
B

m

|

m

m
|

m

m

m

m

m

Shallow Post Morphological Processing with KURD

Michael Carl and Antic Schmidt-Wigger
email: cad,antje@iai.uni-sb.de

Institut fiir Angewandte Informstionsforschung,
Martin-Luther-StraJ~e 14, 66111 Saarbrticken

Germany

A b s t r a c t

In this paper we describe a constraint
based formalism that manipulates se-
quences of morphological analyses in or-
der to Kill, Unify, Replace or Delete
parts of the structure. We compare the
formalism to a similar approach (CGP)
and describe two applications.

1 Introduction

In NLP applications an input text undergoes a
number of transformations until the desired in-
formation can be extracted from it. Typically,
such transformations involve part of speech tag-
ging, morphological analyses such as lemmatiza-
tion or full derivational and compositional analy-
ses, context-dependent disambiguation of tagging
results, multi-word recognition, shallow, partial or
full syntactic parsing, semantic analyses and so

OU.
It is not always evident what level of analysis
should be involved. For instance, whether a cer-
tain task reqnizes a full parse or whether some
'shallow' operations may be sufficient is often dif-
ficult to determine. The choice of tools can be
guided by the data or the requirements and the
prerequisites of the goal to be reached. These
considerations may depend on the availability of a
grammatical model, the required standard of the
results, and processing time constraints. However,
the optimization of this task remains an unre-

solved area until now.
The interest of the NLP community for 'shal-
low' processing has grown recently (cf. (Karls-
son, 1990),(Abney, 1996), (Deelerek and Klein,
1997)). In this paper, we describe a simple formal-
ism (KURD x) that is designed to perform some

X KURD is an acronym representing the ftrst letters
of the implemented actions: K(ill)-U(nify)-R(¢place)-
D(elete)

Carl and Schmidt-Wigger 257

'shallow' operations on morphologically analyzed
texts. The output can be used directly, or be redi-
rected to further processing.

Typical tasks for such shallow processing include

• Tagging (disarnbiguation of multiple mor-

phological analyses)
Often a set of simple rules that runs in a set
order over the results of the morphological
analyses is sufficient to disambiguate multiple
analysis of a word due to its morphosyntactic
context.

• S y n t a x c h e c k i n g
Grammatically erroneous sentences are de-
tected by a set of rules describing common
weak points such as missing punctuation
marks or ill-formed agreement.

• S ty le c h e c k i n g
Highly complex constructions or heavy
phrases can disturb the reading and under-
standing process. To avoid this, style check-
ers can recognize such patterns so that the
author can readjust his text for better com-
munication.

• Shal low p a r s i n g
Shallow parsing can help to simplify the data
before full parsing is undertaken. It recog-
nizes syntactic phrases, mostly on the nomi-
nal level.

• Segmentation
The morphological analysis deals with words
which are presented in texts. High level
processing deals with units between the word
level and the text level, mostly with sen-
tences. Thus, sentence segmentation is a typ-
ical shallow process, but other subunits could
be equally interesting.

KURD

Michael Carl and Antje Schmidt-Wigger (1998) Shallow Post Morphological Processing with KURD. In D.M.W. Powers (ed.)
NeMLaP3/CoNLL98: New Methods in Language Processing and Computational Natural Language Learning. ACL, pp 257-265.

The basic idea of the presented formalism is the
following: in a set of rules, pat terns are defined
which are m a p p e d onto the morphologically ana-
lyzed input strings. If the mapping is successful,
modifications of the analysis are undertaken ac-
cording to the specifications in the rule. To ensure
expressiveness and ease of formulat ion of the rules,
we have introduced some elements of unification

based systems into the formalism.

2 Morphological Analysis

Morphological analysis 2 is the process of separat-

ing grammatical information and (a) stem(s) from
the surface form of an input word. Lemmatization
generates from an input string a basic word form
that does not contain inflectional information. A
lemma together with the grammatical information
is thus equivalent to the surface form of the word.

