
I
ia

I

I

E

ia

E

E
m

ai

I
m

m

i
m

E

i

I

E
!

E

E

E

I

Feature Structures, Unification and Finite-State Transducers

Rdmi Zajac
Computing Research Laboratory, New Mexico State University

zajac@crl.nmsu.edu

We present a new framework for describing morphological models which combines several types of
descriptions in a single unified declarative language: simple morphological rules relate strings to
feature structures; rules can be grouped into inheritance hierarchies of paradignm; rules can be
composed for describing simple agglutinative morphology; they can also be combined to describe
more complex morphotactic structures. Rules are compiled as extended finite.state transducers
where left projections are characters and right projections are feature structures: unification is used
instead of concatenation to compute the output of a transduedon.

I Introduction

Language-related work at NMSU/CRL focuses today on the development of linguistic processing models
for a large variety of languages with a realistic coverage and with limited resources. In our research projects,
it is not realistic to spend more than six months to develop an adequate morphological grammar for a given
language, and we very clearly feel the need for higher level descriptive devices, even more so since some of
the linguists who are working on the particular have little computational background. In this paper, we
describe a new framework for the specification of morphological models, the Samba language, which
combines, in a unified declarative framework, several types of descriptions allowing for the specification of:

• simple affixations and infixations on a stem using regular expressions on character strings and typed
feature structures for specifying morphological properties associated with a string pattern;

• paradigmatic morphology using tables of rules, themselves organized in an inheritance hierarchy.

• agglutination of affixes by prefixation or suffixadon by simple (binary) composition of rules (or
tables) and affixes.

• complex morphotactics by using regular expressions of rules (or tables).

Work on languages with complex morphology such as Arabic, Korean or Turkish shows that the difficulty in
developing a computational model of morphology has been often underestimated. In many NLP systems, the
morphological analyzer is often implemented directly in some programming language such as C. One reason
can be the lack of a general declarative formalism powerful enough to describe complex morphological
models; another reason can be that powerful formalisms are often complex and difficult to learn: the direct
use of a general programming language might require less effort in the development of a morphological
analyzer. This has, for example, been the case at the Computing Research Laboratory, where morphological
analyzers for Arabic, Spanish, Russian and Serbo-Croatian were developed using C, Lisp or Prolog for the
lack of a system that would be sufficiently easy to learn and would match the intuition of linguists about the
structure of a morphological model (Sheremetyeva et al. 97). In particular, as noted by (Anick & Artemieff
92), many formalisms derived from the two-level model (Koskenniemi 83) concentrate on orthographic and
affixation rules, whereas a large part of the morphological description of languages such as Spanish or
Serbo-Croatian focus on capturing regularities between and within paradigms. Two-level formalisms are
also difficult to use to describe complex affixation or infixation phenomena (Oflazer 93, Beesley et al. 89,
Kiraz 94). There are however formalisms which are explicitly based on the notion of paradigm. For example,
in the Morfogen system (Pentheroudalds & Higginbotham 91), the basic unit of description is a paradigm
defined as a set of tables which describe the different inflectional patterns of words. The system described in
(Anick & Artemieff 92) is based on the same ideas within a more declarative framework. Declarative

I01

II

i
II

systems based on string unification such as the one described by (Calder 89) are also very attractive but more
difficult to implement; they also lack the power to describe complex affixation phenomena as well as
morphotactics in a simple way.

The work described in this paper can also be related to the first efforts in building generic unification-based
parsing systems such as D-PATR (Karttunen 86). Earlier parsing systems where built using (augmented)
context-free parsers: the grammar was a pure context-free grammar sometimes augmented with attributes or
actions. The output of an analysis was a derivation tree with property value.~ on the nodes. In unification-
based parsing system, the backbone is still a context-free parser, but rules are augmented using feature
structures and equations over feature structures and the output is a feature structure. By comparison, many
current morphological systems are based on finite-state technology, and the most popular ones use some
version of two-level morphology (Koskenniemi 83) which is based on finite-state transduction: left
projections are characters and right projections are also characters. In Samba, we depart from this basic
model, and in a way similar to unification-based parsers, we retain the finite-state backbone, but instead of
using characters in the right projection, we use feature structures, and instead of using concatenation to build
the output of the transducer, we use unification on feature structures: the output of the transducer is a feature
structure, not a string of characters.

