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Abstract. The paper discusses the problem of determinising finite-state automata contain- 
ing large numbers of e-moves. Experiments with finite-state approximations of natural lan- 
guage grammars often give rise to very large automata with a very large number of e- 
moves. The paper identifies three subset construction algorithms which treat e-moves. A 
number of experiments has been performed which indicate that the algorithms diff~ con- 
siderably in practice. Furthermore, the experiments suggest that the average number of e- 
moves per state can be used to predict which algorithm is likely to perform best for a given 
input automatorL 

1 Introduction 

In experimenting with finite-state approximation techniques for context-free and more pow- 
erful grammatical formalisms (such as the techniques presented in Pereira and Wright (1997), 
Nederhof (1997), Evans (1997)) we have found that the resulting automata often are extremely 
large. Moreover, the automata contain many e-moves (jumps). And finally, if such automata are 
determinised then the resulting automata are often smaller. It turns out that a straightforward 
implementation of the subset construction determinisation algorithm performs badly for such 
inputs. 

As a motivating example, consider the definite-clause grammar that has been developed 
for the OVIS2 Spoken Dialogue System. This grammar is described in detail in van Noord et 
al. (1997). After removing the feature constraints of this grammar, and after the removal of the 
sub-grammar for temporal expressions, this context-free skeleton grammar was input to an im- 
plementation of the technique described in Nederhof (1997). 1 The resulting non-deterministic 
automaton (labelled zov/s2 below) contains 89832 states, 80935 e-moves, and 80400 transitions. 
The determinised automaton contains only 6541 states, and 60781 transitions. Finally, the mini- 
mal automaton contains only 78 states and 526 transitions! Other grammars give rise to similar 
numbers. Thus, the approximation techniques yield particularly 'verbose' automata for rela- 
tively simple languages. 

The experiments were performed using the FSA Utilities toolkit (van Noord, 1997). At the 
time, an old version of the toolkit was used, which ran into memory problems for some of these 
automata. For this reason,, the subset construction algorithm has been re-implemented, paying 
special attention to the treatment of e-moves. Three variants of the subset construction algo- 
rithm are identified which differ in the way e-moves are treated: 

per graph The most obvious and straightforward approach is sequential in the following 
sense. Firstly, an equivalent automaton without e-moves is constructed for the input. In or- 

A later implementation by Nederhof (p.c.) avoids construction of the complete non-determistic automa- 
ton by determinis'mg and minimising subautomata before they are embedded into larger subautomata. 
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der to do this, the transitive closure of the graph consisting of all e-moves is computed. Sec- 
ondly, the resulting automato n is then treated by a subset construction algorithm for e-free 
automata. 

per state For each state which occurs in a subset produced during subset construction, com- 
pute the states which are reachable using e-moves. The results of this computation can be 
memorised, or computed for each state in a preprocessing step. This is the approach men- 
tioned briefly in Johson and Wood (1997). 2 

per subset For each subset Q of states which arises during subset construction, compute Q' D 
Q which extends Q with all states which are reachable from any member of Q using e- 
moves. Such an algorithm is described in Aho, Sethi, and Ullman (1986). We extend this 
algorithm by memorising the e-closure computation. 

• The motivation for this paper is the experience that the first approach turns out to be imprac- 
tical for automata with very large numbers of e-moves. An integration of the subset construc- 
tion algorithm with the computation of e-reachable states performs much better in practice. The 
per subset algorithm almost always performs better than the per state approach. However, for 
automata with a low number of jumps, the per graph algorithm outperforms the others. 

In constructing an e-free automaton the number of transitions increases. Given the fact that 
the input automaton already is extremely large (compared to the simplicity of the language it 
defines), this is an undesirable situation. An equivalent e-freeautomaton for the example given 
above results in an automaton with 2353781 transitions. The implementation ofper subset is the 
only variant which succeeds in determinising the input automaton of this example. 

In the following section some background information concerning the FSA Utilities tool- 
box is provided. Section 3 then presents a short statement of the problem (determinise a given 
finite-state automaton), and a subset construction algorithm which solves this problem in the 
absence of e-moves. Section 4 identifies three variants of the subset construction algorithm 
which take e-moves into account. Finally, section 5 discusses some experiments in order to com- 
pare the three variants both on randomly generated automata and on automata generated by 
approximation algorithms. 

