_.M_ac{ropllannin'g with a Cognitive Architecture
for the Adaptive Explanation of Proofs

A Armin Fiedler
FB Informatik, Universitat des Saarlandes

Postfach 15 11 50, D-66041 Saarbriicken, Germany
afiedler@cs.uni-sb.de ‘

- Abstract A
In order to generate high quality explanations in technical or mathematical domains, the
presentation must be adapted to the knowledge of the intended audience. Current proof pre-

sentation systems only communicate proofs on a fixed degree of abstraction mdependently of
the addressee’s knowledge. '

In this paper that describes ongoing research, we propose an architecture for an interactive
proof explanation system, called Prer. Based on the theory of human cognition AcT-R, its
‘dialog planner exploits a cognitive model, in which both the user’s knowledge and his cognitive
processes are modeled. By this means, his cognitive states are traced during the explanation.
The explicit representation of the user’s cognitive states in AcT-R allows the dialog planner to
choose a degree of abstraction tailored to the user for each proof stép to be explained.

1 Introduction

A person who explains to another person a technical device or a logical line of reasoning adapts
his explanations to the addressee’s knowledge. A computer program designed to take over the
explalmng part should also adopt this principle.
: Assorted systems take into account the intended audlence s knowledge in the generation of expla-
~ nations (see e.g. [Cawsey, 1990, Paris, 1991, Wahlster et al., 1993]). Most of them adapt to the ad-
- dressee by choosing between different discourse strategies. Smce proofs are inherently rich in infer-
ences, their explanation must also consider which inferences the audience can make [Horacek, 1997,
Zul\erma,n and McConachy, 1993]. However, because of the constraints of the human memory,
" inferences are not chainable without costs. The explicit representation of the addressee’s cognitive
states proves to be useful in choosing the information to convey [Walker and Rambow, 1994].
While a mathematician communicates a proof on a level of abstraction that is tailored to the au-

- dience, state-of-the-art proof presentation systems such as PROVERB [Huang and Fiedler, 1997]
verbalize proofs in a nearly textbook-like style on a fixed degree of abstraction given by the initial
. Tepresentation of the proof. Nevertheless, PROVERB is not restricted to the presentation on a
. certain level of abstraction. Adaptation to the reader’s knowledge may still take place by provxdmg
the appropriate level of abstraction in the initial representatlon of the proof.

~ Drawing on results from cognitive science; we are currently developing an interactive proof
ezplanation system, called Prez (for proof explainer). In this paper, we propose an architecture
for its dialog planner based on the theory of human cognition AcT-R [Anderson, 1993]. The

latter explicitly represents the addressee’s knowledge in a declarative memory and his cognitive

88

skills in procedural production rules. This cognitive model enables the dialog planner to trace the
addressee’s cognitive states during the explanation. Hence, it can choose for each proof step as an
appropriate explanation its most abstract justification known by the addressee.

The architecture of Prez, which is sketched in Section 3, is designed to allow for multimodal -
generation. The dialog planner is described in detail in Section 4. Since it is necessary to know -
some of the concepts in ACT-R to understand the macroplanning process, the cognitive architecture
is first introduced in the next section. '

2 AcTt-R: A Cognitive Architecture

In cognitive science, there is a consensus that production systems are an adequate framework to
~ describe the functionality of the cognitive apparatus. Production systems that model human cogni- -
~ tion are called cognitive architectures. In this section we describe the cognitive architecture AcT-R!
[Anderson, 1993], which is well suited for user adaptive explanation generation because of its con-
flict resolution mechanism. Further examples for cognmve archltectures are SOAR [Ne\\ ell, 1990]
and EPIC [Meyer and Kieras, 1997).

AcT-R has two types of l\nowledge' bases, or memories; to store permanent: knowledge in:
declarative and procedural representations of knowledge are explicitly separated into the declarative -
memory and the procedural production rule base, but are intimately connected. '

Procedural knowledge is represented in production rules (or simply: productions) whose con-
ditions and actions are defined in terms of declarative structures. A production can only apply,
if its conditions are satisfied by the knowledge currently available in the declarative memory. An
item in the declarative memory is annotated with an activation that influences its retrieval. The
application of a production modifies the declarative memory, or it results in an observable event.
The set of applicable productions is called the conflict set. A conflict resolution heuristic derived
from a rational analysis of human cognition determines which production in the conﬂlct set will
eventually be applied.

