
Learning Finite-State Models for Language
Understanding*

David Picr, Enrique Vidal

Institut Teenolbgic d'Informhtica
Universitat Polit~mica de Valencia, 46020 Valencia, SPAIN

e-maih {dpico,evidal}Giti.upv.es

Abstract. Language Understanding in limited domains is here approached as a problem
of language tra~lation in which the target language is a]o~nal language rather than a
natural one. Finite-state transducers are used to model the translation process. Further-
more, these models are automatically learned from ironing data consisting of pairs of
natural-language/formal-language sentences. The need for training data is dramatically
reduced by performing a two-step learning process based on !exical/phrase categoriza-
tion. Successful experiments are presented on a task consisting in the ~anderstanding ~ of
Spanish natural-language sentences describing dates and times, where the target formal
language is the one used in the popular Unix command ~at".

1 I n t r o d u c t i o n

Language Understanding (LU) has been the focus of much research work in the last twenty years.
Many classical approaches typically consider LU from a linguistically motivated, generalistic
point of view. Nevertheless, it is interesting to note tllat, in contrast with some general-purpose
formulations of LU, many applications of interest to industry and business have limited domains;
that is, lexicons are of small size and the semantic universe is limited. If we restrict ourselves
to these kinds of tasks, many aspects of system design can be dramatically simplified.

In fact, under the limited-domain framework, the ultimate goal Of a system is to driue the
actions associated to the meaning conveyed by the sentences issued by the users. Since actions
are to be performed by machines, the understanding problem can then be simply formulated
as translating the natural language sentences into .?orma/sentences of an adequate (computer)
command language in which the actions to be carried out can.be specified. For example, "un-
derstanding" natural language (spOken) queries to a database can be seen as "translating" these
queries into appropriate computer-language code to access the database. Clearly, under such an
assumption, LU can be seen as a possibly simpler case of Language Translation in which the
output language is forma/rather than natural

Hopefully, these simplifications can lead to new systems that are more compact and faster
to build thant those developed under more traditional paradigms. This would entail i) to devise
simple and easily understandable models for LU, ii) to formulate LU as some kind of optimal
search through an adequate structure based on these models, and iii) to develop techniques to
actually learn the LU models from training data of each considered task. All these requirements
can be easily met through the use of Finite-State Translation Models.

The capabilities of Finite-State Models (FSM) have been the object of much debate in the
past few years. On the one hand, in the Natural Language (NL) community, FSMs have often

* Work partially supported by the Spanish CICYT under grant TIC-0745-CO2

69

[]

[]

[]

[]

been ruled out for many NL processing applications, including LU, even in limited domains. Re-
cently, many NL and Computational Linguistic researchers are (re-)considering the interesting
features of FSMs for their use in NL processing applications [10].

Undoubtedly, the most attractive feature of FSMs consists in their simplicity: representation
is just a matter of setting a network of nodes and links in memory, and parsing can be simply
carried out by appropriately following the links of this network, according to the observed
input data. More specifically, as it is well known, using Viterbi-like techniques, computing time
for parsing is linear with the length of the data sequence to be parsed and, using adequate
techniques, such as beam search, it can be easily made independent on the size of the network
in practice. [2]

Simple as they are, FSMs generally need to be huge in order to be useful approximations to
complex languages. For instance, an adequate 3--Gram Language Model for the language of the
Wall Street Journal is a FSM that may have as many as 20 million edges [23]. Obviously, there
is no point in trying to manually build such models on the base of a priori knowledge about the
language to be modeled: the success lies in the possibility of automatically learning them from
large enough sets of training data [8, 23]. This is also the case for the finite-state LU models
used in the work presented in this paper [15, 24, 26].

2 Subsequential Transduction

The following definitions follow closely those given in Berstel [4], with some small variations
for the sake of brevity. A Finite State Transducer (FST) is a six tuple r = (Q, X, Y, q0, QF, E),
where Q is a finite set of states, X, Y are input and output alphabets, qo E Q is an initial state,
QF c Q is a set of final states and E C Q x x* x Y* × Q are the edges or transitions. The
output associated by v to an input string, z, is obtained by concatenating the output strings
of the edges of r that are used to parse the successive symbols of z.

