weighted
value of 12 categories which were selected from 78 cat-
egories al random.

In Tabie 3, “‘Word’ shows the extracted words, and “W¢’
shows its weighted value. 12 categories which are used
in Table 3 are shown in Table 4.,

According to Table 3, our technique for term weight
learning is effective, though there are some nouns
judged highly weighted but our intuition cannot explain
why. For example, ‘general’ in ‘FOD’ is not a true key-
word in our iztuition.
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Table 4: The category name

AIR:  Alrlines ARO:  Aerospace
BBK: Buybacks BNEK: Banks

FOD:  Food products | STK:  Stock market
ENV:  Environment MED: Media

ECO: Economic news | PIP: Pipeline
DIV:  Dividends CPR:  Computers

Problem of the Method The iest data which was
the worsl resull, was the data which should be classified
into ‘STK’. There were 499 test data which should be
clagsified into ‘STK’. Of these, 159 data {32% in all) be
judged to classify into ‘BBE', incorrectly. According to
Table 3, the first top three words in ‘BBK’ and those
of ‘STK’ are the same, and the weighted values of these
words of ‘BRI are higher than those of ‘STK. ‘BEK’
and ‘STK are semantically similar with each other and
it 1s difficult to distinct even for a human. Therelore,
in this case, there are limitations to our method using
term weight fearning.

Comparison to Qther Methods

(1) x* method and our method Table 2 shows
that the breakeven points using our method was 0.75,
while v? was 0.58. Table 5 shows the first top five of
the highest weighted value of 12 categories using x?
method.

According to Table 5, every noun except 'devon’ and
hadson’ in "BBX’ and ‘transcanada’ and ’westcoast’
in 'PIP’ are correctly weighted as keywords in every
categories. On the other hand, the test data which was
the worst result, was the same data as the result using
our method, i.e. the data which should be classified into
'STR. According to Table 5, three words in "BBX’ and
those of 'STK’ are the same, and the weighted values
of these words of ’STK” are higher than those of 'STK’.
As aresult, it is difficult to distinct these two categories
in ¥? method.

One possible reason why the result of our method was
better than x* method is that the difference between
welghting values of two words in y? was smaller than
those of our method. The deviation value between an
arbitrary two keywords in both methods is shown in
Table 6.

Table 8: Deviation value of x? and our methods

Cat. | learning x* I Cat. learning X
AlR 4.63  3.64 § ARO 4.20  4.12
BBK 3.80 2.57 || BNK 2.23  2.25
FOD 2,256 2.72 STK 445 2.57
ENV 2,99 2.30 || MED 3.89  6.10
ECO 4.44 255 PIP 3.94 311
DIV 493 341 | CPR 4.50 3.86




Table 3. The first top 5 of the highest weighted words in our method

AlR ARG BRE PIF
No | Word Wi | Word Wi | Word Wi | Word Wi
1 airline 522.1 | acrospace i48.2 | share 149.0 | gas 58.0
2 mile 136.5 | aircraft 143.0 | stock 71.9 | pipeline 37.0
3 passenger 120.5 | air 730, | company 57.2 | indusiry 29.0
4 revenue 850 [ army 51.0 | bank 51.0 | foothili 24.0
5 alr 67.2 | jetliner 43.3 | securily 43.5 | oil 7.0
BNIKK FOD ] STK DIV B
No | Word W1 Word Wi § Word Wi | Word Wi
1 bank 84.0 | food 140.0 | company 50.0 | cent 85.0
2 branch 32.0 | da 27.0 | share 37.7 | share 70.0
3 credit 30.0 | general 24.0 | stock 31.7 | company 60.9
4 tax 24.0 1 cereal 19.0 | trade 10.1 { dividend 54.6
5 fetter 16.0 | health 16.0 | invesiment 9.4 1 split 46.7
JSNV MED 15CO CPR
No | Word Wt [ Word Wt | Waord Wi [ Word Wt
3 environment 78.0 | news 281.0 | gan 120.5 | analytics 1065
2 maguilas 19.0 | d&b 108.0 | tax 1110 | IBM 89.8
3 waler 12.0 | network 69.1 [ capital 83.4 | machine 69.0
4 plant 18.1 | report 69.0 | rate 79.5 | computer §2.0
5 health 9.4 | broadcaster  44.8 | economy 30.5 | system 48.6
- Table 5: The first 1.0]),5’!'01' the highest weighted words in x? method
- ATR ARO ¢ BRK PIP
“No [ Word Wi | Word - Wi | Word Wi | Word Wi
i airline 12109.1 | boelng 4880.0 | shark 2348.7 | pipeline 8521.7
2 ual 5268.5 | force 4022.3 | redemption 19024 | foothill 5933.7
3 passenger 5142.3 | alrcrafi 3886.7 | devon 17794 | gas 5744.4
4 pilot 46721 | defense 2328.6 | hadson 1641.1 | transcanada 4948.0
5 flight 4050.8 | missile 2060.7 | buy-back 1616.4 | weastcoast 4494.9
BNK FOD STK DIV
“No | Word Wi Word Wi Word Wi | Word Wit
1 bank 6196.4 | spam 3148.4 | stock 7265.4 | dividend 10067.7
2 bnl 1517.3 | food 2848.5 | share 3563.2 | share 49994
3 bond 1211.4 | cereal 2627.7 | buy-back 2302.0 | company 3666.8
4 lean 1023.3 | cholesterol 2518.2 | redemplion  1448.5 | buy-back 2499 .4
5 rale 890.1 | cooke 2355.1 | big 1018.6 | heanley 2166.6
ENV MED BCO CPR
No | Word Wi | Word Wt 1 Word Wi | Word Wi,
1 ozone 2650.7 | magazine 4222.3 | galn 2160.5 | computer 13948.8
2z epa 2414.0 | d&Db 3313.7 | democrat 1492.0 § IBM 8470.1
3 ashestosis 2259.0 | cable 2890.1 | tax 1430.6 | software 4709.2
4 anthrax 1483.5 | network 2496.9 | budget 1284.5 | cray 3538.7
5 pollution 1165.3 | broadcaster 19999 | spending 1157.3 | digital 32017
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In Table 6, the deviation value using y* method was
smailer than our method except BNK’, 'FOIY and
'MED’. This shows that y¥* method can not represent
the characteristic of the texl more precisely than cur
method.

(2) SVMV method and our method According
to Table 4, the hreakeven points using our method was
0.75, while §VMV was (.64, respectively.

A possible reasen why the result of our method was
better than SVMVis that term weight learning is effec-
Live to classify texts. Let A and B be a category name
and the total number of words which were included in
each category be the same. Let also wy is included
in A, B and the test data with the same frequency,
and the test data consists of only wy. In SVMV, the
probabilities of the test data which is classified into A
and B are the same. Therefore, it could not be judged
wlhether the test data is classified into A or B, correctly.
However, our method introduces the degree of context
dependency in order to judge whether a word in a text
is a true keyword or not. Therefore, our method can
classify the test data into A or B, when the keyword
of the category A is judged to be the word w,. As a
result, our method can represent the characteristic of
the texts more precisely than SVMV.

Conclusion

We have reported on an empirical study for terim weight
iearning for an automalic text categorization. The
characleristic of our approach is that the degree of con-
text dependency is introduced in order to judge whether
aword In a Lext is a true keyword or not. In the experi-
ment using WSJ, we could obtain 0.75 breakeven points
for 4,453 texts which are classified into 78 categories.

In our current method, category assignment is based
on a word In texts, Le. every text which should he clas-
sified and texts which are pre-categorized are character-
ized by a veclor, each dimension of which is associated
with a word in texts. As a result, two words are treated
quite diflferent even if these words are semantically sim-
ilar. In order to get more accuracy, Hinking words with
thelr semantically similar words might be necessary to
be ntroduced into our framework.
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Abstract

We are proposing a new framework of statisti-
cal language modeling which integrates lexical
association statistics with syntactic preference,
while maintaining the modularity of those differ-
ent statistics types, facilitating botl training of
the model and analysis of its behavior. In this
paper, we report the result of an empirical evalu-
ation of cur model, where the model is applied
to disambiguation of dependency structures of
Japanese sentences. We also discussed the room
remained for further improvement based on our
error analysis.

1 Introduction

In the statistical parsing literature, it has already
been established that statistics of lexical associ-
ation have real potential for improvement of dis-
ambiguation performance. The question is how
lexical asscciation statistics should be incorpo-
rated into the overall statistical parsing frame-
work. In exploring this issue, we consider the
following four basic requirements:

s Integration of different fypes of stotistics:
Lexical association statistics should be inte-
grated with other types of statistics that are
also expected to be effective in statistical pars-
ing, such as short-term POS n-gram statistics
and long-term structural preferences over parse
trees,

e Modularity of statistics types:
The total seore of & parse derivation should be
decornposabie into factors derived from differ-
ent types of statistics, which would facilitate
analysis of a model’s behavior in terms of each
statistics type.

o Probobilistically well-founded semantics:
The language model used in a statistical parser
should have probabilistically well-founded se-
mantics, which would alse facilitate the analy-
gis of the model’s hehavior.
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o Trainability:
Since incorporation of lexical agsociation statis-
tics would make the model prohibitively com-
plex, the model’s complexity should be flexibly
controllable depending on the amount of avail-
able training dasa.

However, it seems to be the case that no existing
framework of language modeling [2, 4, 12, 13, 14,
17, 18] satisfies these hasic requirements sinulta-
neously!. In this context, we newly designed a
frameworls of statistical language modeling tak-
ing all of the above four requirements into ac-
count [8, 9]. This paper reporig on the resnlts
of our preliminary experiment where our [rane-
work was applied to structural disambiguation of
Japanese sentences.

In what follows, we first briefly review owr
framework (Section 2). We next describe the set-
ting of our experiment, including a brief intro-
duction of Japanese dependency structures, the
data sets, the baseline of the performance, ete.
{Section 3). We then describe the results of the
experiment, which was designed to assess tie im-
pact of the the incorporation of lexical associ-
ation statistics (Section 4). We finally discuss
the current problems revealed through our oi-
ror analysis, suggesting some possible solutions
{Section §).

2  Overview of our framework

As with the most statistical parsing frameworks,
given an mput string A4, we rank its parse deriva-
tions according to the joint distribution P{72, 1),
where W is a word sequence candidate for 4, and
R ig a parse derivation candidate for W whose
terminal symbols constitute a POS tag sequence
L (see Figure 12}, We first decompose P{R.117)

'For further discussion, see {8], This is also the
case with recent works such as [3] and [5] due to the
lack of modularity of statistical types.

ZAlthough syntactic structure R is represented as
a dependency structure in this figare, our framework



into two submodels, the syntactic model P(R)
and the lexical model P{W1R):

P(R,W) = P(R) - P(W|R) (1)

The syntactic model, which is lexically insen-
sitive, reflects hoth POS n-gram statistics and
structural preference, whereas the lexical model
reflects lexical association statistics. This divi-
sion of labor allows for distinct modularity be-
tween the syntactic-based statistics and lexically
sensitive statistics, while maintaining the proba-
bilistically well-foundedness of the overall model.

v kanojo

ga
{shey  (NOM)
4 #t

Figure 1: A parse derivation for an input string
“HldehioN 4 % fre37s (She ate a pie)”
T w #3272 (She ate a pie)

2.1

The syntactic model P{R) can be estimated us-
ing a wide range of existing syntactic-basged lan-
guage modeling frameworks, from simple PCFG
models to more context-sensitive models includ-
ing those proposed in [2, 13, 19]. Amprfig these,
we, at present, use probabilistic GLR (PGLR)
language modeling, which is given by incorpo-
rating probabilistic distributions into the GLR
parsing framework [10, 21]. The advantages of
PGLR modeling are {(a) PGLR models are mildly
context-sensitive, compared with PCFG models,
and (b} PGLR models inherently capture both
structural preferences and POS bigram statistics,
which meets our integration requirement. For
further discussion, see [10].

The syntactic model

2.2  The lexical model

The lexical model P{W|[R) is the product of the
probability of each lexical derivation I; — wy,
where I; € L (I C R) is the POS tag of w; € W

PWIRY = [ ] Plwil,wy, .. ,wiey)  (2)

The key idea for estimating each factor
Plw|R,wy, - wie ) (2 lexieal derivation prob-
ability) is in assuming that each lexical derivation

does not impose any restriction on the representation
of syntactic structures,
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depends only on a certain small part of its whole
context. We first assume that syntactic strue-
ture B in P{wi|R,w,...,w;—1) can always be
reduced to I; (€ R), which allows us to deal with
the lexical model separately from the syntactic
model. The guestion then is which subset O of
{wy,. .., w;—1} has the strongest influence on the
derivation I; — w;. We refer to a memboer of such
a subset C as a lexical context of the derivation
Iy — w;.

