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Abstract 

We describe two systems: GATE (General Ar- 
chitecture for Text Engineering), an architec- 
ture to aid in the production and delivery 
of language engineering systems which signifi- 
cantly reduces development time and ease of 
reuse in such systems. We also describe a 
sense tagger which we implemented within the 
GATE architecture, and which achieves high 
accuracy (92% of all words in text to a broad 
semantic level). We used the implementation 
of the sense tagger as a real-world task on 
which to evaluate the usefulness of the GATE 
architecture and identified strengths and weak- 
nesses in the architecture. 

1 I n t r o d u c t i o n  

This paper is about two things: a novel hybrid sense 
tagger for unrestricted text (Wilks and Stevenson, 
1997), and the experience of developing this sys- 
tem within GATE - a General Architecture for Text 
Engineering (Cunninham et al., 1997; Cunningham, 
Wilks, and Gaizauskas, 1996a). 

We hope you can forgive this mild schizophrenia 
- we feel that both topics are relevant to the sub- 
ject of new methods in NLP: the first because both 
the problem of arriving at methods for sense tag- 
ging and of tuning those methods to specific domains 
and lexical resources is an increasingly active topic 
in the field (Basili, Della Rocca, and Pazienza, 1997; 
Harley and Gleanon, 1997); the second because work 
on NLP components shares a heap of problems with 
other language processing work to do with reusabil- 
ity, data visualisation, and software-level robustness 
and efficiency that, we feel, are best solved by the 
provision of a inclusive and general architecture and 
development environment for the field. 

We begin with a review of the general concept 
behind GATE (section 2), then describe the practi- 
calities of the system that are relevant to the sense 
tagging system we have developed (section 3). Next 

we discuss the sense tagging problem (section 4), 
and then our system (section 5). Finally we look at 
the experience of developing the tagger within the 
architecture (section 6), and draw out some lessons 
for the future (section 7). 

2 G A T E  - the concept 

GATE is an architecture and development environ- 
ment for research and development workers in NLP 
and Language Engineering 1. It is an architecture 
in the sense that it specifies a macro-level organisa- 
tionai pattern for the various components and data 
resources that make up a language processing (ac- 
tually at present only text processing) system (Shaw 
and Garlan, 1996). It is also a development envi- 
ronment that adds a rich set of graphical tools to 
the architecture enabling the developer to easily in- 
tegrate new processing componemts, to manage flow 
of control between components, to visualise the data 
produced by and passed between components, and 
evaluate the contribution of components to some ex- 
ternally defined and measured language processing 
task. 

As w e 'v e  noted elsewhere (Cunningham , 
Gaizauskas, and Wilks, 1995; Cunningham, 
Wilks, and Gaizauskas, 1996b), the motivating 
factors behind development of the architecture 
included the facilitation of reuse of components 
(which has previously been successful in NLP only 

tThe application of NLP and CL theory to the cre- 
ation of practical applications software has recently be- 
come known as Language Engineering, or LE, or NLE, 
and has been defined in various ways in e.g. (Mitkov, 
1996; Thompson, 1985; Boguraev, Garigiiano, and Tait, 
1995; Gazdar, 1996). Our gloss on these various defin- 
itions is that Language Engineering is the discipline or 
act of engineering software systems that perform tasks 
involving processing human language. Both the con- 
struction process and its outputs are measurable and 
predictable. The literature of the field relates to both 
application of relevant scientific results and to a body of 
practise. 
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for data resources (Curmingham,, Freeman, and 
Black, 1994; Cunningham, 1994)), comparative and 
task-based evaluation, collaborative research, and 
software-level robustness, efficiency and portability. 
The design we arrived at in support of these aims is 
sketched in the rest of this section. 

NLP systems produce information about texts 
(which may sometimes be the results of automatic 
speech recognition) and existing systems that aim to 
provide software infrastructure for NLP can be clas- 
sifted as belonging to one of three types according to 
the way in which they treat this information: 

addi t ive ,  or  markup-based :  information pro- 
duced is added to the text in the form 
of markup, e.g. in SGML (Thompson and 
McKelvie, 1996); 

re fe ren t ia l ,  or  anno ta t ion-based :  information 
is stored separately with references back to the 
original text, e.g. in the TIPSTER architecture 
(Grishman, 1996); 

ab s t r ac t i on -based :  the original text is preserved 
in processing only as parts of an integrated data 
structure that represents information about 
the text in a uniform theoretically-motivated 
model, e.g. attribute-value structures in the 
ALEP system (Simkins, 1994). 