2 FSA Ut i l i t i e s  

The FSA Utilities tool-box is a collection of tools to manipulate regular expressions, finite-state 
automata and finite-state transducers (both string-to-string and string-to-weight transducers). 
Manipulations include determirtisation (both for finite-state acceptors and finite-state trans- 
ducers), minimisation, composition, complementation, intersection, Kleene closure, etc. Var- 
ious visualisation tools are available to browse finite-state automata. The tool-box is imple- 
mented in SICStus Prolog. 

The motivation for the FSA Utilities tool-box has been the rapidly growing interest for finite- 
state techniques in computational linguistics. The FSA Utilities tool-box has been developed to 
experiment with these techniques. The tool-box is available free of charge under Gnu General 
Public License. z The following provides an overview of the functionality of the tool-box. 

2 According to Derick Wood (p.c.), this approach has been implemented in several systems, including 
Howard Johnson's INR System. 

3 See http: //www. let. rug. nl /%7Evannoord/Fsa./. The automata used in the experiments are 

available from the same site. , 
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- Construction of finite automata on the basis of regular expressions. Regular expressiorl op- 
erators include concatenation, Kleene closure, union and option (the standard regular ex- 
pression operators). Furthermore the extended regular expression operators are provided: 
complement, difference and ".intersection. Symbols can be intervals of symbols, or the 'Any'- 
variable which matches any symbol. Regular expression operators are provided for oper- 
ations on the underlying automaton, including minimisation and determinisation. FinaUy, 
we support user-defined regular expression operators. 

- We also provide operators for transductions such as composition, cross-product, same- 
length-cross-product, domain, range, identity and in~cersion. 

- Determinisation and Minimisation. Three different minimisation algorithms are sup- 
ported: Hopcroft's algorithm (Hopcroft, 1971), Hopcroft and Ullmart's algorithm (Hopcroft 
and Ullman, 1979), and Brzozowski's algorithm (Brzozowski, 1962). 

- Determinisation and minimisation of string-to-string and string-to-weight transducers 
(Mohri, 1996; Mohri, 1997). 

- Visuuli~tion. Support includes built-in visualisation (TCl/Tk, TeX+PicTeX, TeX+PsTricks, 
Postscript) and interfaces to third party graph visualisation software (Graphviz (dot), VCG, 
daWmci). 

- Random generation of finite automata (an extension of the algorithm in Leslie (1995) to al- 
low the generation of finite automata containing e-moves). 

3 Subset Construction 

3.1 Problem statement 

Let a finite-state machine M be specified by a tuple (Q, 22, 6, S, F) where Q is a finite set of states, 
is a finite alphabet, 6 is a function from Q x (27 u {e} ) --* 2 Q. Furthermore, S c Q is a set of 

start states 4 and F C Q is a set of final states. 

Let e-move be the relation {(qi, qJ)lqj E $(qi, e)}. e-reachable is the reflexive and transitive 
closure of e-move. Let e-CLOSURE: 2 Q --, 2 Q be a function which is defined as: 

e-CLOSURE(Q') = {qlq' fi Q', (q', q) e e-reachable) 

For any given finite-state automaton M = (Q, ~,  6, S, F) there is an equivalent deterministic 
automaton M' = (2 Q, 27, 6', {Q0}, F'). F' is the set of all states in 2 Q containing a final state of 
M, i.e., the set of subsets {Q~ e 2Ctlq E Qi, q E F}. M' has a single start state Q0 which is the 
epsilon closure of the start states of M, i.e., Q0 = e-CLOSURE(S). Finally, 

¢({q~, q2,..., qd, a) = ~'LOSUREC6(q~, ~) U ~(q2, a) U.. .  U ~(q~, a)) 

An algorithm which computes M' for a given M will only need to take into account states in 
20 which are reachable from the start state Q0. This is the reason that for many input automata 
the algorithm does not need to treat all subsets of states (but note that there are automata for 
which all subsets are relevant, and hence exponential behaviour cannot be avoided in general). 