One problem of using Finite State Transducers in our framework is that the problem of
learning of general Finite State Transducers is at least as hard as the problem of learning
a general Finite State Automaton, which is well known to be probably intractable. So we
need a less general type of transducers. A Sequential Transducer (ST) is a five tuple ~" =
(Q, X, Y, qo, E), where E C Q x X × Y* x Q and all the states are accepting (QF = Q) and
determini.qtic; i.e., (q,a,u,r), (q,a,v, s) e E =~ (u = v ^ r = s). An important restriction
of STs is that they preserve increasing length input-output prefixes; i.e., if t is a sequential
transduction', then t(X) = A, t(uv) e t(u)Y*, where ~ is the empty or Nil string.

While the use of sequential translation models has proved useful for LU in a number of rather
simpletasks [21, !9, 20, 26], the limitations of this approach dearly show up as the conceptual
complexity of the task increases. The main concern is that the required sequentiality assumption
often prevents the use of "semantic languages" that are expressive enough.to correctly cover the
underlying semantic space and/or to actually introduce the required semantic constraints. As
we will see below, input-output sequentiality requirements can be significantly relaxed through
the use of Subsequential Transduction. This would allow us to use more powerful semantic
languages that need only be subsequential with the input.

A Subsequential Transducer (SST) is defined to be a six-tuple r = (Q,X,Y, qo;E,a),
where v' = (Q,X,Y, qo,E) is a Sequential Transducer and a : Q ~ Y* is a partial state
output function [4]. An output string of r is obtained by concatenating a(q) to the usual se-
quential output string, r'(x), where q is the last state reached with the input x. Examples of
SSTs are shown in Fig.1.

I

I

I

I

I

I
[]

[]

I
]

[]

[]

l
[]

[]

[]

[]

[]

[]

[]

[]

|

70

Two SSTs are equivalent if they perform the same input-output mapping. Among equivalent
SSTs there always exists one that is canonical. This transducer always adopts an "onward" form,
in which the output substrings are assigned to the edges in such a way that they are as "close"
to the initial state as they can be (see Oncina et al., 1993 [15], Reutenauer, 1990 [22]; for a recent
reelaboration of these concepts see Mohri, 1997 [13]). On the other hand, any finite (training) set
of input-output pairs of strings can be properly represented as a Tree Subsequential Transducer
(TST), which can then be easily converted into a corresponding Onward Tree 8ubsequential
Transducer (OTST). Fig.1 (left and center) illustrates these concepts (and construction), which
are the basis of the so-called Onward Snbsequential Transducer Inference Algorithm (OSTIA),
by Oncina [14, 15].

Given an input-output training sample T, the OSTI Algorithm works by merging states
in the OTST(T) as follows [15]: All pairs of states of OTST(T) are orderly considered level
by level, starting at the root, and, for each of these pairs, the states are tentatively merged.
If this results in a non-deterministic state, then an attempt is made to restore determinism
by reeursively pushing-back some output substrings towards the leaves of the transducer (i.e.,
partially undoing the onward construction), while performing the necessary additional state
merge operations. If the resulting transducer is subsequential, then (all) the merging(s) is (are)
accepted; otherwise, a next pair of states is considered in the previous transducer. A transducer
produced by this procedure from the OTST of Fig.1 (center) is shown in Fig.1 (right). Note
that this resulting transducer is consistent with all the training pairs in T and makes a suitable
generallization thereof.

All these operations can be very eiticiently implemented, yielding an extremely fast algorithm
that can easily handle huge sets of training data. It has formally been shown that OSTIA always
converges to any target subeequential transduction for a sufficiently large number of training
pairs of this transduction [15].