A fourth category might be added to cater for those 
systems that provide communication and control 
infrastructure without addressing the text-specific 
needs of NLP (e.g. Verbmobil's ICE architecture 
(Amtrup, 1995)). 

As noted at a previous conference in this series 
(Cunningham, Wilks, and Gaizauskas, 1996b), we 
believe that performance and other considerations 
favour the referential approach, but also that  SGML 
is a key part of any general text processing strategy. 
The first design decision we made, then, was to base 
GATE on a referential core using the TIPSTER ar- 
chitecture, and to cater for SGML via I /O format 
conversion filters. This led to the development of 
one of three key pillars of the system: GDM, the 
GATE Document Manager. GDM and the TIP- 
STER API that it implements forms a buffer be- 
tween processing modules in a GATE-based NLP 
system. Modules no longer talk to each other, with 
the coherence and coupling implications that direct 
unrestricted communication can imply, but to GDM 
via the TIPSTER API. 

One of the key benefits of adopting an explicit ar- 
chitecture for data management is that it becomes 
possible to easily add a of layer graphical interface 
access to architecural services and data visualisation 

tools, and such a layer is our second pillar: GGI, the 
GATE graphical interface. GGI has functions for 
creating, viewing and editing the collections of doc- 
uments which are managed by the GDM and that 
form the corpora which LE modules and systems in 
GATE use as input data. It also has facilities to 
display the results of module or system execution - 
new or changed annotations associated with the doc- 
ument. These annotations can be viewed either in 
raw form, using a generic annotation viewer, or in an 
annotation-specific way, if special annotation view- 
ers are available. For example, named entity annota- 
tions which identify and classify proper names (e.g. 
organization names, person names, location names) 
are shown by colour-coded highlighting of relevant 
words; phrase structure annotations are shown by 
graphical presentation of parse trees. Note that the 
viewers are general for particular types of annota- 
tion, so, for example, the same procedure is used for 
any POS tag set, Named-Entity markup etc. Thus 
developers reuse GATE data visualisation code with 
negligible overhead. 

Lastly, the third pillar of the system is the one that 
does all the real work of processing texts and discov- 
ering information about their content: CREOLE, a 
Collection of REusable Objects for Language Engi= 
neering. In a sense CREOLE isn't part of GATE at 
all, but is the set of resources currently integrated 
with the system, but we also use the term to refer to 
the mechanismss available for integrating modules 
into GATE. This process has been automated to a 
large degree and can be driven from the interface. 
The developer is required to produce some C + +  or 
Tcl code that uses the GDM TIPSTER API to get 
information from the database and write back re- 
sults. When the module pre-dates integration, this 
is called a wrapper as it encapsulates the module in 
a standard form that GATE expects. When mod- 
ules are developed specifically for GATE they can 
embed TIPSTER calls throughout their code and 
dispense with the wrapper intermediary. The under- 
lying module can be an external executable written 
in any language (the current CREOLE set includes 
Prolog, Lisp and Perl programs, for example). 

CREOLE wrappers encapsulate information 
about the preconditions for a module to run (data 
that must be present in the GDM database) 
and post-conditions (data that will result). This 
information is needed by GGI, and is provided 
by the developer in a configuration file, which 
also details what sort of viewer to use for the 
module's results and any parameters that need 
passing to the module. These parameters can be 
changed from the interface at run-time, e.g. to tell 
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a parser to use a different lexicon. Aside from the 
information needed for GGI to provide access to 
a module, GATE compatibility equals T IPSTER 
compatibility - i.e. there will be very little overhead 
in making any TIPSTER module run in GATE. 
Given an integrated module, all other interface 
functions happen automatically. For example, 
the module will appear in a graph of all modules 
available, with permissible links to other modules 
automatically displayed, having been derived from 
the module pre- and post-conditions. At any point 
the developer can create a new graph from a subset 
of available CREOLE modules to perform a task of 
specific interest. 

