
Does tagging help parsing?
A case study on finite state parsing

Atro Voutflainen

Research Unit for Multflingual Language Technology
Department of General Linguistics

P.O. Box 4 (Keskuskatu 8, 7th floor)
FIN-00014 University of Helsinki, F~,~l~n~[

• A~zo. Vou~ilaJ~enQllJ~g. hels~g]TA. I i

Abstract. The usefulness of POS taggere for syntactic parsing is a question little ad-
dressed in the literature. Because taggers reduce ambiguity from the parser's input, pars-
ing is commonly supposed to become faster, and the result less ambiguous. On the other
h~nd, tagging errors probably reduce the parser's recognition rate, so this drawback may
outweigh the possible advantages. This paper empirically investigates these issues using
two di~erent rule-based morphological dlsambiguators as preprocessor of a wide-coverage
finite-state parser of English. With these rule-based taggers, the parser's output becomes
less ambiguous without a considerable penalty to recognition rate. Parsing speed increases
slightly, not decisively.

1 I n t r o d u c t i o n

1.1 The pars ing p r o b l e m

Most application-oriented natural-language parsers are computer prograTrLq that try to auto-
matically ass~n a syntactic structure onto input sentences, by using a formal language model,
e.g. a large gr~mm~. In a sense, a syntactic parser tries to choose from a multitude of imag-
inable syntactic sentence analyses the alternative that is the most appropriate for the input
sentence. So syntactic parsing can be ~iewed as a massive disambiguation task where the main
problems are:

(i) Determln~n~ the correct sentence A~lysis, especially in the case of long sentences, may
require a lot of time and memory (computational problem)

(ii) Deciding between possible analyses may be dlmcult due to (i) the inherent syntactic ambi-
guity of the sentence or (ii) the shortages in the specificity of the parser's language model
(linguistic problem)

(iii) Assigning a syntactic analysis to an acceptable sentence may fail because the parser's lan-
guage model does not account for the syntactic structures that emerge as the sentence
(linguistic problem)

1.2 A possible pa r t i a l so lu t ion

A solution often proposed to these problems is use of a tagger as a front-end of the parser. Now
what is a tagger, and how are they supposed to help parsers?

W h a t are taggers7 Program~ variously known as part-of-speech taggers, POS taggers or
morphological taggers typically contain three analytic stages:

25

- The token@er identifies words, punctuation marks and sentence boundaries.
- The ls~ca/ana/~/ser assigns possible analyses to each word. Some words can receive multiple

analyses; for instance the sentence Those girls sing well can be analysed as follows:

Those_DET_P
girls_Npl
sing_Vpres_Vinf_Vimp_Vsbj
well_ADV_N_Vpres_Vinf_Wmp_Vsbj

Here Those gets two alternative analyses (a dete~,,,iner and a pronoun analysis), while tvei!
gets as many as six alternative analyses.

- The d~sambiguator resolves lexical ambiguity by removing analyses that seem superfluous
according to the language model used by the program; for instance:

Those_DET
g i r l s _ N p l
s ing_Vpres
well_ADV

In this case all words became fully disambiguated, but, to reduce the risk of removing
the correct analysis, some of the most r]if~cult ambiguities can optionally be left pending
in many tagging program~ (so other modules e.g. the parser, can choose between them if
necessary).

The design of the disambiguator is the hardest subproblem in tagging, and several solutions
have been proposed for improving the reliability of the disambiguator's language model (data-
driven models automatically generated from pretagged texts; linguistic models with manually
developed disambiguation grAmmArs; hybrid models).

Why are taggers supposed to be useful? As for the supposed usefulness of taggers for
parsing, the following assumptions are often made:

(i) The tagger rapidly decreases the ambiguity of the sentence, as a consequence of which the
computation~IIy heavier syntactic parser has to deal with less ambiguity. So the computa.
tional problem should become smal/er and parsing faster.

(ii) The tagger resolves some ambiguities not addressed by the syntactic parser's language
model, so the parser is expected to have a better chance to find the correct analysis with
the tagger than without it.