In addition, lemma decomposition can be carried
out by the morphological processor. Recognition
of composition and derivation yields knowledge
about the internal structure of the word.
Morphological information and the value of the
lemma are represented in the form of sets of at-
tribute/operator/values (/I op V) which we will
refer to as feature bundles (FBs) . Beside mor-
phological analysis and lemmatizat ion, sentence
segmenta t ion is performed by the morphological
processor. T he output is thus a sentence descrip-
tor S D t ha t contains multiple Word Descriptors
W D s . The distinction between W D s and deeper
embedded F B s is useful later in this paper due to
the i m p o r t a n t functional difference. The formal
definition of a S D is as follows:

Sentence Descriptor SD:
S D : : = W D , . " , W D .

W D : := F B
FB ::= {AVS} ; . . . ; { A v s }

AVS : := A o p V , . . - , A op V
V : : = A T M I F B I V A R

A T M : := a tom ; - - . ; a t o m
V A R : := '_' followed by any string

A : : = any alpha-numeric string

op : : : = I *=

A W D m a y consist of two types of disjunctive
representat ion (local or complex disjunction) in

2In this section and in the paper we refer to MPRO as
the analysis tool (Maas, 1996). MPRO is very powerful: it
yields more than 95% correct morphological analysis and
lemmas of arbitrary German and English text.

a number of different levels. Local disjunction is
an alternation of atomic values, complex disjunc-
t ion is an alternation of complex features (F B) .

Which of the disjunctive representations is cho-
sen depends on the one hand on the expressive
requirements (i.e. no feature dependencies can
be expressed with local disjunctions) and on the
other hand on the linguistic assumptions of the
morphological analysis.

Word descriptor W D " d e r ' :
' l u = d _ a r t , c=w, s c = a r t , fu=def]

I

'gen= ,] fgsn= ,] f 1(

- c a s e = d ; g) t c a se - - ' n) (c a s e = g j j

~ case--n, ' c a se=g ;d j

agr= ~g=m, ; nb=sg,

(n b = s g I ,g=f

Both types of disjunction are shown in the rep-
resentation of the German article " d e r ' . A first
level of disjunction occurs on the level of the word
descriptors. Different analyses (as a determiner
(lu=d_e. r t) and as a relative pronoun (l u = d _ r e l))
are separated by a semicolon ' ; ' . The second level
of disjunction occurs in the feature " a g r ' , which
has a complex disjunction as its value. The feature
" c a s e " in the first complex disjunctor has a local
disjunction (g ; d) a s its value. The word " d e r " has
seven different interpretations which axe mel ted
together here by means of the two different types
of disjunction.
Note tha t we do not need variable binding between
different at tr ibutes of the same F B 3. because we
presume tha t each attribute in a (morphological)
F B expresses a different piece of informat ion (it
thus has a different type).

3 The Formalism

The formalism we shall describe in this section ap-
plies a set of rules in a predefmed order to sentence
descriptors S D thereby modifying selected word
descriptors W D . The modified SD s are re turned
as a result. For each SD, each rule is repeatedly

Sin many theories and formalisms (e.g. HPSG, CAT2
(Sharp and Streiter, 1995)) different attributes in a FB can
be forced to always have the same values by assigning the
same variable as their values (they share the same struc-
ture). However, these approaches allow structure sharing
and vl~able binding only among equal types.

Carl and Schmidt- Wigger 258 KURD

m
II

m

m

m

m

m
|

|

|

m
II

1

I

I

I
I

applied, starting from the first W D .
A rule essentially consists of a description part
and an action part. The description consists of a
number of conditions tha t must match successive
W D s . While matching the description part of
a rule onto a SD, W D s are marked in order to
be modified in the action part . A rule fails if a
condition does not match. In this case the action
part of the rule is not activated. The action part
is activated if all conditions are satisfied. Actions
may modify (Kill, Unify, Replace or Delete) a W D
or single features of it.
A condition of a rule can either match an interval
or it can match a count of the W D . In the for-
mer case, one set of tests must be true. In the
latter case two sets of tests must be true, one for
an external interval and one for a count of an
internal interval.