The integration mechanisms also reduce the doc- 
umentation load: users can reference the T IPSTER 
API to describe the interchange format of the data 
they produce and the GATE documentation for in- 
tegration details. Of course GATE doesn't solve all 
the problems involved in plugging diverse LE mod- 
ules together. There are three barriers to such inte- 
gration: 

• managing storage and exchange of information 
about texts; 

• incompatibility of representation of information 
about texts; 

• incompatibility of type of information used and 
produced by different modules. 

GATE provides a solution to the first two of these, 
allowing the integrator to concentrate on the core 
issue of the meaningful content of the information 
exchanged. 

3 G A T E  - p r a c t i c a l i t i e s  

A main purpose of GGI is to allow execution of the 
modules within GATE and to provide a graphical 
access point to the results they produce. Section 
3.1 describes the meaning of the primitives in the 
graph and how it is executed, section 3.2 describes 
the method used to autogenerate the graph, sec- 
tion 3.3 discusses the method of creating manageable 
subgraphs, and section 3.4 discusses results visuali- 
sation facilities. 

3.1 G r a p h  S y n t a x  a n d  S e m a n t i c s  

An example of a system graph is shown in figure 
12. A system graph is an executable graph, and is 

~These and other screen dumps below look better in 
colour! The description below will be a bit like the TV 
snooker commentator who said "For those of you watch- 
ing in black and white, the pink is behind the blue". 

a simple data flow program. Modules are shown as 
nodes in the graph, with the data flow indicated by 
the arcs. Each incoming arc to a module indicates 
a dependency on results of previous processing. All 
modules at the source of arcs connecting to a de- 
pendent module must be run before the dependent 
module is executed, except where the incoming arcs 
are connected by lines, in which case the module re- 
quires the execution of only one of the modules at 
the other end of the arc (these arcs are then termed 
or-arcs). Thus, in the example graph of figure 1, 
the buChart Parser module may only be run if the 
results of the G a z e t t e e r  Lookup module and either 
the Tagged Morph module or the Morph module are 
available. They in turn have earlier dependencies. 
The Tokenizer  module has no dependencies and 
so begins execution. There are two modules with 
no downstream children: MUG-6 Resul ts  and MUG-6 
NE Resu l t s ,  so either of these must produce an end 
result. However, because results from modules in 
the middle of the graph may be of interest to a NLP 
researcher, any module can be chosen as the final 
one that  will be executed. ,e ~.. 

At any point in time, the state of execution of the 
system, or, more accurately, the availability of data  
from various modules, is depicted through colour- 
coding of the module boxes. Figure 1 shows a sys- 
tem window. Light grey modules (green, in the real 
display) can be executed. Modules that require in- 
put from others not yet executed, and so cannot be 
executed yet, are shown with a white background 
(amber, in reality). The modules that have already 
been executed are shown in dark grey (red), at which 
point their results are available from a menu associ- 
ated with each box (see below). 

The system graph can either be run in batch mode 
or in an interactive manner. To run in batch mode, 
the user selects a path though the graph and clicks 
on the final module. The current state of the graph, 
and the document (or collection of documents) cur- 
rently undergoing execution is shown. The system 
ensures that the path chosen by the user is valid by 
only allowing a module to be selected if all its inputs 
have already been selected. Selected modules are ex- 
ecuted in a data  driven manner, with modules being 
executed as soon as their input data is available. 

The interactive mode is designed for module de- 
velopers. The modules under development can be 
executed as with the batch mode then the module 
or modules to be retried (after the underlying code 
or resources have been changed) can be reset by a 
mouse click. This clears the database of the post- 
condition annotations and allows the modules to be 
rerun. 
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Figure 1: The GATE System Graph 

The nature of-the database (where each module 
produces a specific set of annotation types) means 
that  it is possible to view partial results of execu- 
tion without recourse to buffering intermediate data 
(Woodruff and Stonebreaker, 1995). 