{et us illustrate this through the previous ex-
ample shown in Figure 1. Suppose that the
derivation order for W is head-driven, as given
below, to guarantee that, for each of the words
subordinated by a head word, the context of the
derivation of that subordinated word always in-
cludes that head word.

ta (PAST) — tabe {eat) -+ ga (NOM) — o
(ACC) = kanojo (she) - pai (pie)

First, for each lexical item that we don’t con-
sider any lexical assoctation, we estimate the
probability of its derivation as follows.

Pta|R) = Plio]Aux)
Ptabe R, ta} = P(tabe]V)

(3)
(1)

Second, we estimate the probability of deriv-

ing each slot-marker, e.g. “ga (NOM)” and “o

(ACC)Y", by considering not only the dependency
between the head word and each of its slot-
markers, but also the dependency beiween slot-
markers subordinated by the same head:

'P{ga|R, tabe, ta) =

; P(galP;[h(tabe, [Py, %))

P(olR, ga, tabe, ta) =~
Plo|Pyih(tabe, [Py go, Pol))) {6)

(5)

where h(h, [s1, ..., $,]) is a lexical context denot-
ing a head word h that subordinates the set of
slots s1,..., 80, and Plwlli[hi(h,{s), ... 8a]))) 18
the probability of a lexical derivation {; — wy,
given that w; functions as a slot-marker of lexical
head hih, [s1,...,5a]).

Finally, we estimate the probability of deriv-
ing each slot-filler, e.g. “kanogo (she)” and “pai
(pie)”, in assuming that the derivation of a slot-
filler depends only on its head word and slot:

Plkanojo|R, ga, o, tabe, ta) =

P(kancjo|N[s(tabe, ga}]) (7
PlpailR, kanojo, ga, o, tabe, ta) =
P(pai| N{s(tabe, 0)}) (&)

where s(h, 8) is a lexical context denoting a slot
s of a head word h, and P(w|l;[s(h,s}]) is the



probability of a lexical derivation I; — w; given
that w, functions as a filler of a slot s(h, 5).

Combining equations (3), (4), (5), (6), (7) and
(8), we produce (9):

PWIR) = Plio]Aux) - P(tabe[V}) -
Plga|Plh(tabe, [P, P]]) -
Plo]Ph{tabe, [P:ga, P]}})
PkanojoiN[s(tabe, ga)i} -
P(pai|Nis{tabe, 0)}) 9

2.3 Handling multiple lexical contexts

Note that a lexical derivation may be associated
with more than one lexical context (multiple lex-
ical contexts). Multiple lexical contexts appear
typically in coordinate structures. For example,
in the sentence shown in Figure 2, “kanojo-wa
{she-TOP)” functions as the case of both of the
verbs “tabe (eat)” and “dekoke {leave)”.

()
m_\(?)
BP, BP, BP,
/\‘\
v, Aux, N, By V.  Aux,
! | f ! { | |
kanojo  wa choushoky o akkoU @ deiaka &

b
labo Ll
{she} (TOP)\(breakfast){ACCJ {eal) (CGORD}\SC“GGH {for)  (leave) (PAST}

Coordination

Figure 2: An example sentence containing a coor-
dinate structure: “She ate breakfast and left for
school”

Let us first consider the lexical deriva-
tion probability for the slot-filler “kancjo
(she)”.  According to the assumption men-
tioned in  Section 2.2, the lexical contexts

of this slot-fitler should be s(tabe,wa) and
s{dekake,wa). Thus, the probability of deriving
it is Plkanojo|N,[s(tebe, wa), s{dekake, wa))).
More generally, if a slot-filler wy is associated with
two lexical contexts ¢; and ey, then the probabil-
ity of deriving w; can be estimated as foliows:

Plwsllifer, ea])
_ Pller, ealfw) - Plawy)
ST Pl e 1o
o Pldedlwn) - Pifeallls w) - ) (o
P[]} - Pllifea]lt:])
oty Lwilliler ) Plwilldes])
Plewilts) Plwi|l) p(zxj,,_izfi (12)

FPluglls) - D{awllifer]) - Dwsllilea)) (13)

fl

it

I (13), we assume that the two lexical contexts
¢1 and ¢z are mutuaily independent given I; {(and
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wy )
Pllifeallli{en]) = Plifee]ils) (1)
P(f;‘{Cg”[-@{Cl],'tw) ~ P([JCQH!{,?U,‘) (l:))

D{w;jl;[c]} is what we call a lexical dependency
parameter, which is given by:

Diwilufe) = Sl

P('u.’im)

D{w|l;[c]) measures the degree of the depen-
dency between the lexical derivation I; — w; and
its lexical context ¢. It is close to one if w; and ¢
are highly independent. It becomes greater than
one if w; and ¢ are positively correlated, whereas
it becomes less than one and close to zero il wy;
and ¢ are negatively correlated. Thus, il we sot a
lexical dependency parameter to one, that meaus
we create a model that neglects the dependency
associated with that parameter. For example, the
probability of deriving “kanojo (she}” in Figure 2
is calculated as follows.

Plkanojo|Ni[s(tabe, wa), s(dekake, wa)})
r P(kanojo|Ny) - D(kanojolN) [s(tabe, wa)])
D{kanojo|N:[s{dekake, wa)}) {i7)

Let us then move to the estimation of the prob-
ability of deriving the slot-markers “we (TOP)".
“o (ACC)”, and “e (for)”, where “wa” is associ-
ated with both “tebe {eat)” and “dekake {leave)™.
while “¢” is associated only with “tebe”, and “ni”
s associated only with “dekake”. To be mode
general, let slot-marker wy is associated with two
lexical contexts ¢; and ¢, and slot~-markers us
and wy are, respectively, associated with ¢ and
Assuming that wy and wa are mutually de-
pendent, being hoth dependent on wy, and ¢; and
¢y are mutually independent, the joint probabil-
ity of the derivations of wy, w; and we can be
estimated as (20) in Figure 3, similar to {13). For
example, the probability of deriving “wa (TOP)",
“o {ACC)”, and “e (for)” in Figure 2 is caleulated
as (21) in Figure 3.

Summarizing equations (2), {13} and (16}, the
lexical model P{W|R) can be estimated by the
product of the context-free distribution of the
lexical devivations Pep(W|L) and the degree of
the dependency between the lexical derivations
D(W|R):

(16)

Co.

P(WIR) = P.p(WIL) - D(W[R) (22)
Pop(WiL) = [] Pluwlis) (23)
=]
pwiry =11 [I Dlwilild) (2:4)
i=1 e@Cy,

where O, is the set of the lexical contexts of w,.



P(’wo, iy, ti)g”g{h(hl, lg, 51] h(hfg, [io,lz})},ll[h{hj s {l(), ll])], Eg[h h—g, [l{], Zg])])

= Plwello[h(ha, o, 1)), hlhe, [lo, D)) - Plwillyhlhy, [loswo, L)) - Plwallath(ha, (loswo, 1)) {18}
= Plwglly) - Plwollo[h(hy, [ia, L . P(wglo[h{ha, Uo;fz])])_
- P(wollo) Plwollo)

Plwy |l [h(hy, o rwoe, 1)) - Plwa|iz[hihs, [lo:wo, L])]) (19)
= Pluwpllo) - D{wgllo[h{hy, Lo, h]}]) - D(wollo[h(he, [lo, l2])])-

Plw i) - D(w [l hihy, o we, L)) - Plwslly) - D(wﬁilz[h(hz,[l'-o:wu,lg])]) 20)
Plwa, 0, el P [h(tabe, [P, Po)), h{dekake, [Py, Ps))], Pa|b{tcbe, [Pr, Po])], Psh{dekake, [P, P3])]}

~ P(walPy) - D{wal Py [h(tabe, [Py, Po))}) - D(wal Py [h(dekake, [Py, P3))]):

P(o|P) - D{o|Pa[h(tabe, [Py : wa, Po})]} - PlelPy) - D{e|Ps[h{dekake, [P : wa, P3i}]} (21)

Figure 3: The joint probability of the derivations of slot-markers

2.4 Summary of our model
From equations (1) and (22), the overall distribu-
tion PR, W) can be decomposed as follows:
PR W) s P(R) P p(WI|L) - DIW|R) (25)

where the first term P(R) reflects part-of-speech
bigram statistics and structural preference, the
second term P,y {(W]7L) reflects the occurrence of
each woud, dlld the third term D{WI|R) reflects
lexical association. Thus, equation {25) suggests
that our model integrates these types of statis-
tics, while maintaining modularity of lexical as-
soclation.

Figure 4 shows the factors of the P(R W for
the sentence in Figure 1. In this figuré:

1. P(R) reflects the syntactic preference.

2. Py (WILY, which consists of FPlkanojo|N),
P(ga|P) eic., reflects the occurrence of each
word.

3. D(WIR), which consists of D{o|N[h{tade, [])]),
D{pai|Ns{tabe, ACCY]) ete., reflects the lexi-
cal asseciation statistics.

I this way, our modeling maintains the modu-
larity of different statistics types.

The modularity of the lexical model facilitates
parameter estimation. Although the syntactic
model ideally requires fully bracketed training
corpors, training it is expected to he manage-
able since the model’s parameter space tends to
be only a small part of the overall parameter
space. The lexical association statistics, on the
other hand, may have a much larger parameter
space, and thus may require much larger amounts
of training data, as compared to the syntactic
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model. However, since our lexical model can he
trained independently of syntactic preference, one
can train it using pertially parsed tagged corpora.
which can be produced at a lower cost (1.e. auto-
matically), as well as fully bracketed corpora. In
fact, we used hoth a full-bracketed corpus and a
partially parsed corpus in our experiment.

3 A preliminary experiment

Let us first briefly describe some fundamental
features of Japanese syntax. A Japanese sen-
tence can be analyzed as a sequence of so-called
bunsetu phrases (BPs, hereafter) as illustrated in
Figure 1. A BP is a chunk of words consisting of a
content word {noun, verb, adjective, ete.) accom-
paried by some function word(s) (pos{poslll()ll
auxiliary, ete.). For example, the B “kenojo-ga”
{BP) in Figure 1 consists of the noun “kenojo
(she)” followed by the postposition “ga (NOM)”,
which functions as a slot-marker. The BT “fabe-
ta (BPy), on the other hand, consists of the
verh “tabe (eat)” followed by the auxiiary “ta
(PASTY”.

Given a sequence of BPs, one can recognize de-
pendency relations between them as illustrated in
Figure 1. In Japanese, if BF; precedes BP;, and
BF; and BPF; arc in a dependency relation, then
BPF; is always the modifier of BP;, and we say
“BF; modifies BF;." For example, in Figure 1,
both BF and BF; modify BFP;.

For the preliminary evaluation of our maodel,
we restricted our focus only on the model’s per-
formance for structural disambiguation excluding
morphological disambiguation. Thus, the task of
the parser was restricted to determination of the
dependency structure of an input sentence, which
is given together with the specification of word



BP, BE, BP, P(R)
N, Py N, P, V Aux
P(kanojo!N)l»P(NOMlP)( P(paiIN)r P{ACCIP)T P(iabeEV)[ P(Pﬁ%l) PCf(W!L}
kanojo ga pal G tabe ta
{she) (NGH) {pie) {ACC) {eat) {PAST)
———————— L
A R ST H i
DikanojolN[sitaba NG ‘ N H POWIR)
DNOMIP(h{eal [ACCTT T~~~ TToTTTTY
(NOMIP[h(eal ATT]T . ! DOWIR)
1

DipailN[s{tabe, ACCY,

DIACCIE]R(taBe )

Figure 4: The summary of our model

segments, their POS tags, and the boundaries be-
tween BPs.