At the first flush, these assumptions may seem self-evidently true. However, also sceptical
views are possible. One could argue that taggers do not give any real advantage for mature
syntactic parsers, e.g. for the following reasons:

(i) taggers resolve mainly local, 'easy' ambiguities that would be resolved by the parser in
any case with very little extra computational load, so it is questionable whether a mature
syntactic parser would gain anything in terms of speed or accuracy £~om using a tagger,

(fi) taggers make so many mlspredictions that the possible galne in parsing time, or average
number of syntactic parses, is more than counteracted by the decrease in the parser's recall:
for many sentences no good parse is available if correct POS tags have been lost, and

26

(iii) even if there were a tagger with a satisfactory recall and precision, maldng it would take
so much effort, either in the form of annotating big training corpora, or writing rules, that
the same effort would be more beneficially spent on developing the parser itself.

So the assumed relevance of tagging for parsing seems to be an open, empirical question.
What does the literature say on the subject?

1.3 Ear l ier s tud ies

U

I

in

I

n i

n

The computational linguistics literature seems to contain very few evaluations about using
taggers in parsing. Three studies are examined next.

- A well-known paper on using statistical taggers in statistical parsing is one by Charniak
et ai. {1]. In their experiments, they use two kinds of statistical tagger: the single tagger
outputs fully disambiguated text, while the multiple tagger leaves the hardest ambiguities
unresolved to decrease the number of its mlspredictions. Contrary to expectations, their
experiments suggest that the statistical parser is no better in resolving the hardest morpho-
logical ambiguities than the single tagger, so passing the most difficult ambiguities on to the
aw~ecUy more informed syntactic language model does not seem practically motivated.

- A paper by Wauschkuhn [17] e Yamlnes the use of a statistical HMM tagger for German
as a front-end of a syntactic parser that uses a hand-coded grammar. The experiments
suggest that a tagger reduces the ambiguity of the syntactic parser's output, but only with a
considerable penalty in terms of the poorer recognition rate of the parser. The experiments
give the impression that taggers, at least statistical ones, are not particularly useful for
improving a parser's accuracy.

- Results more favourable for tagging are reported by Ofiazer and Kuru~z [7]. They report
that a rule-based tagger of Turkish (that uses a human disambiguator as its final component)
improved the speed of a LFG parser of Turkish using a non-trivial grammar by a factor of
2.38, while the average number of parses per sentence fell from 5.78 to 3.30. However, they
do not report the figures for sentence recognition: how many sentences got a parse with the
tagger and how many without. Also their test data was rather small: 80 sentences with an
average sentence length of 5.7 words only. Several questions remain open:

• How much does the fully automatic part of the tagger improve performance?
• What is the behaviour of the systems with longer sentences?
• How is the parser's recognition rate affected?
• How much would the tagger benefit a parser with a more mature grammar?

1.4 S t ruc tu re o f th is p a p e r

In this paper, we present experiments with two taggers and one parser. The parser is a re-
ductionistic dependency-oriented finite-state parser of English that represents utterances with
morphological and syntactic tags. The parser consists of the following components: (i) a to-
keniser; (ii) a morphological analyser; (iii) a simple lookup program for introducing all possible
syntactic analyses as alternatives for each word and word-boundary; and (iv) a finite-state syn-
tactic parser (actually a syntactic disambiguator) that discards those sentence readings that
violate the parser's grammar.

This setup contains no specific module for resolving morphological ambiguities that arise
in lexical analysis. The syntactic grammar actually suffices for resolving many morphological
ambiguities as a side-effect of proper syntactic parsing.

27

However, a morphological disambiguator can optionally be included in the setup, directly af-
ter morphological analysis. The disambiguators referred to in this paper are linguistic constraint-
based systems. Ambiguities occurring in unspecified contexts are not resolved, so these disam-
biguators can produce ambiguous output.

In this paper we report experiments where the modular setup uses the following disamhigua-
tion modules:

- No disambiguation. Only the 6-ite state syntactic parser is used for ambiguity resolution.
- A small disambiguator whose 149 rules were written during one day. This module discards

over 70% of all extra morphological readings.
- A mature disambiguator whose 3,500 rules were written in the course of several years. This

module discards about 95% of all extra morphological readings with a ml,lmal error rate.

The data is new to the system, and it consists of three corpora, each with 200 sentences. In
the experiments, we consider the following issues:

- Syntactic ambiguity before finite state disambiguatio~ how is the ambiguity rate of the
syntactic disambiguator's input reduced by different morphological disambiguators?

