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1. Introduction 
Natural language learning seems, from a formal 
point o f  view, an enigma. As a matter of  fact, every 
human being, given nearly exclusively positive 
examples  (as psycholinguists have noticed) is able at 
the age o f  about five to master his/her mother  
tongue. Though, no linguistically interesting class o f  
formal languages is learnable with positive data in 
usual models  (Gold ' s  (67) and Valiant 's  (84)). 

To solve this paradox, various solutions have 
been proposed. Following the chomskian intuitions 
(Chomsky 65, 68), it can be admitted that natural 
languages belong to a restricted family and that the 
human mind includes an innate knowing o f  the 
structure o f  this class (Shinohara 90). Another 
approach consists in putting structural, statistical or 
complexi ty  constraints on the examples proposed to 
the learner, making his/her inferences easier 
(Sakakibara 92). 

A particular family o f  research, more concerned 
with the cognitive relevance of  its models, considers 
that in a n a t u r a l ,  situations, examples are always 
provided with semantic and pragmatic information 
and tries to make profit o f  it (Anderson 77; 
Hamburger  & Wexler  75 ; Hill 83 ;  Langley 82). 
This is the family our research belongs to. 

But the property o f  meaningfulness o f  natural 
languages is computationally tractable only i f  we 
have at our disposal a theory that precisely 
articulates syntax and semantics. The strongest 
possible articulation is known as the Fredge ' s  
principle of  compositionality. This principle has 
acquired an explicit  formulation with the works o f  
Richard Montague (Dowry, Wall  & Peters 81 ;  
Montague 74) and his inheritors. 

We will first briefly recall an adapted version o f  
this syntaetico-semantie framework, based on a type 
of grammars called << classical categorial 
g r a m m a r s ,  (or CCGs), and we will then show how 
it can been used in a formal theory o f  natural 
language learning. 

2. Syntactic analysis with CCGs 
A categorial  grammar G is a 4-tuple G=<V, C, f, S> 
with : 

- V is the finite alphabet (or vocabulary) o f  G ; 
- C is the finite set of basic categories o f G  ; 

From C, we define the set o f  all possible 
categories o f  G, noted C' ,  as the closure o f  C for 

the operators / and \. C'  is the smallest set o f  
categories verifying : 

* Cc_C' ; 

* i f  X e C '  and Y e C '  then:  X/Y~C' and 

Y~XeC'  ; 
- f is a function : V-->Pf(C')  where Pf(C') is the 

set o f  finite subsets of  C', which associates each 
element v in V with the finite set f(v)_cC' of  its 
categories ; 

- S e C  is the axiomatic category o f  G. 
In this framework, the set of  syntactically correct 

sentences is the set of  finite concatenations o f  
elements o f  the vocabulary for which there exists an 
affectation o f  categories that can be <~ reduced ~ to the 
axiomatic category S. In CCGs, the admitted 
reduction rules for any categories X and Y in C'  are : 

-R1 : X /Y.  Y w >  X 
- R ' I  : Y .  Y k X w >  X 
The language L(G) defined by G is then : 
L(G)= {weV*; 3 n e N  Vie { 1 ..... n}wieV , 

W=Wl...w n and 3Cie  f(wi) , 
C l..-Cn - - * ' - - > s  }. 

The class of  languages defined by CCGs is the 
class o f  context-free languages (Bar Hillel, Gaifman 
& Shamir 60). CCGs are lexieally oriented because 
grammatical information is entirely supported by the 
categories associated with each word. They are also 
well adapted to natural languages (Oehrle, Bach & 
Wheeler 88). 

E x a m p l e  : 
Let us define a CCG for the analysis of  a small 

subset o f  natural language, including the vocabulary 
V={a, every, man, John, Paul, runs, is . . . .  }. The set o f  
basic categories is C={S, T, CN} where T stands for 
a t e r m s ,  and is affected to proper names, CN means 
a common nouns >~, intransitive verbs receive the 
category "l 'kS, transitive ones : ('IAS)/T and 
determiners:  (S/(T~S))/CN. Figures 1 and 2 display 
analysis trees. 

a man FUrlS 
(S/(T~S))/CN CN TkS 

S/(TX.S) / 

figure 1 : analysis tree n ° 1 
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John is 
T (T~SYT 

Paul 
T 

figure 2 : analysis tree n°2 

3. F r o m  syntax  to semant ic s  

The key idea o f  Montague's work (74) was to define 
an isomorphism between syntactic trees and 
semantic ones .  This definition is the formal 
expression o f  the principle of  compositionality. It 
allows to automatically translate sentences in natural 
language into formulas of  an adapted semantic 
language that Montague called << intentional logic , .  

3.1 T h e  s e m a n t i c  r e p r e s e n t a t i o n  

Intentional Logic (or IL) generalizes the first order 
predicate logic by including typed lambda-calculus 
and by making a general use o f  the notion o f  
modality through the concept o f  intension (Dowty 
81). Only a simplified version o f  this framework 
(not taking into account intensions) is recalled here. 