In developing the grammar used by cur PGLR
parser, we first established a categorization of
BPs based on the POS of their constituents: post-
positional BPs, verbal BPs, nominal predicative
BPs, ete. We then developed a meodification con-
straint matrix that describes which BP category
can modify which BP category, based on examn-
ples collected from the Kyoto University text cor-
pus {11]. We finally transformed this matrix into
a CF@; for instance, the constraint that a BP
of category C; can modify a BP of category C;
can be transformed into context-free rules such
as (Cy — C; Cy), (G -+ Cy ), ete., where X
denotes a nonterminal symbol,

For the text data, we used roughly 10,000 sen-
tences from the Kyoto University text corpus
for training the syntactic model, and the whole
EDR corpus {6] and the RWC POS-tagged cor-
pus {16] for training the lexical model. For test-
ing, we used 500 sentences collected from the
Kyoto University text corpus with the average
sentence length being 8.7 BPs. The data sets
used for training and testing are mutually ex-
clusive. The grammar used by our probabilis-
tic GLR parser was a CFG automatically ac-
guired from the training sentences, consisting of
967 context-free rules containing 5¢ nonterminal
symbols and 43 terminal symbols (L.e. BP cate-
gories).

The baseline of the disambiguation perfor-
mance was assessed by way of a naive strategy
which selects the nearest possible modifiee {simi-
larly to the right association principle in English)
under the non-crossing constraint. The perfor-
mance of this naive strategy was 62.4% in BP-
based accuracy, where BP-based accuracy is the
ratio of the number of the BPs whose modifiee
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is correctly identified to the total number of BPs
(excluding the two rightmost BPs for each sen-
tence). On the other hand, the syntactic model
P{R} achieved 72.1% in BP-based accuracy. 9.7
points above the bageline.

4 The contribution of the lexical
model

In our experiment, we considered the following
three lexical dependency parameters in the lexical
maodel.

First, we considered the dependencies hetween
slot-markers and their lexical head by using the
lexical dependency paratzeter {26).

csn )

(26} can be computed from P{p"[P*hik D).
the distribution of n postpositions (slot~-markers)
given that all of them are subordinated hy

Dp| Pk, [s1,. (26)

a single lexical head h. We  trained  this
digtribution using 150,000 instances of p?-

{verbadjective,nominal_predicate}  collocation
collected from the EDR full-bracketed corpus.
For parameter estimation, we used the maximum
entropy estimation technigue (1, 15]. Fov further
details of this estimation process, see [20].

Next, we considered dependencies between
slot-fillers and their head verh coupled with the
corresponding slot-izarkers by using the lexical
dependency parameter (27).

DN [s(v,p)) (27)
{27) was trained using 6.7 millon instances of
noun-postposition-verd collocation collected from
both the EDR and RWC corpora. For parameter
estimation, we used 115 non-hierarchical seman-
tic noun classes derived from the NT'T semantic



dictionary [7] to reduce the parameter space:

P’nN"U, ‘P?Cn
D(nlN{s(v,p)})zZCn (e IP[E;EI\};))D (rifen)

(28)
Ple,[N[s(v,p)]) was estimated using a simple
back-off smoothing technique: for any given lexi-
cal verb v and postposition p, if the frequency of
s{v,p) is less than a certain threshold A (in our
experiment, A = 100), then P(e,|N{s{v,p)]) was
approximated to be Ple,{Ns(e,, p)}) where ¢, is
a class of v whose frequency is more than A,
Finally, we considered the occurrence of post-
positions by using the lexical dependency param-
ater (29).

D{p|Plhead_typel) (29)

In Japanese, the distribution of the lexical deriva-
tion of postpositions, P(pi#), is quite differ-
ent depending on whether they function as slot-
markers of verbs, adjectives and nominal predi-
cates such as “ga (NOM)” and “o (ACC)” in Fig-
ure 1, or they function as slot-markers of nouns
such ag “no (of)” in the following sentence.

hana
{flower)

no
{of)
For such a reason, we introduced the lexical de-
pendency parameter (29), where head.type de-
notes whether the paostposition P functions as a
slot-marker of a predicate or a noun. We esti-
mated this dependency parameter using about
950,000 postpositions collected from the EDR
COrpus. N

Table 1 summarizes the results of the experi-
ment. The lexical model achieved 76.5% in BP-
based accuracy, and the model using both the
syntactic and lexical model achieved 82.8% in
BP-based accuracy. According to these results,
the contribution of lexical statistics for disam-
biguation is as great as that of syntactic statistics
in our frameworlk,

The bottom three lines in Table 1 denotes the
setting where the only lexical dependency param-
eter (26), (27) and (29) are considered in the lexi-
cal model. Among these, the contribution of (29)
wag greatest.

syashin?
{picture)

5 FError analysis

In the test set, there were 574 BPs whose mod-
ifiecc was not correctly identified by the system.
Among these errors, we particularly exploved 290
errors that were associated with postpositional
BPs functioning as a case of either a verh, adiec-
tive, or nominal predicate, since, for lexical asso-
ciation statistics in the lexical model, we took the

*This sentence means “a picture of a flower.”
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Table 1: The contribution of the lexical model

accuracy
base line 62.4 %
syntactic model only 2.1 %
lexical model only 76.5 %
syntactic + lexical model | 82.8 %
syntactic model + (26) 73.4 %
syntactic model + (27} 78.3 %
syntactic model + (29} 81.3 %

dependencies between slots (i.e. slot-markers and
slot-fillers) and sheir heads into account. In this
exploration, we identified three major ervor types:
(&) errors associated with a coordinate clause, (h)
errors associated with relative clauses, {¢) errors
associated with the lack of the consideration of
dependency between slot-fillers.

5.1 Coordinate structures

One of the typical error types is associated with
coordinate structures, The sentence in Figure 2
has at least three alternative interpretations in
terms of which BP is modified by the left-
most BP “kenojo-wa (she-TOPY": {a) “toabe-io
(eat-PAST)”, (b) “dekake-ta (leave-PAST)”, (¢

“hoth “fade-ta (eat-PASTY and “dekake-ia (leave-

PASTY". Among these alternatives, the most rea-
sonablie interpretation is chviously (c¢), where
the two predicative BPs constitute a coordinate

‘structure.

In our experiment, however, neither the train-
iﬂg data nor the test data indicates such coordi-
nate structures. Thus, in the above sentence, for
example, the system was required to choose one of
two alternatives (&) and (b), where (b) is the pre-
ferred candidate according to the structural pol-
icy underlying our corpora. However, this choice
is not really meaningful. Furthermore, the system
systematically prefers {a}, the wrong choice, since
{i) the syntactic model tends to prefer shorter-
distance modification relations (similarly to the
right association principle in English), and (i)
the lexical model is expected to support both can-
didates because both D{kanojo[N[s{tebe, wa)l)
in (a) and D(kanojo|N|[s{dekake,wa)]} in (b)
should be high. This problem makes the per-
formance of our model lower than whas it should
be.

Obviously, the first step to resolving this prob-
lem is to enhance our corpora and grammar o
enable the parser to generate the third interpre-
tation, i.e. to explicitly generate a coordinate
structure such as (c) if needed. Once such a set-
ting is established, we then need to consider the



lexical contexts of each of the constituents modi-
fving a coordinate structure, such as “kanojo-wa
(she-TOP)” in the above sentence. In interpreta-
tion {¢), since “kanoje-wa {she-TOP)” modifies
both predicative BPs, it is reasonable to assc-
clate it with two lexical contexts, s(tobe, wa) and
s{dekake, wa). As mentioned in Section 2, our
framework allows us to deal with such multiple
lexical contexts, namely:

DikanojolNis(tabe,wa), s(dekake, wa}])
~ D{kanojo|Nis(tabe, wa)]) -

D{kanojo|Nls(dekake,wa)i) (30}

The correct interpretation {¢) would assigned
higher probability than (a} or {b), since the two
lexical dependency parameters in (30), D(kanojol
Nls{tabe,wa)]) and D{kanojo|N[s{dekake, wa)})
are both expected to be sufficiently large.

5.2 Treatrment of correference

One may have already noticed that the issue dis-
cussed above can be generalized as an issue asso-
clated with the treatment of correference in de-
pendency structures. Namely, if a prepositional
BP is correferred to by more than one clause as
a participant, a naive treatment of this corref
erence relation could require the parser to make
a meaningless choice: which clause subordinates
that BP. This problem in the treatment of corref-
erence is considered to cause a significant propor-
tion of errors associated with relative/adverbial
clauses or compound predicates. Such errors arve
expected to be resolvable through an extension of
the model, as discussed in Section 5.1,

Let us briefly look at another example in
Figure &, where the matrix claugse and relative
clause correfer to the leftmost BP “kanojo-wa
(she-TOP)", fe. interpretation {¢}. Without any
refined treatment of this correference relation, the
parser would be required to make a meaningless
choice between (a) and (b).

S
/l‘—dﬁ— ----- -8 &
BP, BR, BP BB, BP,
PN | SN 2N PN
i, P Adv YV, hAux, N, P, V. AU,

P | [ A A
kangjo  wa kinou
{zhs) (TOR) {yostoday)

kat ta non ] yon  da

iy} (PAST) {beok) (ACC) {read) (PAST)

Figure 5: An example sentence containing a rela-
I g

itive clause: “She read the book which she bought

vesterday”

5.3 Dependency between slot fillers
According to the results summarized in Table
1, the contribution of the dependency between
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slot-filers and their heads seems to be negligibly
small. We can enumerate several possible rea-
sons including that the estimation of these types
of dependency parameters was not sufficiently so-
phisticated.

In addition to these reasons, we also found that
the lack of the consideration of dependency be-
tween slot-fillers was also problematic in some
cases; there are particular patterns where depen-
dency between slot-fillers seems to be highly sig-
nificant. For example, in the clause “kanojo-wa
{(she-TOP) isha-ni (doctor-DAT) nai-ta (hecome-
PAST)” (she became a doctor), the distribu-
tion of the filler of the “wa (TOPY slot is
considered to be highly dependent on the filler
of the "ni {DAT)” slot, “isha {doctor)”, since
its distribution would be markedly different i
“isha (doctor)” was replaced with “mizu {wa-
ter)”. Similar patterns include, for example, “4-
wo (ACC) B-ni (DAT} suru (make)”, where .
and B are highly dependent, and “A-ga {NOM)
B-wo (ACC} suru (do)”, where noun B indicat-
ing an action strongly influences the distribution
of A.

In our framework, this type of problem can be
treated by means of controlling the choice of lexi-
cal contexts. We are now conducting another ex-
periment in which the dependencies between slot-
fillers are additionally considered in particular
patterns. Note that the refinement of our model
in this manner illustrates that the modularity of
lexical agscclation statistics facilitates rule-based
control in choosing the locations where lexical as-
sociation s considered. This rule-hased control
allows us to incorporate qualitative knowledge
such asg linguistic insights and heuristics newlv
obtained from experiments based on the model.

6 Conclusion

In this paper, we first presented a new {rame-
work of language modeling for statistical pars-
ing, which incorporates lexical association statis-
tics while maintaining modularisy, We then re-
ported on the resulis of cur preliminary evalu-
ation of the model's performance, showing that
both the syntactic and lexical models made a con-
siderable contribution to structural disambigua-
tion, and that the division of labor between those
two models thus seemed to be warking well to
date.

Many issues remain unclear. First, we need
to conduct experiments on the combination of
the morphological and syntactic disambiguation
tasks, which our framework intrinsically is de-
signed for. Second, empirical comparison with
other lexically sensitive models is also strongly



required. One interesting issue is whether the
division of labor between the syntactic and lex-
ical models presented in this paper works well
langnage-independently, or conversely, whether
the existing models designed for English are
equally applicable to languages like Japanese.
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Abstract

We present statistical models of Japanese dependency
analysis and report results of some experiments to in-
vestigate the performance of the models for the use fo
a partical parsing system. The statistical models are
rather simple compared with the recent complex mod-
els and intesively use lexical level information, such as
morphemes, and part-of-speech tags..

We conducted several experiments to show the fol-
lowing properties of the models:

& performance of the models according to feature selec-
tion

& performance of the models as a partial parsing sys-
e

The EDR[G] corpus was used for both training and
evaluation of the systen.

. Introduction

A number of statistical parsing methods have been pro-
posed. most of the systems focus on full parsing of sen-
tences, and do not discuss the performance of partial
parses, wlich 1s cruelal for some applications, such as
information retrieval or pre processing of corpus anno-
tation,

Early approaches of statistical parsing [15, 10, 13]
conditioned probabilities on syntactic rules, To take
nore contextual information into account, word collo-
cation is applied to syntactic formalization, such as lex-
tealized PCFG. lexicalized tree adjoining granimar, and
lexicalized link grammar.