Consider the subset construction algorithm in figure 1. The algorithm maintains a set of 
subsets States. Each subset can be either marked or unmarked (to indicate whether the sub- 
set has been treated by the algorithm); the set of unmarked subsets is sometimes referred to 

4 Note that a set of start states is required, rather than a single start state. Many operations onautomata 
can be defined somewhat more elegantly in this way. Obviously, for deterministic automata this set 
should be a singleton set. 
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fund subset_construction ( ( Q, 27, 6, S, F) ) 
index_transitionsO; Trans := 0; F/ns/s := 0; States := O; 
Start =: epsilon.dosure( S) 
add(Start) 
while there is an unmarked subset T E States do 

m~rk(T) 
foreach (a, U) ~ insm~ctions(T) do 

U := epsilon_dosure(U) 
TransiT, a] := {U} 
add(U) 

od 
ed 
mtum (States, E, rrans, {Start}, P # ~ )  

end 

proc add (U) Reachable-state-set Maintenance 
i f U ~  States 

then 
add U unmarked to States 
if U N F then F/na/s := F/na/s U U fi 

fi 
end 

tunct/mtrucaons (P) 
return merge(Upe P transfl/ons(p)) 

end 

Instruction Computation 

funct eps//on_dosure(U) 
return U 

end 

variant 1: No e-moves 

Figure 1. Subset-construction algorithm. 

as the agenda. The algorithm takes such an unmarked subset T and computes all transitions 
leaving T. This computation is performed by the function instructions and is called instruction 
computation by Johson and Wood (1997). 

The function index_transitions constructs the function transitions : Q -~ 2~ x 2Q. This func- 
tion returns for a given state p the set of pairs (s, T) representing the transitions leaving p. Fur- 
thermore, the function merge takes such a set of pairs and merges all pairs with the same first 
element (by taking the union of the corresponding second elements). For example: 

me••e({(a•{••2•4})•(b•{2•4})•(a•{3•4})•(b•{5•6})})={(a•{••2•3;4})•(b•{2•4•5•6•)} 

The procedure add  is responsible for "reachable-state-set maintenance', by  ensuring that 
target subsets are added to the set of subsets if these subsets were not encountered before. More- 
over, if such a new subset contains a final state, then this subset is added to the set of final states. 
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4 T h r e e  V a r i a n t s  for  e - M o v e s  

The algorithm presented in the previous section does not treat e-moves. In this section three 
possible extensions of the algorithm are identified to treat e-moves. 

4.1 Per graph 

This variant can be seen as a straightforward implementation of the constructive proof that for 
any given automaton with e-moves there is an equivalent one without e-moves (Hopcroft and 
Ullman, 1979)[page 26-27]. 

For a given M = (Q,2~,6,S,F) t l ~  variant first computes M' = (Q,2~,6',S',F), where 
S' = e-CLOSURE(S), and ~'(q, a) = e-CLOSURE(5(q, a)). The function e-CLOSURE is com- 
puted by using a standard transitive closure algorithm for directed graphs: this algorithm i s  
applied to the directed graph consisting of all e-moves of M. Such an algorithm can be found 
in several textbooks (see, for instance, Cormen, Leiserson, and Rivest (1990)). 

The advantage of this approach is that the subset construction algorithm does not need to 
be modified at all. Moreover, the transitive closure algorithm is fired only once (for the full 
graph), whereas the following two variants call a spedalised transitive closure algorithm pos- 
sibly many times. 

4.2 Per subset and per state 

The pet subset and the per state algorithm use a variant of the transitive closure algorithm for 
graphs. Instead of computing the transitive closure of a given graph, this algorithm only com- 
putes the closure for a given set of states. Such an algorithm is given in figure2. 

funct c/osure(T) 
D=: 0 
foreach t E T do add t unmarked to D od 
while there is an unmarked state t E D do 

mark(t) 
foreach q E ~(t, e) do 

if q ~ D then add q unmarked to D fi 
od 

od 
return D 

end 

Figure 2. Epsilon-closure Algorithm 

In either of the two integrated approaches, the subset construction algorithm is initialised 
with an agenda containing a single subset which is the e-CLOSDRE of the set of start-states of 
the input; furthermore, the way in which new transitions are computed also takes the effect 
of ~-moves into account. Both differences are accounted for by an alternative definition of the 
epsilon_closure function. 
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The approach in which the transitive closure is computed for one state at a time is defined 
by the following definition of the epsilon_closure function. Note that we make sure that the 
transitive closure computation is only performed once for each input state, by memorising the 
closure/unctior~- 

