
/

II

II

/

/

/

/

/

/

II

/

/

/

/

II

/

Look-Back and L o o k - A h e a d in the Conversion of
H idden Markov M o d e l s into Finite State Transducers

Andrd Kempe
Xerox Research Centre Europe - Grenoble Laboratory

6, chemin de Maupertuis - 38240 Meylan - France

andre, kempe@xrce, xerox, tom

http://www, xrce. xerox, com/research/mltt

Abstract

This paper describes the conversion of a Hid-
den Markov Model into a finite state trans-
ducer that closely approximates the behavior
of the stochastic model. In some cases the
transducer is equivalent to the HMM. This
conversion is especially advantageous for part-
of-speech tagging because the resulting trans-
ducer can be composed with other transducers
that encode correction rules for the most fre-
quent tagging errors. The speed of tagging is
also improved. The described methods have
been implemented and successfully tested.

1 Introduction
This paper presents an algorithm 1 which approxi-
mates a Hidden Markov Model (HMM) by a finite-
state transducer (FST). We describe one applica-
tion, namely part-of-speech tagging. Other poten-
tial applications may be found in areas where both
HMMs and finite-state technology are applied, such
as speech recognition, etc. The algorithm has been
fully implemented.

An HMM used for tagging encodes, like a trans-
ducer, a relation between two languages. One lan-
guage contains sequences of ambiguity classes ob-
tained by looking up in a lexicon all words of a sen-
tence. The other language contains sequences of tags
obtained by statistically disambiguating the class se-
quences. From the outside, an HMM tagger behaves
like a sequential transducer that deterministically
maps every class sequence to a tag sequence, e.g.:

[DET, PRO] [ADJ,NOUN] [ADJ,NOUN] [END] (i)

DET ADJ NOUN END

aThere are other (dillerent) algorithms for HMM
to FST conversion: An unpublished one by Julian M.
Kupiec and John T. Maxwell (p.c.), and n-type and s-
type approximation by Kempe (1997).

The main advantage of transforming an HMM is
that the resulting transducer can be handled by fi-
nite state calculus. Among others, it can be com-
posed with transducers that encode:

• correction rules for the most frequent tagging
errors which are automatically generated (Brill,
1992; Roche and Schabes, 1995) or manually
written (Chanod and Tapanainen, 1995), in or-
der to significantly improve tagging accuracy -9 .
These rules may include long-distance depen-
dencies not handled by ttMM taggers, and can
conveniently be expressed by the replace oper-
ator (Kaplan and Kay, 1994; Karttunen, 1995;
Kempe and Karttunen, 1996).

• further steps of text analysis, e.g. light parsing
or extraction of noun phrases or other phrases
(Ait-Mokhtar and Chanod, 1997).

These compositions enable complex text analysis to
be performed by a single transducer.

The speed of tagging by an FST is up to six times
higher than with the original HMM.

The motivation for deriving the FST from an
HMM is that the tIMM can be trained and con-
verted with little manual effort.

An HMM transducer builds on the data (probabil-
ity matrices) of the underlying HMM. The accuracy
of this data has an impact on the tagging accuracy
of both the HMM itself and the derived transducer.
The training of the HMM can be done on either a
tagged or untagged corpus, and is not a topic of this
paper since it is exhaustively described in the liter-
ature (Bahl and Mercer, 1976; Church, 1988).

An HMM can be identically represented by a
weighted FST in a straightforward way. We are,
however, interested in non-weighted transducers.

2Automatically derived rules require less work than
manually written ones but are unlikely to yield better
results because they would consider relatively limited
context and simple relations only.

Kempe 29 Look-Back and Look-Ahead in the Conversion of HMMs

Andr~ Kempe (1998) Look-Back and Look-Ahead in the Conversion of Hidden Markov Models into Finite State
Transducers. In D.M.W. Powers (ed.) NeMLaP3/CoNLL98: New Methods in Language Processing and Computational Natural
Language Learning, ACL, pp 29-37.

