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Abstract 

In order to generate high quality explanations in technical or mathematical domains, the 
presentation must be adapted to the knowledge of the intended audience. Current proof pre- 
sentation systems only communicate proofs on a fixed degree of abstraction independently of 
the addressee's knowledge. 

in this paper that describes ongoing research, we propose an architecture for an interactive 
proof explanation system, called P. rex. Based on the theory of human cognition AcT-R, its 
dialog planner exploits a cognitive model, in which both the user's knowledge and his cognitive 
processes are modeled. By this means, his cognitive states are traced during the explanation. 
The explicit representation of the user's cognitive states in AcT-R allows the dialog planner to 
choose a degree of abstraction tailored to the user for each proof step to be explained. 

1 Introduct ion  

A )erson who explains to another person a technical device or a logical line of reasoning adapts 
his explanations to the addressee's knowledge. A computer program designed to take over the 
explaining part should also adopt this principle. 

Assorted systems take into account the intended audience's knowledge in the generation of expla- 
nations (see e.g. [Cawsey, 1990, Paris, 1991, Wahlster et al., 1993]). Most of them adapt to the ad- 
dressee by choosing between different discourse strategies: Since proofs areinherently rich in infer - 
ences, their explanation must also consider which inferences the audience can make [Hora~ek, 1997, 
Zukerman and McConachy, 1993]. However,  because of the constraints of the human memory, 
inferences are not chainable without costs. The explicit representation of the addressee's cognitive 
states proves to be useful in choosing the information to convey [Walker and Rambow, 1994]. 

While a mathematician communicates a proof on a level of abstraction that  is tailored to the au- 
dience, state-of-the-art proof presentation systems such as PROVERB [Huang and Fiedler, 1997] 
verbalize proofs in a nearly textbook'like style on a fixed degree of abstraction given by the initial 
representatio n of the proof. Nevertheless, PROVERB is not restricted to the presentation on a 
certain level of abstraction. Adaptation to the reader's knowledge may still take place by providing 
the appropriate level of abstraction in the initial representation of the proof. 

Drawing on results from cognitive science, we are Currently developing an interactive proof 
explanation system~ called P. rez (for proof explainer). In this paper, we propose an architecture 
for its dialog planner based on the theory of human cognition AcT-R [Anderson, 1993]. The 
latter explicitly represents the addressee's knowledge in a declarative memory and his cognitive 
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skills in procedural production rules. This cognitive model enables the dialog planner to trace the 
addressee's cognitive states during the explanation. Hence, it can choose for each proof step as an 
appropriate explanation its most abstract justification known by the addressee. 

The architecture of P. rex, which is sketched in Section 3, is designed to allow for multimodal 
generation. The dialog planner is described in detail in Section 4. Since it is necessary to know 
some of the concepts in ACT-R to understand the macroplanning process, the cognitive architecture 
is •first introduced in the next section. 

2 AcT-R: A Cognitive Architecture 

In cognitive science, there is a consensus that  production systems are an adequate framework to_ 
describe the functionality of the cognitive apparatus. Production systems that  model human cogni- 
tion are called cognitive architectures. In this section We describe the •cognitive architecture ACTrR 1 . . . .  
[Anderson, 1993], which is well suited for user adaptive explanation generation because of its con- 
flict resolution mechanism. Further examples for cognitive architectures are SOAR [Newell, 1990] 
and EPIC [Meyer and Kieras, 1997]. 

A c T - R  has two types of knowledge bases, or memories, to store permanent~ knowledge in: 
declarative and procedural representations of knowledge are explicitly separated into the declarative 
memory and the procedural production rule base, but a re  intimately connected. 

Procedural knowledge is represented in production rules (or simply:productions) xvhose con- 
ditions and actions are defined in terms of declarative structures. A production can only apply, 
if its conditions are satisfied by the knowledge currently available in the declarative memory. An 
item in the declarative memory is annotated with an activation that influences its retrieval. The 
application of a production modifies the declarative memory, or it results in an observable event. 
The set of applicable productions is called the conflict set. A conflict resolution heuristic derived 
from a rational analysis of human cognition determines which production in the conflict set will 
eventually be applied. 