funct epsilon_dosure(U) 
ret.m U~u me~o( dos~e( {,,} ) ) 

end 

variant 2: per state 

In the case of the per subset approach the closure algorithm is applied to each subset. We also 
memorise the closure function, in order to ensure that the closure computation is performed 
only once for each subset. This can be useful since the same subset can be generated many times 
during subset construction. The definition simply is: 

funct epsilon_dosure(U) 
return memo ( d osure ( U ) ) 

end 

variant 3: per subset 

The motivation for per state approach may be the insight that in this case the closure algo- 
rithm is called at most IQ] times. In contrast, in the per subset approach the transitive closure 
algorithm may need to be called 2 IQI times. On the other hand, in the per state approach some 
overhead must be accepted for computing the union of the results for each state. Moreover, in 
practice the number of subsets is often much smaller than 21QI. In some cases, the number of 
reachable subsets is smaller than the number of states encountered in those subsets. 

II 

II 

II 

5 Experiments 

Two sets of experiments have been performed. In the first set of experiments a number of ran- 
dom automata is generated according to a number of criteria (based on Leslie (1995)). In the 
second set of experiments, results are provided for a number of (much larger) automata that 
surfaced during actual development work on finite-state approximation techniques. 

Random automata. Firstly, consider a number of experiments for randomly generated automata. 
Following Leslie (1995), the absolute transition density of an automaton is defined as the number 
of transitions divided by the square of the number of states times the number of symbols (i.e. 
the number of transitions divided by the number of possible transitions). Deterministic transi- 
tion density is the number of transitions divided by the number of states times the number of 
symbols (i.e. the ratio of the number of transitions and the number of possible trans~'ons in a 
deterministic machine). Leslie (1995) shows that deterministic transition density is a reliable mea- 
sure for the difficulty of subset construction. Exponential blow-up can be expected for input 
automata with deterministic transition density of around 2. 5 

A number of automata were generated randomly, according to the number of states, sym- 
bols, and transition density. The random generator makes sure that all states are reachable from 
the start state. For the first experiment, a number of automata was randomly generated, consist- 
ing of 15 symbols, and 15, 20, 25, 100 or 1000 states, using various densities (and no e-moves). 

5 Leslie uses the terms absolute density and deterministic density. 

62 



m 

m 

m 

m 

m 

m 

m 

m 

u 

m 

mm 

n 

m 

m 

m 

The results are summarised in figure 3. Only a single result is given since each of the imple- 
mentations works equally well in the absence of e-moves. 8 

A new concept called absolute jump density is introduced to specify the number of c-moves. It 
is defined as the number of e-moves divided by the square of the number of states (i.e., the prob- 
ability that an e-move exists for a given pair of states). Furthermore, deterministic jump density 
is the number of e-moves divided by the number of states (i.e., the average number of ~-moves 
which leave a given state). In order to measure the differences between the three implemen- 
tations, a number of automata has been generated consisting of 15 states and 15 symbols, us- 
ing various transition densities between 0.01 and 0.3 (for larger densities the automata tend to 
collapse to an automaton for 27*). For each of these transition densities, jump densities were 
chosen in the range 0.01 to 0.24 (again, for larger values the automaton collapses). In figure 4 
the outcomes of this experiment are summarised by listing the average amount of CPU-time re- 
quired per deterministic jump density (for each of the three algorithms). Thus, every dot repre- 
sents the average for determinising a number of different input automata with various absolute 
transition densities and the same deterministic jump densi~. The figures 5, 6 and 7 summarise 
similar experiments using input automata with 20, 25 and 100 states, z 

The striking aspect of these experiments is that the per graph algorithm is more efficient for 
lower deterministic jump densities, whereas, if the deterministic jump density gets larger, the 
per subset algorithm is more efficient. The turning point is around a deterministic jump den- 
sity between I and 1.5~ where it seems that for larger automata the turning point occurs at a 

' lower determinisic jump density. Interestingly, this generalisation is supported by the experi- 
ments on automata which were generated by approximation techniques (although the results 
for randomly generated automata are more consistent than the results for "real' examples). 