3.1 S o m e e x a m p l e s

German verbs have detachable prefixes that can
be homonyms to prepositions. Morphological
analysis thus generates two interpretations for
such a string. However, the syntactic position
of prefixes and prepositions within a sentence is
different. While prepositions occur as the head
in prepositional phrases and thus ate always fol-
lowed by a nominal phrase or a pronoun, detached
prefixes occur at the end of the matrix sentence,
thus fonowed by a punctuation mark or a coordi-
nator. The following rule disambiguates a prefix
at the end of a sentence, i.e the interpretation as
a preposition ({c=w,sc=p}) shMi be deleted from
the W D .

(1) Disambiguate_Prefix =

The rule 1 consists of two conditions (separated
by a comma) in the description part and one
act in the action part . It illustrates the capac-
ity of the formalism to express disjunction and
conjunction at the same time. The first condition
matches a preposition (~c=w, so=p}) and a pre-
fix (~c=vpref}) . Tha t is, the matched W D is
expected to be ambiguous with respect to its
category. Feature cooccurrences are requited in
the first test, where both features c=w and sc=p

must occur in conjunction in (at least) one in-
terpretation of the matched W D . The existence
quantifier e preceding the F B means that there
is an appropriate interpretation in the W D , i.e.
there is a non-empty intersection of F B and
W D . The second condition consists of one test
only. The F B matches an end-of-sentence item
(~sc--punct;corma}). Here, the all quantifier a
requites the W D to be a subset of the F B i.e.
there is no interpretation in the W D which is not
an end-of-sentence item.

A W D for which the first condition is true is
marked by the marker ~A'. The rule applies if the
second condition is true for the following W D .
The act/on part has one consequence that con-
sists of one act. The W D which has been marked
in the description part is unified with the F B
(~c=vpref}) of the act. This results in the un-
ambiguous identification of the prefix because the
prepositional analysis is ruled out.
An example of a rule that disambiguates the
agreement of a (German) noun phrase is given
below (2). The rule can be paraphrased as fol-
lows: for all sequences of W D that have a uni-
fyable agreement feature ({affr= lGlt~) and that
consist of an article (~c=w, sc=ar~}) followed by
zero or more adjectives (*~c=adj}) followed by
one noun (~c--noun~): unify the intersection of
the agreement ({agr=_AGlt}) into the respective
features of the marked word descriptors.

(2) Disambiguate_Noun_Phrase =

Ae { c = , . s o = a r t , ag-z=_A,It}.

*Aa { c = a d j . agr=_lGE}.

Ae { c='noun, agr---_A,It} :

Au {agr=_AGP,.}

The description part of rule (2) has three
conditions. Each condition matches an interval
of the WDs. The second condition can possibly
be empty since it has the irleene star scope ('* ') .
All W D s for which the test is true are marked by
the maxker "A" and thus undergo the same act in
the action part.
The formalism allows the use of variables (e.g.
_AGR) for the purpose of unification. W D s can
only be modified by instantiatious of variables i.e.
variable bindings may not be transferred into the
W D . Each time a rule is activated, the variables
are reinitialized.

Carl and Schmidt-Wigger 259 KURD

The rule (2) matches a noun phrase, thereby dis-
ambigua t ing the agreement. Wi th slight changes,
the ou tpu t of the rule can be turned into a shallow
parse:

(3) Reduce_Noun-Phrase :

Ae {c=w, s c = a r t , agr=_AGR},
*Aa { c = a d j , agr=_tGR},

÷ B e :

Br

The opera tor "r" in the second conseqence of
the rule (3) replaces the category value in the
noun node by a new one (~c=np}) . The de-
terminer node ({ ¢ = w , s c = a r t }) and all adjective
nodes ({c=ad j}) are removed ('killed') by means
of the kill opera tor ILk{} from the sentence de-
scriptor such tha t only the N P node is printed as
a result.