We face, of course, the same efficiency issues that were raised for unification-based parsers, and techniques
developed for unification-based parsers for dealing with these issues can be adapted to our morphological
system. It is clear that such a system will be outperformed by traditional finite-state transducers in the same
way that unification-based parsers are outperformed by simpler context-free parsers. However, we hope that
the finite-state backbone will help in keeping runtime performances at a reasonable level, and we believe that
a unification-based morphological system will bring us the same benefits that were sought from unification-
based parsers: declarativity and concise formulation of linguistic knowledge. The initial implementation
provides an interpreted mode only which is necessary for debugging the morphological model. It also makes
it easier to implement and debug the Samba system itself. This choice does not preclude a compiled mode
which will be necessary for building realistic applications.

There have been several proposals to integrate feature structures and finite-state models for morphology
which have been sources of inspiration for our work. Calder 0988) and Bird 0992) first suggested the use
of feature structures to describe morphological models. Trost and Matiasek 0994) integrate an augmented
two-level model (X2.MorF) in a unification-based system written in Prolog. Krieger et al. (1994.) suggest an
encoding of morphophonemics and morphotactics using feature structures to represent finite-state machines
and use unification on feature structures to implement operations on finite-state machines (intersection, etc.).
Our work concentrates on the definition of a high-level descriptive language for morphology based on
regular expressions, feature structures and inheritance, and on an implementation of a parsing and
generation system allowing for rapid development of formal morphological models in the spirit of (Carter
1995).

i

RB

i

in

i

i

in

2 The Samba language

Paradigmatic inflectional morphology

The basic element of a morphological description is a morphological rule which associates a form
representing a sequence of morphemes to a linguistic structure, a set of morphological features. The form
itself is formally represented as a regular expression on characters. The linguistic structure describes how
the morphological features of the stem and the morpheme are combined. For example, the following rule
describes the conjugation of a French verb belonging to the paradigm Chanter in the first person singular of

102

the indicative present tense (string variables are prefixed with the dollar sign, regular expressions are
enclosed between angle brackets):

[form: <$chant 'e'>, /* A simple suffixation */
structure: [infl: Chanter, /* Paradigm of the stem */

stem: <$chant>, /* Form of the stem */
tense: Present, mood: Ind, /* Conjugation information */
num: Sing, pets: First]] /* Morpheme information */

A Samba morphological rule describes the concatenation of s t e m s and morphemes (using regular
expressions) and the combination of morphological features of words and morphemes (using feature
structures and unification). Stems and their features are stored in the lexicon: a lexicon entry is a feature
structure, and the s t r u c t u r e zone in a rule is a partial description of an entry. In the example above, the
s t r u c t u r e describes a set of words which belong to the inflectional paradigm Chanter (i n f l feature).
The stem of the verb is specified under the feature stem as the string variable $chant and this variable is

used in the regular expression describing the inflected form. l The other features inthe structure encode the
morphological properties of this particular form by specifying values for tense, mood, number and person.

Rules can be grouped together in tables describing forms that belong to the same paradigm. A table is
simply a disjunction of rules which share some common information: W'I_ER below is an example of a

table for a sample of French verb morphology 2 which matches ~aditional descriptions given in French
grammar books. Formally, a table is defined as follows, using the language of feature structures:

TableId = [paradigm: <paradigm>, features: <features>, rules: <rules>];

The paradigm feature structure defines the sub-set of lexical entries which belong to the paradigm thus
defined. The paradigm described in table VPIER (Present Indicative for -er verbs) below is reduced to two
features and specifies both the morphological inflectional paradigm of the verbs and their stems. For
example, the verb 'ajouter', which belongs to the 'chanter' paradigm, will have [stem: ' a j o u t ' l in the
dictionary and the table simply refers to the value of this stem using the $chant variable. The second
feature structure under f e a t u r e s specifies the set of morphological features (tense, mood, mode, etc.) that
is associated to the conjugation table as a whole: it represents the common contribution of all rules of the
table. The.successful application of a rule will add (unify) this structure to the output feature structure. The
rules in the table are grouped under the r u l e s feature where each rule is named individually. A rule needs
only to specify its own particular contribution. The following morphological table defines a set of rules
which describe a conjugation of French verbs of the first group (i.e., the Chanter paradigm) as
concatenations of a stem and suffixes.

