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Abstract 

We present results of experiments with Elman recurrent 
neural networks (Elman, 1990) trained on a natural 
language processing task. The task was to learn sequences 
of word categories in a text derived from a primary 
school reader. The grammar induced by the network was 
made explicit by cluster analysis which revealed both the 
representations formed during learning and enabled the 
construction of state-transition diagrams representing the 
grammar. A network initialised with weights based on a 
prior knowledge of the text's statistics, learned slightly 
faster than the original network. 

In this paper we focus on the extraction of 
grammatical rules from trained Artificial Neural 
Networks and, in particular, Elman-type recurrent 
networks (Elman, 1990). Unlike Giles & Omlin (1993 
a,b) who used an ANN to simulate a deterministic Finite 
State Automaton (FSA) representing a regular grammar, 
we have extracted FSA's from a network trained on a 
natural language corpus. The output of k-means cluster 
analysis is converted to state-transition diagrams which 
represent the grammar learned by the network. We 
analyse the prediction and generalisation performance 
of the grammar. 

1. Introduction 

Since their renaissance in the mid-1980s, Artificial 
Neural Network (ANN) techniques have been 
successfully applied across a broad spectrum of problem 
domains such as pattern recognition and function 
approximation. However despite these capabilities, to an 
end user an ANN is an arcane web of  interconnected 
input, hidden, and output units. Moreover an ANN 
solution manifests itself entirely as sets of  numbers in 
the form of activation function parameters and weight 
vectors. As such a trained ANN offers little or no 
insight into the process by which it has arrived at a 
given result nor, in general, the totality of  "knowledge" 
actually embedded therein. This lack of a capacity to 
provide a "human comprehensible" explanation is seen 
as a clear impediment to a more widespread acceptance 
of ANNs. 

In order to redress this situation, recently considerable 
effort has been directed towards providing ANNs with 
the requisite explanation capability. In particular a 
number of mechanisms, procedures, and techniques 
have been proposed and developed to extract the 
knowledge embedded in a trained ANN as a set of 
symbolic rules which in effect mimic the behaviour of 
the ANN. A recent survey conducted by Andrews et al. 
(1995) offered an insight into the modus operandi of a 
broad cross-section of such techniques. 

2. Methods 

2.1. The data 

The data for these experiments were obtained from a 
first-year primary school reader published circa 1950's 
(Hume). To keep this initial task simple, sentences with 
embedded structures (relative clauses) and a length of 
more than eight words were eliminated. The resulting 
corpus consists of 106 sentences ranging from three to 
eight words in length, average length 5.06 words. The 
words were converted to 10 lexieal categories, including 
a sentence boundary marker. The categories, their 
abbreviations as used in the text and their percent 
frequencies are shown in Table 1. The resulting data 
consist of a string of 643 categories in 106 sentences. 
There are 62 distinct sentence sequences of which 43 
occur only once, the rest being replicated. The 
maximum replication of any sequence is eight-fold. 
Where sequences, such as PR,VB,AR, are referred to in 
the text, AR is the current input, VB the previous input 
(at time step t-I) and PR the input at time step t-2. 

2.2. The ne twork  

Elman simple recurrent networks (SRN), with ten input 
and ten output units representing the sparse coded 
lexical categories, were trained on the category 
sequence. The task was to predict the next lexical 
category given the current category. 
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The networks were trained by standard 
- backpropagation with momentum and state unit 

activations were NOT reset to zero on presentation of a 
sentence boundary. Two networks were trained, one 
having two hidden units and the other nine, until 
prediction error stopped declining. The network with 
two hidden units had learned 51% of the training data 
and that with nine hidden units had learned 69% of the 
data. By way of  comparison, 48%, 62%, 72% and 76% 
correct predictions could be obtained using bi-, tri-, 4- 
and 5-gram models of the training data respectively. At 
the end of training, the networks performed one pass 
through the data without learning in order to recover 
their hidden unit activations. Cluster analysis of the 642 
output vectors was performed by graphical means for 
the two-hidden unit case and by k-means clustering for 
the nine-hidden unit case. Clusters from the latter case 
were used to prepare FSA's. 

TABLE 1: Percent frequencies of the ten lexical 
categories in the text. 