- IL is a typed language : the set I o f  all possible 
types o f  IL includes 
* elementary types : e e l  (type o f  <~ entities >>) 
and tel (type of<< truth values >>) ; 
* for any types uel and vel, <u,v>el (<u,v> is 
the type of functions taking an argument of 
type u and giving a result of type v). 

- semantics of IL : a denotation set Dw is 
associated with every type weI as follows : 
* De=E where E is the denumerable set of all 

entities of the world ; 
* D,={O,1}~ 
* D,~,~--D, : the denotation set o f  a 

composed type is a function. 

3.2 Translat ion as an i somorph i sm 

Each analysis tree produced by a CCG can be 
<< translated >> into IL : 

- translation of  the categories into logical types 
(function k : C' ~ >  I) : 

* basic categories : in our example, 
k(S)--t, k(T)=e, k(CN)=<e,t> ; 

* derived categories : 
for any X e C '  and Y e C '  : 
k(X/Y)=k(Y~)=<k(Y),k(X)>. 

- translation of  the words (q : V × C '  ~ >  IL) : 
each couple (v,U) where v is a word in V and 
Uef(v)~_C' is (one of) its eategory(ies) is 
associated with a logical formula q(v,U) o f  IL 
whose type is k(U)eI.  The most usual and 
useful translations are : 
* q(a,(S/(T~S))/CN)=;~,P;~.Q3x[P(x)AQ(x)] 

q(every,(S/(T~S ))/CN)=LP~.QVx[P(x)-->Q(x)] 

where x and y are variables of  type e, P and Q 
variables o f  type <e,t>. 

* the verb << to be >>, as a transitive verb, is 
translated by : 
q(is,(T~S)/T)=~xZ.y[y=x] 
with x and y variables of type e. 

* Every other word w is translated into a logical 
constant noted w'. 

- translation of the rules of combination : 
Rules RI and R'I are translated into oriented 
functional applications (Moortgat 88) : 

W l : f .  x - - >  f(x) 
W'I  : x .  f - - >  f(x) 

These definitions preserve the correspondence 
between categories of  the grammar and types o f  logic. 
This property assures for example that syntactically 
correct sentences (of category S) will be translated 
into logical propositions (of  type k(S)----t, i.e. with a 
truth value). 

Example  : 
The example sentences analyzed in figures 1 and 2 

can now be translated into IL, as shown in figures 3 
and 4 respectively. 

~.P~.Q3x[P(x)AQ(x)] man' run' 

/ , /   Q3xtp!x? . / 
=~.QBx[man (x)^Q(~,~] f 

Z.Q3x[man'(x)^Q(x)](run') 
=3x[man'(x)Arun'(x)] 

figure 3 : semantic translation of  tree n°l 

John' kxky[y=x] Paul' 
\ Wl\ / , 

LxLy[y=x~(Paul ) 
W'l ~ ~y[y=Paul'] 

~.y[y=Paur](John') 
=[John'-Paul'] 

figure 4 : semantic translation of  tree n°2 

4. T h e  l e a r n i n g  m o d e l  

4.1 Innate knowledge  and concepts to learn 

When a human being learns a natural language, we 
suppose that he has at his disposal sentences 
Syntactically correct and semantically relevant. The 
corresponding situation in our model is an algorithm 
which takes as inputs a sentence that can be analyzed 
by a CCG together with its logical translation into IL. 

The innate knowing supposed is reduced to the 
inference rules R1 and R ' I  and the corresponding 
translation rules WI  and W ' I .  As opposed to usual 
semantic-based methods o f  learning, no word 
meaning is supposed to be initially known. 
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Finally, what does the learner has to learn ? In 
our linguistic framework, syntactic and semantic 
information are attached to the members of  the 
vocabulary by functions f and q. These functions are 
the target outputs o f  the algorithm. More precisely, 
the syntactic and semantic knowledge to be learned 
can be represented as a finite list o f  triplets of  the 
fo rm:  (v,U,w) where v~V, Uaf(v)c_C' and 
w=q(v,U) EIL. 

E x a m p l e  : 
Learning the example grammar previously used 

means learning the following set : 
H={(John, T, John'), (Paul, T, Paul'), 

(is, (T~S)/T, Lx~.y[y=x]), (runs, ~ S ,  run'), 
(a, (S/(TkS))/CN, ZP3.Q3x[P(x)^Q(x)])...}. 

4.2 T h e  l e a r n i n g  algori thm 

The proposed leaning strategy, given in figure 5, 
consists in building a hypothesis set, updated after 
each new input, to approach the target set. 

For every couple <s,x(s)> where s is a sentence and 
x(s) its logical translation in IL, do : 

- i f  there is one, affect to the words in s their 
category in the current hypothesis set ; 

else, make hypotheses on the category 
associated by fwith  the unknown words o f s  ; 

- For every possible analysis tree : 
* translate the tree into IL ; 
* compare the final translation with x(s) and 

infer possible values for the unknown semantic 
translation o f  words to update the current 
hypothesis set. 

Figure 5 : the learning strategy 

4.3 A d e t a i l e d  e x a m p l e  

At the beginning, the current hypothesis set is the 
empty set. Let us suppose that the first given 
example is <John runs, nm'(John')>.  