In order to allow for a goal-oriented behavior of the system, ACT-R ma.nages goals in a goal
stack. The current goal is that on the top of the stack. Only productlons that match the current
goal are applicable. :

- 2.1 Declarative Knowledge

Declarative knowledge is represented in terms of chunks in the declar- factFsubsetG
ative memory. On the right is an example for a chunk encoding the isa subset-fact
fact that F C G, where subset-fact is a concept and F and G are setl F
contextual chunks associated to factFsubsetG. Chunks are anno- S€%2 G
tated with continuous activations that influence their retrieval. The activation A;of a chunk Ciis.
defined as

Ai = Bi+»_W;Sji A ‘ (1)

J .

where B; is the base-level activation, W; is the weighting of a contextual chunk Cj, and Sj; is
the strength of the association of C; with C;. In B;, which is defined such that it decreases
logarithmically when C; is not used, ACT-R models the forgetting of declarative knowledge. Note

lActually, I am discussing AcT-R 4.0, which has some substantial changes to older versions. The acronym ACT
denotes adaptive control of thought, R refers to the rational analysis that influenced the theory.

89

that the definition of the activation estabhshes a spreading activation to adjacent chunks, but not
further; multi-link-spread is not supported.
The constraint on the capacity of the human workmg memory is approached by deﬂmng a
~ retrieval threshold 7, where only those chunks C; can be matched whose activation A; is higher
than 7. Chunks with an activation less than T are considered as forgotten.
“ "New declarative knowledge is acquired when a new chunk is stored in the declarative memory,
as is always the case when a goal is popped from the goal stack. The application of a production
may also cause a new chunk to be stored if required by the production’s action part.

2.2 . Procedural KnoWledge

The operational knowledge of AcT-R is formalized in terms of productions. Productions generally

~ consist of a condition part and an action part, and can be applied, if the condition part is fulfilled.
In AcT-R both parts are defined in terms of chunk pattefns The condition is fulfilled if its first

* chunk pattern matches the current goal and the rémaining chunk patterns match chunks in the
declarative memory. An example for a production is ‘

AF the current goal is to show that z € S, and it is known that z € 5'1 and 5; € S5
: THEN conclude that z € S» by the deflmtlon of C

‘Similar to the base-level activation of chunks the strength of a production is defined such
that it decreases logarithmically when the production is not used. The time spent to match a
- production with a chunk depends on the activation of the chunk. 2 1t is defined such that it is

. negative exponential to the sum of the activation of the chunk and the strength of the production.

Hence, the higher the activation of the chunk and the strength of the production, the faster the
production matches the chunk. Since the activation must be greater than the retrieval threshold

T, T constrains the time maximally available to match a production with a chunk.

The conflict resolution heuristic starts from assumptions on the probability P that the applica-
tion of the current production leads to the goal and on the costs C of achieving that goal by this
means. Moreover G is the time maximally available to fulfill the goal. The net utility E of the.
'apphcatxon of a productlon is deﬁned as

F=PG-C. : @

We do not go into detail on how P, G and C’ are ca,lculated For the purposes of this paper, it is
sufficient to note that G only depends on the goal, but not on the production, and that the costs C
depend among other things on the time to match a production. The faster the production matches,
i.e. the stronger it is and the greater the activations of the matching chunks are, the lower are the
costs. :

To sum up, m Act-R the choice of a production to apply is as follows:
1. The conflict set is determined by testing the match of the productions with the current goal.

2. The productlon P with the highest utility is chosen.

3. The actual instantiation of pis determined via the activations of the corresponding chunks. If
_ no instantiation is possible (because of 7), p is removed from the conflict set and the algorithm
resumes in step 2, otherwise the instantiation of p is applied.

2ln this context, time does not mean the CPU tlme needed to calculate the match, but the time a human would
need for the match according to the cognitive model

AcT-R provides a learning mechanism, called knowledge compilation, which allows for the
learning of new productions. We are currently exploring this mechanism for its utility for the
explanation of proofs. ’ '

3 The Architecture of P.rex

Prer is planned as a generic explanation system that can be connected to different theorem
provers. It adopts the following features of the interactive proof development environment QMEGA
[Benzmiiller et al., 1997]:

.o Mathematical theories are organized in a hierarchical knowledge base. Each theory in it may
contain axioms, definitions, theorems along with proofs, as well as proof méthods, and control
rules how to apply proof methods

e A proof of a theorem is represented in a hierarchical data structure called proof plan data
structure (PDS). The PDS makes explicit the various levels of abstraction by providing sev-
eral justifications for a single proof node, where each justification belongs to a different level
of abstraction. The least abstract level corresponds to a proof in Gentzen’s natural de-
duction (ND) calculus [Gentzen, 1935]. Candidates for higher levels are.proof plans, where
justifications are mainly given by more abstract proof methods that belong to the theoxem s
mathematical theory or to an ancestor theory thereof. '

An example for a PDS is given below on the left. Each line consists of four elements {label, an-
tecedent, succedent, and justification) and describes a node in the PDS. The label is used as a refer-
ence for the node. The antecedent is a list of labels denoting the hypotheses under which the formula
in the node, the succedent, holds.® This relation between antecedent and succedent is denoted by .