In order to allow for a goal-oriented behavior of the system, ACT-R manages goals in a goal 
stack. The current goal is that  on the top of the stack. Only productions that  match the current 
goal are applicable. 

2.1 D e c l a r a t i v e  K n o w l e d g e  

Declarative knowledge is represented in terms of chunks in the declar- : f e . a t F s u b s e t G  

ative memory. On the right is an example for a chunk encoding the ±sa s u b s e t - f a c t  

fact that F C_ G, where s u b s e t - f a c t  is a concept and F and G are s e t l  F 
contextual chunks associated to ~actFsubsetG. Chunks are  anno- set2 G 
tated with continuous activations t ha t  influence their retrieval..The activation Ai of a chunk Ci is 
defined as 

Ai = Si + ~ W j S j l  (1) 
J 

where Bi is the base-level activation, Wj is the weighting of a contextual chunk Cj, and Sji is 
the strength of the association o f  C/ with Cj. In Bi, which is defined such that  it decreases 
logarithmically when Ci is not used, AcT-R models the forgetting of declarative knowledge. Note 

IActually, I am discussing AcT-R 4.0, which has some substantial changes to older versions. The acronym ACT 
denotes adaptive control of thought, R refers to the rational analysis that  influenced the  theory. 
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tha t  the definition of the activation establishes a spreading activation to adjacent chunks, but  not 
further; multi-link-spread is not supported.  

The constraint  on the capacity of the human working memory is approached by defining a 
retrieval th reshold  r ,  where only those chunks Ci can be matched whose activation Ai is higher 
than r .  Chunks  with an activation less than ~- are considered as forgotten. 

:New declarative knowledge is acquired when  a new chunk is stored in the declarative memory, 
as is always the case when a goal is popped from the goal stack. The  application of a production 
may also cause a new chunk t o b e  Stored if required by the production's  action part.  

2 .2  P r o c e d u r a l  K n o w l e d g e  

The operational  knowledge of ACT:R is formalized in terms of productions. Product ions generally 
consist of a condition par t  and an •action part,  and  can be appliedl i f  the condition part  is fulfilled. 
In A c T - R  both parts  are defined in terms of chunk patterns. The condition is fulfilled if its first 
chunk pat tern  matches the current goal and  the remaining chunk pat terns match chunks i n  the 
declarative memory. An example for a production is 

.IF: the current goal is to show that x E $2 and it is known that x E S1 and $1 .C_ $2 

• T H E N  conclude that x ES2 by the definition of C: " 

• Similar to t h e  base-level activation of chunks, the strength of a production is def ined such 
tha t  it decreases logarithmically when  the production is ,not used. The t ime spent  to m a t c h  a 

p r o d u c t i o n  with a chunk depends on the activation of the chunk. 2 It is defined such tha t  it is 
negative exponential to the sum of the  activation of the  chunk and the strength of the production. 
Hence, the higher the activation of the chunk and the strength of the production, the faster the 
production matches  the chunk. Since the activation must be greater •than the retrieval threshold 
r; T constrains the t ime maximally available to match a production with a chunk. 

: The conflict resolution heuristic s tar ts  from assumptions on the probability P tha t  the applica- 
tion of the current  production leads to the goal and on the costs C of achieving that  goal by this 
means. • Moreover G is the time maximally available to fulfill the goal. T h e  net utility E of t h e  
application of a production is defined as 

. .  - . . . . ~ • 

E = P G -  C,  (2) 

We do not go into detail on  how P ,  G and C are calculated. For  the purposes of this paper, i t  is 
sufficient to note tha t  G only depends on the goal, but not on the production, and that  the costs C 
depend among other things On the t ime to match a production. The faster the production matches, 
i.e. the stronge r it is and the greater the activations of the matching chunks are, the lower are the 
costs. . 

To sum up, in A c T - R  the choice of a production to apply is as follows: 

1. The  conflict set•is determined by testing the match of the productions with the current goal. 

2. T h e  production p with the highest utility is chosen. 

3. The actual instantiation of p is determined via the activations of the corresponding chunks. If 
no instantiation is possible (because of v), p is removed from the conflict set and the  algorithm 
resumes in step 2, otherwise the instantiation of p is appiied. 