VPIER =

[paradigm:
features:
rules:

[sgl:
sg2:
sg3:
pll:
p12:
pl3:

[infl: Chanter, stem: <$chant>],
[tense: Present, mood: Ind],

[form: <$chant 'e'>, structure: [num: Sing, pers: First]],
[form: <$chant 'es'>, structure: [num: Sing, pers: Second]],
[form: <$chant 'e'>, structure: [num: Sing, pers: Third]],,
[form: <$chant 'ons'>, structure: [hum: Plu, pers: First]],
[form: <$chant 'ez'>, structure: [num: Plu, pers: Second]],
[form: <$chant 'ent'>, structure: [num: Plu, pets: Third]]]];

i. This is a simplified example. In most cases, the stem is derived from the citation form and the relation between the
citation form and the stem will be expressed using regular expressions with variables (see below).

2. Examples are adapted from (Pentheroudakis and Higginbotham 91).

103

The above examples use only suffucation, but a form is a full regular expression and allows us to express
prefixation and infixation as well as suf~ation. As an example of a combination of prefixation and
suffixation, German past participles in the 'leben' paradigm ('gelebt') can be analyzed as follows:

VPP LEB = /* A table with a single rule */
[paradigm: [infl: Leben, stem: <$1eb>],
rules: [PP: [form: <'ge' $1eb 't'>, structure: PastParticiple]]]];

Agglutinative morphology

Agglutinative morphology can be described using composed tables that combine descriptions of other
tables. Simple tables describe inflections on stems stored in the lexicon (as described above); composed
tables describe further inflections on a form described in other tables, simple or composed. Besides
composed tables, one can also use regular expressions (on morphological rules or tables) to describe more
complex structures. Table composition and regular expressions allow for simple descriptions of agglutinative
morphology as well as derivational morphology (when derivational morphology is based on prefixation or
suffixation). However, the formalism forbids the type of recursion that would make the formalism truly
context-free. In composed tables, the base table used in the composition is supplied in the base declaration:
it has the same structure as a morphological rule with form and s t r u c t u r e features: ,

TableId = [base: [<form>, <structure>], <rules>];

The base feature holds the result of the application of the rules of the base table: the form holds the form of
the word as described in the base table, and the s t r u c t u r e holds the corresponding partially specified
feature structure. The definitions below are an example of an analysis for French participles: the two first
tables are composed tables; the third is a regular expression (a simple disjunction in this case), and the last
two are simple tables.

VPAGN=
[base: VPAG[form: <$vpa>],
rules:'[sing: [form: <$vpa ''>, structure: [num: Sing]],

plu: [form: <$vpa 's'>, structure: [num: Plu]]]];

VPAG =
[base: VPA_EIR[form: <$vpa>],
rules: [masc: [form: <$vpa ''>, structure; [gen: Masc]],

fem: [form: <$vpa 'e'>, structure: [gen: Fem]]]];

VPA_EIR = <VPA-ER I VPA-IR>;

VPAER =
[paradigm: [infl: Chanter, stem0:" <$chant0>],
rules: [presPart: [form: <$chant0 'ant'>, [structure: PresentParticiple]],

pastPart: [form: <$chant0 'e'>, [structure: PastParticiple]]]];

VPAIR =
[paradigm: [infl: Finir, stem0: <$fin0>],
rules: [presPart: [form: <$fin0 'issant'>, [structure: PresentParticiple]],

pastPart: [form: <$fin0 'i'>, [structure: PastParticiple]]]];

104

i

m

m

l

m

m

m

I

m

mm

m

m

m

m

m

m

m

m

m

m

[]

m

m

[]

Applying this description to plural feminine form of the present participle of 'fiuir' (to end), 'finissantes',
yields the following decomposition:

_ _ VPAG_N]