2 b-Type Approximation
This section presents a method tha t approximates
a (first order) Hidden Markov Model (HMM) by a
finite-state transducer (FST), called b-type approxi-
mat ion s. Regular expression operators used in this
section are explained in the annex.

Looking up, in a lexicon the word sequence of a
sentence produces a unique sequence of ambiguity
classes. Tagging the sentence by means of a (first
order) t tMM consists of finding the most probable
tag sequence T given this class sequence C (eq. 1,
fig. 1). The joint probabil i ty of the sequences C and
T can be estimated by:

p (C , T) = p (c i c . , t z tn) =
11

,r(t,) b(c~ Its).] - I a(t~ Iti- ~) b(c~ Its)
i = 2

(2)

2.1 B a s i c I d e a

The determination of a tag of a particular word can-
not be made separately from the other tags. Tags
can influence each other over a long distance via
transit ion probabilities.

In this approach, an ambigui ty class is disam-
biguated with respect to a context. A context con-
sists of a sequence of ambigui ty classes limited at
both ends by some selected tag 4. For the left con-
text of length/3 we use the te rm look-back, and for
the right context of length a we use the term look-
ahead.

Wi.3 Wi.2 Wi.i Wi Wt+ t Wt÷ 2 Wi+ 3 words

Ci-3 Ci-I i~i'i Ci Ci+i Ci+2 Ci÷3 classes

t l : ;I 1 ~1 :1
i-3 ti'l ti+l t+2 ti*3

t2+-3 tP-2~ tP-I l ~ I t~l x t ~ ti2+3 m~

L t ~ . l J ' ~ t~.z t 3 i-3

Figure 1: Disambiguation of classes between
two selected tags

a look-ahead distance of a = 2. Actually, the two
selected tags t~_ 2 and t~+ 2 allow not only the disam-
biguation of the class ci but of all classes inbetween,
i.e. c i - t , ci and ci+l.

We approximate the tagging of a whole sentence
by tagging subsequences with selected tags at both
ends (fig. 1), and then overlapping them. The most
probable paths in the tag space of a sentence, i.e.
valid paths according to this approach, can be found
as sketched in figure 2.

w I w z w 3 w 4 w s w~ w 7 w~ words

c i c 2 C 3 c 4 c 5 c 6 .c 7 c 8 # classes

t t t t - t t t

t ~ ~ t ~"~r-'--t ~..t # ~gs

Figure 2: Two valid paths through the tag
space of a sentence

w~ w 2 w 3 w 4 w 5 w 6 w7 w8 words

c i c 2 c 3 c 4 C 5 c 6 c 7 C s # classes

xW./ tags

Figure 3: Incompatible sequences in the tag
space of a sentence

A valid path consists of an ordered set of overlap-
ping sequences .in which each member overlaps with
its neighbour except for the first or last tag. There
can be more than one valid path in the tag space
of a sentence (fig. 2). Sets of sequences that do not
overlap in such a way are incompatible according to
this model, and do not constitute valid paths (fig. 3).

In figure 1, the tag t~ can be selected from the class
ci because it is between two selected tags d which are
t~_ 2 at a look-back distance of fl = 2 and t~2+2 at

ZName given by the author, to distinguish the algo-
rithm from n-type and s-type approximation (Kempe,
1997).

4The algorithm is explained for a first order HMM. In
the case of a second order HMM, b-type sequences must
begin and end with two selected tags rather than one.

2.2 b - T y p e S e q u e n c e s

Given a length ~ of look-back and a length a of look-

ahead, we generate for every class co, every look-

back sequence t_~ c-a+1 ... c-z, and every look-

ahead sequence ci ... ca-1 ta, a b-type sequenced:

t_~ c - ,+z ... c -z co cl ... c~-z t~ (3)

Kempe 30 Look-Back and Look-Ahead in the Conversion of HMMs

I

I

I

I

I

I

I

|

I

I

I

I

I

II

il

II

I!