21n this context,  time does not mean the CPU time needed to calculate the match, but  the time a human would 
need for the match according to the cognitive model. 
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A c T - R  provides a learning mechanism, called knowledge compilation, which allows for the 
learning of new productions. We are currently exploring t h i s  mechanism for its utility for the 
explanation of proofs. 
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3 T h e  Arch i t ec ture  o f  P. r e x  

P.rex is  planned as a generic explanation system that  can be connected to different theorem 
provers. It adopts the following features of the interactive proof development environment f~MC.GA 
[Benzmiiller et at., 1997]: 

• Mathematical  theories are organized in a hierarchical knowledge base. Each theory in it may 
contain axioms, definitions, theorems along with proofs, as well as  proof methods, and Control 
rules how to apply proof methods.  

• A proof of a theorem is represented in a hierarchical da ta  structure called proof plan data 
structure :(PDS). The PDS makes explicit the various levels of abstraction by providing sev- 
eral justifications for a single proof node, where each justification belongs to a different lexiel 
of abstraction. The least abstract level corresponds to a proof in Gentzen's natural de- 
duction (ND) calculus [Gentzen, 1935]. Candidates for higher levels are:proof plans, where 
justifications are mainly given by more abstract proof methods that  belong to the theorem's 
mathematical theory or to an ancestor theory thereof. 

An example for a PDS is given below on the left. Each line consists of four elements (label, an- 
tecedent, succedent, and justification) and describes a node in the PDS. The label is used as a refer- 
ence for the node. The antecedent is a list of labels denoting the hypotheses under which the formula 
in the node, the succedent, holds, a This relation between antecedent and succedent is denoted by F-. 

Label Antecedent Succedent Justification 
Lo ~ - a E U V a E V  Jo 
H1 H1 I- a E U HYP 
L1 H1 I- a E U U V DeflA(H1) 
H~ H2 h a E V HYP 
L2 H2 I-- a E U U V DetU(H,2_) 
L3 I- a E U U V U-Lemma(Lo) 

- CASE(L0, Lx, L2) 

• We call A I- ~ the fact in the node. The proof 
of the fact in the node is given by its justifi- 
cation. A justification consists of a rule and 
a list of labels, the premises of the node. Ji 
denotes an unspecified justification. HYP and 
DefU stand for a hypothesis and the definition 
of U, respectively. L3 has two justifications on 
different levels of abstraction: the least abst- 

ract justification with the ND-rule CASE (i.e. the rule for case analyses) and the more abstract 
justification with the rule U-Lemma that  stands for an already proven lemma about a property of 
U. By agreement, if a node has  more than one justification, these are sorted f rom most abstract  to 
least abstract. 

The proof is as follows: From a E U V a E V we can conclude that  a E U U V by the U-Lemma. 
If we do not know the U-Lemma, we can come to the conclusion by considering the case analysis 
with the cases that  a E U or a E V, respectively. I n  each case, we can derive that  a E U O V by 
the definition of U. 

A formal language for specifying •PDSs is the interface by which theorem provers can be con- 
nected to P. rez. An overview of the architecture of P. rex is provided i n Figure 1. 

The crucial component  of the system is the dialog planner. It is based on AcT-R,  i.e. its 
operators are defined in terms of productions and the discourse history is represented in the declar- 
ative memory by storing conveyed information as chunks (details are given in Section 4). Moreover, 

3As nota t ion  we use A and F for emtecedents  and ~ and q, for succedents .  
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Figure 1: The Architecture of P. rex 

presumed declarative and procedural knowledge of the •user is encoded in the declarative memory 
and the:production rule base, respectively.' 

• In order to  explain a particular proof, the dialog planner first assumes the user's supposed H 
cognitive state by Updating its declarative and procedural memories. This is done by looking up g 

the user's presumed knowledge in the user model, which was recorded during a previous session. 