3.2 A u t o g e n e r a t i o n  

The graph shown in figure 1 is in fact the custom 
graph. This is the system graph that shows all 
the modules in the particular GATE environment. 
The custom window is automatically generated from 
the configuration information that is associated with 
each module, e.g., for the buChart module: 
seZ creole_config(buchart) { 

title {buChart Parser} 
pre_condi~ions { 

document_attributes {language_english} 
annotations {token sentence morph lookup} 

} 
post_conditions { 

document_attributes {language_english} 
annotations {name syntax semantics} 

} 
viewers { 

{name single_span} 
{syntax t ree}  
{semantics raw} 

} 
} 

This data  structure (actually a Tcl array (Ouster- 
hout, 1994)) describes the TIPSTER objects that 
a module requires to run, the objects it produces, 
and the types of viewers to use for visualising its re- 
sults. Along with code that uses the TIPSTER API 
to get information from the database and to store 
results back there, this configuration file is all that  
an integrator need produce to connect a module to 
GATE. Typically the biggest overhead here is con- 
verting pre-existing modules to preseve byte-offset 
information. See (Cunningham et al., 1996) for de- 
tails. 

The autogeneration algorithm creates data flow 
arcs from modules that have an annotation type 
in their postconditions to the other modules that  
have the same annotation type in their precondition. 
For example, G a z e t t e e r  Lookup has the annotation 
type lookup in its postconditions, so an arc connects 
it with buChart Parser ,  which has that annotation 
type in its preconditions. Arcs are not created be- 
tween modules that  operate on different languages, 
however in figure 1, all the modules operate on Eng- 
lish language documents. When more than one mod- 
ule has the same annotation type in its postcondition 
then it is assumed that either module may produce 
the required result, and so the two arcs are or-arcs 
and are connected by a line (both l~orph and Tagged 
Horph produce the same annotation and so have or- 
arcs into buChart Parser). 

The most computationally expensive part of auto- 
generation goes into discarding redundant arcs. Re- 
dundant arcs are those that connect an upstream 
module to a downstream module where it can be 
deduced that the preconditions of modules between 
the two given modules cover the annotation types 
that  the arc represents. For example, the Token ize r  
produces annotation types required by buChart  
Pa r se r ,  but there is no need for a data flow arc be- 
tween these modules as modules between them also 
require these annotation types. 

The autogeneration facility allows easy integration 
of new modules into GGI. Most NLP tasks can be 
expressed in the simple data flow techniques of this 
system, but it is currently not possible to integrate 
NLP tasks that require iteration. 

Some modules have the same annotation type in 
both pre- and postconditions. These modify the re- 
sult of previous computation and pass the data flow 
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down stream. This kind of module, termed a filter, 
cannot be automatically positioned in the diagram, 
instead the user selects the position of filters from 
the arcs on which they may appear (arcs from mod- 
ules that  produce the annotation type the filter op- 
erates on). During execution filters are treated as 
normal modules. 

3.3 C u s t o m i s i n g  G r a p h s  

The system graphs are displayed with a graph draw- 
ing tool which is is also used in tree based visuali- 
sation tools available for display of e.g. syntactic 
parse results. This tool allows commands to be as- 
sociated with nodes, hence it can be used for data 
flow graphs. It  has a layout algorithm based on 
the method used by daVinci (FrShlich and Werner, 
1995) to minimise arc crossing. 

GGI suffers from the scaling problem (Burnett et 
al., 1987), as the size of the custom graph quickly 
becomes unmanageable. This can be alleviated by 
creating new system graphs from specified subgraphs 
of the custom graph. A later release will allow col- 
lapsing of graph sections. 

It is possible to group these derived system graphs 
together so that  the user may chose from a selection 
of tasks at the top level of GGI (not shown here for 
space reasons). Having chosen a task (e.g. parsing), 
an intermediate level display appears, presenting the 
user with a selection of icons, one for each of the one 
or more specific systems capable of performing the 
selected task (e.g. the buChart  parser or the Plink 
parser). Once a particular system is selected, a final 
window appears displaying the appropriate system 
graph. 

3.4 Visuallsing Results 

NLP data is wide ranging in scope but has specific 
characteristics that  mean the problems with visual- 
ising large amounts of data  (Burnett et al., 1987) 
are less significant. This is because either the infor- 
mation can be visualised as coloured markup on the 
text (meaning that  the text can be displayed using 
traditional textual techniques (Jonassen, 1982)), or 
the information is grouped over small segments of 
text, such as paragraphs or sentences. 