II

il

II

II

II

II

II

II

II

II

I!

II

For example:

CONJ [DET, PRON] lAD J, NOUN, VERB] [NOUI~, VERB] VERB (4)

Each such original b-type sequence (eq. 3,4; fig. 4)
is disambiguated based on a first order HMM. Here
we use the Viterbi algorithm (Viterbi, 1967; Ra-
biner, 1990) for efficiency.

look-back look-ahead

-~, ~ - I . . . - I 0 I . . . a - I a p o s i t i o n s

z:-.a/'~J\a a I a ~ a J a a (I / ~ ;
l t ~ - ~ t_~-V, ...---- t_, ~ to----- t,----...--~ to.~-:r=~to 3 ~ s

transition probabili~" b cla~ probabili~

(~r - "(~r" "(~r" " (~ original b-t~pe sequence

Figure 4: b-Type sequence

For an original b-type sequence, the joint proba-
bility of its class sequence C with its tag sequence T
(fig. 4), can be estimated by:

p(C, T) = p(c_~+~ ... e~_~ , t-z ... t~) =

[i=~S+la(t,lt,_~) b(cilti)].a(t~lt~_~) (5)

At every position in the look-back sequence and
in the look-ahead sequence, a boundary # may oc-
cur, i.e. a sentence beginning or end. No look-back
(~? = 0) or no look-ahead (a = 0) is also allowed.
The above probability estimation (eq. 5) can then
be expressed more generally (fig. 4) as:

p(C, T) = p,~,~ . p,,~e~e . p,,e (6)

with P~tart being

Psta~t = a(t-Z+zlt-S) for selected tag t_ z (7)

P~t~.t = rr(t-z+z) for boundary ~ (8)

P, t a ~ = 1 for ~3=0 (9)

with prniddle being

a - 1

Prniaate = b(c-a+z It-z+1)" H a(tilti_i) b(cil t i)
i = - Z + 2

for a + # > 0 (10)

PmiddZe = b(colto) for a+/~=0 (11)

and with Pend being

Pe,~a =a(ta[t.a-z) for selected tag ta (12)

Pend = 1 for boundary # or a = 0 (13)

When the most likely tag sequence is found for an
original b-type sequence, the class co in the middle
position (eq. 3) is associated with its most likely tag
to. We formulate constraints for the other tags t_ z
and ta and classes c_z+1...c_ z and Cl...ca_ I of the
original b-type sequence. Thus we obtain a tagged
b-type sequence s.

" (14) - c_/~+l .-.C_ 2 C0:~0 C2- ' "~a-1 t a

stating that to is the most probable tag in the class
co if it is preceded by t B~ cS(Z-z)...cB2 c m and
followed by c a l cA:.. .c A(~- I) t a%

In expression 14 the subscripts --/3 -B+I...0...~-I
a denote the position of the tag or class in the b-type
sequence, and the superscripts Bfl B(/~-I)...B1 and
A 1 . . . A (o - 1) Aa express constraints for preceding
and following tags and classes which are part of other
b-type sequences. In the exampleS:

CONI-B2 [DET, PRON]-B1

[ADJ,NOUN, v~aB]:~a
[~ao~,v~aB}-al V~B-A2 (15)

ADJ is the most likely tag in the class
[£1~J,IY0trN,vFalB] if it is preceded by the tag C0NJ
two positions back (B2), by the class [DET,PRON'I
one position back (B1), and followed by the class
I'NOUlY,VEI~] one position ahead (A1) and by the
tag VERB two positions ahead (A2).