3 Transduction in Samba

A Samba grammar is composed of a set of definitions of rules, tables or regular expressions over rules or
tables. A set of definitions is compiled as a finite-state transducer where the lower part of the transduction
(left projection) is a siring and the higher part (fight projection) is a feature structure. In such a finite-state
machine, an edge carries a string (input) and a feature structure (output). From an analysis point of view, the
inflected form is decomposed into lexemes and morphemes by traversing the network using the left
projection, as in standard finite-state transducers. However, instead of simply concatenating the symbol of
the right projection to build the output, the transducer uses the fight projection to build a single feature
structure by using unification instead of concatenation. For each edge traversed, the transducer unifies each
fight projection with the output feature structure: the structural contribution of each morpheme or lexeme is
added to the word structure by unifying in the feature structure representing the morpheme. From a
generation point of view, the network is traversed based on the fight projection using feature unification
instead of symbol equality, and concatenating the suing elements of the left projection to build the inflected
word form.

Formally, a Samba transducer T is a tuple (I, 0, S, s, F, 6) where I is the input alphabet, O the output
alphabet, Sis a finite set of states, s is the initial state, F is a set of final states, 8 is the transition function
from S x I x O to S. The input alphabet I is a (finite) set of characters. The output alphabet O is an (infinite)
set of typed feature structures specified by a set of type definitions (Zajac 92). The compilation of a set of
Samba definitions as a transducer is done in four major successive steps:

1. All tables are expanded as disjunctions of simple morphological rules. This step transforms all
Samba table definitions as definitions which have regular expressions on morphological rules as
fight-hand sides: the leaves of the regular expression trees are morphological roles.

2. In all Samba definitions, all morphological rules are then compiled as finite-state transducers
producing regular expression trees where leaves are FSTs.

3. These regular expressions are compiled as finite-state transducers where the leaves of the regular
expressions becomes sub-FSTs.

4. In a definition, all references to other definitions are then replaced with the corresponding FSTs
(this process terminates since recursion is not allowed).

Rules and dictionary entries

A morphological rule is a pair <f, s> where the form f is a regular expression on characters (the left
projection) and the structure s is a typed feature structure (the fight projection). It is compiled in an FST M
in two steps. First, theformfis compiled as a finite-state transducer M 1 where all fight projections are empty
(the empty feature structure Y is the top of the lattice of feature structures). Then, from the (single) final state

105

f! of this intermediary FST, we add one more epsilon-transition to the final state f of M where the right
projection is the feature structure s (transition f/s). The initial state i of M is the initial state i I of MI:

In the form of a rule, there will usually be siring variables that are also present in the structure of the rule.
Typically, the structure will specify the value of a stem and this variable will be used in the definition of the
form. We impose the following restrictions on variables:

1. String variables in the structure refer to string values in a dictionary entry.

2. Any variable in the regular expression defining the form must also appear in the structure.

These constraints are imposed in order to guaranty finiteness of substitutions. With these constraints, the
compilation of a rule is done as follows. First, all string variables in the structure are instantiated by
querying the dictionary for all entries subsumed by the structure. Then,, the occurrences of the variables in
the form are replaced with FSTs representing these strings. For example, the following rule:

[form: <$chant 'e'>,
structure: [infl: Chanter,

stem: <$chant>,
tense: Present, mood: Ind,
num: Sing, pets: First]]

will be compiled as the FST pictured below. The variable $chant is instantiated by querying the dictionary
for all entries subsumed by the structure: this produces a disjunction of pairs {<~, si> I.~ is a string (stem), s i
is a dictionary entry }. This disjunction is compiled as the sub-FST chant:

[infl: Chanter,
stem: <$chant>,
tense: Present, mood: Ind,
num: SAng, pers: First]

Tables

Tables are expanded as disjunctions of simple morphological rules. This step reformulates all Samba table
definitions as regular expressions on morphological rules. A disjunction of morphological rules is simply a
set {~.~, si> } of morphological rules. A simple table is a triple <~, F, {<~, si>}>, where P is the paradigm (a
feature structure), F represents the features of the table, and {<~, si>} the set of rules. The compilation of a

simple table rewrites the table as a set of rules:

<~, F,, {<j~, S/>}> -") { ~i, PAFAsi> }
106

i

I

i

I

i

i

U

U

i

i

i

i

i

i

where P ^ F ^ s i is the unification of the feature structures P, F and si. The Samba compiler makes sure that

the unification succeeds during the type checking phase of the compilation process.