- The parser's recognition rate how many sentences does the finite state parser recognise
with different morphological disambiguators?

- Multiple analyses: how much syntactic ambiguity is produced by the different setups?
- Parsing time: how much does the use of different disambiguators affect parsing time?

2 T h e f i n i t e s t a t e p a r s e r

The finite state parser outlined in this section is described in greater detail in Tapauainen [11]
and Voutilainen [14].

2.1 G r a m m a t i c a l r e p r e s e n t a t i o n

Let us describe the syntactic representation with an example. The parser produces the following
analysis for the sentence The man who is fond of sin~ng this aria killed his . ~ e r (some
morphological information is deleted for readability):

@@

the DET @>N @
man N @SUBJ @<
who PRON @SUBJ @
be V @MV N<@ @
fond A @SC Q
of PREP @N< @
sing PCP1 ~mv P<<@ @
this DET @>N @
aria N @obj @>
kill V ~MV MAINC@ @

he PRON @>N @

fa ther N @OBJ @
@fullstop @@

28

m

m

[]

m

m

[]

m

U

[]

m

m

[]

m

[]

The representation co,~i~_~ts of base-forms and various Buds of tags. "@@" indicates sentence
boundaries; the centre-embedded finite clause "who is fond of singing this aria" is flanked by
the clause boundary tags @< and ~ > and its function is postmodifying, as indicated with
the second tag N<Q of "be", the main verb (@MV) of the clause. The pronoun "who" is the
subject (~S .UBJ) of this clause, and the adjective "fond" is the subject complement (@sc)
that is followed by the postmodifying (@N<) prepositional phrase starting with "oi ~', whose
complement is the no,~S-lte main verb (~nv) "sing" that has the noun "aria" as its object
(~obj) (note that the lower case is reserved for functions in nonfinite clauses).

The matrix clause "The man killed his father" is a finite main clause (MAINC~) whose main
verb (@MV) is "kill". The subject (QSUBJ) of the finite clause is the noun "man", while the
noun "father" is the object in the finite clause (@OBJ). The word "father" has one premodifier
(~ N) , namely the genitive pronoun "he".

This representation is designed to follow the principle of surface-syntacticity: distinctions
not motivated by surface grammatical phenomena, e.g. many attachment and coordination
problems, are avoided by making the syntactic representation sufficiently underspecific in the
description of grammatically (if not semantically) unresolvable distinctions.

2.2 .An~dysls rout ine

The tokeniser identifies words and punctuation marks. The morphological analyser contains a
rule-based lexicon and a guesser that assign one or more morphological analyses to each word,
cf. the analysis of the word-form "tries"

"~:l;z"i e s) "
"try" <SV0> V PRES SG3 VFIN
"try" N N0M PL

The next step is the introduction of alternative syntactic and word-boundary descriptors with
a simple lookup program. After this stage, the sentence "Pete tries." looks liice this:

(@@ pete <*> <Proper> N NON SG (:OR Q~h @>N @>>P @SUBJ @subj @OBJ @obj
@IOBJ @iobj @SC @sc @0C @oc ~ULPP ~P<< @ADVL)

(:0a Q @/ @< @>) (:0a
(try <SV0> <SV> <P/for> V PRES SG3 VFIN

(:OR (~RV MAINC@) (@MV PAREN@) (~MV SUBJ@) (@MV OBJ@) (@MV obj@)
(QMV IOBJ@) (0MV SC@) (Gg~, ec@) (@MV 0C@) (@MV oc@) (@MV APP@)
C~mV pc<Q) (@Hv ~VLQ) (~ ~<@)))

Ctry N N0M PL (:OR q~h @>N @>>P @SUBJ @subj @0BJ @obj @IOBJ @iobj @SC @sc
@OC @oc @APP QP<< ~XDVL)))

(:0R @ @/ @< Q>) @fullstop @@)

compact representation contains 16 • 4 ,14 • 16 • 4 ---- 57, 344 different sentence readings.
Long sentences easily get 10 s ° - 101°° different sentence readings at this stage, i.e. the ambiguity
problem with this syntactic representation is considerable.