Style checking has often to deal with the
complexi ty 4 of a phrase. Therefore, it makes use
of another type of rules where the presence of a
number of word interpretat ions in a certain count

is checked. For instance in technical texts, it may
be advisable not to have more than eight words
before the finite verb. The rule (4) unifies an
appropr ia te warning number into the fixst finite
verb analysis if more than eight words have oc-
curred before it.

(4) Verb_Position =

e { m l r r = 1, v t y p ' - - f i v } ,

8e { s c ' = c o m m a ; c i t ; s l a s h }]

& { v t y p ° = f i V e { ¢ ° = v e r b } ,

The first condi t ion matches the first W D in a sen-
tence ({ imrr=1}) if it has an interpretation differ-
ent f rom a finite verb ({ v t y p ' = f i v }) . The second
cond i t ion is a count tha t matches a sequence of

4 T h e complexi ty of a phrase is a ~ n e t l o n of di~erent pa-
r am e te r s such as i ts l ength , the number of lexic-1 elements ,
the complex i ty of i ts s t ructure . The definitions differ f rom
o n e a u t h o r to the nex t . In our calculation of complexity,
only l e ng th and n u m b e r of lexical elements Lre taken into
8 , c c o u x l t .

W D s other than finite verbs. This is expressed
by the external t e s t ({ v t y p ' = f i v } ; { c ' = v e r b })
following the vertical bar. The internal t e s t

({ s c ' = c o m m a ; c i t ;sZash}), e.g. the part before
the vertical ba t counts the number of words in
the count different from punctuation marks and
slashes. The count is true if eight or more such
i n t e r n a l t e a s are true. The motivation for the
third condi t ion is to put the marker "A" on the
finite verb such that it can be unified with the
warning in the action part. The warning can be
used by further tools to select an appropriate mes-
sage for the user.

3 . ~ F o r m a l D e f i n i t i o n

The formal definition of rule syntax is given be-
low:

Definition of rule:
• /'u~e ::~-

descr : :=
condition ::=

interval : :=
Coun.,~ ::~__

te$~ : :=

nazr~e'=' descr ' : ' action
condition1 ' , ' condition~ . . .
interval] count
[~o~][~arker] t e ~ t , t e ~ t

nu~r~ in~erval ln t ' [' i n t e r va l e= t
quanti f ier FB

a c t i o n : := c o n s e q ; ' , ' conseq=

c o n s e q : := Tr~zrker ac t ; act= . . .

act : := operator F B

sco~ ::= ^ I + [* I -
marker : := t [. . . I Z

hum : := 0 [' . - I 99
operetor ::= k I u [r [

quant i f ier : := e [a

Whether or not a rule applies (i.e. its act ion

part is executed or not) depends on whether
its condi t ions match. Each condi t ion matches
the longest possible sequence of W D s and, once
matched, other segmentations axe not considered.
We do not foresee backtracking or multiple so-
lution generation. The length of an i n t e r v a l

depends on the scope of the i n t e rva l and the
outcome of the tes ts . In accordance with m a n y
linguistic formalisms we distinguish between four
scopes.

A The i n t e rva l matches one optional word.

* The i n t e rva l matches zero or more words.

+ The i n t e rva l matches at least one word.

- The i n t e rva l matches one and only one word.
This is the default value for the scope.

Carl and Schmidt- Wigger 260 KURD

I

I

l

I

I

l

l

I

I

l

I

II

II

II

Is

Is

Is

Is

!1

II

II

i l

II

A test maps a F B onto a W D . Whether a test
is true or false depends on the quant i f ier of the
test. The ezis tence quant i f ier "e" and the
all quant i f i e r "a" are implemented as follows:

e The tes t is true if there is a non-empty subset
between the F B and the current W D . The
F B describes a possible interpretation of the
current W D . The test is true if there is at
least one interpretation in the current W D

that is unifyable with F B .

a The test is true if the current W D is a subset
of the F B . The F B describes the necessary
interpretation of the current W D . The test
is true if the F B subsumes all interpretations

of the current W D .