Boundaries are denoted by a particular symbol
and can occur at the edge of the look-back and look-
ahead sequence:

t B~ c s(t~-l) ...c B2 c B1 c: t c Ax c A1 ...c A(a-1) #An (16)

t s# c ~(~-l) ...c ~ c B1 c:t c A1 c A1 ...#A(~--Z) (17)

#Be C~(~-Z) ...CB2 cBZ c:t #AZ (18)

#BZ c:t #AZ (19)
#B2 cBl c:t c A' c ~I ...cA(°-I) t a~ (20)

For example:

~-B2 [DET, PRONI-B1

[ADJ, NOUN, V~B]: ADJ

(21)

SRegular expression operators used in this article are
explained in the annex.

K e m p e 31 Look-Back and Look-Ahead in the Conversion o f H M M s

C0NJ---B2 [DET, PRON]-B1

[ADJ, NOON, VF23] : NOUN

#-A~ (22)

Note that look-back of length ,3 and look-ahead of
length a also include all sequences shorter than 3 or
~, respectively, that are limited by # .

For a given length 3 of look-back and a length a
of look-ahead, we generate every possible original b-
type sequence (eq. 3), disambiguate it statistically
(eq. 5-13), and encode the tagged b-type sequence
Bi (eq. 14) as an FST. All sequences Bi are then
unioned

°B = U B; (23)
{

and we generate a preliminary tagger model B"

B" = lOB]. (24)

where all sequences Bi can occur in any order
and number (including zero times) because no con-
straints have yet been applied.

2.3 C o n c a t e n a t i o n Cons t ra in t s

To ensure a correct concatenation of sequences Bi,
we have to make sure that every Bi is preceded and
followed by other Bi according to what is encoded
in the look-back and look-ahead constraints. E.g.
the sequence in example (21) must be preceded by
a sentence beginning, # , and the class [DET,PRON]
and followed by the class [NOON, VERB] and the tag
VERB.

We create constraints for preceding and following
tags, classes and sentence boundaries. For the look-
back, a particular tag ti or class cj is required for a
particular distance of 6 < -1 , byS:

R'(ti) =' [- [?* tl [\ut]* ~t [\ut].]'(-$-1}] t/B(-~) ?.] (25)

R'(cj) = ' [' [% cj [\%]* [% [\%],]'(-$-I)] ci(-~) ?.] (26)

for 6 < -1

with °t and °c being the union of all tags and all
classes respectively.

A sentence beginning, # , is required for a partic-
ular look-back distance of 6 < - 1 , on the side of the
tags, by:

R'(#) =-["[[\~t], [~t [\~t],]'(-~-1)] #8(-~ ?,] (2r)

for J < -1

In the case of look-ahead we require for a partic-
ular distance of 6 > 1, a particular tag ti or class cj
or a sentence end, # , on the side of the tags, in a
similar way by:

n~(t,) =-[?, t, ~s -{ [\°t], ~t [\~t],]-(~-ll t~ ?,]] (2s)

a%,) =-[?, ~ -[[\°4* [o [\~]*]'(~-~1 c, ?,]] (29)

n'(#) =-[?, #.,6 -[[\°t], [°t [\~t],]-(~-l)]] (30)

for J > l

All tags ti are required for the look-back only at
the distance of 6 = - 3 and for the look-ahead only
at the distance of 6 = a. All classes cj are required
for distances of 6 E [- 3 + 1, -1] and 6 E [1, a, - 1].
Sentence boundaries, # , are required for distances
of 6 E [- 3 , - 1] and 6 E [1, a].

We create the intersection Rt of all tag con-
straints, the intersection Re of all class constraints,
and the intersection R# of all sentence boundary
constraints:

R, = N R,(t,) (31)
i ~ [I,.]
e {-~,~}

Ro = N R%) (32)
j ~ ll,ml

6 E [-3+l,--l]U[l,a--l]

a# = n a~(#) (33)
~ [-~,- I]u[I,.,]

All constraints are enforced by composition with
the preliminary tagger model B" (eq. 24). The class
constraint Rc is composed on the upper side of B"
which is the side of the classes (eq. 14), and both
the tag constraint Rt and the boundary constraint 6
R# are composed on the lower side of B', which is
the side of the tagsS:

B'" = Rc .o. B" .o. Rt .o. R# (34)

Having ensured correct concatenation, we delete
all symbols r that have served to constrain tags,
classes or boundaries, using Dr:

6The boundary constraint R# could alternatively be
computed for and composed on the side of the classes.
The transducer which encodes R# would then, however,
be bigger because the number of classes is bigger than
the number of tags.