GGI has several viewers for the display of TIP- 
STER annotations. The viewer for each postcondi- 
tion annotation is specified by the module config- 
uration file, an example of which i o given in sec- 
tion 3.2. The viewers can be classified into those 
which display the text and overlay the annota- 
tions as colours or shades ('single span', 'multiple 
span', ' text-attribute ');  and those that visualise a 
more complex relationship between annotations in 
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Figure 2: Multiple Span Viewer 

an acyclic graph format ('tree'). Where no viewer 
is specified, a default annotation dump is displayed. 
The configuration file for the buChart Pa r se r  mod- 
ule in section 3.2 specifies that the 'name' annotation 
type is assigned the 'single span' viewer, 'syntax'  the 
'tree' viewer, and 'semantics' the 'raw' or annotation 
dump viewer. New viewers can be written where the 
default ones are not appropriate for new annotation 
types. 

The 'single span' and 'text-attribute' viewers are 
fairly simple, assigning different colours to each an- 
notation. 'multiple span' is more complex, as it is 
designed to view annotation chains. An annotation 
chain is a list of annotations specified by annotation 
references. The user chooses a highlighted part  of 
the text, and all the other highlights that are part  
of the same chain are displayed. Figure 2 shows this 
viewer displaying the results of a coreference task. 
Coreference identifies elements of the text that  are 
interpreted as referring to the same real world en- 
tity. For example, a person and a pronoun might be 
coreferential. In figure 2 the user has chosen one of 
the highlights referring to 'Richard Bartlett '. 

The 'tree' viewer containing 'syntax' annotations 
(produced by the buChart Parser )  is shown in fig- 
ure 3. The parse trees currently integrated into 
GATE span at most a sentence, so that the tree size 
is always manageable. 

The viewers are activated by first clicking with 
the mouse on a module whose results are present 
(i.e. it has been executed and it's box has turned 
red) which reveals a menu of annotations; choosing 
an annotation brings up the appropriate viewer. 

There is a certain amount of connectivity between 
these viewers, as it is possible to click on a node in 
the parse tree and have the area of text highlighted 
in a text display window, or it is possible to highlight 
areas of text and display the raw annotations that  
are contained within the highlighted span. 
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Figure 3: Tree Viewer 

3.5 G A T E  Users  

GATE version 1 was released in Novem- 
ber 1996 and is in use for a number of 
projects around the World - see for ex- 
ample hztp: llw~a, sics. se/humle/proj ects/ 
s v e n s k / s v e n s k ,  html, who evaluated 
the system relative to ALEP, and 
ht~p://wvv, des. shef. ac. uk/research/gr0ups/ 
nlp/gate/users.html. Figure 4 lists the sites that  
have licenced the system so far. 

4 W o r d  s e n s e  t a g g i n g  

We have recently implemented a sense tagger within 
the GATE framework. 

Sense tagging is the process of assigning the ap- 
propriate sense from some semantic lexicon to each 
word 3 in a text. This is similar to the more widely 
known technology of part-of-speech tagging, but the 
tags which are assigned in sense tagging are semantic 
tags from a dictionary rather than the grammatical 
tags assigned by a part-of-speech tagger. 

Our sense tagger uses the machine readable ver- 
sion of Longman Dictionary of Contemporary Eng- 
lish (LDOCE) (Procter, 1978) to provide the se- 
mantic tag set. LDOCE is a learners' dictionary - 
one designed not for native speakers of English but 
for those learning English as a second language and 
has been used extensively in machine readable dic- 
tionary research ((Ide and Veronis, 1994), (Cowie, 

3This is often loosened to each content word. 

Guthrie, and Guthrie, 1992), (Bruce and Wiebe, 
1994)). 

The clearest way to understand what a sense tag- 
ger does is to look at an example of the output we 
would like it to produce. Consider the sentence "The 
interest on my bank account accrued over the years", 
our tagger should assign a single sense from LDOCE 
to each of the content words in the sentence. The 
choice of senses in the assignment should be the same 
as that a human would choose. An example of a de- 
sired assignment is shown in figure 5. 