! An individual model for each user persists between the sessions. ! 
The user  model contains assumptions on the knowledge of the user that are relevant to proof 

explanation. In particular, it makes assumptions on which mathematical theories the user knows, 
whiChhe hasdefiniti°nS'alreo;dy learned:Pr°°fs' proof methods and mathematical facts he knows, and which productions !' wg 

• After updating the declarative and procedural memories, the dialog planner sets the global 
goal tO show the conclusion of the PDS's  theorem. ACT-R tries to fulfill this goal by successively ' • 
applying productions that  decompose or fulfill goals. Thereby, the dialog planner not only produces 
a multimodal dialog plan (see Section 4.1), but also traces the user's • cognitive states in the course 
of the explanation. • This allows the system both to always choose an explanation adapted to the ~ • 
user (see Section 4.2), and to  react to theuser ' s  interactions in a flexible way: The dialogplanner | 
analyzes the interaction in terms of applications of productions. Then it plans an appropriate 
response. I 

The dialog plan produced by the dialog planner is passedon to the multimodal presentation 
componen~ which supports the modalities graphics, text, and speech. It consists of the following 
subcomponents: D 

A multimodal microplanner to be designed plans the scope of the sentences and their internal 
structure, as well as their graphical arrangement.  It also decides, whether a graphical or a textual 
realization is preferred. Textual parts are passed on to a linguistic realizer that  generates the nab 
surface sentences: Then a planned layout component displays the text and graphics, while a speech | 
system outputs the sentences in speech. Hence, the system should provide the user with text and 
graphics, as well as a spoken output.  T h e  metaphor we have in mind is the teacher who explains I 
what he is writing on the board. • 

An analyzer :to be designed receives the •user's interactions and passes them on to the dialog i 

planner. 

.! 
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4 The Dialog Planner 

In the community of NLG, there is a broad consensus that  the generation of natural language should 
be done in three major steps [Reiter, 1994]. First a macroplanner (text planner) determines what 
to say, i.e. content and order of the information to be conveyed. Then a microplanner (sentenCe 
planner) determines how to say it, i.e. it plans the scope and the internal structure of the sentences. 
Finally, a realizer (surface generator) produces the surface text. In this classification, the dialog 
planner is a macroplanner for managing dialogs. 

As Wahlster et al. argued, such a three-staged architecture is also appropriate for muitimodal 
generation [Wahlster et al., 1993]. By defining the operators and the dialog plan such tha t  they 
are independent of the communication mode, our dialog planner plans text, graphics and speech. 

Since the dialog planner in P. rex is based on AcT-R, the plan operators are defined as produc- 
tions. A goal is the task to show the fact in a node n of the PDS. A production fulfills the goal 
directly by communicating the derivation of the fact in 7z from already known •facts or splits the 
goal into new subgo~ls such as to show the facts in the premises of n. The derivation of a fact is 
conveyed by so-called mathematics communicating acts (MCAs) and accompanied by storing the 
fact as a chunk in the declarative memory. Hence the discourse history is represented in the declar- 
ative memory. AcT-R's conflict resolution mechanism and the activation of the chunks ensure an 
explanation tailored to the user. The produced dialog plan is represented in terms of MCAs. 

4.1 M a t h e m a t i c s  C o m m u n i c a t i n g  A c t s  

Mathematics communicating acts (MCAs) are the primitive actions planned by the dialog planner. 
They are derived from PROVERB's proof communicative acts [Huang, 1994]. MCAs are viewed as 
• speech acts that  are independent of the modality to be chosen. • Each M C A a t  least can be realized 
as a portion of text. Moreover some MCAs manifest themselves in the graphical arrangement of 
the text (see below for examples). 

In P. rez we distinguish between two types of MCAs: 

• MCAs of the first type, called derivational MCAs, convey a step of the derivation. An example 
for a derivati0n~l MCA with a possible verbalization is: 

.(Derive :Reasons (a 6 U, U C_ V) :Conclusion a 6 V :Method Deft) 

"Since a is an element of U and U is a subset of V, a is all element of V by the 
definition of subset." 

A graphical realization is shown in Figure 2(a). 

• • MCAs of the second type, called structural MCAs, communicate information about the struc- 
ture of a proof. For example case analyses are introduced by: 

(Case-Analysis :Goal ¢ :Cases (%01, %02)) " 

"To prove ¢,  let us consider the two cases by assuming T1 and %02." 

Unless the two cases only enclose a few steps each, the graphical realization shown in Fig- 
ure 2(b) should be  preferred for the visual presentation. 
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(a) a e U  U c V  (b) \/ / \  
! ! 

a E V (by Def_C) , , 
! I 

V 
• Figure  2: Graphical  realizations o f  MCAs.  T h e  dashed lines indicate not  yet  explained par ts  of  the  

proof. 