Lexical Category %frequency 

Article AR 8% 
Conjunction CC 1% 
Preposition IN 7% 
Adjective JJ 4% 
Noun NN 30% 
Pronoun PR 10% 
Possessive (%) PS 2% 
Adverb RB 1% 
Verb VB 20% 
Sentence boundary /S 17% 

2.3. Cluster Analysis and Preparation of 
Finite State Automata 
(i) K-means cluster analysis software was used to label 
the 642 hidden unit activation vectors with cluster 
numbers between 1 and k. Each vector was thus 

assigned to a state, S~, where 1 < i < k and t uniquely 

identifies the time step for each member of cluster i. 

(ii) For every current input, x' and previous state, S I -I , 

there is a transition to a new state, S I with a resulting 

output, o t. A transition table was created from this data. 
(iii) If the same input lead to more than one transition 
from a given state, the transition having highest 
frequency was chosen. Similarly, if any transition 
brought about by a given input, generated more than one 
possible output, the most frequent output was chosen. 
(iv) The transition rules so derived were used to 
construct deterministic FSA's having k states 
corresponding to the k clusters. We generated ten FSA's 
with k taking values in the range 6 to 22. 

(v) Each automaton was tested on the string of 643 
categories used to train the original network. They were 
scored for total correct predictions, the fraction of 
missing transitions and score on the non-missing 
transitions. 
(vi) In some experiments, low frequency transitions 
(having less than 5 occurrences) were pruned from the 
automaton and the resulting automaton again tested for 
its performance on the original data sequence. Missing 
transitions were handled by jumping to a predefined 
'rescue' state and producing a predefined 'rescue' 
output. In the default instance, the rescue state was the 
state, whose preceding inputs had earliest position in the 
sentence. The rescue output was always NN, the 
category having highest frequency. 

2.4. Weight luitialisation with Domain 
Knowledge 

From an examination of bigram probabilities derived 
from the data sequence, it was determined that output 
categories NN and/S have the highest predictive rate. 
This knowledge can be used to initialise an Elman 
network with non-random weights in the expectation 
that training error should decline more rapidly than if 
the all the weights are initialised randomly. We 
initialised an Elman net having 11 hidden units with 
random weights between -0.1 and 0.1, and then 
manually set to a value of +4.0 some of the weights 
linking the hidden layer to the input units coding for NN 
and/S. We refer to these as the set links. In different 
trials, we set 0, 1, 5, 8, or 11 of both the NN and/S links 
in such a way as to minimise the number of hidden units 
having two set links. Zero set links means that none of 
the original random weights were changed. 

3. Results 

3.1. Graphical cluster analysis of the 
network having two hidden units. 

Graphical cluster analysis for the 2-hidden unit case is 
shown in Figure 1. Clusters are labeled with the current 
input. There is marked separation of clusters 
representing the high frequency inputs, NN, VB,/S, PR 
and IN. There is overlap of those clusters representing 
low frequency inputs. Although only 51% of the 
training set was learned by the network, there is 
evidence of further clustering based on the current and 
previous inputs. For example, Figure 2 shows cluster 
formation when NN is the current input and either AIL 
NN, PR, PS, VB or/S is the previous input. The PR,NN 
sub-cluster could be further broken down into sub-sub- 
clusters, representing the three input sequences 
/S,PR,NN and IN, PR,NN and VB,PR,NN. 
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Figure 1: Hidden unit activations (of an Elman network with two hidden units) labeled according to which of the ten 
input categories is the current input producing that activation. The activations tend to be clustered according to the 
input. Clusters representing high frequency categories such as NN, VB and/S are more dispersed and broken into 
sub-clusters that represent both the current and previous inputs. 
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Figure 2: Hidden unit activations of an Elman network (with two hidden units only) when the current input category 
is NN and the previous category is either VB,/S, AR, PR, PS or NN. 

3.2. Analysis of the FSA's 

The performance of FSA's having 6 to 22 states is 
displayed in Table 2. The second column gives the total 
number of transitions permitted by the FSA. The third 
column gives the percent prediction score on the 
training data. Best score is 60% which compares with 
69% of the training data learned by the original Elman 
network from which the hidden unit activations were 
obtained. The total prediction score tends to increase 
with the number of states. 

The fourth column of Table 2 gives the percentage 
of the 642 transitions in the data not permitted by the 
FSA's. The number of missing transitions is small, in all 

but two cases less than 2%. When a missing transition 
occurs, the FSA defaults to a 'rescue' state. The percent 
correct predictions for non-missing transitions are 
shown in the rightmost column of Table 2. They are 
little different from the total scores in most cases, 
simply because the number of missing transitions is so 
few. 