~k/a

Figure 1. Learning a Subsequential Transducer from the input-output sample T={(A,b), (B,ab),
(AA,ba), (AB,bb), (BB,aab)). Left: Tree Subsequential Transducer TST(T); Center: Onward Tree
Subsequential Transducer OTST(T); Right: transducer yield by OSTIA. Each state contains the output
string that the function ~, associates to this state.

The learning strategy followed by OSTIA tries to generalize the training pairs as much as
possible. This often leads to very compact transducers that accurately translate correct input
text. However, this compactness often entails excessive over-generalization of the input and
output languages, allowing nearly meaningless input sentences to be accepted, and translated
into even more meaningless output! While this is not actuaily a problem for perfectly correct
tezt input, it leads to dramatic failures when dealing with not exactly correct text or (even
"correct") speech input.

A possible Way to overcome this problem is to limit generalization by imposing adequate
Language Model (LM) constraints: the learned SSTs should not accept input sentences or
produce output sentences which are not consistent with given LMs of the input and output

71

languages. These LMs are also known as Domain and Range models [17]. Learning with Domain
and/er Range constraints can be carried out with a version of OSTIA called OSTIA-DR [16, 17].
This version was used in the work presented in this paper.

Subsequential Transducers and the OSTI (or OSTI-DR) Algorithm have been very suc-
cessfully applied to learning several quite contrived (artificial) translation tasks [15]. Also, it
has recently been applied to Language Translation [25, 9, 1] and Language Understanding, as
will be discussed here below. Among many possibilities for (finite-state) modeling the input
and output languages, here we have adopted the well-known bigrama [8], which can be easily
learned from the same (input and output) training sentences used for OSTIA-DR.

3 R e d u c i n g t h e d e m a n d fo r t r a i n i n g d a t a

The amount of training data required by OSTIA(-DR)-learning is directly related with the size of
the vocabularies and the amount of input-output asynchrony of the translation task considered.
This is due to the need of "delaying" the output until enough input has been seen. In the worst
case, the number of states required by a SST to achieve this delaying mechanism can grow as
much as O(nk), where n is the number of (functionally equivalent) words and k the length of
the delay.

Techniques to reduce the impact of k were studied in [29]. The proposed methods rely
on reorderin 9 the words of the (training) output sentences on the base of partial alignments
obtained by statistical translation methods [5]. Obviously, adequate mechanisms are provided
to recover the correct word order for the translation of new test input sentences [29].

3.1 Using word /phrase Categorization

On the other hand, techniques to cut down the impact of vocabulary size were studied in [28].
The basic idea was to substitute words or groups of words by labels representing their syntactic
(or semantic) category within a limited rank of options. Learning was thus carried out with the
categorized sentences, which involved a (much) smaller effective vocabulary. The steps followed
for introducing categories in the learning and transducing processes began with category iden-
tification and categorization of the corpus. Once the categorized corpus was available, it was
used for training a model: the base transducer. Also, for each category, a simple transducer was
built: its category transducer. Finally, category expansion was needed for obtaining the final
sentence-transducer: the arcs in the base transducer corresponding to the different categories
were expanded using their category transducers.

Note that, while all the transducers learned by OSTIA-DR are subsequential and therefore
deterministic, this embedding of categories generally results in final transducers that are no
longer subsequential and often they can be ambiguous. Consequently, translation can not be
performed through deterministic parsing and Viterhi-like Dynamic Programming is required.

Obviously, categorization has to be done for input/output paired clusters; therefore adequate
techniques are needed to represent the actual identity of input and output words in the clusters
and to recover this identity when parsing test input sentences. This recovering is made by
keeping referencies between category labels and then solving them with a postprocess filter.
This method is explained in detail in [1]. Text-input experiments using these techniques were
presented in [28]. While the direct approach degrades rapidly with increasing vocabulary sizes,
categorization keeps the accuracy essentially unchanged.

72

3.2 Coping with undertrainlng through Error Correcting

The performance achieved by a SST model (and for many other types of models whatsoever)
tends to be poor if the input sentences do not strictly comply with the syntactic restrictions
imposed by the model. This is tile case of syntactically incorrect sentences, or correct sentences
whose precise "structure" has not been exactly captured because it was not present in the
training data.