All consequences of the action part are executed
if the description part matches. The acts of a
consequence apply to the marked W D . The fol-
lowing operators are currently implemented:

k kills the marked W D .

u unifies F B into the marked W D .

r replaces the values of the features in the
marked W D s by those of FB.

d deletes the specified features in F B f.tom the
marked WD.

Apart from an interval, a condition can consist
of a count. The length of a count is controlled
by a set of ez ternal tests (intervalezt), i.e. the
right border of the count is either the end of the
SD or a W D where one of the ez ternal tests is
false. The outcome of a count (whether it is true
or false) is controlled by a set of internal tests
(intervali,~t). For a count to be true, a t least the
specified number of internal tests must be true.

4 R e l a t e d W o r k

In order to compare KURD with other postmor-
phological processing systems, one can distinguish
between the formali.~ms' design, the implementa-
tion of a grammar and the tasks for which the
system is designed. Most such comparisons (e.g.
(Abney, 1996)) are based on processing time, ac-
curacy and recall, which in fact do not differenti-
ate between the strength of the form~l/~m and the
strength of the grammar actually implemented.
In this section we want to compare the capaxities
of KURD to another formalisms by describing its

formal characteristics for each possible step in the
chain of NLP application. Two concrete applica-
tions will be presented in the following section.

Similar to KURD, CGP of the 'Helsinki' project
(el. (Karlsson, 1990)) is a system working on
morphologically analysed text that contains lex-
ical ambiguities. KURD and CGP are somewhat
alike with respect to the basic assumptions on
steps one would need to disambiguate morpho-
logical descriptions: an ambiguous word (WD) is
observed in its context. If necessary it has to
be acertained that the context itself is not am-
biguous. In a fitting context the disambiguation
operation is triggered. The realization of these
assumptions in the two formalisms differs in the
following features:

In KURD ...

• a rule definition is based on pattern matching
of a specific context, in which the action's
focus is than selected.

• the scope of disambiguation is fixed by means
of markers. This allows more than one opera-
tion to be defined in the marked scope (WDs)
at a time, and the same operation to be ap-
plied to more than one word (WD) .

• the context of an operation and the opera-
tion itself are defined in separate parts of the
rule. Each part may contain a distinct set of
features while in CGP, all features specified
for the focused word are subject to the same
disambiguation.

• variable binding is supported. Multiple in-
terpretations of several words can be disam-
biguated by unification as exemplified in rule
(2). In CGP, rule batteries are necessary for
this task, and disambiguation of the combi-
nation of features of more than two W D is
not possible.

• unbounded dependencies can be modeled by
means of intervals. We are not sure whether
these can be modeled in CGP by means of
relative positions.

In CGP ...

• the focus of the rule is positioned before the
left- and rightward context is described.

Carl and Schmidt-Wigger 261 KURD

• one can look backwards in a context. This is
not always possible in KURD due to undei-
specification in the morphological input.

• one can define sets of features. In KURD,
this can be modeled by means of feature dis-
junction; thus more freedom in KURD, but

less consistency.

• one can discard a reading when the context
is NOT re~li~ed. In KURD, these possibility
can only be modeled using two rules and a

meta-feature.

• there is a specific clause boundary mode. In
KURD, clause boundaries have to be enumer-

ated as simple features.

To summarize the comparison, backward look-
ing seems basically the only difference with which
C G P has an advantage over KURD in terms of ex-
pressiveness, while variable binding gives KURD
advantage over CGP. In terms of user-friendliness,
the systems choose two different directions. In
KURD the use of markers and rule separation
into a description part and an action part may
reduce the number of rules, while CGP allows for
the simplification of rules by means of sets or the

clause boundary mode.