The transition diagram for the 8-state FSA is shown in 
Figure 3. The table in the top fight of the figure shows: 
(i) the number of visits to each state when the FSA is 
tested, (ii) the percentage of correct predictions 
associated with a transition to that state and (iii) the 
average word-position in the sentence of the inputs 
leading to that state. 
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PR/NN state f r eq .  % correc t  position 
~ VB/IN St  152 55 .92% t .30 

$2 96 86.46% 3.06 
[ ~ : C ~  $3 155 49.68% 3.35 

(~2.P R/VB ~ ~ J ~  $4 42 83.33% 4.38 
S / N ~ ~ ' ~ / N ' ~ ~ N  ~ S5 34 70.59% 5.50 

~ " " - - ~  ~ . . . . . .  I f  I N ~ $6 64 79.69% 5.67 
-- \" :.: " .2 . . . . . . .  I I  I \ ~ $7 53 92.45% 5.68 

" ~ ' ~  v e /vff /N N/PS~ ~ ~ S8 46 86.96% 6.46 \ . . . .  

N/NN 

Figure 3: The FSA having 8 states. The double circle indicates an accept state. I f  the FSA is in an accept state and the 
input is/S (end of sentence) then it returns to the start state, S1, with the output of  NN. 

Transitions with thick arrows have a frequency count 
>20, transitions displayed with thin arrows have a 
frequency count of 5 to 20 and transitions with a 
frequoney count <5 are not shown to preserve clarity. 
The states have been numbered in sequence according 
to the average word position of their associated inputs. 
For example states 2, 6 and 8 all occur following input 
of the NN category but they are distinguished in cluster 
analysis by the NN having an average word-position in 
the sentence of 3.1, 5.7 and 6.5 respectively. 

Table 2 
Performance of FSA's prepared from k-means cluster 

No. 

of 
states 

6 34 43 
8 39 54 
10 45 53 
11 46 56 
12 53 57 
14 54 56 
16 59 59 
18 62 60 
20 67 60 
22 68 59 

analysis of hidden unit activations. 
% 

# of total 
transitions score 

% score 
% missing on non- 
transitions missing 

transitions 
0.9 43 
1.4 54 
1.7 53 
0.5 56 
0.5 58 
3.9 57 
1.6 59 
1.6 60 
1.6 60 
4.2 60 

No. of 
transitions 

Table 3 
The effect of  removing low frequency transitions from 

an FSA having 10 states 
% score 

% total % missing on non-missing 
score transitions transitions 

45 53 1.7 53 
23 52 10.3 51 

The states having highest correct prediction rate, $7 
and $8, are associated with the ends of sentences. $7 is 
reached when the last category in a sentence is predicted 
to be NN and $8 occurs when the end-of-sentence is 
predicted. 

Many of the transitions in the FSA's occur with low 
frequency and could be primed with minimal loss of 
performance. For example, the FSA with ten states has 
45 permitted transitions. When transitions having a 
frequency <5 are pruned, the number of  missing 
transitions jumps from 1.7% to 10.28% but the 
prediction score drops only slightly from 53% to 51% 
(Table 3). 

Finally we look at the effect of the state chosen as the 
rescue state for the FSA having 10 states. The default 
state is the state closest to the beginning of the sentence, 
in this case state 2. 
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The percent score of correct predictions is greater only 
in two other cases, that is when states 7 and 9 are used 
as the 'rescue' state. Changing the 'rescue' state also 
changes the number of transitions that the FSA does not 
recognise. However only in ilae case of rescue state 8 is 
this number less than for rescue state 2. It is apparent 
that a decrease in the number of missing transitions does 
not necessarily lead to a higher score. 

3.3. Weight initialisation using domain 
knowledge 

Setting links between the hidden layer and the NN and 
/S input units has a beneficial effect during the early 

• stages of network training. As indicated by the faster 
initial decrease in prediction error, the optimum number 
of set links from inputs NN and/S was 5 or 8 (Figure 3). 