Both Of these problems can be approached by me~n.~ of Error-Correcting Decoding (ECD) [3,
29]. Under this approach, the input sentence, x, is considered as a corrupted version of some
sentence, ~ E L, where L is the domain or input language of the SST. The corruption process
is modeled by means of an Error Model that accounts for insertion, stibstitution and deletion
"edit errors". In practice, these "errors" should account for likely vocabulary variations, word
disappearances, superfluous words, repetitions, and so on. Recognition can then be seen as an
ECD process: given x, find a sentence ~ in L such that the distance form ~ to x, measured in
terms of edit operations (insertions, deletions and substitutions) is minimum 2.

Given the finite-state nature of SST Models, Error Models can be tightly integrated, and
combined error-correcting decoding and translation can be performed very efficiently using fast
ECD beam-search, Viterbi-based techniques such as those proposed in [3].

4 Experiments

The chosen task in our experiments was the translation from Spanish sentences specifying
times and dates into sentences of a formal semantic language. This is in fact an important
subtask that is common to many real-world LU applications of much interest to industry and
society. Examples of this kind of applications are flight, train or hotel reservations, appointment
schedules, etc. [7,11, 12]. Therefore, having an adequate solution to this subtask can significantly
simplify the building of successful systems for these applications (another work on this subtask
can be found in [6]).

The chosen formal language has been the one used in UNIX" command "at". This simple
language allows both absolute and relative descriptions of time. From these descriptions, the
"at" interpreter can be directly used to obtain date/time interpretations in the desired format.
The correct syntax of "at" commands is described in the standard Unix documentation (see,
e.g. [30]). Fig. 2 shows some training pairs that have been selected from the training material.

Starting from the given context-free-style syntax description of the "at" command [30], and
knowledge-based patterns of typical ways of expressing dates and times in natural, spontaneous
Spanish, a large corpus of pairs of "natural-language"/at-language sentences has been artificially
constructed. This is intended to be the first step in a bootstrapping development. On-going
work on this task is aimed at (semi-automatically) obtaining additional corpora produced by
native speakers. The corpus generation procedure incorporated certain "category labels", such
as hour, month, day of week, etc. We have used a similar process for defining and generating
subcorpora in which every input and its corresponding semantic coding belong to the different
categories. We finally have obtained an uncategorized version of the categorized corpus, by
means of randomly instantiating the category marks in the samples. The examples found on
figure 2 come from this uncategorized corpus, while figure 3 shows the corresponding categorized
pairs.

2 Note that while only simple deterministic ECD is considered in this paper, ECD can be easily
formulated in a more powerful, 8tochaatic manner [2].

73

II

II

',"dos minutos despuds de la usa y media", 01 : 30 + 2 MINUTE)
ft~#o minutes after one thirty)
',"dentro de usa hora", NOW + 1 HOUR)
'in one hour)
'"el maxtes, a la hora de! td, mas un minuto", TEATIME TUE + 1 MINUTE)
'on thursday, at teatime plus one minute)
i"el catorce de octubre del afio dos nail tres, alas diecisiete horas

y cinco minutos', 17 : 05 OCT 14,2003)
(on october the first, year two tho.aand and three, at seventeen hours
and fi~e minutes)

Figure 2. Sample of selected training pairs for the date specification task.

("inc-number mlnutos despu& de h24 ram", h24 :mm + inc-number
IMINUTE)
i(,dentro de una hora', 'NOW + 1 HOUR)
~"el day-of-week, a t-dest, mas un minuto", t-dest day-of-week
+ 1 MINUTE)
("el day-txt de month-name del afio year-name, a h24 mm', h24 : mm
month-name day-txt , year-name)

Figure 3. Sample of categorized pairs for the date specification task.