The length of phrases or the distance bhetween head-
words were also considered in the several models [16, 8]

There are parsing methods that de not yeguire a
grazumar. Collins {3] proposes a statistical parser based
on probabilities of dependencies bhetween hiead-words in
parse trees. Yasuhara [18], constructs a system based
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on collecation counts as the ouly source of grammati-
cal information. He uses co-occurrence patterus of the
POS tags of head-words. The method, however, s not
statistical, in that it only accummlates correct patterus
for direct use.

Magerman {4] proposes a statistical parser hased on
a decision tree model, in which the probabilities are
conditioned on the derivation history of the parse trees
[4, 10]. He compares the decision tree model with the
n-gram model, and claims that the amount of parame-
ters in the resulting model remains relatively constant,
depending mostly on the number of training examples.

Charniak [5] proposes a new model and compared
it with Colling’, and Magerman's models and shows
what aspects of these systems affect their relative per-
formance.

In general, statistical models suffer from the problem
of data sparsencss,

Instead of using a complex statistical model combined
with various smoothing techniques [1, 2, 7, 9, We stick
to a statistical model of sunple setting alming at an
casy implementation, and pursne a way to select useful
information for achieving higher parse accuracy.

The basic model is close to Collins™ model[3] Japanese
dependency structure are nsually based on phrasal uuits
{called “bunsetsu”™). A bunsetsu basically consists of one
{or a sequence of ) content word(s) and its succeeding
function words {that forms the smallest phrase, such as
a simple noun phrase.}.

We consider the dependencey structure such that ev-
ery bunsetsu In a seantence except the right most one
modifies one of its following bunsetsw’s in the senteice
and no two modifications may cross cach other,

The difference of our model to Colling” model prin-
cipally comes from the property of Japanese sentence
structure. First, the type of modification relation {de-
pendency relations) is unigly determined by the fune-
tion words or the ending form of the medifier. Second,
thie modification always direct from left to right since
Japanese 1s a head-final language.



There are various features that may affect the parsing
precision. We test a number of possible setting and try
to fiud out the best combination of features. We also
test the performance of partial parsing in several set-
tings. 200,00 parsed Japanese sentences in EDR corpus
is used for evaluation.

In the next section, the statistical model is described.
Section 3 outlines the parsing algorithm is outlined. sec-
tion 4 presents the evaluation method. Final section is
for conclusion and future work.

2, The Statistical Model

We propoese a statistical model based on the features
of bunsetsw's. Those features usually defined by the re-
suit of morphological analysis, such as part-of-speech
(POS)Y tags, inflection types, punctuations, and other
grammatical or surface information, Some features are
determined not directly from the modifier and mod-
ifice bunsetsu’s For instance, the number of bunseisu
between a modifier and a modifiee can be a feature.

We first introduce notational counventions. § =
Wi .. Wy 18 a sentence, where w; is the i-th word.
T is a sequence of words and tag pairs, that is, T =
< wy o, < Wayte >0 F1s a sequence of bun-
seisuy and featuve pairs, that is, F =< b),f} >,....<
D fa = We nse the notation Dep(d) = j to indicate
that the #th bunseisy in the sequence is a modifier to
the #th bunsetsu. Here, the symbol w6, andd; stand
for word, tag, and bunsctsu respectively, and f; repre-
seuts the set of features assigned to bunsetsu b;. The
subscripts m. and nstand for the number of bunsetsu’s
and words, respectively, Lo is the sequence of dependen-
cies: L= (Dep(1), Dep{2).. .., Dep{m — 1)), |

In general, a statistical parsing model estiniates the
conditional probability, P(P; | 5), for each vandidate
parse tree P, for a seutence S, In Japanese depen-
dency structure analysis, the final goal is to identify L
rather than F, and we try to maximize the probability
P(L,ET|SY).

The wost likely dependeney structure analysis under
the modet is then:

Lbf:a‘! = 5)

argmax P(L BT
= argnax P(LIF,T.8) P{F|T,8) P(T

LR

5)

We assume that bunsctse construction only depend
on word/tag pairs, hence PP 1T, 8) = P(F | T), and
assume that a dependency structure can be determined
only by bunsetsu features, thus P(L | F,T,5) = P(L |
FY. The eguation {1} is now writien:

Lpese = argmax P(L|F) P(F

L

™ P(T

S)
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For simplicity, we assume that the morphological
analysis and the bunsefsw construction are both deter-
ministic. For the morphological analysis, we use the
most likely output of the Japanese morphological ana-
lyzer ChaSen [11].

For the bunsetsw construction, we use a finite state
transducer constructed from regular expressions of
word /tag pairs.

What we need to do therefor is to estimate P(L | F),
and find L for each S that maximizes the conditional
probability P(L | F).

We assume that dependencies ave mutually indepen-
dent, that is,

m—1

P(L|F)= ] P(Depli)=j | f1,.- . fm)

i=1

(1

and no two wmodifications may cross cach other.

fi,.., i stands for the sequence of bunsetse features
assigned to the bunsetsu. Thus, P{L | F) can be defined
as the product of the probability of dependency pairs.

One point that differs from the Collins® model is that
our model does not estimate the type of dependency
relations. It ouly estiimate the existence of the depen-
deney relations. This is because the type of dependency
is determined uniguely by the modifier in Japanese sen-
tences,

~The model estimate the probability of cach depen-
deney palr directly by maximum likelihood estimation
based on bunsctsu features. Head-words, POS tags,
word classes, function words, punctuations, and dis-
tance measure such as the nunber of bunsetsw’s are used
available for the probability estimation.

We can expand cach item of the equation (1) by us-
ing those features, and assuming mdependence of the
co-ofcurrence of some features. In the following, we
discriminate the bunsetsu features that directory relate
to the modifier and modifice and the distance features
that relate to relative positions of the modifier and the
modifiee,

P (Df.’j){f):j ! fi,..., f)n)
s Pp(Depli)=j | f1,.. . Im)
X P Dep(=7 | f1.. .. fm)

In the second cquation, we assume independence of
two kinds of probabilities. The first is the collocation
probability between bunsetsu features, and the second
cne is the distance feature besween two bunsetsu’s. The
independency of these two probabilities reduce the size
of the model.

We refer to the probability (2) as the collocation
probability, and the probability (3) as the distance
probability,



The remainder of this section explains these proba-
bilities in detail.

Head Collocation Probability

Japanese langnage has dependency relations expressed
by the function words or the ending form, and they play
a crucial role in determining the dependency structure,
The relation name (type} is usually determined by the
funection words.

If a bunsetsu has no function words, we use POS tag
{and inflection type) of the right most content word of
the bunsetsi.

Head word is basically defined by the right most cou-
tent word in the eaclh bunsetsu.

By using these features, we define two models of
head-collocation probabilities. The first is the gener-
ation probability of features and the second is the col-
location probability of features.

In the first model, we asstme Japanesc dependency
structure is the result of selectional process of which
cach modifier selects a modifice, The selectional prob-
ability is written as Fy(hy,rj,p; | hiyraps) In this
expression, the modifice’s features are Ay, vy, p; given
that modifier’s features are by, v, p. The symbols
fep vy, andp; stand for head feature, relation type, and
punciuation, respectively, With this setéing, we make
the following approximation:

Fr (Depldy=7 | 11,...

anl)
def
= Fy(h»j,'l‘j,])j | hf, ?'i,j),‘)
The maximum-likelihood estimate of Fy 1s given as

follows:

-F_q (hj«?'jepj | h-z'-.T'i«Pi)
C{Dep(D) e, hiyriapis gy v, 05)

ClDep() =7, iy 11, 1)

C{Depliy =4, hayrops by, riop;r 1s the number of
times that feature pairs of hj vy p and hy,ry,py are
i a dependency relation in the training data.

In the second model, we define the the selectional
probabitity as Fo(Dep(d)=j | hyyrispi, hyorg,py). This
is the probability that bunseisu by modifies bunselsu by
wheu those bunsefsw’s appear in the same sentence,

Py {Dep(i)=7 | f1,...,fm)
def . .
= Fo{Depliy=j | hiyriopis gy ;)
The waximum-likelihood estimate of F. is given as
foliows:

Fo {Dep(i)=j | hisriypa hjory,my)
(:{’1)()}';([):]‘ h‘f:""i}pi'yh‘jﬁ"js})j)
C(h‘is'-"ia'])hh‘ja"'j-.Pj)
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Colhay i 0 Iy vy, p5) s the number of times Ay, vy, p;
and g, vy, py appear in the same sentence in the train-
ing data. Cs(Dep(i)=j, hi,ri,pi, byyrgspy) is the num-
ber of thies hy, vy, ps and fiy, 75, py are seen in the same
sentence in the training data and by wodifies b; with
the relation »;.

For tlie head feature Ay, we can use the head word,
as well as the POS tag or the word class of a head
word. We use the Japanese thesaurus * Bunrui Goi
Hyow{BGH)[12] to define word classes. BGH las a
six-layered abstraction hierarchy, in which more than
80,000 words are assigned at the leaves,

For eacli of those probabilities cxplained above, we
tested the following models for feature selection.

POS model  uses POS tags for the lhead
feature.

uses POS tags and lexical forms
for the hiead feature.

uses POS tags, lexical forms, and
word classes for the head feature.

LEX model

BGH model

To acquire the statistics, we have to resolve the fol-
lowing ambignitics:

e Which level of thesaurus hierarchy is appropriate as
the class for head-word

e How much information from the fanction words
should be considered to define the dependency re-
lation names.

For the lmitaton of computer resources, we could
not use all the combination of word classes {the combi-
nation of modifier and modifee}. The collocation of
word classes 1 the same layer in BGH was learned
{from the 2nd to 6eh layer) and used separately.

in the current implementation, we count the statis-
ties for various length of dependency relation names,
Consider the examples in Table 1.

Relation feature of modifier in 3 — 4 may be *F C-
7 or *I7 Relation feature of modifice tn 3 — 4 may
be “W 47 or empty.

Then, head collocation feature combinations defined
fo 3 -+ 4 are as follows (in the case of LEX model):



B i), (24

flo L€ — 12y [5EH ¥ 3 (I complete it untill this spring)

modifier’s features modifice’s features
relation rame | head head relation name
1 —4 || & i3 (particle) SEAY SEAh
294 || £ N (demonstrative | % {case particle) SEHE SHAH
pronoun)
3—4 || F £ T (particle)-1 | G2 R
(case particle)

Table 1: Example of dependency relations. Each square bracket represents a bunseisu

modifier’s feature modifiee’s feature

relation name | head head | relation name
N f Tl | 2ED
T b SR | -

2 B SEEh | 2ED

[ i SEHE -

T¢I Noun | 524K )
ERGR Noun | SEM -

. Noun | 5 a5

bz Noun | 5% | -

F T i Noun | o4

E b Noun | -

. B2 Noun {| 345

bz # Noun | -

Ea Noun | Noun | &5

F T4 Noun ! Noun | -

[ Noun | Noun | &5

iz Noun | Noun | -

The Distance Probability

Distance measure of dependency relations 1s an ipor-
tant factor to disambiguate dependency structure, For
instance, relation type “ha/particle” has a 1011(19;1(\ to
modify a distant phrasal unit.

For the distance measure of a pair of bunsetsu’s, we
use the numbers of the bunsetsu’s and punctuations be-
tween them.

Two types of probabilities are considered for
probabilities of head-collocation described above,

Generation probability model of the distance features
is as follows:

PalDepli)=j | {1..

the

s fm)

Q

Fltri,digopiy | ve)
ClDepli)=j,vi,dis,0i5)
C(Depli) = j',ri)

Collocation probability version of the distance fea-
tures is as follows:

Pa(Depli)=j)

FHDep(iy=j | riydig,pij)
C{Dep(i)=j,ri, dij. pis)
Clri,digypij)
dyij, and py; indicate the number of bunseisu’s and the
number of punctuations, respectively.

Q
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Same as the case of estimation of head collocation
probabilities, modification relations of various length
was extracted from each modification pair.

3. The Algorithm

Full Parse
1. Tokenization and POS-tagging is applied to the input

2. Construct dunsctsu and define its features,

3. Calculate the probabilities of every bunselsu pair, by
using statistics derived from the EDR corpus.

4, Compose the most likely (or n-best) dependency
structure based on the statistical model described in
-section 2.

For the first step, we use the morphological analyzer,
ChaSen[i1].