Table 4 
The effect of choice of'rescue' state on the 
)efformance 

Average 
Rescue word 

state position 
of inputs 

S2 1.36 
$5 2.94 
$8 3.30 
$3 4.18 
$7 4.37 

SlO 5.53 
$9 5.55 
$4 5.92 
$6 5.85 
SI 6.48 

of the resultinl~ 10-state FSA. 
% score 

% 
total 
score 

52 
50 
50 
49 
53 
52 
54 
49 
52 
49 

% missing on non- 
transitions missing 

transitions 
10.3 51 
15.3 53 
9.7 49 
12.8 48 
16.2 54 
17.3 55 
11.5 55 
19.8 53 
18.9 54 
19.8 53 

1.1 

0.9 

0.8 ~ 

. 7  . . . .  

0 50 100 150 200 

epochs 

---e---O l inks --4a---1 link ~ 5 l inks ~, 8 l inks --e---11 links ] 

Figure 4: Output error of an Elman network over 200 training epochs following different weight initialisation 
procedures. '0-1inks' means that all links between hidden layer and input units are randomly initialised to values in [- 
0.1, 0.1]. The network has 11 hidden units. Therefore 'll-links' means that every hidden unit has a set link (see 
methods section 2.4 for definition of this term) to the NN and the/S input units. I, 5 and 8 links means that this 
number of hidden units has a set link to the NN and/S input units. 

4. Discussion 
Although an Elman network with two hidden units 
could learn only 51% of the training data, nevertheless 
graphical analysis reveals hierarchical clustering of 
hidden unit activations. There are dusters associated 
with each of the ten word categories (Figure I), 
although clusters associated with low frequency inputs 
such as AR, CC and JJ tend to overlap. Clusters labeled 
with the high frequency inputs revealed obvious sub- 
clusters and sub-sub-clusters such as those shown in 

Figure 2. In other words, the network had acquired 
internal representations of temporal sequences of at 
least length 3. However because the hidden unit space 
had such low dimensionality, it could not be partitioned 
by the output layer to achieve accurate prediction. 

An FSA with 18 states derived from k-means 
clustering of hidden unit activations scored 60% on the 
original training data (Table 2). This compares with a 
score of 69% by the original network and a score of 
62% when predicting with a trigram model. Although in 
theory, the trigram model requires the calculation of 
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I0,000 transition probabilities, it reduces to 42 
transition rules. This compares with of 62 transitions 
rules incorporated into the 18-state FSA. Thus the 
trigram model is a more compact definition of the 
grammar. However, low frequency transitions can be 
trimmed fi'om the FSA's with minimal loss of 
performance as is demonstrated for the I 0-state FSA in 
Table 3. 

Correct choice of the 'rescue' state is important for 
the efficient performance of an FSA because it 
determines the FSA's ability to pick up the sentence 
structure at~er a missing transition. In order to automate 
the production of FSA's following cluster analysis, we 
require a heuristic for the choice of 'rescue' state. Our 
initial choice, that state whose inputs on average are 
closest to the beginning of the sentence, seems to be a 
reasonable heuristic in the absence of other information 
(Table 4). Likewise, choosing the highest frequency 
category (in our case, NN) as the 'rescue' output is also 
confirmed by our results because the FSA scores 
achieved on non-missing transitions are not much better 
than the total scores, despite 10-20% of missing 
transitions (Table 4). 

The use of domain knowledge, such as category 
frequencies, to bias weight initialisation is successful in 
reducing error faster in the early stages of learning. Of 
course if training is continued for long enough, then any 
memory of the initial bias will be erased. Best results 
were achieved when five links were set (such that no 
hidden unit had a set link to both the NN and/S inputs) 
or eight links were set (such that only five hidden units 
had set links to both the/fiN and/S inputs). 

5. Conclusions 

This study has demonstrated one method for extracting 
the knowledge encoded in a trained neural network. 
Quite omen knowledge extracted from neural networks 
is in the form of propositional rules (Andrews et al., 
1995) but these are not always the most appropriate 
format for explication of network learning. For example 
where the network has been required to induce a 
grammar, cluster analysis of hidden unit activations and 
preparation of an FSA is a powerful technique to 
explicate the learned grammar. However, for this 
particular task, there is a trade-off between 
comprehensibility of  the FSA (fewer states means more 
comprehensible) and its predictive performance 
compared to the original neural network. In these 
experiments an FSA with 18-states performed almost as 
well as a trigram model. The trigram model had the 
advantage of compactness, but the FSA had the 
advantage of comprehensibility. 
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