The next step in processing moves from the treat-
ment of words towards the treatment of word
groups i.e. to parsing. Traditional parsers are
full parsers building all possible deep parse trees
over the fiat input structure. Weaker models, usu-
ally referred to as ' shal lowparsers ' (cf. (Karlsson
and Kart tunen, 1997)), allow for partial parses,
for trees of depth of one or for one result only.
The output data structure of a parser is generally
a bracketed structure which preserves the origi-
nal morphological fiat structure inside the output
structure. Some shallow parsers, however such as
CGP, assign syntactic functions to the words of a
sentence and renounce the representation of the

dependency structure.
Parsing with KURD results in a one level repre-
sentation where the nodes (WD) can be enriched
with information concerning their syntactic func-
tions. The insertion of brackets is not supported
in KURD but recognized phrases can be reduced
to one node if they are part of higher level phrases.
Also recursivity of language has to be approx-
imated by means of iterative, multiple applica-
tion of (not necessarily the same) rule set. Thus

KURD has to be classified as a typical shallow
parsing system, also Mlowing for partial parsing.
The last step in the NLP processing chain is a
practical application of the linguistic knowledge
for a specific task. The next section describes
such an application of KURD for style checking.
It does not rely on a full disambiguation and syn-
tactic tagging of the morphological analysis. Dis-
ambiguation is undertaken only when necessary.
We believe that 100% disambiguation is too ex-
pensive for a rule based system 5 especially when
it has to be adapted to each new text type. In the
next section, we show that good results can also
be obtained on ambiguous input.

5 Style checking

In this section we want to describe an appli-
cation of KURD for style checking of technical
documents. The application has been developed
and tested for a car manufacturing environment
(Hailer, 1996).

In technical documentation, the quality of the text
in terms of completeness, correctness, consistency,
readability and user-frlend]hess is a central goal
(Fottner-Top, 1996). Therefore completed docu-
ments undergo a cycle of correction and re-editing.
As our experiments in this production process
have shown, 40% of re-editions in technical doc-
uments are motivated by stylistic considerations
(compared to corrections of orthographies, syn-
tax, content or layout).

On the basis of the observed re-editions, stylistic
guidelines have been formulated, such as:

1. Do not use compounds made up of three or
more elements.

2. Do not use the passive voice if there is aJa
explicit agent.

3. Long coordinations should be represented in
lists.

The compilation of these guidelines has influenced
the architecture of KURD to a certain extent.
Most scientists correlate the readability of a sen-
tence with its complexity, defined often by length,

5 CGP contained 400 rules for 90~ disamhiguation qual-
ity (c~. (Karlsson, 1990)). In order to reach nearly 100%,
this number increased up to 1109 rules.., cf. (Karlsson and
Karttunen, 1997)

Carl and Schmidt-Wigger 262 KURD

m

m

m

m

ss

ss

m

m

m

m

ss

m

m

Ii

m

II

II

II

!1

II

II

number of content words and/or structural em-

bedding. Whereas such information is not com-
mon in NLP applications, its calculation can be
modeled in KURD through the coun¢ mechanism.

The basic idea of Using the formalism for style
checking is exemplified by rule (4): a morphosyn-
tactic pattern is recognized by a specific rule uni-
fying a warning number into the marked W D .
This number triggers an appropriate message in
further processing steps that signals the use of an
undesirable formulation. As a result, the user can
ameliorate that part of the text.
For better results, the style checking application
makes use of the disambiguating power of KURD;
i.e. some tagging rules (e.g. rule (1)) precede the
application of the style rules.
The system cont~in~ at its present stage 36 style
warnings which axe expressed by 124 KURD rules:
an average of 3 to 4 rules for each style problem.
The warnings can be classified as follows (for ex-
amples, see above):

1. O n e w o r d wa rn ings (10 types of warning):
These warnings can either recognize the com-
plex internal structure of compound words, or
forbid the use of a certain word. For the latter
task, style checking moves towards checking
against the lexicon of a Controlled Language.
This task should not be over-used, a lexically
driven control mechanism seems to be more
adequate.

2. S t r u c t u r e - l i n k e d wa rn ings (19 types of
warning):
These warnings react to complex syntactic
structures and trigger the proposition of a re-
formulation to the writer. They are therefore
the most interesting for the user and for the
rule writer.

3. C o u n t i n g wa rn ings (7 types of warning):
These warnings measure the complexity of a
sentence or of a sub-phrase by counting its
dements. Complexity is a central topic in the
readability literature (see footnote 5), but it
does not allow the triggering of a concrete
reformulation proposition to the user.