Label Antecedent Succedent Justification We call A b ¢ the fact in the node. The proof
Ly _ FaeUvaeV Jo of the fact in the node is given by its justifi-
H, H, FaeU HYP cation. A justification consists of a rule and
L H FaelUvuV DefU(H,) a list of labels, the premises of the node. .J;
H, Hs FaeV HYP

. denotes an unspecified justification. HYP and
L He FaelUuV DefU(45) DefU stand for a hypothesis and the definition
L : FaeUUV U-Lemma(Lg) . ‘ e .- .
C ASE(Lo, L1, Ls) of U, respectively. L3 has two justifications on
different levels of abstraction: the least abst-
ract justification with the ND-rule CASE (i.e. the rule for case analyses) and the more abstract
justification with the rule U-Lemma that stands for an already proven lemma about a property of
U. By agreement, if a node has more than one justification, these are sorted from- most abstract to
least abstract.
The proof is as follows: Froma € UVa € V we can conclude that a € UUV by the U-Lemma.
If we do not know the U-Lemma, we can come to the conclusion by considering the case analysis
with the cases that @ € U or a € V, respectively. In each case, we can derive that a € UU V by
the definition of U.
A formal language for specifying: PDSs is the interface by Wthh theorem provers can be con-
nected to Prez. An overview of the architecture of Prez is provided in Figure 1.
The crucial component of the system is the dialog planner. It is based on ACT-R, i.e. its
operators are defined in terms of productions and the discourse history is represented in the declar-
ative memory by storing conveyed information as chunks (details are given in Section 4). Moreover,

3 As notation we use A and F for antecedents and ¢ and ¢ for succedents.

91

Dialog Planner _ >
Rules iild Model
Presentation : :
[Component [Analy zerj

Figure 1: The Ar_chitecture of Prex |

o/

a .presumed declarative and procedural knowledge of the user is encoded in the declarative memory

_and the production rule base, respectively. "

In order to explain a particular proof, the dlalog planner first assumes the user’s supposed
cognitive state by updating its declarative and procedural memories. This is done by looking up’
- the user’s presumed knowledge in the user model, which was recorded during a previous session.
An individual model for each user persists between the sessions. :

The user model contains assumptions on the knowledge of the user that are relevant to proof
- explanation. In particular, it makes assumptions on which mathematical theories the user knows,
which definitions, proofs, proof methods and mathematxcal facts he knows,-and which productxons

~ he has already learned.

-After updating the declarative and procedural memories, the dialog planner sets the global
goal to show the conclusion of the PDS’s theorem. AcCT-R tries to fulfill this goal by successively
applying productions that decompose or fulfill goals. Thereby, the dlalog planner not only produces
~ a multimodal dialog plan (see Section 4.1), but also traces the user’s cognitive states in the course
* of the explanation. This allows the system both to always choose an explanation adapted to the
" user (see Section 4.2}, and to react to the user’s interactions in a flexible way: The dialog planner
analyzes the interaction in terms of apphcatlons of productlons Then it plans an appropriate

response. - o

The dialog plan produced by the dialog planner i is passed on to the multimodal presentation
component which supports the modalities graphics, text, and speech. It consists of the following
subcomponents

A multimodal mzcroplanner to be de31gned plans the scope of the sentences and their internal
structure, as well as their graphical arrangement. It also decides, whether a graphical or a textual
‘realization is preferred. Textual parts are passed on to a linguistic realizer that generates the
surface sentences. Then a planned layout component displays the text and graphics, while a speech

system outputs the sentences in speech. Hence, the system should provide the user with text and
- graphics, as well as a spoken output. The metaphor we have in mind is the teacher who explains
what he'is writing on the board.