As can be seen from the senses assigned, each 
LDOCE sense has a homograph and sense number, 
these are used to identify different levels of seman- 
tic distinction between senses and act as identifying 
markers. Homograph distinctions signify broad se- 
mantic differences between senses (such as the 'edge 
of river' and 'financial institution' senses of bank) 
while sense distinctions signify differences between 
senses which are more related (such as the 'building' 
and 'company' senses of the word). These numbers 
are followed by the textual definition of the sense 
and, possibly, by an example sentence which is a par- 
ticular use of the sense and is printed in this type 4. 

The information provided by these tags is poten- 
tially valuable for downstream tasks in a language 
processing system. For example, the system could 
benefit from knowing that "bank" in this case means 

4LDOCE senses have additional information such as 
subject categories, subcategorisation information and se- 
lectional restrictions which we do not show here. 

Cunningham, Stevenson and Wilks 64 Implementing a Sense Tagger 

m 

m 

m 

m 

m 

m 

m 

m 

m 

m 

m 

m 

m 

m 

m 

m 

m 





senses in texts. A natural extension to this obser- 
vation is to create a disambiguation system which 
makes use of several of these independent knowledge 
sources and combines their results in an intelligent 
way. 

Our system is based on a set of partial taggers, 
each of which uses a different knowledge source, with 
their results being combined. Our system is in the 
tradition of McRoy (McRoy, 1992), who also made 
use of several knowledge sources for word sense dis- 
ambiguation, although the information sources she 
used were not independent, making it difficult to 
evaluate the contribution of each component. Our 
system makes use of strictly independent knowledge 
sources and is implemented within GATE whose 
plug-and-play architecture makes the evaluation of 
individual components more straightforward. 

At the moment the sense tagger consists of six 
stages (shown in figure 6), the first two preprocess 
the text which is to be disambiguated while the re- 
maining four carry out the disambiguation. 

P r e p r o c e s s i n g  

• Named-entity identification 

• Dictionary look-up 

Disarnbiguation 

• Part-of-speech filtering 

• Dictionary definition overlap 

• Domain code overlap 

* Scoring mechanism 

Figure 6: Stages in the Sense Tagging process 

1. The text is first processed by a named- 
entity identifier, which we developed as 
part of Sheffield's entry for MUC-6 (Wakao, 
Gaizauskas, and Humphries, 1996; Gaizauskas 
et al., 1996). This identifies certain forms of 
proper names in the text and classifies them as 
either place, person, organization or location. 
For details of the classification scheme see (Def, 
1995). We make no use of these classifications 
at present, however, they are of potential use 
to a module carrying out disambignation using 

selectional restrictions. 

The tagger does not attempt to disambignate 
any words which are identified as part of a 
named-entity. 

2. The remaining text is stemmed, leaving only 
morphological roots, and split into sentences. 
Then words belonging to a list of stop words s 
are removed. The words which have not been 
identified as part  of a named entity or removed 
because it is a stop word are considered by the 
system to be ambiguous words and those are the 
words which are disambignated. 

For each of the ambiguous words, its set of 
possible senses is extracted from LDOCE and 
stored. Each sense in LDOCE contains a short 
textual definition (such as those shown in figure 
5) which, when extracted from the dictionary, 
is processed to remove stop words and stem the 
remaining words. 

. The text is tagged using the Brill tagger (Brill, 
1992) and a translation is carried out using a 
manually defined mapping from the syntactic 
tags assigned by Brill (Penn Tree Bank tags 
(Marcus, Santorini, and Marcinkiewicz, 1993)) 
onto the simpler part-of-speech categories asso- 
ciated with LDOCE senses 6. We then remove 
from consideration any of the senses whose part- 
of-speech is not consistent with the one assigned 
by the tagger, if none of the senses are consis- 
tent with the part-of-speech we assume the tag- 
ger has made an error and leave the set of senses 
for that word unaltered. 

4. Our next module is based on a proposal by Lesk 
(Lesk, 1986) that words in a sentence could be 
disambiguated by choosing the the sense which 
produced the maximum overlap of the content 
words in the textual definitions of the word's 
senses. In practise this led to massive compu- 
tations with as many as 10 l° possible combina- 
tions of senses for a single sentence. 