Most structure-linked warnings require more than
one KURD rule. This is due to the fact that the
pattern to be recognized can occur in different
forms in the text. As shown by the following ex-
ample (5), two rules would be necessary to detect

Carl and Schmidt-Wigger 263

the 'Future II' in German, because word order of
verbal phrases in main sentences differs from that
in subordinate clauses.

(5) Der Mann wird schnell g e k o m m e n
Tl~e man will quickly come
sein.
be.

Er weifl, daft der Mann schnen
He knows, ~h~zt $he man quickly

g e k o m m e n sein wird.
come be will.

For recursive phenomena KURD's fiat matching
approach is somewhat inconvenient. In example
6, rule 2 applies to die Werkzeuge, although the
article die should in fact be]inked to Arbeiter,
while Werkzeuge stands in a bare plural.

(6) d ie W e r k z e u g e herstelhnden Arbeiter
the tools building workers

To handle such problems, one can try to enumer-
ate the dements which can be contained between
the two borders of a pattern to be recognized. But
this approach mostly yields only approximate re-
sults because it does not respect the generative
capacity of language.

However, most of the style warnings have been
easily implemented in KURD, as the appropriate
pattern can still often be recognized by one or two
elements at its borders.

The system has been tested against an analyzed
corpus of approx. 76,000 sentences. More than
5,000 sentences to be ameliorated were detected
by KURD. 757 of them were selected manually
to control the validity of the rules of warning
class 2 and 3: In 8% (64), the warnings had
been applied incorrectly. In these cases, syntac-
tic structure could not adequately be described in
the KURD formalism. These 8%, however, only
reflects the erroneous results of warning classes 2
and 3. They do not cover sentences selected by
simple rules such as those of class 1. Rules of
warning class 1 are responsible for 20% of the au-
tomatically detected sentences to be ameliorated.
These rules do never apply incorrectly.
In another test, a text of 30 pages was anno-
tated by a human corrector and the KURD style
checker. The results were compared. ABout 50%

KURD

of the human annotations were also annotated
by the computer with a comparable amelioration
proposition. 35% resisted an automatic diagno-
sis, either because the recursive structure could
not adequately be modeled by the style checking
rules, or because the information calculated by the
morphological analysis was not sufficient (i.e. no
semantic information was available). By writing
new style rules, a 65% recall could be achieved.
The precision of the style checker, on the other
hand, seems to be a critical point. The checker
produces three times more automatic warnings
than the human corrector. This is mainly due
to the 'counting rules', because the count limits
were often too low. The choice of acceptable lim-
its is still under discussion.

It has been shown that pat tern recognition could
be a valuable means for applications needing at
least basic information on syntactic structures and
that KURD could be a tool for realizing these ap-

plications.

6 C h u n k R e d u c t i o n a n d

R e f i n e m e n t

In the framework of the CBAG s module (el.
(Carl, 1998) in this volume) KURD is used in
several components. CBAG is an example based
translation engine whose aim it is to be used as a
stand-alone Example Based Machine T~anslation
system (EBMT) or to be dynamically integrated
as a f~ont-end into a Rule Based Machine T~aus-

lation system.
The CBAG module is divided into three sub-

modules:

• The Case Base Compilation module (CBC)
compiles a set of bilingual SD equivalences
into a case base thereby inducing case ab-
stractions from the concrete SD. Case ab-
stractions ensure a greater recall and are thus
needed for a bet ter coverage of the system.

• The Case Based Analysis module (CBA) de-
composes and reduces an input SD into a set
of chunks according to the cases in the case
base. Reduced sequences are more likely to
match a case in the case base because they
are shorter abstractions from the original se-

quence of WDs.

6 CBAG stands for Case Based Analysis and Generation

• The Case Based Generation module (CBG)
re-generates sequences of taxget language
W D s from the reduced chunks. In the re-
finement process]exical and grammatical in-
formation axe merged together into WDs.