An analyzer to be designed receives the user’s mteractlons and passes them on to the dialog
'planner » : : :

92

4 The Dialog Planner

"In the community of NLG, there is a broad consensus that the generation of natural language should
be done in three major steps [Reiter, 1994]. First a macroplanner (tezt planner) determines what
to say, i.e. content and order of the information to be conveyed. Then a microplanner (sentence
planner) determines how to say it, i.e. it plans the scope and the internal structure of the sentences.
Finally, a realizer (surface generator) produces the surface text. In this classification, the dialog
planner is a macroplanner for managing dialogs. '

As Wahlster et al. argued, such a three-staged architecture is also approprlate for multimodal -
generation [Wahlster et al., 1993]. By defining the operators and the dialog plan such that they -
are independent of the communication mode, our dialog planner plans text, graphics and speech.

Since the dialog planner in Prez is based on AcT-R, the plan operators are defined as produc-
tions. A goal is the task to show the fact in a node n of the PDS. A production fulfills the goal
directly by communicating the derivation of the fact in n from already known facts or splits the
goal into new subgoals such as to show the facts in the premises of n. The derivation of a fact is
conveyed by so-called mathematics communicating acts (MCAs) and accompanied by storing the
fact as a chunk in the declarative memory. Hence the discourse history is represented in the declar-
ative memory. ACT-R’s conflict resolution mechanism and the activation of the chunks ensure an
explanation tailored to the user. The produced dialog plan is represented in terms of MCAs.

4.1 Mathematics Communicating Acts

. Mathematics communicating acts (MCAs) are the primitive actions planned by the dialog planner.

They are derived from PROVERB’s proof communicative-acts [Huang, 1994]. MCAs are viewed as
'speech acts that are independent of the modality to be chosen. Each MCA at least can be realized
as a portion of text. Moreover some MCAs manifest themselves in the graphical arrangement of
the text (see below for examples).

In Prex we distinguish between two types of MCAs:

e MCAs of the first type, called derivational MCAs, convey a step of the derivation. An example
for a derivational MCA with a possible verbalization is: :

(Derlve :Reasons (a € U,U C V) :Conclusion a € V :Method DefC)

“Since a is an element of U and U is a subset of V,a 1s an element of V by the
definition of subset.” :

A graphical realization is shown in Figure 2(a)

. @ MCAs of the second type, called structural MCAs, communicate information about the struc-
ture of a proof. For example case analyses are introduced by:

(Case-Analysis :Goal 7 :Cases ((,01, ©2))
“To prove 1, let us consider the two cases by assummg ©1 and w2.”

Unless the two cases only enclose a few steps each, the graphical reahzatlon shown in Fig-
ure 2(b) should be preferred for the visual presentation.

93

(a) @€U UCV (b) @1 Ve
acV (by befg)
’ t '
) Flgure 2: Graphlcal reahzatlons of MCAs. The dashed lines indicate not yet explamed parts of the
proof. : :

4.2 Plan Operators

"Operational 'l\nowledge concerning the presentation is encoded as productlons in AcT- R that are
. independent from the modality to be chosen. In this paper, we concentrate on productlons whlch :

- allow for the explanation of a proof. We omit productions to react to the user’s interactions.

Each production either fulfills the current goal directly.or sphts it into subgoals. Let us assume
that the following nodes are in the current PDS: -

Label Antecedent Succedent Justification

P, Ay F 1 J1
P, . An F $n In
- C r Y R(Pi,...,P)

An example for a production is:

(P1) IF" The current goal is to show I' -
' : and R is the most abstract known rule justifying the current goal
and A1 F @, ..., Ap b, are known

THEN produce MCA (Derlve :Reasons (gol, .:.,n) :Conclusion ¥ :Method R)
' and pop the current goal (thereby storing T' & ¢ in the declarative memory)

.By producmg the MCA the current goal is fulfilled and can be popped from the goal stack. An
" “example for a productlon decomposing the current goal into several subgoals is: :
(P?) IF. The current goal is to show T I ¢ _
and R is the most abstract known rule justifying the current goal
and @ = {p;]A; F @; is unknown for 1 <i<n} #0
THEN for each ¢; € ® push the goal to show A; b ¢;

Note that the conditions of (P1) and (P2) only differ in the knowledge of the premises ¢; for rule
- R. (P2) introduces the subgoals to prove the unknown premises in ®. As soon as those are derived,
(P1) can apply and derive the conclusion.