For the second step,
setsu’

tokens are analized into bun-
based on pre-defined regular expressions, and
then bunsetsw features are extracted. The basic rules
for assigning features are as follows:

e The right most content word in the bunsctsu beconles
the head feature.

e Morphological iformation {such as word, tag, and
inflection form) of function words iu the bunsefsu de-
firres the dependency relation.

There is a room to customize the rules by a user
to cope with exceptional cases which do not fall into a
general pattern, and to cope with conceptual differences
hetween system designs,

For the fourth step, we consider
structure such that:

the dependency

o Every bunsetsu in 5 except the right mest one mod-
ifies oue of its succeeding bunsetsw's in the sentence

e No two modifications may cross cach other {crossing
constraint)



Under those constraints, we use CYK algorithm to ef-
fectively select the most likely (n-best) combination of
dependency relations.

Partial Parse

We propose three types of partial parsing, which focuses
on the probabilities of each dependency pairs {p0), the
probabilities of whole dependency structure (pl), and
some specific dependency relatious (p2).

(p0) Output dependency relatious of which probabil-
ity 1s higher than a particular threshold. The resuit
is the set of dependencies,

{p1l} N-best parses are firstly obtained, Then, the
dependencies that are included in all of the N-best
parses are seiccted as the result.

(p2) Only the dependencies of the specified relations
are preduced.

In the p algorithm, we do not use CYX algorithm,
I there are more than two modifices whose dependency
probabilities are higher than the threshold, the highest
one is chosen {in other words, do not care about “cross-
tng constraint” ). Although this method is very simple,
it i useful, for example, to help interactive correction
procedire of tree-hank construction.

To use the p2 algorithm, we must evaluate the pre-
cision for each relation typef. Some experiments are
given in the following section.

4. System Evaluation

For the traiming and test corpora, we used EDR
Japanese bracketed corpus [6], which contains about
208,000 sentences collected from articles of newspapers
and magazines.

We splitted the sentences into twenty files. Oune of
these files is held out for evaluation and others are used
for training.

Full parse accuracy is evaluated by the precision of
correct dependency pairs.  Partial parse accuracy is
evaduated by the precision and recall of correct depen-
dency pairs.

Precision and recall arve defined as follows:

Precision =
Nunber of correct dependencies generated by the system

Number of system’s output of dependencies
Reeall =

Number of correct dependencies generated by the system

Total number of dependencies
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Evaluation of Full Parse

The precigion of the number of dependency pairs was
calculated under the following models,

{a) Base-line

(b} POS model
{c} LEX model
(d) BGH model

The model (a) is nsed as the base-line, in which all
modifiers wmodify its immediate right bunsetsu. *POS
model” means that POS tags of head-words are used as
the head feature. “LEX model” means that POS tags of
head-words and lexical items are used. “BGH model”
means that POS tags, lexical items, and word classes
are used as the head feature. The level of the layers in
the thesaurus is altered from 2 to 6 (leaf layer),

For each of (b}, (¢}, {d) models, we applied two prob-
ability models described in section 2 {generation prob-
ability and collocation probability) to cacli of head-
collocation probability and distance probability. Then
cach (a), {b), (¢), and (4) models has four different
models, But we only shows the result of the following
two models, for the cach POS, LEX, and BGH model.

¢ head-collocation {cellocation model) + distance {gen-
avation model) — model-1

e head-collocation {collocation model} + distance {col-
location model) — model-2

Since the other two models give the performance {pre-
cision) as low as 70 %, we will not go into more detail of
those models. The amounnt of training data was changed
and evaluated in terms of the precision of correct de-
pendency refations.

Figure 1 shows the result of the precision for the
inside and outside data under “model-1"7 . Figure 2
shows the resalt of the precision for the inside and the
outside data under “model-27,

“BGHE” in the figure meaus that the sixth-layer of
the thesanrus is used for the word class. It stightly
outperforms other models that use higher layers in the
thesanrus,

Wlhen evaluating with outside data, we inposed cer-
tain freguency threshold on the statistical data, that is,
the collocation data whose occurrence frequency s less
than i-times was discarded, where 7 15 a predetermined
threshold.

Figure 3 show the resulting change of precistons
the POS, LEX, BGH models.
changed from 2 to 10,

' By “inside data”, we mean that the training data is used
also for the test data, whereas “outside data”™ means that
the held-out data is used for the test data.

under
The value of #¢"

Was
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From this experiment, we decided to set the value of
ito 4.

The LEX model shows the highest performance in
both cases, and the result of model-1 outperforms that
of model-2 constantly.

Surprisingly, the BGH model shows poor perfor-
mance than the POS model, A part of the reason may
comes from the fact that we only used one layer of word
classes for each experiments. Other reason may be that
the hierarchy of “Bunrui Goi Hyou” is not adequate for
the syntactic analysis.

The graph shows that the performance of the inside
data decreases when the size of training data increases,

The precision of the outside data in “model-1” con-
stantly close up to the precision of the inside data.

We use “model-1" for further analysis.

Contribution of Head-Collocation
Probability and Distance Probability

To test which features of head-collocation and distance
feature contribute to the accuracy of parsing, the fol-
lowing models are tested.

() Distance probability
(f) POS model without the distance probability
(g} LEX without the distance probability
{h) BGH without the distance probability
Each model is trained by 190,000 sentences, and evalu-

ated by 1,000 sentences held out from the training data.

model | precision % | correct/total

(€] 66.07 50877610
(f) 79.09 6019/7610
() 80.09 60957610
(k) T7.58 5819/7610

Table 2: Precision for 1,000 sentences.

The distance prohability makes little contribution to
the parsing accuracy compared to the head collocation
probability. Tlis is because the features used for the
distance probability is too simple.

Sentence Level Evaluation
We evaluate sentence level accuracy in this section. A
sentence is regarded as correct if the correct structure
is found in the n-best parse of the parser, where n is a
predetermined value.

Figure 4 shows the rate of correct parses appearing
in the n-best parses, where n is changed from 1 to 10.
The average number of bunsefsu’s in a sentence is 7.



! ! ? O $001eh00% ~—imer
7500 |-
i
e
T

v
g
]
g
S
b

000 L ) x v 1 L ) I

1 2 3 4 H & H 3 2 10

Figure 4: Distribution of corvect parses {out of 10,000
sentences). Trained under LEX model by 190,000 sen-
tences,

When n is 5 the precision is 65.21 %, and when = is
10, it becomes 73.40 %.

Evaluation of Each Relation Types

We also check the precision of relation types. The re-
sults are shown in Table 5. The first column specifies
the type of dependency, which consists of o word, a tag
or an inflection form. The second column in Table 5 in-
dicates the ratio of correct dependencies over the total
system outpuf.

It 13 seen that the frequencies of relation type, noun
base-form-verh, and ha-particle are high, and influence
system’s performance, since the precisions for these
refations are bad, The particie “ha’, “verb/renyon”,
and “verb/tekel” can construct subordinate clauses in
Japanese, and in some cases, it is difficult even for hu-
man to consistently determine its modifiee.

A noun 4+ punctuation pattern is also a problematic
case, because it can be a part of conjunction phirases.
They behave like adverbs {temperal noun and adverbial
nioun) or form subordinate clauses.

In these cases, it is reasonable to leave these modifiees
unspecified. This doesn’s conflict the purpose of using
the system for practical fields or preprocessor of higher
NLP, because it is favorable to output reliable partial
parses rather than output unreliable full parses.

Fvaluation of Partial Parsing
The resuits of full parsing accuracy show that model-1
under the LEX model outperforms other models.

For the model, we further examined partial parsing
methods explained in section 3, and evaluated its pre-
cision and recall,

Table 3 shows the result of p0 algorithun, The first
coluzan i Table 3 indicates the threshaold on the prol-
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Figure 6 Evaluation of pl algorithmn.
learned from 190,000 sentences was used.

LEX model

ability of each dependency relation. The degree of the

threshold | precision Je{correct/total) | recall % (correct/totalt |
1.5 86,16 {63567737T) F1.02 (6377610
6.6 88,24 (6193/7019) 81,38 (6193/7610)
G.7 $0.24 (5999/6648) 78,83 (5999/7610)
0.8 92.33 (53705/6179) T4.97 (5705/7610)
0.9 95,19 {5149/5409) 47.66 {5149/7610)

Table 3: Evaluation of p0 algorithm.
tearned from 194,000 sentences was used.,

LEX model

reliability {hence the degree of the precision) can De
controlled by the value of the threshold on the proba-
bilities.

Figure 5 shows the result of pf algoritlun. The value
of *n” in the pf algorithm is varied from 2 to 10.

The degree of the precision can be controlled by the
value of “n”. Figure 6 depicts the results in graphs.

thieshold | precision %(correct/iotal) T vecall % {correct/lotal) |
2 3377 (5145/75409) T7T.14 {5149/T610})
3 91.09 (5705/6179} 69.91 {5705/7610}
4 92.53 (5599 /6648) £5.80 (5399/7616)
5 93.47 (6193/701%) 61.46 (6193/7616)
6 94.99 (6356/7377) 58.59 (6356/7610)
T 94.71 (6356/7377) 5821 (63567761 M
& 95.26 (6356/7377) 54.14 (6356/7610)
9 95.78 (6356/7377) 52.40 (6356/7610)
10 95.49 {6356/7377) 50,38 (6356/7610)

Table 4: Evaluation of p! algorithm.
learned from 190,000 sentences was used.

LEX model

Table 5 shows the result of p2 algorithm. pg algo-
rithm achieves shightly better preciston than full parse,
but is not as good as pd and p! algorithms,

When comparing three methods, p@ algorithm shows
highest performance, in terms of the precision and re-



[ relation name (fexicon/POS finflection form) | precision (%) [ correct | total |
Jadjective frental 95.41 1016 T 1068
/demonstrative/ 93.72 1320 ] 1418

wo/cp/ 93.32 7000 | 7501
no/p/ 93,15 11040 | 11980
nifep/ 91.51 5769 | 6304
/adjective/renyou 88.14 959 | 1088
a/<n] 5704 5025 | 5714
[verh/hase 87.32 134477 1539
tofcp/ 85.40 15685 | 1854
mo/p/ 33.54 1680 | 2011
defcp/ 81.83 991 | 1211
Jverh [tekel 79.55 0267 1164 |
Jtemporal noun/ 78.20 1155 | 1477 |
da/declarative/teke 77.96 a02 1 1157
Tia/p/ 75,30 5700|7687
[noun/ 75.29 1182 | 1570
Jverh frenyou 72,43 796 | 1099

Figure 3 Systemn’s outputs were classified according to the right most constituent of relation type, and sorted with
their precisions. The symbol ¢p, and p in the first column mean case-particle and particle. Renyou, rentai tekel and

Iase are the names of inflection forms.

relation types

without “ha”

without “verb/renyou,tekei”
without “verl/renyou,tekei, ha”

precision%
76,21 (5904 /6808)
85.56 (6333/7402)
86.57 (5748,/6640)

Table 5: Dependency relations without some types of
relations. Trained by 190,000 sentences. Evaluated by
other 1,000 senteuces.

call. When pf and pI algorithm shows smng:]';rccision,
p algorithm shows lugher recall.

p0 and pl algorithms can be controlled by a single
pararneter,

5. Conclusion and Future Works

We showed that the statistical method ncorporating
lexical level information without any grammar rale is
cffective in Japanese dependency structure analysis,

Instead of lexical items, we also tested word classes
of the thesanrus as head features of phrasal units (BGH
medel). But that model showed poor performance than
the POS model (which uses part-of-speech tags, as head
features). This may be because that the hierarchy of
applied thesaurus is not appropriate for the syntactic
aunalysis.

85 % of precision {the munber of correct dependency
relations) is achieved by wsing LEX model.

In those experiments, the combinations of features
are determined manually by human, There is a room
to select the combinations of features antomatically.
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One reason of this comes from the fact that we ap-
plied various kinds of distance features, such as the
number of noun phrases, the number of case particles,
the nmnber of verbs and other kinds of grammatical fea-
tures hetween two bunsetsu’s, but finally it turned out
that simple features, such as the number of bunselsu’s

and punctuations between two bunsctsu's shows good

performance.  This may imply the lmitaion of man-
ual selection of combinations of features. Automatical
selection of appropriate features is one of our future
works.

We also proposed several partial parse methods,
Aamong thew, p algorithm is exhibited highest per-
formance in terms of precision and recall, in spite of 1ts
simplicity of algerithim,

In pd algorithm, the degree of reliability (in other
word, degree of precision) is controllable by a single
parametern.