KURD is used for two different tasks in these mod-
ules. In the CBC module and in the CBA module,
KURD performs chunk reduction and in the CBG
module, KURD performs chunk refinement.

In order to do chunk reduction, the input S D is
first decomposed into a sequence of chunks accord-
ing to the entries in the case base. KURD reduces
those chunks which match a case in the case base
into one chunk descriptor according to the schema
of rule 3.

In the refinement phase, KURD merges lexical
and grammatical information which is extracted
from two different sets of cases. These rules use
all types of operators that axe available in KURD.

7 I m p l e m e n t a t i o n

The KURD formalism is implemented in C and
compilable under gcc. It runs on spazc worksta-
tions and is currently ported to PC (with gcc).

8 C o n c l u s i o n

In this paper we have presented a constraint-based
formalism (KURD) that manipulates morphologi-
cal analysis in order to kill, unify, replace or delete
parts of the structure. The formalism reafizes
a pattern matching approach that is suitable for
shallow and/or partial NLP.

First, we give a formal definition of the da ta struc-
ture and of the formalism and discuss a few exam-
ple rules in order to present the capacities of the
formalism.
KURD is then compared to another slmilax
formalism (CGP) and it is found tha t both
formalisms have a comparable expressiveness.
Whereas in KURD the use of variables and mark-
ers makes the rule writing easier, CGP allows for
the simplification of rules by means of sets or the
clause boundary mode.

Two applications of KURD axe presented. In two
laxge-scale experiments it could be shown that
style-checking can be realized by KURD with a
reasonable result. In a small experiment it is
shown that KURD can be used for shallow parsing
and refinement in a MT application.

Carl and Schmidt- Wigger 264 KURD

II

II

II

II

II

II

II

II

i l

II

II

II

II

II

II

I!

II

9 A c k n o w l e d g e m e n t

We would like to thank Munpyo Hong and Cath
Pease for valuable comments.

R e f e r e n c e s

Steven Abney. 1996. Partial Parsing via Finite-
State Cascades. In Proceedings of the E$SLLI '96
Robnst Parsing Workshop~.

Michad Carl. 1998. A constructivist approach to
MT. In Proceedings of NeMLaP, Sydney.

Thierry Declerek and Judith Klein. 1997. Ein
Email-Korpus zur Entwicldung und Evaluierung
der Analysekomponente eines Termin-
vereinbaxungssystems. In Konferenzbeitr~ge der
6.Fachtagung der DGfS-CL.

Claudia Fottner-Top. 1996. Workshop: Erstel-
lung yon verstgndlicher nnd benutzerfreundlicher
technischer Dokumentation. Working paper, In-
stitut ffir Technische Literatur, M~nchen.

Johann Hailer. 1996. MULTILINT, A Techni-
cal Documentation System with Mttltilingual In-
telligence. In Translating and the Computer 18,
London. Aslib, The Association for Information
Management, Information House.

Fred Kaxlsson and Lauri Karttunen. 1997. Sub-
sentential processing. In G.B. Varile and A. Zam-
polll, editors, Survey of the State of the A~t in Hu-
man Language Technology, volume Vol. XII+XIII
of Linguistiea Computazionale. Giaxdinl Editori e
Stampatori, Pisa.

Fred Kax]sson. 1990. Constraint grammax as a
framework for parsing running text. In COLING-
90, volume 3, pages 168-173.

Heinz-Dieter Maas. 1996. MPRO - Ein System
zur Analyse und Synthese deutscher WSrter. In
Roland Hausser, editor, Linguistische Verifika-
~ion, Spraehe und Information. Max Niemeyer
Verlag, Tfibingen.

Randall Sharp and Oliver Streiter. 1995. Ap-
plications in Multilingual Machine Translation.
In Proceedings of The Third International Con-
ference and Ezhibi~ion on Practical Applica-
tions of Prolog, Paris, 4th-Tth April. URL:
http://www.iai.uni-sb.de/cat2/docs.html.

Carl and Schmidt-Wigger 265 KURD

m

m

m

m

m

m

m

m

m

m