Kempe 32 Look-Back and Look-Ahead in the Conversion of HMMs

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

I!

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

D, = r - > [] (36)

By composing r B'" (eq. 34) on the lower side with
Dr and on the upper side with the inverted relation
Dr. i , we obtain the final tagger model B:

B = D, . i .o.B'" .o. Dr (37)

We call the model a b-type model, the correspond-
ing FST a b-type transducer, and the whole algo-
rithm leading from the HMM to the transducer, a
b-type approximation of an HMM.

2.4 P r o p e r t i e s of b - T y p e T ransduce r s

There are two groups of b-type transducers with dif-
ferent properties: FSTs without look-back and/or
without look-ahead (19-a = 0) and FSTs with both
look-back and look-ahead (8"a > 0). Both accept
any sequence of ambiguity classes.

b-Type FSTs with $.cr =0 are always sequential.
They map a class sequence that corresponds to the
word sequence of a sentence, always to exactly one
tag sequence. Their tagging accuracy and similarity
with the underlying HMM increases with growing
fl + or. A b-type FST with $ = 0 and a = 0 is equiva-
lent to an nO-type FST, and with $ = 1 and a = 0 it
is equivalent to an nl-type FST (Kempe, 1997).

b-Type FSTs with $. a > 0 are in general not se-
quential. For a class sequence they deliver a set of
different tag sequences, which means that the tag-
ging results are ambiguous. This set is never empty,
and the most probable tag sequence according to the
underlying HMM is always in this set. The longer
the look-back distance $ and the look-ahead distance
a are, the larger the FST and the smaller the set of
resulting tag sequences. For sufficiently large $ + a ,
this set may contain always only one tag sequence.
In this case the FST is equivalent to the underlying
HMM. For reasons of size however, this FST may
not be computable for particular HMMs (see. 4).

3 A n I m p l e m e n t e d F i n i t e - S t a t e T a g g e r

The implemented tagger requires three transducers
which represent a lexicon, a guesser and an approx-
imation of an HMM mentioned above.

Both the lexicon and guesser are sequential, i.e.
deterministic on the input side. They both unam-
biguously map a surface form of any word that they
accept to the corresponding ambiguity class (fig. 5,
col. 1 and 2): First of all, the word is looked for in the

rFor efficiency reasons, we actually do not delete the
constraint symbols r by composition. We rather tra-
verse the network, and overwrite every symbol r with
the empty string symbol e. In the following determiniza-
tion of the network, all ~ are eliminated.

lexicon. If this fails, it is looked for in the guesser. If
this equally fails, it gets the label [UNKNOWN] which
denotes the ambiguity class of unknown words. Tag
probabilities in this class are approximated by tags
of words that appear only once in the training cor-
pus.

As soon as an input token gets labeled with the
tag class of sentence end symbols (fig. 5: [SENT]),
the tagger stops reading words from the input. At
this point, the tagger has read and stored the words
of a whole sentence (fig. 5, col. 1) and generated the
corresponding sequence of classes (fig. 5, col. 2).

The class sequence is now mapped to a tag se-
quence (fig. 5, col. 3) using the HMM transducer. A
b-type FST is not sequential in general (sec. 2.4),
so to obtain a unique tagging result, the finite-state
tagger can be run in a special mode, where only the
first, result found is retained, and the tagger does
not look for other results s. Since paths through an
FST have no particular order, the result retained is
random.

The tagger outputs the stored word and tag se-
quence of the sentence, and continues in the same
way with the remaining sentences of the corpus.