A composed table is a pair < ~ , s>, {<~, si>} >, where <f, s> is the base and {'9~, si>} the set of rules. The

compilation of a composed table rewrite the table as a set rules:

< <~, s>, {<fi, si>}>--* { <f@fi, s^si> }

wheref @)~ is the composition of the two regular expressions and s ^ s i is the unification between the two

feature structures. The compiler cheeks that the intersections are not empty and that the unifications are
successful. The composition f@)~ is computed as follows. We impose constraints on variables similar to the

one for rules: the form of the base f i s a string variable and this variable must appear in each form fi of the
roles of the composed table. Each regular expression 3~ is compiled as an FST, and each occurrence of the

variable f i n rules is replaced with the corresponding sub-FST: the base table is a sub-FST of the composed
FST as shown in the example below.

VPAG._N =

[base: VPA._G[form: Svpa],

rules: [plu: [form: <$vpa 's'>, structure: [num: Plulll]

[num." Plu]

Regular expr'~,~osions

All Samba definitions which are regular expressions on rules are compiled as finite-state transducers as
follows (we use standard construction algorithms, see e.g., Hopcroft & Ullman 79):

• The concatenation of two morphological rules is simply defined as the rule whose form is the
concatenation of the forms of the two rules and whose structure is the unification of the structures:

<fl, sl > °<f2 , S2>"-~<fl "f2, Sl ^s2>"

• The Kleene closure is defined as <f, s >* --~ <f*, s >.

• The disjunction follows the standard construction: <f l , sl > I <f2, s2 > is compiled as:

When a regular expression contains an identifier which stands for a Samba definition, the identifier is
replaced with its compiled definition, exactly like in macro-expansion. Since recursivity is not allowed, this
process terminates, producing a single FST which is defined as a composition of sub-FSTs.

107

The Samba interpreter

The Samba interpreter takes as input either a string (for analysis), or a feature structure (for generation). The
interpreter is parametrized by the start state, specified by the user as the identifier of some Samba definition.
The interpreter exits in the corresponding final state. This facility allows us to debug a Samba grammar
definition by definition.

The Samba interpreter in analysis mode works as a standard finite-state transducer: input is read one
character at a time. The main difference with classical FSTs is that the output of a transition is not appended
to the output string; instead, the output of a transition (right projection) is unified with the output of the
transducer: the transducer's output is initialized to the empty feature structure (top of the lattice of feature
structures) instead of the empty siring. Since unification can fail, a transition is traversed successfully only if
the transition input (left projection) matches the current character input and if the unification of the
transition output with the transducer's output succeeds. Traversing the graph of transitions, the right
projection of each transition is unified with the global transducer's output. When reaching a final state, the
output has accumulated all information defined in the right projection of each transition. For generation, the
interpreter simply reverses the interpretation of input and output on transitions: when traversing a transition,
the interpreter first unifies the input with the transition's right projection. If unification succeeds, it appends
the transition's left projection to the output string and proceeds with the new input feature structure.

Since the transducer is non-deterministic, alternative branches must all be explored. Several
implementations of the search are possible. For parsing, we use a variant of the algorithm for computing the
intersection of two finite-state machines: the input word is represented as a linear finite-state machine and
the output is also represented as a finite-state machine with a tree-like topology. The parsing algorithm
computes the intersection of the transducer and the input word using the left projections of the transducer;
during traversal, right projections are unified with the output. The unification algorithm for feature structures
uses structure sharing (see e.g., Emele 91) which allows to minimize the amount of copying: the feature
structures in various branches of the output graph record exactly the increment of information added by the
corresponding transitions of the Wansducer.

4 Conclusion

Preliminary research in the morphological description of Arabic, Russian, Serbo-Croatian and Japanese
using the Samba language supports our hypothesis that this formalism can be used for describing a variety of
morphological models in a compact and declarative way. A mock-up of a Samba interpreter has been built to
test various implementation choices and a complete implementation is currently under way at CRL. Future
work on Samba will include the implementation of a version supporting dynamic access to dictionaries, the
addition of orthographic rules, and an extension to handle composition. The Samba language is currently
-used to develop a morphological analyzer for Persian and will also be used for several other languages
including for example Spanish and Korean.

Acknowledgments This work is part of the Corelli project funded by the Maryland Procurement Office,
Fort George G. Meade, MD under grant MDA904-96-C-1040.