The final stage in this setup is resolution of syntactic ambiguities: those sentence readings
that violate even one syntactic rule in the gr,--mar are discarded; the rest are proposed as
parses of the sentence.

29

B
[]

[]

B
2.3 Rule fo rma l i sm I

Grammar rules are basically extended regular expressions. A typical rule is the implication rule
whereby contextual requirements can be expressed for a distributional (or functional) category.
For instance the following partial rule (taken from Voutllainen [12]) about a syntactic form
category, namely prepositional phrases,

PassVChain..
PostmodC1..

NH-q..

PREP =>

< D e ~ e r r e d > • _ ,

< D e f e r r e d > • _ ,

< D e f e r r e d > • _ ;

@ Coord,
..PrepComp,

states a number of alternative contexts in which the expression (given left of the arrow) occurs.
The underscore shows the position of the expression with regard to the required alternative
contexts, expressed as regular expressions. The parser interprets this kind of rule in the following
way: whenever a string satisfying the expression left of the arrow is detected, the parser checks
whether any of the required contextual expressions are found in the input sentence reading.
If a contextual licence is found, the sentence reading is accepted by the rule, otherwise the

sentence-reading is rejected.

Another typical rule is the "nowhere" predicate with which the occurrence of a given regular
expression can be forbidden. For instance, the predicate nowhere(VFIN .. VFIN); forbids
the occurrence of two ilnite verbs in the same finite clause.

These ilnite-state rules express partial facts about the language, and they are independent
of each other in the sense that no particular application order is expected. A sentence reading
is accepted by the parser only if it is accepted by each individual rule.

2.4 T h e g r a m m a r

The syntactic grammar contains some 2,600 finite-state rules each of which have been tested and
corrected against a manually parsed corpus of about 250,000 words (over 10,000 unambiguously
parsed sentences). Each rule in the grammar accepts virtually all parses in this corpus (i.e. a
rule may disagree with at most one or two sentences in the corpus, usually when the sentence
contaln.q a little-used construction).

The rules are not much restricted by engineering consideratious; linguistic truth has been
more important. This shows e.g. in the non-locality of many of the rules: the description of
many syntactic phenomena seems to require reference to contextual elements in the scope of a
• iiuite clause, often even in the scope of the whole sentence, and this kind of globaUty has been
practiced even though this probably results in bigger processing requirements for the iinite
state disambiguator (many disambiguating decisions have to be delayed e.g. until the end of
the clause or Sentence, therefore more alternatives have to be kept longer 'alive' than might be
the case "with very local rules).

Many rules are lexicalised in the sense that some element in the rule is a word (rather than
a tag). Though a small purely feature-based grammar may seem more appe~llng aesthetically
or computation_Ally, many useful lexico-grammatical generalisations would be lost if reference
to words were not allowed.

30

To sum up: the finite state disambiguator's task is facilitated by using a reasonably re-
solvable surface-syntactic grammatical representation, but the parser's task remains computa-
tionally rather demanding because of (i) the high initial ambiguity of the input, especially in
the case of long sentences, (fi) considerably high number of rules and rule automata, and (iii)
the non-locality of the rules. The finite state syntactic disamhiguator is clearly faced with a
computationally and linguistically very demanding task.

3 M o r p h o l o g i c a l d i s A m b i g u a t o r s

8.1 Ma tu re disAmbiguator

The mature disamhiguator is an early version of a system presently known as EngCG-2 (Samu-
elsson and Voutflainen [8]). EngCG-2 uses a grP-mmAr Of 3,500 rules according to the Constraint
Grammar framework (Karlsson et al., eds., [4]). The rules are pattern-action statements that,
depending on rule type, select a morphological reading as correct (by discarding other readings)
or discard a morphological reading as incorrect, when the ambiguity-forml-g morphological
an_~!ysis occurs in a context specified with the context~conditions of the constraint. Context-
conditions can refer to tags and words in any sentence position; also certain types of word/tag
sequences can be used in context-conditions.

An evaluation and comparison of EngCG-2 to a state-of-the-art statistical tagger is reported
in (Samuelsson and Voutilalnen [8]). In similar cir~lm~tances, the error rate of EngCG-2 was an
order of magnitude smaller than that of the statistical tagger. On a 266 MI-/z Pentium nmnln~
Linux, EngCG-2 tags around 4,000 words per second. 1

3.2 Small d isambiguator

To determine the benefit of using a rule set developed in a short time, one long day was spent on
writing a constraint gr~trnrnar Of 149 rules for disambiguating frequent and obviously resolvable
ambiguities. As the grammarian's empirical basis, a manually disambiguated benchmark corpus
of about 300,000 words was used.