The [AT] AT
share Ll~, VB] NN
of [IN] IN

. . ,

tripled [VBD, VBN] VBD
.ithin [IN ,RB] IN
that [CS ,DT.WPS] DT
span [NN,VB, VBD] NN
of [IN] IN
t ime ['NN, VB] NN

[SENT] s~.wr

Figure 5: Tagging a sentence

The tagger can be run in a statistical mode ,, here
the number of tag sequences found per sentence is
counted. These numbers give an overview of the
degree of non-sequentiality of the concerned b-type
transducer (sec. 2.4).

8This mode of retaining the first result only is not
necessary with n-type and s-type transducers which are
both sequential (Kempe, 1997).

Kempe 33 Look-Back and Look-Ahead in the Conversion of HMMs

Transducer
or HMM

I HMM

I Accuracy] Tagging speed Transducer size Creation
test corp. I in words/sec time

in % I ultra2 I sparc20 #states I #arcs] . ultra2
t 97.351 48341 16241 ~ 1 ~ l _ ~ l

s nI-FST ,733 I,,3, J ,80 i ,,iOpi 15,225 22 io
s+nl-FST 1M, F8) 96.12 22 001 9 969 329 42 560 :.. 4 min
b-FST (/~=0, a=0), =nO 87.21 26 585 11 000 1 181 6 se~
b-FST (fl=l,a=0), =nl 95.16 26 585 11 600 37 6 697 11 sec
b-FST (~=2,a=0) 95.32 21 268 7 089 3 663 663 003 4 h 11
b-FST (fl=0, a=l) 93.691 199391 877 I 252 40243 12sec
b-FST (fl=0,a=2) 93.92 19 334 114 10 554 l 246 686 j0 min

b-FST (fl=2, a=l) "97.34 15 191 6 510 54 578 18 402 055 2 h 17
b-FST (fl=3, a=l) FST was not computable

Language: English
Corpora: 19 944 words for HMM training, 19 934 words for test
Tag set: 36 tags, 181 classes
* Multiple, i.e. ambiguous tagging results: Only first result retained

Types of FST (Finite-State Transducers) :
n0, nl n-type transducers (Kempe, 1997)
s+nl (IM,FS) s-type transducer (Kempe, 1997),

with subsequences of frequency > 8, from a training corpus
of I 000 000 words, completed with nl-type

b (fl=2,a=l) b-type transducer (sec. 2), with look-back of 2 and look-ahead of i
Computers:

ultra2 1 CPU, 512 MBytes physical RAM, 1.4 GBytes virtual RAM
spare20 1 CPU, 192 MBytes physical RAM, 827 MBytes virtual RAM

Table 1: Accuracy, speed, size and creation time of some HMM transducers

4 Experiments and Results

This section compares different FSTs with each
other and with the original ttMM.

As expected, the FSTs perform tagging faster
than the HMM.

Since all FSTs are approximations of HMMs, they
show lower tagging accuracy than the ttMMs. In the
case of FSTs with fl > 1 and a = 1, this difference in
accuracy is negligible. Improvement in accuracy can
be expected since these FSTs can be composed with
FSTs encoding correction rules for frequent errors
(sec. 1).

For all tests below an English corpus, lexicon and
guesser were used, which were originally annotated
with 74 different tags. We automatically recoded the
tags in order to reduce their number, i.e. in some
cases more than one of the original tags were recoded
into one and the same new tag. We applied different
recodings, thus obtaining English corpora, lexicons
and guessers with reduced tag sets of 45, 36, 27, 18
and 9 tags respectively.

FSTs with f l = 2 and ~ = 1 and with f l = 1 and
a = 2 were equivalent, in all cases where they could
be computed.

Table 1 compares different FSTs for a tag set of
36 tags.

The b-type FST with no look-back and no look-
ahead which is equivalent to an n0-type FST
(Kempe, 1997), shows the lowest tagging accuracy
(b-FST ()3=0, a = 0) : 87.21%). It is also the small-
est transducer (1 state and 181 arcs, as many as
tag classes) and can be created faster than the other
FSTs (6 sec.).