5 References

1. Peter Anick, Suzanne Artemieff. 1992. "A high-level morphological description language
exploiting inflectional paradigms". In Proceedings of Coling '92, Nantes, 1992. pp67-73.

2. Stephen R. Anderson. 1992. A-Morphous Morphology. Cambridge University Press, 1992.

3. Robert Beard. 1995. Lexeme-Morpheme Base Morphology. State University of New-York Press,
1995.

108

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

mm

m

m

m

m

m

m

mm

mm

4. Ken Beesley, Tim Buckwalter, Stuart Newt.on. 1989. '~'wo-level finite-sate analysis of Arabic
morphology". In Proceedings of the Seminar on Bilingual Computing in Arabic and English, 6-7
Sept. 1989, Cambridge, GB.

5. Steven Bird. 1992. "Finite-State Phonology in HPSG". In Proceedings of Coling'92, 23-28 August
1992, Nantes, FR. pp74-80.

6. Jonathan Calder. 1989. "Paradigmatic Morphology". In Proceeding of the EuropeanACL, 1989.

7. David Carter. 1995. "Rapid development of morphological descriptions for full language
processing systems". In Proceedings of EACL'95, pp202-209.

8. Marc Domenig, Pins ten Hacken. 1992. Word Manager: A System for Morphological Dictionaries.
Olms.

9. Martin Emele. 199 I. 'qJnification with Lazy Non-Redundant Copying". In Proceedings of the 29th
Annual Meeting of the ACL, 18-21 June 1991, Berkeley, CA. pp323-330.

10. John E. Hopcroft, Jeffrey D. Ullman. 1979. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley.

11. Ron Kaplan, Martin Kay. 1994. "Regular models of phonological rule systems". Computational
Linguistics 20(3). pp331-378.

12. George A. Kiraz. 1994. "Multiple-Tape Two-Level Morphology: A Case study in Semitic non-
linear Morphology". In Proceedings of Coling'94, 5-9 August 1994, Kyoto, Japan. pp180-186.

13. Kimmo Koskenniemi. 1983. '°two-level model for morphological analysis". In Proceeding of
IJCAI'83, the 8th International Joint Conference on Artificial Intelligence, Karlsruhe, DE, 1983.
pp683-685.

14. Hans-Ulrich Krieger, John Nerbonne, Harmes Pirker. 1994. "Feature Based Allomorphy". DFKI
Research Report RR-93-28, Saarbriicken, DE.

15. Peter H. Matthews. 1974. Morphology: An Introduction to the Theory of Word Structure.
Cambridge University Press.

16. Kemal Oflazer. 1993. "Two-level description of Turkish morphology". In Proceedings of the 6th
Conference of the European Chapter of the ACL, April 1993.

17. Joseph E. Pentheroudakis, Dan W. I-Iigginbotham. 1991. "Morfogen: a morphology grammar
builder and dictionary interface tool". Presented at the 1991 Meeting of the Deseret Language and
Linguistics Society, Brigham Young University, Provo, Utah.

18. Graeme D. Ritchie, Graham J. Russell, Alan W. Black, Stephen G. Pulman. 1992. Computational
Morphology. Practical mechanisms for the English Lexicon. The MIT Press.

19. Emmanuel Roche, Yves Schabes (eds.). 1997. Finite-State Language Processing. The MIT Press.

20. Richard W. Sproat. 1992. Morphology and Computation. MIT Press.

21. Svetlana Sheremetyeva, Wanying Jin, Sergei Nirenburg. 1997. "Rapid Deployment Morphology".
Technical Report MCC8-97-313, Computing Research Laboratory, New Mexico State University.

22. Harald Trost, Johannes Mataisek. 1994. "Morphology with a null interface". In Proceedings of
Coling'94, 5-9 August 1994, Kyoto, Japan. pp141-147.

23. Evelyne Tzoukermann, Mark Y. Liberman. 1990. "A finite-state morphological processor for
Spanish". In Proceedings of Coling'90, Helsinki, Finland. pp277-282.

24. R~mi Zajac. 1992. "Inheritance and Constraint-based Grammar Formalisms". Computational
Linguistics 18 (2), June 1992. pp159-182.

109