- the syntactic hypotheses : the only categories 
allowing to build an analysis tree are 
* fwst possibility : f(John)=A and f(nans)=A\S ; 
* second one : f(John)=S/B and f(runs)=B. 
where A and B can be any category in C',  basic 
or not. 

- the semantic translation : 
* first possibility : see fig. 6 (the input data are 

put into rectangles). 

[ John runs 1 q(John,A) q(runs,A\S) 
A \  A)S W ' l ~  / 

R '  1 ~ --=> q(runs,A~S)(q(John,A)) 
s I --nan'(J°hn') I 

figure 6 : hypothesis HI 

I f  we compare q(nans,A\S)(q(John,A)) with 
x(s)=run'(John'), it leads to : 
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q(nan,A\S)=nan' and q(John,A)=John'. 
So a possible hypothesis set is : 
H 1 = {(Jolm,A,John'), (runs,A\S,nan') }. 
Similarly, t h e  second possibility leads to 
another possible hypothesis set : 
H2={(John,S/B,run'), (mns,B,John')}. 

At this stage, we have no reason to prefer one 
hypothesis to the other (the learner does not know that 
John is linked with John',  neither about runs and 
run'). The current hypothesis is then : H1 OR H2. But 
suppose now that a second given example is <Paul 
runs, nan'(Panl')>. The same process applies to this 
example, except that a runs >> now belongs twice to 
the current hypothesis set. 

- the syntactic hypotheses : the new sentence 
treated with H1 forces to affect the category A to 
<~ Paul >>, while H2 forces to affect the category 
S/B. 

- the semantic translation : 
* in the first possibility, H 1 becomes 

H 1 '= {(John,A,John'),(nans,A\S,run'), 
, (Paul,A,Paul') } 

* it is impossible to provide a value to 
q(Paul,S/B) following the tree built with 
hypothesis H2. 

So H2 is abandoned and only H 1' remains. It can 
be noticed that a similar conclusion would have 
followed if  the second example had been : 

<John sleeps, sleeps'(John')>. 
Any other example sentence including one o f  the 

words concerned by the current hypothesis is enough 
to discredit hypothesis H2. 

5. E v a l u a t i o n  a n d  c o n c l u s i o n  

The choices made in this model have theoretical 
backgrounds and consequences. 

First, CCG seem to be particularly adapted to the 
learning process. Recent researches have found 
conditions under which the syntax o f  these grammars 
is learnable (Buszkowski & Penn 90, Kanazawa 96). 
But, in these frameworks, tree structures are provided 
as inputs to the learning algorithm : in our model, the 
semantic translation plays a close role but in a weaker 
and more cognitively relevant fashion. Adriaans (92) 
also proposed a learning algorithm for categorial 
grammars, using both syntactic and semantic inputs, 
but he treated them separately : the semantic learning 
could only start when the syntactic learning was 
achieved, instead o f  helping it as we propose. 

Previous models built in the syntactieo-semantic 
spirit (Anderson 77, Hamburger & Wexler 75, Hill 
83, Langley 82,) used more traditional syntax and 
semantic representations very close to syntactic 
structures (Pinker 79) : they failed to represent 
complex logical relations like quantification or 
Boolean operators. Logical languages like IL are 
more powerful and a priori independent from 
linguistic structures. In fact, our approach assumes 
that logic is the natural << language of  the m i n d ,  in 
that situations perceived by our learner are supposed 
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to be automatically translated into logical formulas 
before being compared with linguistic expressions. 

Fundamentally, what makes natural languages 
learnable in our model is the presupposition that 
there exists an isomorphism between the syntax of 
sentences and their semantics. This strong principle 
of  compositionality is contested by some linguists 
but remains an interesting approximation. The 
~< graph deformation condition,  used in (Anderson 
77) was a weaker version of  it. Under this condition, 
the inputs provided to the learner are the leaves and 
root respectively of  two isomorphic trees and what is 
to be reconstituted is the body of these trees, as 
displayed in figure 6. But, as opposed to (Anderson 
77), there is an asymmetry : the formalism chosen is 
adapted to language analysis but not to language 
generation. 

The efficiency of  the algorithm seems to 
crucially rely on the complexity of the input 
relatively to the current hypothesis. This complexity 
can be measured by the number of  new words 
appearing in a sentence example. I f  few new words 
are introduced in each new example, the number of  
hypotheses to explore will remain reasonable. Else, 
the learning may be too complicated. Of  course, this 
valuable intuition still needs to be formulated and 
proved in a more formal way. 

It is not possible to develop here how to treat the 
cases when a word needs more than one category, 
but it remains possible to learn in this context. The 
learning is incremental. 

The framework is still incomplete because we 
haven't chosen any learning model and we haven't 
proved the learnability of  any language in it with our 
strategy. An extended and more general version of  
the algorithm in figure 5, using Lambek grammars 
(Lambek 58), is being implemented and tested. But 
the approach seems original and interesting enough 
to be developed further. 
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