Cowie et. al. (Cowie, Guthrie, and Guthrie, 
1992) used simulated annealing (Kirkpatrick, 
Gelatt, and Vecci, 1983), a numerical optimisa- 
tion algorithm, to make this process tractable. 

5In our system a stop word is defined to be any word 
which is not a noun, verb, adjective or adverb. Preposi- 
tions are included in the list of stop words and are not 
disambiguated. 

6The BriU tagger uses the tag set from the Penn Tree 
Bank which contains 48 tags (Marcus, Santorini, and 
Marcinkiewicz, 1993), LDOCE uses a set of 17, more 
general, tags. 
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The simulated annealing algorithm proceeds by 
disambiguating a sentence at a time. A ran- 
dom configuration of senses is chosen such that 
one Sense is assigned to each ambiguous word 
in the sentence. A score is given to this config- 
uration based on the number of content words 
which are shared between the textual definition 
in the senses. Other, random, configurations 
are then generated and the simulated annealing 
algorithm is used to optimise over them. When 
this process is complete the algorithm returns a 
configuration which assigns the optimal config- 
uration of senses based on the overlap of words 
in the definition text. 

This process identifies a single condidate 
LDOCE sense for each ambiguous word. 

5. The text is then run through a module which 
optimises the overlap of domain codes for the 
senses of nouns in each paragraph of the text. 
The optimisation algorithm used is similar to 
simulated annealing (see section 4), although 
it has been modified in two ways. Firstly, we 
maximise the overlap of the pragmatic codes as- 
sociated with the word senses rather than the 
content words in their definitions. Secondly, we 
optimise over entire paragraphs at a time rather 
than just sentences, this is done because there 
is good evidence (Gale, Church, and Yarowsky, 
1992) that  a wide context, of around 100 words, 
is optimal when disambiguating using domain 
codes. This process, like the previous module, 
identifies a single candidate sense for each am- 
biguous word. 

6. The final stage is to combine the results of 
the preceding processes. This is done using a 
very simple mechanism which we plan to re- 
place with an optimisation algorithm. We as- 
sign a score to each of the senses of the am- 
biguous words. These scores are initialised to 
0 and +1 is added to a sense's score for each 
of the simulated annealing or pragmatic code 
modules which select that sense. The sense with 
the highest score is chosen as the tag for each 
ambiguous word. If there is a tie (two senses 
with the same score, which will happen if the 
two partial taggers disagree) it is broken by 
choosing the first sense, as listed in the dictio- 
nary. This is a sensible tie-breaker since the 
senses are roughly ordered by frequency of oc- 
currence in text 7. After this process is com- 

7We are using the 1st Edition of LDOCE in which the 
publishers make no claim that the senses are ordered by 

pleted every ambiguous word has exactly one 
sense from LDOCE associated with it, this sense 
is the tag which our system has assigned to that 
word. 

We have conducted some preliminary testing 
of our tagger: our tests were run on 14 hand- 
disambiguated (by one of the authors) sentences 
from the Wall Street Journal, amounting to a 250 
word corpus. We found that, of the tokens with 
more than 1 homograph in LDOCE, 92% were as- 
signed the correct homograph and 75% the correct 
sense using our tagger. These figures should be com- 
pared to the 72% correct homograph assignment and 
47% correct sense assignment reported by Cowie et. 
al. (Cowie, Guthrie, and Guthrie, 1992) using sim- 
mulated annealing alone on the same test set. 

6 D e v e l o p i n g  t h e  t a g g e r  w i t h  G A T E  

The sense tagger was implemented as a set of 11 
CREOLE modules, 6 of which had been imple- 
mented as part  of VIE and the remaining 5 were de- 
veloped specifically for the sense tagger. These were 
implemented in a variety of programming languages: 
C[++], Perl and Prolog. These five modules are var- 
ied in their implementation methods. Two are writ- 
ten entirely in C + +  and are linked with the GATE 
executable at runtime using GATE's dynamic load- 
ing facility (see (Cunningham et al., 1996)). Three 
are made up of a variety of Perl scripts, Prolog saved 
states or C executables, which are run as external 
processes via GATE's Tcl (Ousterhout, 1994.) API. 
This is typical of systems we have seen built using 
GATE, and illustrates its flexibility with respect to 
implementation options. 