Now assume that the following nodes are in the current PDS

Label Antecedent Succedent Justzfzcatzon :

Py . r o1 Ve Jo
CH, H, (ol "HYP
1 [, Hy Y J1
; Hg _H2 + Yo HYP
Py IHy by Ja

c T -y CASE(PO,Pl,Pg)

94

A specific production managing such a case analysis is the following;:

(P3) IF The current goal is to show I' 3
and CASE is the most abstract known rule justifying the current goa(
and T'F ¢ V @5 is known ,
andT,HyF Y and T, Hy - 9 are "unknown

THEN push the goals to show I', Hy F Y and ', Ho ¢
and produce MCA (Case-Analysis :Goal ¢ :Cases (1,2))

This production introduces new subgoals and motivates them by producing the MCA.

Since more specific rules treat common communicative standards used in mathematical presen-
tations, they are assigned a higher strength than more general rules. Therefore, the strength of
(P3) is higher than the strength of (P2), since (P3) has fewer variables.

Moreover, it is supposed that each user knows all natural deduction (ND) rules. This is rea-
sonable, since ND-rules are the least abstract possible logical rules in proofs. Hence, for each
production p that is defined such that its goal is justified by an ND-rule in the PDS, the probabil-
ity P, that the application of p leads to the goal to explain that proof step equals one. Therefore,
since CASE is such an ND-rule, P(p3) = 1.

" In-order to elucidate how a proof is explained by Prez let us consider the followmg situation:

e The following nodes are in the current PDS:

Label Antecedent Succedent Justification
L taeUVaeV Jo

H, H, FaeU HYP

Ly H, ‘FaeUuV DefU(H:)

H» H, FaeV - HYP

Lo ’Hz . FaeUuUuvV ’ Der(Hg)

L T kFaelUUV ‘U-Lemma(Lq)

_ CASE(Ly, Ly, L)
o the current goal is to show the fact in L3,
o the rules HYP, CASE, Defu, and U-Lemma are known,

e the fact in Lo is known, the facts in H'l, Ly, Hy, and L, are unknown.

The only apphcable productxon is (P1). Since U-Lemma is more abstract than CASE and both
are known, it has a higher activation and thus is chosen to instantiate (P1). Hence, the dialog
planner produces the MCA

(Derive ‘Reasons (e € UVa€V) :Conclusion a € UUV :Method U-Lemma)

that could be verbalized as “Sincea € Uora € V,a € UUV by the U-Lemma.”

Suppose now that the user interrupts the explanation throwing in that he did not understand
this step. Then the system invokes productions that account for the following: The assumption
that U-Lemma is known is revised by decreasing its base-level activation (cf. equation 1). Similarly,
the just stored chunk for - ¢ € UUV is erased from the declarative memory Then the goal to
show @ € UU V is again pushed on the goal stack.

Now, since CASE is the most abstract known rule justifying the current goal, both decomposing
productions (P2) and (P3) are applicable. Recall that the conflict resolution mechanism chooses
the production with the highest utility E (cf. equation 2). Since Pp3y = 1 and P, < 1 for all

95

productions p, Pip3) > P(py). Since the application of (P2) or (P3) would serve the same goal,
G(p3) = G(py). Since (P3) is stronger than (P3) because it is more specific, and since both
production match the same chunks, C(p3) < C(pz) Thus :

Eipy) = PrgGirs) = Cips) > PienGeen = Cry = Eiea
Therefore, the dialog planner chooses (P3) for the explanation, thus producing the MCA
(Case-Analysis :Goal a € UU V :Cases (a€U,a € V)

that could be realized as “To prove a € UUYV let us consider the two cases by assuming @ € U and
a € V,” and then explams both cases. Thls dialog could take place as follows:

Pre:c Sincea€ U or a € V,ae€ vuv by the U-Lemma
. User: Why does this follow?

Prez: To prove a € U UV let us consider the two cases by assuminga € U and a € V. If
a€ U, then a € UUV by the definition of U. Similarly,ifa€ V, thena e UUV.

This example shows how a production and an instantiation are chosen by Erez. While the
example elucidates the case that a more detailed explanation is desired, the system can similarly
choose a more abstract explanation if needed. Hence, modeling the addressee’s knowledge in ACT-
R allows Prez to explain the proof adapted to the user’s knowledge by switching between the levels »

in the PDS as needed.

'5 Conclusion and Future Work

In this paper, we proposed to combine the traditional design of a dialog planner with a cognitive .
architecture in order to strive for an optimal user adaptation. In the interactive proof explammg
system Prez, the dialog planner is based on the theory of cognition AcT-R.

Starting from certain assumptions about the addressee’s knowledge (e.g. which facts does he
know, which definitions, lemmas, etc.) built up in the user model during previous sessions, the
dialog planner decides on which level of abstraction to begin the explanation. Since ACT-R traces
. the user’s cognitive states during the explanation, the dialog planner can choose an appropriate
degree of abstraction for each proof step to be eexplained. The rationale behind this architecture
should prove to be useful for explanation systems in general.