We have generated a training corpus of 48353 different, uncategorized translation pairs, and
a disjoint test set with 1331 translation pairs. We have presented the OSTIA-DR with 8 training
subsets of sizes increasing from 1817 up to 48353. We also have presented OSTIA-DR with the
same, but categorized, training subsets. In this case, the number of different pairs went from
1384 up to 12381. Figure 4 shows the size of categorized corpora vs. uncategorized corpora. The
input language vocabulary has 108 words, and the output language has 125 semantic symbols.
We have used 11 different category labels.

In the categorized experiments, a sentence-transducer was inferred from the categorized
sentences, and a (small) category-transducer for each one of the categories. The final transducer,
which is able to translate noncategorized sentences, was build up by the embedding of the
category-transducers into the sentence-transducers. The output yielded by this final transducer
includes category labels and their corresponding instances, as found in the translation process.
The definitive translations of the test set inputs are obtained by means of a simple filter that
resolves the dependencies. The sizes of the inferred transducers are shown on figure 5.

Performance has been measured in terms of both semantic-symbol error and fUll-sentence
matching rates. The translation of the test set inputs has been computed using both the stan-
dard Viterbi algorithm and the Error Correction techniques, outlined on sections 3.1 and 3.2.
The results are shown in figure 6.

A big difference in performance between the uncategorized and categorize d training pro-
cedures can be observed. Semantic-symbol error rates are much lower in the categorized ex-
periments than in the uncategorized ones. We can also appreciate a remarkable decrease in
semantic-symbol error rates of Error Correcting with respect to Viterbi translations, specially
for smaller training corpus. The full-sentence matching rate also exhibited a strong improve-

74

!
z

14000

12000

10000

8000

6OOO

4O00

2OOO

0
0

Categodsed vs. uncategodsed comus size

I ! i I t I I i |

I I I I I I I , I I

5000 10000 15000 20000 25000 30000 35000 40000 45000
Number of uncatsgodsed samples

500OO

Figure 4. Corpora size before and after categorization.

=_

6

E

10000

0

cats J
base ---x---
plain ~ -

. . . , . . J I " o ' "

. . . . o . . O - - " "

° ° ' Y

.="

/
, , °

/
I t

. - ° "

I

• . - l e 1~

X :" ~ " -X K
X ~ ¢ ~¢

I I I I I I I I I

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Training corpus size

Figure 5. Inferred transducers sizes. The size is expressed in number of edges: "base" stands for the
transducer containing category labels, while "cats" stands for the final sentence-transducer which is
calculated by embedding the (small) category-transducers into the "base" one; "plain" stands for the
uncategorized sentence-transducer.

75

I I

I I

I I

n i t

8O

7O

6O

50

4O

30

2O

10

0
" 0

Sentence matching

. cats (EC)'
non-cats (EC) ---x---

• cam (v i i) .--a.-.
non-cats - ~

"IL..

I '1 I , • u " " t 11 i • - --a - ~

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Training corpus size

Figure 6. Semantic-symbol error rates. On the legend, "cats" stands for the categorised experiments,
and '~on-cats" for the non-categorized ones. Transductions in =EC" have been computed using Error
Correcting techniques, and in 'Wit" using the standard Viterbi algorithm.

ment by using categorization: while uncategorized training only achieves 30%-40% matching
rate, the categorized one yields up to 98%.

5 Conclusions

In this work, we have presented some successful experiments on a non-trivial, useful task in nat-
urai language understanding. Finite-State models have been learnt by the OSTIA-DR algorithm.
Our attention has been centered in the possibility of reducing the demand for training data by
categorizing the corpus. The experiments show a very big difference in performance between
the categorized and plain training procedures. In this task, we only obtain useful results if we
use categories.

The Error Correcting technique for translation also permits reducing the size of corpora
and still obtain useful error rates. In our task, we got a 3% in semantic-symbol error rate
for a training set of approximately 6000 pairs, while for the same level of performance using
the standard Viterbi algorithm requires some 10000 training pairs. This 3% error rate result
corresponds to a full-sentence matching rate of 90%.