The GATE graphical representation of the sense 
tagger is shown in figure 7. 

A special viewer was implemented within GATE 
to display the results of the sense tagging process. 
After the final module in the tagger has been run it 
is possible to call a viewer which displays the text 
which has been processed with the ambiguous words 
highlighted (see figure 8). Clicking on one of these 
highlighted words causes another window to appear 
which contains the sense which has been assigned to 
that  word by the tagger (see figure 9). Using this 
viewer we can quickly see that the tagger has as- 
signed the 'chosen for job'  sense of "appointment" 
in "Kando, whose appointment takes effect from to- 
day ..." which is the correct sense in this context. 

frequency of occurrence in text (although they do in later 
editions). However, (Guo, 1989) has found evidence that 
there is a correspondence between the order in which 
sense are listed and the frequency of occurrence. 
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the rapid re-use of existing modules and reduced the 
need to provide data-transfer routes between mod- 
ules. Almost the entire preprocessing of the text was 
carried out using modules which had already been 
implemented within GATE: the tokeniser, sentence 
splitter, Brill part-of-speech tagger and the modules 
which made up the Named Entity identifier. This 
meant that we could quickly implementat the mod- 
ules which carried out the disambiguation, and those 
were the modules in which we were most interested. 
The implementation was further speeded up by the 
use of results viewers which allowed us to examine 
the annotations in the TIPSTER DataBase after a 
module had been run, allowing us to discover bugs 
far more quickly than would have been possible in a 
system which is not as explicitly modular as GATE. 
One aspect of sense tagging in which we are inter- 
ested is the effect of including and excluding different 
modules, and this could be easily carried out using 
GGI. 

One particular limitation of the current GATE im- 
plementation became apparent during this work, viz. 
the necessity of cascading module reset in the pres- 
ence of non-monotonic database updates. For exam- 
ple, the POS filter modules remove some of the sense 
definitions associated with words by the lexical pre- 
processing stages. When reseting these modules it is 
therefore necessary to reset the preprocessor stage in 
order that the database is returned to a consistent 
state (this is done automatically by GATE, which 
identifies cases where modules alter previously ex- 
isting annotations by examination of the pre-/post- 
conditions of the module supplied by the developer 
as configuration information prior to loading). This 
leads to redundant processing, and in the case of 
slow modules (like our LDOCE lookup module) this 
can be an appreciable brake on the development cy- 
cle. The planned solution is to change the impl- 
mentation of the reset function. Currently this sim- 
ply deletes the database objects created by a mod- 
ule. Given a database implementation that supports 
transactions we can use timestamp and rollback for 
a more intelligent reset, and avoid the redundant 
processing caused by reset cascading. 

An additional, lesser problem, is the complexity of 
the generation algorithms for the task graphs, and 
the diffculty of managing these graphs as the num- 
ber of modules in the system grows. The graphs cur- 
rently make two main contributions to the system: 
they give a graphical representation of control flow, 
and allow the user to manipulate execution of mod- 
ules; they give a graphical entry point to results vi- 
sualisation. These benefits will have to be balanced 
against their disadvantages in future versions of the 

system. Another problem may arise when the archi- 
tecture includes facilities for distributed processing 
(Zajac et al., 1997; Zajac, 1997), as it is not ob- 

vious how the linear model currently embodied in 
the graphs could be extended to support non-linear 
control strucures. 

8 C o n c l u s i o n  

The previous section indicates that GATE version 1 
goes a long way to meeting it's design goals (noted in 
section 2). The reuse of components we have experi- 
enced in the sense tagging project and a number of 
other local and collaborative projects is in itself jus- 
tification of the development effort spent on the sys- 
tem, and, hopefully, these savings will be multiplied 
accross other users of the system. Future versions 
will address the problems we uncovered above. 

D i s t r i b u t i o n  

GATE and a MUC-6 (Grishman and Sundheim, 
1996) style Information Extraction (Gaizauskas et 
al., 1996; Humphreys et al., 1996) system that 
comes with it is free for academic research - see 
http://~v, des. shef. ac. uk/research/groups 
/nip~gate~ for details. 
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