The small grammar was tested agaln~t a held-out manually disambiguated (and several
times proofread) corpus of 114,388 words with 87,495 superfluous morphological analyses. After
the 149 rules were applied to this corpus, there were still 24,458 superfluous analyses, i.e.
about 72% of all extra readings were discarded, and the output word contained an average of
1.21 alternative morphological analyses. Of the 63,037 discarded readings, 79 were analysed
as contextually legitimate, i.e. of the predictions made by the new tagger, almost 99.9% were
correct.

4 E x p e r i m e n t s

This section reports the application of the following three setups to new text data:

(i) Nodi~. the finite state parser is used as such.

i Information about testing and licensing the present version of the EngCG-2 tagger is given at the
foUowing U]~: hCtp://In~, coaexor, f i /analysers, html.

31

(ii) Small: a morphological disambiguation module with 149 rules is used before the finite state
parser.

(fii) Eng: a morphological disambiguation module with 3,500 rules is used before the finite state
parser.

Three text corpora were used as test data:

(i) Data 1:200 10-word sentences from The Wall Street Journal
(ii) Data 2:200 15-word sentences from The Wall Street Journal
(iii) Data 3:200 20-word sentences from The Wall Street Journal

In the word count, punctuation marks were excluded. The data is new to system.
The machine used in the tests is Sun SparcStation 10/30, with 64 MB of RAM.

In the statistics below, the term 'recognition rate' is used. Recognition rate indicates the
percentage of sentences that get at least one analysis, correct or incorrect, from the parser. The
parser's correctness rate rema~nq to be determined later (but cf. Section 4.2 above).

4.1 Statistics on input Ambiguity

Before going to detailed examinations, some statistics on input ambiguity are given. The fol-
lowing table indicates how many readings each word received on an average after possible
morphological disambiguation and introduction of syntactic ambiguities. The ambiguity rates
are given for morphology and syntax separately.

SmaU Eng
I N°dismor syn [mor Isyn]morlsyn [

lDatallZ.r4 122.8111.19 Ila.0311.04113.91 I
Data2t1.78 23.4811.21 I16.r011.04114.33 I
Data311.'T7 23.0911.23 11n.eS11.0S114.x31

For instance, after EngCG-2 dissmbiguation, words in Data 2 received an ,average 1.04
morphological analyses and 14.33 syntactic analyses.

At the word level, syntactic ambiguity decreases quite considerably even using the small
disambiguator, from about 23 syntactic readings per word to some 16.5 syntactic readings per
word. Use of the EngCC~2 disambiguator does not contribute much to further decrease of
syntactic ambiguity. Overall, syntactic ambiguity at the word level remain.~ quite large, about
14 analyses per word.

However, if we consider the ambiguity rate of the finite state parser's input at the sentence
level (which is the more common way of looking at ambiguity at the level of syntax), things
look more worrying. The following table (next page) presents syntactic ambiguity rates at the
sentence level for Data 1 (the 10-word sentences).

When no morphological disambiguation is done, a typical ambiguity rate is 1017 sentence
readings per input sentence; even after EngCG-2 disambiguation, the typical ambiguity rate is
still about 10 zs sentence readings.

32

ReadingsiNodis [SmaU[Eng I
1O lz 4
10 is 1 8 9
10~" [i 16 27
1O l~ 14 32 48'
10 lu 31 52 49
1017 49 50 33
10 ~s 50 23 17
I0 I" ~ 1 2 7
lO ~° 5 2
10 r' 17 2
10 ~z [2 1
10 z3 '1 1
I0 ~ ,1

4.2 Analysis of da ta 1

All three setups were able to parse Data 1 in the time allowed. Here are some statistics on the
different setups:

. INod

b parses 2% (4) [2.5% (5) 3.5% (7)
_1 parses]14.5% (29) 119.5% (39) 37% (74)
1-5 parses 159.5% (119)[64% (128) 80% (160)
1-20 parses]89.5% (179)J91'5% (i'83) 95.5% (191)

0-10 sec [6% (12) [20.5% (41) 40.5% (81)
0-100 sec 161% (122) i76% (152) 90% (180)

Morphological disambiguation did not considerably affect the recognition rate of the parser.
Without morphological disambiguation, the parser gave analyses for 98% of all sentences; the
use of the EngCG-2 disambignator decreased the recognition rate only by 1.5%. Considering
that the known strength of the EngCG-2 disambiguator is h/gh recall, the small loss in the
number of parses does not seem particularly surpr'~dng.