On-going work on these techniques is aimed at obtaining additional training data by na-
tive speakers, so as to improve the system by following a bootstrapping procedure: the system
will be trained on this additional natural or spontaneous data, the acquisition of which is
driven by the system itself, guided by given task-relevant semantic stimuli. This process can
be repeated until the resulting system exhibits a satisfactory performance. On the other hand,

76

n
n

n

n

un

n

transducers generated by the embedding procedur e described in this paper may turn out to be
ambiguous. Work is also being done on applying stochastical extensions of transducers, so as to
deal with ambiguities by reflecting the appearance probability distribution of sentences in the
training corpus. These distributions are being estimated by Maximum-Likelihood, Conditional
Maximum-Likelihood, or Maximum Mutual Information Estimation [18]. The results of this
work will be Useful as a subtask of the so-called "Tourist Task", which is a hotel reservations
task introduced in the EuTraus project[l, 25]

References

I. J.C AMENGUAL, J.B.BENEDf, F.CASACUBERTA, A. CASTAI~0, A. CASTELLANOS, D. LLORENS,
A. MARZAL, F. PRAT, E. VIDAL AND J.M.VILAR: 'Using Categories in the Eutrans System".
ACL-ELSNET Workshop on Spoken Language Translation, Madrid, Spain, pp. 44-52. (1997)

2. J.C. AMENGUAL, E. VIDAL. TWO Different Approaches for Cost-efflcient Viterbi Parsing with Error
Correction. Proc. of the SSPR'96, IAPR International Workshop on Structural and Syntactical
Pattern Recognition, August 20-23, 1996, Leipzig. To be published in the Proceedings.

3. J.C. AMENGUAL, E. VIDAL AND J.M. BENEDL "Simplifying Language through Error-Correcting
Decoding ~. Proceedings of the ICSLPg6 (IV International Conference on Spoken Language Pro.
cessing). To be published. October, 1996.

4. J. BEaSTEL. Transductions and Context-Free Languages. Teubner, Stuttgart. 1979.
5. P.F.BROWN ~.T AL.. "A Statistical Approach to Machine Translation". Computational Linguistics,

Vol. 16, No.2, pp.79-86, 1990.
6. J.G.BAuER, H.STAHL, J.MLLI~R: "A One-pass Search Algorithm for Understanding Natural Spoken

Time Utterances by Stochastic Models". Proc. of the EUROSPEECH'95, Madrid, Spain, vol.I, pp.
567-670. (1996)

7. C.T.HEMPHILL, J.J.GODFREY, G.R.DODDINGTON. "The ATIS Spoken Language Systems, pilot
Corpus". Proc. of 3rd DARPA Workshop on Speech and Natural Language, pp. 102-108, Hidden
Valley (PA), June 1990.

8. F. JELINEK: "Language Modeling for Speech Recognition". In [10] (1996).
9. V.JIMENEZ, A.CASTELLANOS, E.VIDAL. "Some results with a trainable speech translation and

understanding system". In Proceedings of the ICASSP-95, Detroit, MI (USA), 1996
10. A.KORNAI (ED.); Proceedings of the ECAI'96 Workshop: E~tended Finite State Models of Language.

Budapest, 1996.
11. A.LAVIE, A.WAIBEL, L.LEVIN, M.FINKE, D.GATES, M.GAVALD~,, T.ZEPPENFELD AND P.ZHAN:

"JANUS-III: Speech-to-speech Translation in Multiple Languages", Proc. of the ICASSP'97, Mu-
nich, Germany, vol. I, pp. 99-102. (1997)

12. E. MAIER AND S. McGLASHAN: "Semantic and Dialogue Processing in the VERBMOBIL Spoken
Dialogue Translation System", In Proceedings in Artificial Intelligence: CRIM/FORWISS Work-
shop on Progress and Prospect8 of Speech Research and Technology, H. Niemann, R. de Mori and
G. Haurieder (eds.), Infix, pp. 270-273. (1994)

13. M.MOHRI. "Finite-State Transducers in Language and Speech Processing". Computational Lin-
guistics 23:2, 269-311.

14. J.ONcINA. "Aprendizaje de Lenguages Regulates y Funciones Subsecuenciales". Ph.D. diss., Uni-
versidad Politecnica de Valencia, 1991.