Partial parse method can be used for other NLP ap-
plications, such as information retrieval or preprocess-
ing of corpus anuotation.
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Abstract

In this paper we study the gein, a naturally-arising
statistic from the theory of MEMD modeling [2], as
a figure of merit for selecting features for an MEMD
language model. We compare the gain with two
popular alternatives—empirical activation and mutunal
information—and argue that the gain is the preferred
statistic, on the grounds that it directly measures a fea-
ture’s contribution to improving upon the base model.

Introduction

Maximum entropy / minimum divergence {MEMD)
modeling is a powerful technique for building statisti-
cal models of linguistic phenomena. It has been applied
to problems as diverse as machine translation [2], pazs-
ing {10}, word morphology {5] and language modeling
{6, 11, 3, 9]. The heart of the method is to choose a
coliection of informative features, each encoding some
linguistically significant event, and then to incorporate
these features into a family of conditional models.

A fundamental issue in applying this technique is the
criterion used to select features. The work described in
[3], for instance, incorporates every feature which either
appears with above-threshold count in a training cor-
pus, or which exhibits high mutual information. In [11]
and [1], the authors select features based on a mutual
information statistic. As we argue below, both these
methods have drawbacks,

In this paper, we examine a statistic for selecting
MEMD model features, called the gain. The gain was
introduced in [4], and studied in greater detail in [5]
and {2]. We present intuition, theory and experimen-
tal results for this statistic, as a criterion for selecting
features for an MEMD language model. We believe our
work marks the first time it has been used in MEMD
language modeling, and the first side-by-side comnpar-
ison with other selection criteria. Though our experi-
mental results concern language models exclusively, we
note that the gain can be used to select features for any
MEMD model on a discrete space.

The language model we present is based on depen-
dency grammars, It is similar to, but extends upon,
the work reported in [3]. Two important differences
between that work and ours are that ours is a true

Harry Printz
IBM
Watson Research Center
Yorktown Heights, NY 10598
printz@uatson.ibm.com

minimum-divergence model, and ours incorporates both
link and trigger features.

The paper is organized as follows. In Section Struc-
ture of the Model we give a brief review of MEMD models
in general, and of our dependency grammar model in
particular. In Section Linguistic Features we describe
and motivate the types of features we chose to inves-
tigate. In Section Fzperimental Setup we describe our
experimental procedure. In Section Selection of Fea-
tures we discuss feature selection; it is here that we
develop the notion of gain. In Section Additivily of the
Gain we discuss the additivity of gain, which measures
the extent to which features contribute independently
to a model. In Section Tesis and Results we report our
test results. Section Summary concludes the paper.

' Structure of the Model
Use of a Linkage

Let 'S = w®...w" be the sentence in question, and
let K(8) or just K stand for its linkage. A linkage
is a planar graph, in which the nodes are the words
of 5, and the edges connect linguistically related word
pairs. A typical sentence S, with its linkage K, appears
in Figure 1, The relationship between the linkage of
a sentence, and the familiar notion of a parse tree, is
described in Section Erxperimental Sefup below.

s  bangial cream: pies . </s>
0 i : 3 4 s & 7 & 9

Figure 1: A Sentence § and its Linkage K. The
shaded area represents the history h’, which is the
conditioning information available to the model at
position 7. A7 consists of the complete linkage K|
and words w” through w® inclusive.

Our model, written P{S | K), is not a language
model proper, since it is conditioned upon the linkage.
In principle we can recover P(5) as 3. P(S | K)P(K);
in practice we simply take P(S) = P(S | K). Moreover



since K itself depends upon $, the model cannot be ap-
piied incrementally, for instance in a real-time speech
recognition system. However, such a model can be used
to select from a list of complete sentences,

The value P(S | K') computed by our model is formed
in the usual way as the product of individual word prob-
ahilities; that is

N

N
P(S|K) =[] p(w* | wi B) = [ o’ | A1) (1)
=0 i

Here we have written R = (577, K for the history at
position #; this is the information the model may use
when predicting the next word. Here and helow the
notation wf, with 1 < 7, stands for the word sequence
wh...w!. Thus for the models in this paper, the his-

tory consists of the words w?...w* =1, plus the complete
linkage X.

Fundamentals of MEMD Models

The individual word probabilities p(w® | h*) appearing
in equation {1} above are determined by a manimum
divergence model. Here we review of the fundamentals
of such models; a thorough description appears in ref-
erence [2].

As above, let w stand for the word or future to be pre-
dicted, and let h stand for the history upon which this
prediction is based. Suppose that f(w k) is a binary-
valued indicator function of some linguistic event. For
instance, f may take the value 1 when the most recent
word of h is the definite article the and the word w is
any noun; otherwise f is 0. Or f might be 1 when &
contains the word deog in any location and w is the word
barked. Any such function f(w h) is called a binary fea-
ture function; clearly we can invent a large number of
such functions.

Now suppose C is a large corpus. C can be regarded
as a very long sequence of word-history pairs w*® h?,
where w' is the word at position 7 and £~° is the history
at thal position. We can use C to define the empirical

expectation E3[f] of any feature function f; it is given
by

(2)

where 7 runs over all the positions of the corpus, and N
is the number of positions. The sum Ay = )", f(w! Af)
is called the empiriecal activation of the feature f; it
is the number of corpus positions where the feature is
active (attains the value 1).

Finally, let g{w | h) be some selected statistical lan-
guage model, for instance a trigram model. We call ¢
the base model. When ¢ is a trigram, it predicts w based
exclusively upon the two most recent words appearing
in A. Note however that an arbitrary feature function f
can ingpect any word of A, or the linkage itself if it com-
prises part of h. If is the enlarged scope of information
available to f that we hope to exploit.

Bslf] =) f(w' )/
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We can now enunciate the principle of minimum di-
vergence modeling. Let f = {(fi...fam) be a vector of
binary feature funciions, with a known vector of em-
pirical expectations (Eg{f1l... Es[far]}. We seek the
model p{w | h) of minimal Kullback-Liebler divergence
from the base model g(w | h), subject to the constraint
that

{Bplfa). . Bylfml) = (BslA]. - Eslful). (3)

That is, the expectation of each f;, according to the
model p, must equal its empirically observed expecta-
tion on the corpus C.

By familiar manipulations with Lagrange multipliers,
as detailed in [2], the solution to this problem can be
shown to be

plw| k)

1 e F
& flw R)
Z{a h) a(w [ h)e

{4)
where

Zahy= Y qlw |y m, (5)
wey

Here f{w h) is a vector of 85 and 1s, depending upon
the value of each feature function at the point w h.
Likewise & is a vector of real-valued exponents, which
are adjusted during the training of the model so that
equation (3) holds. V is a fixed vocabulary of words,
and Z(& h) is a normalizing value, computed according
to equation (5). Finally g(w | k) is the base model,
which represents our nominal prediction of w from k.
When g is the constant function 1/|V], the resulting
model p is called a mazimum enitropy model; when g is
non-constant, p is called a minimum divergence model,
However the defining eguations (4, B) are the same,
regardiess of the nomenclature,

Use of a Base Model

In the work reported here, the base model g is decid-
edly notfa constant: it is a linearly-interpolated trigram
model, trained on a corpus of 44,761,334 words. This
approach, while not novel [1}, is one of the key depar-
tures of our work from [3].

This departure is significant for three reasons. First,
it gives us a computationally efficient way to incorpo-
rate a large amount of valuable information into our
model. To put this another way, we already know that
the 14,617,943 trigrams, 3,931,078 bigrams and 56,687
unigrams that together determine ¢ are useful linguistic
predictors. But if we should try to incorporate each of
these word-grams into a pure maximum entropy frame-
work, via its corresponding feature function, we would
be faced with an intractable computational problem.

Second, the use of raw word-gram feature functions,
without some discounting of expectations, is believed
to be problematic for maximum entropy models, since
it can force solutions with unbounded exponents. By
incorporating word-gram information via a linearly in-
terpolated frigram model, we are less likely to encounter
this problem.



Third, using a trigram base model raises a new and
challenging version of the feature selection problem.
How can we determine which features, when incorpo-
rated into the model, will actually yield an advance
upon the trigram model? This is the central problem
of this paper, which we proceed to address by using the
gain statistic.

Linguistic Features

We now take up the question of how to exploit the
information in the history h* to more accurately esti-
mate the probability of word w*. We remind the reader
that the base model already provides such an estimate,
g(w' | h%). But because in this case g is a trigram
rmodel, it discards all of AF except the two most recent
words, w'~ 2w, Qur aim is $o find informative binary

feature functions fw® h¥) that are clues to especially

likely or unlikely values of w'. We chose to use two

different kinds of features: triggers and links.

Trigger Features

As every speaker of English is aware, the appearance of
one given word in a sentence is often strong evidence
that another particular word will follow. For instance,
knowing that compuier appeared among the words of
R, one might expect that nerds is more likely than nor-
mal to appear among the remaining words of the sen-
tence. Some words are in fact good predictors of them-
selves: seeing Japanese once in a sentence raises the
likelihood it will appear again later. Word pairs such
as these, where the appearance of the first is stfongly
correlated with the subsequent appearance of the sec-
ond, are called trigger pairs [1, 11]. Note that the trig-
ger property is not necessarily symmetric: we would
expect a left parenthesis { to trigger a right parenthesis
). but not the other way arcund.

Our model incorporates these relationships through
irigger features. Let u, v be some trigger pair. A trigger
feature f,, is defined as

1 Hw=w»and hdu with {uv| > dnin
fun(w h) = { 0  otherwise
(6)

Here b3 u, read “h contains w,” means that u appears
somewhere in the word sequence of h. The notation
jut] > dpin means that the span of this pair, defined
as the number of words from u to v, including » and v
themselves, is not less than a predetermined threshold
dpin. Throughout this work we have used dnin = 3.

Link Features

One shortcoming of trigger features is their profligacy.
In a model built with the feature fiomputer nerds; an ap-
pearance of computer will boost the probability of nerds
at every position at distance di, or more to its right.
This will be so whether or not a position is a linguis-
tically appropriate site for nerds. Moreover, if a model
contains a large number of trigger features, there will

99

be many iriggered words at each position, and their
heightened probabilities will tend to wash each other
out.

For instance consider the sentence of Figure 2. The
plausible trigger feature fiiocks rose will boost the prob-
ability of rose at every word from position 4 onward,
in particular at position 6. But here the acoustically
confusable word wees appears, and so increasing the
probability of rose at this position could yield an error.
Thus the boost that fiiecks rese glves $o rose, which we
desire in position 8§, is just as clearly not desired in
position 6. Unfortunately the trigger is blind to the
distinction between these two sites, and it boosts rose
in bhoth places.

<s> Nasdaq stocks , despite  Asian woes | rose sharply . </>
G { 23 4 5 6 7 & 9 1o i

Figure 2: Links versus Triggers. The trigger {ea-

ture for stocks and rose boosts the probability of

rose at each position from 4 to 11, inclusive. The

Hink feature also boosts rose, but only at positions

4 and 8. The linkage shown here is the actual one
- computed by our parser.

These considerations have led us and others to con-
sider features that use the linkage. The aim is to focus
the effect of words in the history upon the particular
positions that are appropriate for them to influence.
Figure 2 shows how the linkage of this sentence con-
nects stocks, the headword of the subject noun phrase,
with rose, the main verb of the sentence; note there is
no such link from stocks to woes. These are precisely
the linguistic facts that we wish to exploit, using an ap-
propriate feature funciion. To do so, we will construct
a feature function that {like a trigger) turns on only for
a given word pair, and in addition only when the named
words are connected by an arc of the linkage.

Because such features depend upon the the linkage
of the sentence, we refer to them as link features. Such
a feature f ~ , for words u and v, is defined as

if w= v and Adu v with lud > diin
otherwise
(M)

The notation h 3% v, read “h contains u, linking v,”
means that word u appears in the history’s word se-
quence, that an arc of K conneets v with the current
position, and that word v appears in the current po-
sition. In the example given above, the link feature

~ attains the value 1 at position 8 only.
stocks rose

&ﬂw@x{é

Experimental Setup

Here we describe the computation that underlies the
work in this paper. Figure 3 is a schematic of the



complete computation, which divides into three phases:
(1) prepare the corpus and train a parser and base
model, {2) identify and rank features, and (3) select
features and train an MEMD model. Our experiments,
which we report later, concerned phases {2) and (3)
only. We include a discussion of phase (1} for com-
pleteness, and to place our experiments in context.