Moreover since this architecture can predict what is salient for the user and what he can infer, it
could be used as a basis to decide whether or not to mclude optlonal information
[Walker and Rambow, 1994].

Prez is still in the desxgn stage As soon as the dialog planner is implemented the requirements
will be met to compare Prez’s dialog plans with PROVERB’s text plans in order to evaluate the .
architecture. Furthermore the presentatron component and the ana]yzer are to be designed in
more detail. :

Currently, we are exammmg the knowledge compilation mechanlsm of ACT R that could enable
~ the system to model the user’s acquisition of proving skills. This could pave the way towards a

‘tutorial system that not only explalns proofs, but also teaches concepts and provmg methods and -
strategxes :

96

Acknowledgements

Many thanks go to Jorg Siekmann, Michael Kohlhase, Dieter Wallach, Helmut Horacek, Frank
Pfenning, and Ken Koedinger for their help in the research and/or the writing of thlS paper. I also
want to thank the anonymous reviewers for their useful comments.

References

[Anderson, 1993] J. R. Anderson. Rules of the Mind. Lawrence Erlbaum Associates, Hillsdale, NJ, 1993.

[Benzmiiller et al., 1997] C. Benzmiiller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber,
M. Kohlhase, K. Konrad, E. Melis, A. Meier, W. Schaarschmidt, J. Siekmann, and V. Sorge. 2MEGA;
Towards a mathematical assistant. In W. McCune, editor, Proceedings of the 14th Conference on Auto-
"mated Deduction, number 1249 in LNAI, pages 252-255, Townsville, Australia, 1997. Springer Verlag.

[Cawsey, 1990] A. Cawsey. 'Ge'neratmg explanatory discourse. In R. Dale, C. Mellish, and M. Zock, editors,
Current Research in Natural Language Generation, number 4 in Cognitive Science Senes pages 75-101.
Academic Press, San Diego, CA, 1990.

[Gentzen 1935] G. Gentzen. Untersuchungen iiber das logische SchlieSen I & 1I. Mathematische Zeitschrift,
39:176-210, 572-595, 1935. .

[Horacek, 1997] H. Horacek. A model for adapting e\planatlons to the user’s likely inferences. User Modeling
and User-Adapted Interaction, 7:1-55, 1997.

[Huang and Fiedler, 1997} X. Huang and A. Fiedler. Proof verbalization as an application of NLG. In M. E.
Pollack, editor, Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI),
pages 965-970, Nadoya Japan, 1997. Morgan Kaufmann.

[Huang, 1994] X. Huang. Plannlng argumentative texts. In Proceedings of the 15th International Conference
on Computational Linguistics, pages 329-333, Kyoto, Japan, 1994.

[INLG, 1994] Proceedings of the 7th International Wo 1L$hop on Natural Language Generation, Kenneb-
unkport, Maine, USA, 1994. :

[Meyer and Kieras, 1997] D. E. Meyer and D. E. Kieras. EPIC: A computational theory of executive
cognitive processes and multiple-task performance: Part 1. Psychological Review, 104:3-65, 1997.

 [Newell, 1990] A. Newell. _'Uniﬁed Theories of Cognition. Havard University Press, Cambridge, MA, 1990.

[Paris, 1991) C. Paris. The role of the user’s domain knowledge in generation. Computational Intelligence,
7:71-93, 1991. :

[Reiter, 1994] E. Reiter. Has a consensus NL generatlon architecture appeared, and is lt psycholmguxstlcally
plausible? In [INLG 1994], pages 163~170.

' [Wahlster et al., 1993] W. Wahlster, E. André, W. Finkler, H.-J. Profitlich, and T. Rist. Plan-based inte—
gration of natural language and graphics generation. Artificial Intelligence, 63:387—427, 1993.

[Walker and Rambow 1994] M. A. Walker and O. Rambow. The role of cognitive modelmg in achieving
communicative intentions. In [INLG, 1994], pages 171-180.

[Zukerman and McConachy, 1993] 1. Zukerman and R. McConachy. Generating concise discourse. that ad-
dresses a user’s inferences. In R. Bajcsy, editor, Proceedings of the 13th-International Joint Conference

on Artificial Intellzgence (IJCAI), pages 1202-1207, Chambery, France, 1993. Morgan Kaufmann San
Mateo, CA.

97