15. J.ONcISA, P.GARCIA, E.VIDAL. "Learning Subsequential Transducers for Pattern Recognition
Interpretation Tasks". IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.15,
No.6, pp.448-458. May, 1993.

16. J.ONcIIqA, A.CASTELLANOS, E.VIDAL, V.JIMENEZ. i'Corpus-Based Machine Translation through
Subsequential Transducers". Third Int. Conf. on the Cognitive Science of Natural Language Pro.
cessing, proc., Dublin, 1994

17. J.ONCINA, M.A.VAR. "Using domain information during the learning of a subsequential transduc-
er". In Laurent Miclet and Colin de la Higuera, editors, Grammatical Inference: Learning Syntaz
from Sentences, Lecture Notes in Computer Science, vol. 1147, pp. 301-312. Springer-Verlag. 1996

77

II

II

18. D. PIc6. "Algorismes d'aprenentatge per a traductors regulars estocbatics arab A-regles". Master's
Thesis. Universitat Polit~cnica de Valencia. Valencia. Spain. 1997.

19. It. PIEIIACCINI, E. LEVlN. "Stochastic Representation of Semantic Structure for Speech Under-
standing =. EUROSPEECH'91, Proc., Vol. 2, pp.383-386. Genoa Sept, 1991.

20. R. PIERACCINI, E. LEVlN, E. VIDAL. "Learning How To Understand Language". EURO-
SPEECH'93, proc., Vol.2, pp. 1407-1412. Berlin, Sept, 1993.

21. N.PnlETO, E.VIDAL. "Learning Language Models through the ECGI method". Speech Communi-
cation, No.ll, pp.299-309. 1992.

22. C. Pt.EUTENAUER. "Subsequential functions: characterization, minimization, examples". In J. Kele-
men, editor. Proceedings of the International Meeting of Young Computer Scientists, Lecture Notes
in Computer Science, vol. 464, pp. 62-79. Springer-Verlag, 1990.

23. K.SEY~ORE, R.ROSENFELD. "Scalable Backoff Language'Models". ICSLP-g6, proc., pp.232-235.
Philadelfia, 1996.

24. E. VIDAL: "Language Learning, Understanding and Translation", In Proceedings in Artificial Intel-
ligence: CRIM/FORWISS Workshop on Progress and Prospects of Speech Research and Technology,
H. Niemann, R. de Mori and G. Hanrieder (eds.), pp. 131-140. Infix, (1994).

25. E. VIDAL: ~Finite-State Speech-to-speech Translation", Proc. of the ICASSP'97, Munich, Germany,
vol.I, pp. 111-122. (1997)

26. E.VIDAL, F.CASACUBERTA, P.GARCIA. "Grammatical Inference and Automatic Speech l%ecogni-
tion". In Speech Recognition and Coding. New Advances and Trends, J.Rubio and J.M.Lopez, Eds.
Springer Verlag, 1994.

27. E.VIDAL, D.LLOaENS. "Using knowledge to improve N-Gram Language Modeling through the
MGGI methodology". In Grammatical Inference: Learning Synto~ from Sentences, L.Miclet, C.De
La Higuera, Eds. LNAI (1147), Springer-Verlag, 1996.

28. J.M. VILAR, A. MARZAL, E. VIDAL: "Learning Language Translation in Limited Domains using
Finite-State Models; some Extensions and Improvements". Proceedings of the EUROSPEECH-gSi
Madrid, Spain, pp. 1231-1234. (1995)

29. J.M. VILAa, E. VIDAL AND J.C. AMENGUAL: "Learning Extended Finite State Models for Lan-
guage Translation". Proceedings of the ECAI96 (12th European Conference on Artificial Intelli-
gence). August (1996).

30. Linux system documentacion, at directory "/usr/doe/at" (Debian distribution). Also, see "man
at" on a Unix system.

78