4 . 2  P l a n  O p e r a t o r s  - 

O p e r a t i o n a l  knowledge concern ing  the  presenta t ion is encoded as product ions  in A c T - R  t h a t  are 
independent  from the modal i ty  to  be chosen. In this paper, we concentra te  on product ion  s which 
allow for the  explanat io  n of a proof. We omi t  product ions  to react  to the user 's  in teract ions .  

Each product ion  either fulfills the  cur ren t  goal d i r ec t lyo r  splits it into subgoals .  Let us assume 
t h a t  the  following nodes are in the  cur ren t  PDS: 

Label Antecedent Succedent Just i f icat ion 
I)1 A1  • ~1 J1 

P, An b ~,~ J~ 
C F • ¢ R ( P i , . . . ,  Pn) 

An example  for a product ion is: 

(P1) I F  The current  goal is to  show F • ¢ 
and R is the most abstract known rule justifying the current goal 
and A 1 I- ~01,... , A n • ~n are known 

THEN produce MCA (Derive :Keasons ( ~ i , - - , ~ n )  :Conclusion~b :Method R) 
and pop the current goal (thereby storing F I- ¢ in the declarative memory) 

• By producing the MCA the current  goal is fulfilled and can b e  popped  from the goal stack. An 
e x a m p l e  for a product ion  decomposing  the  current  goal into several subgoals is: 

(P2) IF " The current goal is to show F I- ¢ 
and R is the most abstract known rule justifying • the current goal 
and (I) = {~oiiA i • ~i  is unknown for 1 < i < n} ~ 0 

THEN for each 9i E (I) push the goal to show Ai t-- 9i 

Note t h a t  t h e  Conditions of (P1) and (P2) only differ in the knowledge of the  premises 9i  for rule 
R. (P2) in t roduces  the  subgoals to  prove the  unknown premises in (I). As soon as those are derived, 
(P1) can apply and derive the Conclusion. 

Now assume  tha t  the  following nodes  are in t h e  current  PDS: 

Label . Antecedent 
Po F t- 

. H1 H1 t- 
P1 F, Hi" I- 
H2 H2 b 
P2 F, H2 • 
C F • 

Suceedent Just i f icat ion 
~1 V ~o~ Jo 
~1 H Y P  
f dl 
~2 HYP 
¢ J2 
¢ CASE(P0, PI, P2) 

9 4  
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A specific production managing• such a case analysis is the following: 

(P3) IF The current goal is to show F I- ¢ 
and CASE is the most abstract known rule justifying the current goal 
and F I- ~o 1 V ~0 2 is known 
and r, H1 ~- ¢ and F, H2 ~- ¢ are unknown 

THEN push the goals to show F, H1 ~- ¢ and F,//2 h 
and produce MCA (Case-Analysis :Goal ¢ :Cases (~1,~2)) 

This production introduces new subgoalS and ,motivates them by producing the MCA. 
Since more specific rules treat common communicative standards used in mathematical presen- 

tations, they are assigned a higher strength than more general rules. Therefore, the strength of 
(P3) is higher than the strength of (P2), since (P3) has fewer variables. 

Moreover, it is supposed that  each user knows all natural deduction (ND) rules. This is rea- 
sonable, since ND-rules are the least abstract possible logical rules in proofs. Hence, for each 
production p that is defined such that its goal is justified by an ND-rule in the PDS, the probabil- 
ity Pp that the application of p leads to the goal to  explain that  proof step equals one. •Therefore, 
since CASE is such an ND-rule, P(P3) = 1. 

hrorder  to elucidate how a proof is explained by Rrex let us consider the following situation: 

• T l i e  following nodes are in tile current PDS: 

Label Antecedent Succedent Justi ficatio~ 
Lo b a 6 U V a 6 V  Jo 
H1 H1 h a 6 U HYP 
L1 Hi h a 6 U O V DefU(H1) 
H2 H2 ~- a 6 V HYP 
L_'2 H:~ ' I- a 6 U O V DefU(H.-,) 
L3 t- a 6 U U V O-Lemma(Lo) 

CASE(Lo, L1, L2) 

• the current goal is to show the fact in L3, 

• the rules HYP, CASE, Defo, and U-Lemma are known, 

• the  fact in Lo is known, the facts in H, ,  La, H2, and L2 are unknown. 