In the first phase we trained a parser and base model,
and parsed the corpus text. By parsed we mean that for
each sentence & of the corpus text 7, we have its linkage
K(S) at our disposal. The parser we trained and then
used was a modified version of the decision-tree parser
described in [7]. Our parser training corpus consisted
of 990,145 words of Treebank Release II data, and our
hase model corpus consisted of 44,761,334 words of Wall
Street Journal data, both prepared by the Linguistic
Data Consortium,

This parser constructs a conventional parse tree.
Since we needed linkages, we used the method of head-
word propagation to create them from the parser cut-
put; we now explain this method. To each parse tree we
apply & small collection of headword propagation rules,
which operate leaves-to-root. The result is a tree la-
beled with a headword at each node, where each head-
word is selected from the headwords of a node’s chil-
dren. (At the leaves, eack word is its own headword.)
The desired linkage is then obtained by drawing an arc
from the headword of each child node to the headword
of its parent, excluding self-loops. A conventional parse
tree for the sentence of Figure 2 above, labeled with
propagated headwords, appears in Figure 4.

)

<5

NP

stocks

PP

despite

NP
stocks

WP

waes

ve

Fane

Pl S il
SBW Al NCOUN ,  BREP ADJ NOUN |, VP ADV . EBW
<x>  Nasdug stocks despite Aslan woes vose  sharply . <>
i | | i i i | t | 1
<s>» Nasdag siocks |, despite  Asian woes rose sharply . </i5>
4 ! 2 3 4 5 6 7 & g 10 U

Figure 4. Conventional Parse Tree, with Propa-
gated Headwords. The text explains how this head-
word-labelied tree can be transformed into the link-
age of Figure 2.

For the base model ¢, we chose to use a linearly inter-
polated trigram language meodel, built from the same
regularized WSJ corpus as the dependency grammar
model itself.
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In the second processing phase we identified and
ranked features. The details of this phase, and in par-
ticular the figure of merit used for ranking, are the sub-
ject of Section Selection of Features. Here we explain its
place in the overall scheme. By inspecting the parsed
corpus C, we identify a set F of trigger and link candi-
date features. These are then ranked according to the
chosen statistic. In this paper we advocate the use of
the gain as the rank statistic. The gain depends upon
both the corpus and the base model, and for this rea-
son these are shown as inputs to the box rank features
in Figure 3. The output is the same set of candidate
features, ranked according to the figure of merit. It
happens that the gain computation also yields initial
estimates of the MEMD exponents; abbreviated exps in
the figure.

In the final phase of processing, we inspected the
ranked list of features and selected those fo incorpo-
rate into the model. We then used the selected fea-
tures, their initial exponent estimates, the corpus, and
the base model to train the MEMD model, Different
choices of features yield different models; Section Tests
end Results below gives details and performance of the
various models we built.

Selection of Features

Cnce the model’s prior and feabure types have been
chosen-—choices generally dictated by computational
practicality, and the information available in the train-
ing corpus—the key open issue is which features to in-
corporate in the model. In general we cannot and will
not want to use every possible feature. For one thing,
we usually have too many features to train a model
that includes all of them: the processing and memory
requirements are just too great. Moreover, rescoring
with a model that has a very large number of features
is ttself time-consuming. Finally, many features may be
of little predictive value, for they may seldom activate,
or may just repeat information that is already present
in the prior.

In this section we describe a method for selecting
precisely those features of greatest predictive power,
over and above the base model ¢. The key idea of our
method is to seek features that improve upon ¢’s pre-
dictions of the training corpus itself. The measure of
improvement is a statistic called the goin, which we
define and motivate below. As we will demonstrate,
computing the gain not only yields a principled way of
selecting features; it can also be of great help in con-
structing the MEMD model that contains the selected
features.

Our method proceads in three steps: candidate iden-
tification, ranking, and selection. We now describe each
step in greater detail,

Candidate Identification

By candidate identification we mean a pass over the
training corpus (or some other corpus) to collect po-
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Figure 3: Corpus Preparation, Feature Ranking, and Model Training

tential features for the model. The result of this pass
is a candidate feature set, denoted F'. The candidate
features are those that we will rank by gain in the next
step.

Note that one or more criteria may be applied to
decide which features, out of the many exhibited in the
corpus, are placed into F in the first place. In the
work reported here, we scanned the parsed conpus to
coliect potential features, both triggers and links. Since
we were building a model using a trigram prior, we
had good reason to believe that adjacent words were
well-modeled by this prior, and so we ignored links or
triggers of span 2. To keep from being swamped with
features of no semantic importance, and which arise
purely because the words involved are common ones, we
likewise ignored triggers where either word was among
the 20 most frequent in the corpus. Moreover we did
not include any trigger pair with an empirical activation
below 6, nor any link pair with a count below 4.

In this way we collected a total of 538,998 candi-
date link features (which were all those passing the cri-
teria above) and 1,000,000 candidate trigger features
{which were those passing the criteria above, and then
the top 1,000,000 when sorted by mutual information).
We supplied the resulting candidate set F', containing
1,538,998 features, to the next stage of the feature se-
lection process.

Ranking

In this section we will motivate and develop the central
feature of this paper, which is the notion of gain. First
introduced in {2], and further developed in [5], the gain
is a statistic computed for a given feature f, with re-
spect to a base model, over some fixed corpus. We will
argue thai the gain is the appropriate figure of merit

1N

for racking features.

Motivation At the heart of the issue lie the following
two questions. First, how much does a feature f aid us
in modeling the corpus? Second, to what extent does
this feature help us to improve upon the base model?
By giving quantitative answers to these questions, we
will be led to the gain.

We begin by establishing some notation. Let P{()
stand for the probability of the corpus, according to
the base model ¢; that is P(C) = [[jny q{w® | Af). For
the inodel developed here, this should more properiy
be written P{7 | K}, where 7 represents the collected
text of the corpus, and K consists of the linkage of each
sentence of 7. However since our meaning is clear, for
typographic simplicity we will use the shorter notation.

Now we remind the reader of the connection be-
tween MEMD training and maximum-likelihood estima-
tion. Suppose we construct an exponential model, from
base model ¢, that contains one single feature f(w A).
The form of this model will be

Patw | B) = s gl | B) €2/ B)

= 8

Z(a h) (&)
where Z(« h) is the usual normalizer, and « is a free
parameter. For any given value of o, the probabil-
ity Pso(C) of the entire corpus C, as predicied by this
model, is

N-1
Pra(C) = [T par(w’ | ). (9)
=0

The MEMD trained value of o, denoted o*, is determined
as
(10}

That is, the particular o that makes expression (8) the
MEMD model is precisely the value o* given by (10).

o = argmax Py (C).



This fact is demonstrated in [5], along with a proof
that the maximizing a™ is unique,

Thus the probability of the complete corpus, accord-
ing to the MEMD model po+, is just Pro«(C). When the
identity of the feature is clear, we will abbreviate this
by Pa*(C).

We proceed to motivate and define the gain. At many
positions of the corpus, the models g and py+ will yield
the same value. But in those positions where they dis-
agree, we would hope that pe~ does a better job, in
the sense that pes{w' | h?} > gq(w' | A?). That is, we
wish that pe« distributes more probability mass than
g on the word that actually appears in corpus position
1. The extent to which this occurs is a measure of the
predictive value of f, the feature that underlies p,.

Of course, we do not want to gauge the value of f
by a comparison of models on this or that particular
corpus position. Bul we can judge the overall value of
f by comparing P, (C), the probability of the entire
corpus according to a model that incorporates both ¢
and f, with P(C), the probability of the entire corpus
according to g alone.

We can quantify the degree of improvement by writ-
ng

Gy(e*) = = log

Por"(c) m 1 , _1_
W "let)gPa*(L)—- NlOgP(C).

Ple)y
(11)

We refer to Gy(o*) as the gain of feature f. By the
rightmost equality above, the gain measures the im-
provement in cross-entropy afforded by f, or more sim-
ply, the information content of f. When it is clear which
feature we mean, we will write just G{o*) for its gain.
Likewise we will write G’y when we don’t need to dis-
play the exponent. The seemingly ancillary quantity
o is in fact of value, since it is an initial estimate of
the feature’s associated exponent, and may be used as
a starting point in an MBEMD training compuiation that
includes this and other features.

Clearly, computing a feature’s gain is intimately re-
lated to training an MEMD model containing this single
feature, But because the model py+ involves only one
feature, substantial computational speedup is possible.
A fast algorithm for computing the gain appears in [8],

The notion of gain extends naturally to a set of fea-
tures M, If Ppr(C) is the corpus probability according
to a trained MEMD model built with feature set M, then
we define Gy = (1/N)log (P (C)/P{C)).

Comparison with Other Criteria A key advan-
tage of the gain as a figure of merit is that it overcomes
shorfcomings of two competing criteria: the feature’s
empirical activation, and the mutual information of its
history with its future. There are clear rationales for
both alternatives, but also clear drawhbacks.

Selecting by empirical activation ensures that we are
choosing features that could significantly reduce the
corpus perplexity, for they are active at many corpus
positions, and hence can often alter the base model
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probability. But there is no guarantee that they change
the MEMD model much from the base model, since the
selected features might simply express regularities of
language that the base modei already captures. Of
course there is no harm in this, but it does not yield
a better model.

Likewise, the mutual information criterion could
choose features that coincide with, rather than depart
from, the base model. Moreover this criterion can suffer
from inaccurate estimates of its constituent probabili-
ties, when the feature is rare.

The gain remedies these problems. It finds features
that cause the MEMD model to depart, in a favorable
way, from the base model. And if a feature is rare, it is
ignored, unless it is very valuable in those cases where
it appears.

To test this claim, we computed the gain, empiri-
cal activation, and mutual information of the 538,898
candidate link features that we collected earlier from
our corpus. We then plotted the gain against empir-
ical activation, and against mutual information; these
plots appear in Figure 5. It is clear that gain is only
weakly correlated with these competing statistics. In
Section Models Trained below, we compare the perplex-
ities of models built by selecting features with these
three criteria.

Final Selection

Ranking places the features of F' in order, from most to
least gainful. However, though it is clear that we wish to
choose features from F in rank order, say retaining the
top 10,000 or 100,000 features, the ranking algorithm
does not indicate how many features to select. Thus this
last step—choosing where in the ranked list to draw the
line—-must be decided by hand by the modeler.

Since part of our aim was to compare the relative
value of link and trigger features, we elected to build
models containing the top 7' triggers and the top I
links, for various values of T and L. We also built
a model in which we simply retained the top 10,000
features by rank, without regard to their type.

For illustration, we provide in Table 1 a list of 25
selected trigger and link features, of the 1,538,998 in F,
ranked by gain. The table also gives the value of o* for
each feature f; this number is reported as e®’, since this
roughly corresponds the probability boost the future of
cach feature receives, when the feature is active.

Comparison with Feature Induction

In selection by ranking, we form a set F of candidate
features, rank them by gain with respect to the base
model g, and retain sorne number of top-ranked features
to build the MEMD model p. We regard this approach
as eminently reasonable, But there is this danger of
inefficiency: we may incorporate two or more features
that capture essentially the same linguistic information.

As a prophyllaxis against this, some authors [2] have
advocated feature induction. Feature induction is an
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iterative algorithm for choosing features; it selects one
new feature on each iteration. One iteration consists of
(1) complete training of an MEMD model using a current
set of selected features, initially empty, (2) ranking all
rernaining candidates against this just-trained model,
and (3) removing the single top-ranking feature from
the candidate set, and adding it to the set of selected
features. Feature induction terminates after ihcorpo-
rating some fixed number of features, or when the gain
of the highest-ranked feature, with respect to the cur-
rent model, drops below some threshold. In this way,
if two features f and f’ encode essentially the same in-
formation, only one is likely to be incorporated into the
final model. This is so because after (let us say) fea-
ture f is selected, f' will probably have low gain with
respect to the model that includes f.

We will show that at least for syntactic features, the
feature induction computation 1s of little benefit. We
begin our treatment of this issue by developing the
notion of gain additivity in the next section. In Sec-
tion Empirical Study of Gain Additivity we present re-
sults to support this claim.