The number of parses decreased even when the small disambiguator was used. The decrease
was considerable with EngCG-2, e.g. the rate of sentences receiving 1-5 parses rose from about
60% to 80%. The somewhat unexpected syntactic disambiguating power of the morphological
disambiguators is probably due to the lexical nature of the disambiguation grammar (many
constraints refer to words, not only to tags). Lexical information has been argued to be an
important part of a successful POS tagger (cf. e.g. Church [2]).

Generally, parsing was rather slow, considering the shortness of the sentences. Disambigua-
tion certainly had a positive impact on parsing time, e.g. the ratio of sentences parsed in less
than ten seconds rose from 6% to about 40%.

4.3 Analysis of da t a 2

Nodis and Small were in trouble due to excessively slow parsing. The first 9 sentences were
parsed by all three setups. Here are the relevant statistics.

33

1

1

1

1

92 1092 15 L53 3 117
2 14 335 8 97 4 44
3 133 426 32 355 10 i107
4 6 291 3 34 3 !34
5 2 418 1 171 11 77
6 14 741 2 92 r2 !92
7 12 1878 4 428 14 429
8 13 3061 2 792 !2 479
9 81 ~021 34 16052 428

The general trend seems to agree with experiences from Data 1: the number of parses as
well as parsing time generally decreases when more morphological disambiguation is carried
out (however, note the curious exception in the case of sentence 3: parsing was faster with
no disambiguation than with small disambiguation). Because of the scarcity of the data, more
specific comparisons can not be made.

The setup with EngCG-2 disambiguation parsed all 200 sentences of Data 2. Because the
other setups did not do this in the time allowed, no comparisons could be made. It may however
be interesting to make two observations about the number of parses received. Consider the
following table.

li 13.s% (7) J Ile (38) I
-s 1~.8.u% (117) t

[!:20 186% (172) J

Of all sentences, 96.5% got at least one parse, i.e. the slightly greater length of the input
sentences does not seem to considerably affect the parser's coverage (the recognition rate was
the same in Data 1).

The ambiguity rate increases cousidexably. For instance, only 28.5% of all sentences in Data
2 (compared to the 80% of Data 1) received 1-5 parses.

4.4 Analysis of d a t a 3

In the analysis of the 20-word sentences, even the setup using the EngCG-2 dissmbiguator was
in trouble: within the time allowed, the system analysed only 25 sentences. All of them received
at least one parse.

5 D i s c u s s i o n a n d c o n c l u s i o n

We have investigated the use of two rule-based morphological disambiguators - the grammar of
one developed over several years, the grammar of the other written in one day - for facilitating
syntactic parsing in a nontrivial finite-state parser, paying special attention to the following
issues:

34

m

m

m)

m

m

I

m

mm

n

m

m

m

m

mm

m

U

m

mmm

n

n

m
raiN
m

- the possible negative effects of morphological disambiguation to the parser's recognition
rate,

- whether morphological dis~mhiguation can contribute to resolution of syntactic ambiguity,
and

- the effect of morphological dis~mhiguation on parsing time

On the basis of empirical tests, two encouraging observations can be made. Firstly, the parser's
recognition rate was not considerably impaired by either disambiguator. The argued strength
of rule-based disambiguators is their high recall (partly at the expense of precision); the present
observations seem to support the argument. Secondly, especially the EngCG-2 disambiguator
contributed to syntactic disambigustion (i.e. the number of parses decreased considerably). This
is probably due to the lexicalised nature of the disambiguation gramme,.