The only applicable production is (P1). Since o-Lemma is more abstract than CASE and both 
are known, it has a higher activation and thus is chosen to instantiate (P1). Hence, the dialog 
planner produces the MCA 

(Derive :Reasons (a 6 U V a 6 V) :Conclusion a 6 UU V :Method U-Lemma) 

that  could be verbalized as "Since a 6 U or a 6 V, a 6 U u V by the O-Lemma." 
Suppose now that  the user interrupts the explanation throwing in that  he did not understand 

this step. Then the system invokes productions tha t  account for the following: The assumption 
that O-Lemma is known is revised by decreasing its base-level activation (cf. equation 1). Similarly, 
the just stored chunk for h a 6 U U V is erased from the declarative memory. Then the goal to 
show ~- a 6 U u V is again pushed on the goal stack. 

Now, since CASE is the most abstract known rule justifying the current goal, both decomposing 
productions (P2) and (P3) are applicable. Recall that  the conflict resolution mechanism chooses 
the production with the highest utility E (cf. equation 9). Since P(P3) = 1 and Pp < 1 for all 
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productions p, P(P3) ~ P(P2). Since the application of (P2) or (P3)  would s e r v e t h e  same goal, 
G(p3) = G(p2). Since (P3) is s t ronger  than (P3) because it is more specific, and since both 
production match the same chunks, C(p3} < C(p2). Thus 

E(p3) : P(pa)G(p3) - C(p3) > P(p2)G(p2) - -  C(p2) ---- E(p2) 

Therefore, the dialog planner chooses (P3) for the explanation, thus producing ghe MCA 

( C a s e - A n a l y s i s  :Goal a E U U V  : C a s e s  (a E U,a E V ) )  

tha t  could  be realized as "To prove a E U O V let us consider the two cases by assuming a E U and 
a E V," and then explains both cases. This dialog could take place as follows: 

P .  r e z :  Since a E U or a EV,  a E UO V by the O-Lemma. 

User:.  Why does this follow? • 

R fez: To prove a E U U V let us consider the two cases by assuming a E U and a E I/. If 
a E U, then aE  U O V by the definition of 0. Similarly, if a E V, then a E U tO V. 

This example shows how a production and an instantiation are chosen by P. rex. While th, 
example elucidates the case tha t  a more detailed explanation is desired, the system can similarly 
choose a more abstract  explanat ion if needed. Hence, modeling the addressee's knowledge in AGT- 
1~ allows P. rex to explain the proof adapted to the user's knowledge by switching between the levels 
in the PDS as needed. 

5 Conc lus ion  and Future  Work  

in this paper, we proposed to combine the t r ad i t iona l  design of a dialog planner with a cognitive 
archi tecture in o rder  to strive for an optimal user adaptation.  In the interactive proof explaining 
system P. rex, the dialog planner is based on the theory of cognition AcT-R.  

S tar t ing  from certain assumptions about  the addressee's knowledge (e.g. which facts does he 
know, which definitions, lemmasl etc.) built up in the user model during previous sessions, the 
dialog planner decides on which level of abstraction• t o  begin the explanation. Since A c T - R  traces 
the user's Cognitive states during the explanation,  the dialog planner can choose an appropriate 
degree of abstraction for each proof step to be explained. The rationale behind this architecture 
should prove to be useful for explanation systems in general. 

Moreover since this architecture can predict what  is salient for the user and what  he can infer, it 
could be used as a basis to decide whether  or not to include optional information 
[Walker and Rambow, 1994]. 

P. rex is still in the design stage. As soon as the dialog planner is implemented the requirements 
will be met to compare P. rex's dialog plans with P R O V E R B ' s  text  plans in order to evaluate the 
architecture. Fur thermore ' the presentation component  and the  analyzer are to be designed in 
more •detail. 

Currently, we are examining the knowledge compilation mechanism of A c T - R  that  Could enable 
the  system to model the user's acquisition of proving skills. This could pave the way towards a 
tu tor ia l  system tha t  not only explains )roofs, but  also teaches concepts and proving methods  and 
strategies. 
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