Additivity of the Gain
A natural question is whether a selected collection of
features M ¢ F will be as informative as the sum of
its parts. For instance, suppose the words stocke and
bonds are both informative as triggers of the word rose.
We might reasonably doubt that these are really in-
dependent predictors of rose, since stocks and bonds
themselves tend to occur together. Put another way,
since the gain is a numerical measure of the value of
a feature, we are asking if the value of these (or any)
two features, when both are used in a model, equals the
sum of the individual value of each. In this section we
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give a theoretical treatment of this issue, introducing
the notion of additivity.
. To begin we consider why it might be plausible that
the gains would add. Consider a set M = {fi, fa} of
just two features. By equations (8, 9, 11) above and
the associated discussion we have
_ 1, Pras(C) 1. Pre(C)
Gf1 "" N ].Og P(C) H fa = N 10g P(C}

' (12)
Let us write Pyg. for the MEMD model defined by fea-
tures f = {f1, fo} and exponents &* = {&%, aj}, yield-

ing a gain
1 P_ * C
N P(C)
Note that &%, &% are decidedly not necessarily equal to

of and o}, as determined by equation pair (12) above.
Now let us write

Piael€) _ Pray(C) Prar(©)

Gy = —log

(14)

P{C) P(C) Ppna{C)
which yields
1 Pfxfz&*&*(c)
Ge=C —log SLETiTa l 15
f fl. + N Og Pflog‘f(C) ( )

Here we have written Prg{C) out in full as
P, p257a1(C), and simplified using the definition of Gy, .
Thus the heart of the matter is how well the second
termn on the right hand side is approximated by Gy,.
We proceed to give a sufficient condition to ensure that
the equation Gy = Gy, + Gy, is exact.

The key idea we will need for our argument is the
potential activaiion vector of a feature f with respect to
a corpus C, written @°(f). In what follows we will relate



=

word pair gain € active word pair gain e active
(mbits) (»108 (mnbits) (%107

words) words)

() 0.708 3.6 931 {sV {/9) 6.639 107 16957

Mr. Mr 0.678 1.8 3351 said . 4.919 10.4 1561
Japanese  Jopanese 0.472 8.1 276 {s) saud 2.920 3.8 196%
his  Mr. 0.431 1.7 2501 would . 1.112 17.5 280
Reserve  Fed 0.371 18.0 137 dollars  cents 0.934 70.8 230
Motors G. 0.264 3.8 140 yesterday  closed 0.261 67.1 39
Gorbachev  Soviet 0.261 15.6 104 rose  to 0.226 44 121
Pennzoil Texaco 0.257 47.7 69 rose  from 0.197 5.3 84
Tokyo Japanese 0.211 7.0 136 its  unit 0.176 14.2 37
Eaporting OPEC 0.207 46.3 56 allow {o 0.164 38.1 36
Lambert  Drezel $.198 194 73 A spokesman  (.145 29.3 36
currency dollar 0.191 3.9 233 increased  percent 0.123 29.6 39
prices  rillion 0.160 0.5 484 yield  percent 0.091 78.8 17
aute  Ford 0.153 10.6 75 prevent from 0.067 89.3 9
Fastman Kodak 0.148 163.2 3 pence  cents 0.062 221.8 7

trigger features

link features

Table 1: Selected Trigger and Link Features. These features are ranked according to gain, reported here
in thousandths of a bit (mbits). The third column, e®", represents the approximate boost {or deflation) of
probability given to the second word of each pair, when the feature is active. The rightmost column lists
the feature’s empirical activation. Note that trigger features are active far more often than link features.
The units used for column active differ by 10* words.

#°(f) and the gain G. Note that both quantities are
defined relative to a corpus. For typographic clarity, we
elide the superscript from ¢¢, with the understanding
that our ¢laims hold only when ¢ and & share the same
underlying corpus C.

As above, suppose the corpus C contains N positions,
numbered 0 through N - 1, with A* the history at po-
sition 7. Then we define ¢;{f), the #th component of

qb(f): by
{ (16)

¢:(f)

Thus, ¢:(f) is non-zero if and only if feature f does
or could abttain the value 1 abt corpus position i. More
succinetly, ¢:(f) = max,ev f(w h); note that ¢; does
not depend upon the word w* that actually appears at
position 1. The potential activation vector ¢(f) is then
defined componentwise as an N-element vector, the ith
component of which is ¢;(f).

Lemma 1 Let f; and fa be binary-valued features. If

#(f1) - 9(f2) = 0, then
Ght =G +Gpy. an

Proof: The set of corpus positions I = {0...N ~ 1}
can be split into three sets

1 if 3w € V such that f{w A*) =1
0 otherwise,

Ih = {'ﬁ | ¢z‘(f1} = 1}
Iy, = {i|di(fe) =1}
Io = {i|¢:{f1) =0 and ¢;(f2) = 0}.

Since ¢{f1) - #{(f2) = 0, these three sets are mutually
digjoint; by definition they cover 1.
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Observe that 'y, depends only upon the posi-
tions that appear in Iy ; likewise Gy, depends only
upon Iy,.  Moreover the maximization of &, in
argmaxg 10g Py, 1,5,4,(C) depends only upon positions
appearing in Iy, since the log sum splits into indepen-
dent terms just as I splits into Iy, Iy, and Ip. Indeed,
the term that corresponds to Iy, is precisely the non-
constant term in the maximization that yields af; thus
&j = af. A similar argument holds for &%. A simple
calculation then yields the desired result. f

When gb(fl)QS(fg) = 0, we write f]_J_Lfg. M= {f:,}
is a collection of features, and g is a feature such that
gdLf; for each f; € M, we write gLM. Finally, if for
every f; & M, we have f; LL{(M\{f;}), where the right
hand side stands for M with f; removed, then we say
the collection M is ¢-orthogonal

Theorem 1 Let M be a ¢-orthogonal collection of fea-

tures, Then
Gu= . Gy
fieM

(18)

Proof: By induction on the size of M, §

Of course, we do not mean to suggest that many prac-
tical feature collections are ¢-orthogonal. And it should
be clear that since ¢ is defined relative to a particular
corpus (, it is entirely possible that a collection M that
is ¢-orthogonal for one corpus may not be for another.

Tests and Results

Our experiments were designed to address three issues.
First, given a training corpus over 20 times larger than



the Switchboard transcripts used in [3], we were curi-
ous to see how large a model we could feasibly train.
Second, we wanted to conduct an experimental study
of the gain as a criterion for feature selection, compared
to empirical activation and mutual information. Third,
we wished to investigate the addivity of the gain. To
answer these questions, we trained a number of models,
varying the number of features, and the selection cri-
terion, and measuring the resources the training con-
sumed, and the perplexities of the resulting models.

Models Trained

We trained a total of fifteen models; in all cases we
trained on the complete corpus. We performed MEMD
training using the émproved fterative scaling algorithm
of [5], using the relative change in conditional perplex-
ity, Ry, as a stopping criterion. This quantity is de-
fined as R; = {w¢.q — w¢)/mi—1, where m; is the condi-
tional perplexity (that is, 7, = Py(7 | K)~Y¥, where
Py(T | K) is the corpus probability according to our
model at training iteration ). We required R, < .01
hefore stopping. We write mps for the perplexity of the
final model M.

Table 2 summarizes our models, the characteristics of
the training computation, and the model perplexities.
Column t,,, is the time to complete one improved iter-
ative gcaling iteration on one segment (1/40th) of the
complete training corpus on an IBM RS/6000 POW-
ERstation, model 590H. Column mem is the total data
memory required to process one segment of the corpus.
The columns for Gy, G a and dar are discussed fbelow.

We draw three conclusions from the perplexify results
in this table. First, models constructed only with 2link
features have lower perplexity than those constructed
only with 2trig features, when we compare models of the
same size. This is evident in the comparison between
10k.2¢trig and 10k.2link, and also between 50k.2trig and
50k.2link. We believe this reflects the higher additivity
of 2link gains, a point we discuss further in the next
section. However, another possible explanation is that
the training converges faster for 2link features than for
2trig features.

Second, the best performance is obtained by includ-
ing both feature types, This can be seen by comparing
among models 10k, 10k.2¢rig and 10k.2link, and like-
wise among 50k, 50k.2trig and 50k.2link.

Finally, models selected by gain do better than those
selected by mutual information or empirical activa-
tion. This 15 evident from the perplexities of mod-
els 10k, 10k.mi and 10k.eact, and likewise 50k.2link,
50k.2link.mi and 50k.2hnk.eact.

Empirical Study of Gain Additivity

To investigate the additivity of the gain, we first com-
puted the actual gain of each model M, defined as

Gar = —]%-log %%ﬂl (19)
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Here Ppr(C) is the probability of the corpus, as given
by model M. Note that the gain and the perplexity
are related by Gar = log(w,/mar), where 7, is the per-
plexity of the base model. We then compared & with
the gain as predicted by summing the individual feature

galins, written
GM = Z Gf.
feMm

Table 2 reports both these values, and also their defect
b, which is defined as Sy = Gpr — Gar. The defect
measures the extent to which the model fails to realize
its potential gain. The srnaller the defect, the more
nearly the gains of the underlying features are additive.

We have argued that the additivity of the gain is
related to the ¢-orthogonality of the feature set, and
we believe this is borne out by the figures in the table.
Trigger features are clearly highly non-additive. This is
to be expected, since in any collection of gainful trigger
features, we would expect a large fraciion of them to
be potentially active at any one position.

By contrast, the link features appear to be very
nearly additive. Moreover, the defect 6pr does not grow
menotonically with the number of link features in the
medel. It would seem that the stanza of 300,000 lower-
ranked link features are more nearly ¢-orthogonal than
the 200,000 higher-ranked ones. This is reasonable,
since on balance the lower-ranked features are probably
less often active, hence more likely to act independently
of one another.

(20)

Summary

In this paper we have investigated the use of gain as a
criterion for selecting features for MEMD language mod-
els. We showed how the gain of a feature arises natu-
rally from consideration of the feature’s predictive value
in an MEMD model, compared to the predictions made
by the base model. We argued that the gain is the
prefered figure of merit for feature selection, since it
identifies features that improve upon the base model.

We then applied this statistic to the problem of se-
lecting features for a dependency grammar language
model. We showed that when comparing models con-
structed from the same number of features, using gain
as the figure of merit yields models of lower perplexity
thar either empirical activation of mutual information.
Moreover, among models built exclusively from either
trigger or link features, but having the same number
of features, those built exclusively from links had lower
perplexity. However, we achieved the lowest perplex-
ity when we picked the most gainful features without
regard to their type.

Finally, we showed that sets of link features have very
low gain defect; this is defined as the gap between the
set’s true and predicted perplexity gains, where the pre-
diction is the sum of individual feature gains. Thus the
computationally expensive feature induction procedure
appears dispensable, at least for link features,



model name seg | mem | perplexity || actual, predicted gain defect
M (hrs) | {mB) mar |l Gar {bits) | Gar (bits) b1r
[Baelme(g) | | | 20760 ] | | |
10k 5 20 22.769 .233196 .0b8733 | .325537
10k.mi 3 19 24.195 145558 159312 | 013754
10k.eact 1.6 23 25.860 049545 143026 | 093481
10k.2trig 8 20 24.483 128487 454672 | .326185
10k.2link 4 18 23.835 167206 202876 | 035670
50k 2.4 37 21.647 306100 | 1.140826 | .834726
50k, 2trig 2.6 38 23.706 175015 | 1.007069 | 832054
50k.2link .9 21 23.114 211472 256284 044812
50%.2link.mi .8 21 23.379 195054 213185 | .018111
50k.2link.eact .9 21 23.324 .108452 208937 | .010485
100k 4.2 64 21.212 .33b3886 1.524190 | 1.188804
100k.2link 1.2 25 22.805 .230900 278472 047572
150k.2knk 1.4 28 22.607 .243499 291138 047639
2010k. 2link 1.6 32 22.507 .249903 299675 | .049772
| 500k.2link 3.8 53 22,232 267657 316176 | .048519

‘able 2: Mode! Features, Training Characteristics, Perplexities, Gains. Models are named by the following
conventicn. The first part of the name gives the number of features; the letter k denotes a factor of 1,000.
Thus 10k is & model built of the 10,000 highest-ranking features of the candidate set F'. The notation 2trig
or 2link means that we used only trigger or link features respectively. Thus 10k.2lnk is built of the 10,000
highest-ranlking 2link features of F'. Additional letters identify the figure of merit used for the ranking: eact
stands for empitical activation, mi stands for mutual information. If neither appears, the figure of merit

was the gain.

We hasten to point out that our results concern per-
plexity only. It remains to be seen if these conclusions
carry over to word error rate, in a suitable speech recog-
nition experiment,
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