Experiment: Automata generated by approximation algorithms The automata used in the previous 
experiments were randomly generated, according to a number of criteria. However, it may well 
be that in practice the automata that are to be treated by the algorithm have typical properties 
which were not reflected in this test data. For this reason results are presented for a number 
of automata that were generated using approximation techniques for context-free grammars 
(Pereira and Wright, 1997; Nederhof, 1997; Evans, 1997). In particular, a number of automata 
has been used generated by Mark-Jan Nederhof using the technique described in Nederhof 
(1997). In addition, a small number of automata have been used which were generated using 
the technique of Pereira and Wright (1997) (as implemented by Nederhof). 

The automata typically contain lots of jumps. Moreover, the number of states of the resulting 
automaton is often smaller than the number of states in the input automaton, Results are given 
in table 1. One of the most striking examples is the ygrim automaton consisting of 3382 states 

CPU-time was measured on a HP 9000/780 machine running HP-UX 10.20, 240Mb, with SICStus Prolog 
3 #3. For comparison with an "industrial strength" implementation, we have applied the determiniser 
of AT&T's FSM utilities for the same examples. The results show that for automata with very small 
transition densities FSM is faster (up to 2 Or 3 times as fast), but for automata with larger densities the 
results are very similar, in some cases our Prolog implementation is even faster. Note finally that our 
timings do include IO, but not the start-up of the Prolog engine. 
We also provide the results for FSM again; we used the pipe fsmrmepsilon I fsmdeterminize 
• According to Fernando Pereira (pc) the comparison is less meaningful in this case because the fsm- 
rmepsilon program treats weighted automata. This generalisation requires some overhead also in case 
no weights are used (for the determiniser this generalisation does not lead to any significant overhead). 
Pereira mentions furthermore that FSM used to include a determiniser with integrated treatment of 
jumps. Because this version could not (easily) be generalised for weighted automata it was dropped 
from the tool-set. 
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and 10571 jumps. For this example, the per graph implementation ran out of memory (after a 
long time), whereas the  per subset algorithm produced the determinised automaton relatively 
quickly. The FSM implementation took much longer for this example (whereas for many of the 
other examples it performs better than our implementations). Note that this example has the 
highest number of jumps per number of states ratio. 

input automaton 
Id #states # transitions # jumps 

! griml.n 238 43 485 
g9a 342 58 478 
g7 362 424 277 

g15 409 90 627 
ovis5.n 417 702 130 

g9 438 313 472 
gll 822 78 1578 
g8 956 2415 330 

g14 1048 403 1404 
ovis4.n~ 1424 2210 660 

g13 1441 1006 1404 
rene2 1800 2597 96 

ovis9.p 1868 2791 3120 
ygrim 3382 5422 10571 

ygrim.pi 48062 63704 122095 
java19 54369 28333 59394 
java16 64210 43935 43505 
zovis3 88156 78895 79437 
zovis2 89832 80400 80935 

CPU-ti~e (msec) 
~'aph subset state FS~ 

2060 100 140 4( 
260 70 70 3( 
180 240 200 6( 
280 130 180 4( 
290 320 380 19C 
560 850 640 11C 

1280 160 160 6( 
500 500 610 14( 

1080 1240 730 12Cl 
2260 222O 2870 1311 

I 2400 3780 2550 44~ 
440 530 600 20~ 

8334O 8O4O0 8704O 5256C 
2710 70140 78491( [ 

F 
- 1438960 - 857585G 

130130 55290 64420 847( 
67180 24200 31770 637G 

968160 768440 
- 1176650 - 938040 

T a b l e  1. Results for automata generated by approximation algorithms. The dashes in the table indicate 
that the corresponding algorithm ran out of memory (after a long period of time) for that particular ex- 
ample. 

6 Conclusion 

We have discussed three variants of the subset-construction algorithm for determinising finite 
automata. The experiments support the following conclusions: 

- the per graph variant works best for automata with a limited number of jumps 
- the per subset variant works best for automata with a large number of jumps 
- the per state variant almost never outperforms both of the two other variants 
- typically, if the deterministic jump density of the input is less than 1, then the pergraph vari- 

ant outperforms the  per subset variant. If this value is larger than 1.5, then per subset outper- 
forms per graph. 

- the per subset approach is especially useful for automata generated by finite-state approxi- 
mation techniques, because those techniques often yield automata with very large number 
of ~-moves. 
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