Our observations about the effect of morphological disambiguation on parsing time are
somewhat mixed. Obviously, both disambiguators made parsing faster; for example, the EngCG-
2 disambiguator made the parsing o f the 200 10-word sentences about six times faster than
with no morphological disambiguation. However, these experiments do not encourage use of
morphological di~mhiguators if they are expected to m~kp parsing possible; a parser troubled
by long sentences should be improved with other techniques as well. One possible extension of
the present study is to apply computationa/ly cheap CG-style disambiguation techniques also
to syntactic ambigu/ties before using the finite-state parser.

Acknowledgements

The pkrsing sof~,w=e used in these experiments was written by Pasi Tapanainen ([9, 10]).

References

1. E. Charniak, G. Carroll, J. Adcock, A. Cassandra, Y. Gotoh, J. Katz, M. Littman and J. McCann.
1996. 'l~ggers for parsers. Artificial Int~lligentz, Vol. 85, No. 1-2.

2. K. W. Church. 1992. Current Practice in Part of Speech Tagging and Suggestions for the Future.
In Si,,,,,,ons (eel.), S~r~O= Fr=ci: In Honor of H ~ Ku~era, Mi~igan $1at~: Studies. Mlcl~an.
13-48.

3. F. Karlsson. 1990. Constraint Gr~mmA~ as a Framework for Parsing Running Text. In H. Karlgren
(ed.), Proc. Coling'90. Helsi-i,i~

4. F. Karlsson, A. Voutilainen, J. Heikkil~ and A. Anttila (eds.). 1995. Co~traint Grammar. A
Language-Independent Sgstem for Parsing Unrestricted Tezt. Berlin and New Yorl~ Mouton de
Oruyter.

5. K. Koskenniemi. 1983. Two-level Morphology. A General Computational Model for Word.form
Production and Generation. Publications 11, Department of General Linguistics, University of
Helsinki.

6. K. Koskenniemi. 1990. Finite-state parsing and disambiguation. Proc. Coling'gO. Hel~in~ Finland.
7. Oflazer, K. and I. Kuru~z. 1994. Tagging and morphological disamb'~tion of Turkish text. Procs.

ANLP-94.
8. C. Samuelsson and A. Voutilalnen. 1997. Comparing a linguistic and a stochastic tagger. Proc.

EACL-ACL97.. ACL, Madrid.
9. P. Tspanainsn. 1992. ".~rellisiin automaatteihin perustuva luonnollisen kielen j~sennin" (A finite

state parser of natural language). Licentiate thesis. Dept. Computer Science, University of Helsinki.
10. P. Tapanainen. 1996. The Constraint Grammar Parser CG-~. Dept. General Linguistics, Univer-

sity of Helsinki.

35

11. P. Tapanainen. 1997. Applying a finite-state intersection grammar, in Emmanuel Roche and
Yves Schabes, editors, Fin~e.atate language proceuing. A Bradford Book, MIT Press, Cambridge,
Massachusetts. 311-327.

12. A. Voutflalnen. 1994. Three 8tudiea o~ gmmmar-baJed jut/ace parsing of unrestricted Bnglish tezt.
(Doctoral dissertation.). Publications 24, Dept. General Linguistics, Un/versity of Helsinki.

13. A. Voutilainen. 1995. A syntax-based part of speech analyser. Proc. BAC/~'95. Pages 157-164.
14. A. Voutilai~en. 1997. The design of a (finite-state) parsing gr*mm~r, in]~m ~el Roche and

Yves Schabes, editors, Finite-state language proceuing. A Bradford Book, MIT Press, Cambridge,
Massachusetts.

15. A. Voutila|-en and P. Tapansinen. 1993. Ambiguity Resolution in s Reductionistic Parser. Proc.
EACI,'g3. ACL, Utrecht. Pages 394-403.

16. A. Voutilainen and T. J~awinen. 1995. Specifying a shallow grammatical representation for parsing
purposes. Proc. BAOL'95. ACL, Dublin.

17. O. Wauschkuhn 1995. The influence of tagging on the results of partial parsing in German cor-
pora. Proc. Fourth International Workshop on Paraing te~hnoloyie& Prague/Karlovy Vary, Czech
Republic, September 1995. Pages 260-270.

36

m

m

[]

m

m

m

m

m

m
[]

m
[]

m
[]

[]

[]

[]

[]

[]

m
[]

m
[]

[]

m
[]

[]

[]

m

m
[]