The highest accuracy is obtained with a b-type
FST with f l = 2 and a = 1 (b-FST (/ 3 = 2 , ~ = 1) :
97.34 %) and with an s-type FST (Kempe, 1997)
trained on 1 000 000 words (s+nl-FST (1M, F1):
97.33 %). In these two cases the difference in accu-
racy with respect to the underlying ttMM (97.35 %)
is negligible. In this particular test, the s-type FST
comes out ahead because it is considerably smaller
than the b-type FST.

The size of a b-type FST increases with the size
of the tag set and with the length of look-back plus
look-ahead, ~+c~. Accuracy improves with growing

b-Type FSTs may produce ambiguous tagging re-
suits (sec. 2.4)'. In such instances only the first result
was retained (see. 3).

Kempe 34 Look-Back and Look-Ahead in the Conversion of HMMs

II

II

II

II

II

Ii

II

II

II

II

II

II

II

II

II

II

II

II

II

II

i l

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

Transducer
or HMM

HMM
s+nl FST (1M, F1) 96.76

99.89
s+nl-FST (1M, F8) 95.09

97.00
b-FST (fl=0,a=0), =n0 83.53

84.00
b-FST (/3=l,a=0), =nl 94.19

95.61
b-FST (fl=2, a=0)

b-FST (fl=0, a=l) 92.79
93.64

b-FST (fl=0, c~=2) 93.46
94.35

b-FST (fl=l, a--'l } *94.94
*97.86

b-FST (B=2, a=l)

b-FST (/3=3, a=l)

Tagging accuracy and agreement with the tIMM
for tag sets of different sizes

297 cls. 214 cls. 181 cls. 119 els. 97 ds. 67 ¢ls.
I 96"781 96.92] 97"351 97"071 96 73 I' 95.76 I

96.88
99.93
95.25
97.35
83.71
84.40
94.09
95.92
94.28
96.09
92.47
93.41
92.77
93.70

"95.14
°97.93

97.33 97.06 96.72 95.74
99.90 99.95 99.95 99.94
96.12 96.36 96.05 95.29
98.15 98.90 98.99 98.96
87.21 94.47 94.24 93.86
88.04 96.03 96.22 95.76
95.16 95.60 95.17 94.14
96.90 97.75 97.66 96.74
95.32 95.71 95.31 94.22
97.01 97.84 97.77 96.83
93.69 95.26 95.19 94.64
94.67 96.87 97.06 97.09
93.92 95.37 95.30 94.80
94.90 96.99 97.20 97.29

"95.78 "96.78 "96.59 "95.36
"98.11 °99 .58 "99.72 *99.26
"97.34 °97.06 "96.73 °95.73
*99.97 °99.98 *100.00 *99.97

95.76
100.00

Language: English
Corpora: 19 944 words for HMM training, 19 934 words for test
Types of FST (Finite-State Transducers) cf. table 1

[9998 1 9 7 ° 6 I

Multiple, i.e. ambiguous tagging results: Only first result retained

Tagging accuracy of 97.06 %,
and agreement of FST with HMM tagging results of 99.98 %

Transducer could not be computed, for reasons of size.

Table 2: Tagging accuracy and agreement of the FST tagging results with those
of the underlying HMM, for tag sets of different sizes

Table 2 shows the tagging accuracy and the agree-
ment of the tagging results with the results of the
underlying HMM for different FSTs and tag sets of
different sizes.

To get results that are almost equivalent to those
of an HMM, a b-type FST needs at least a look-back
of/5 = 2 and a look-ahead of a = 1 or vice versa.
For reasons of size, this kind of FST could only be
computed for tag sets with 36 tags or less. A b-type
FST with/5 = 3 and a = 1 could only be computed
for the tag set with 9 tags. This FST gave exactly
the same tagging results as the underlying HMM.

Table 3 illustrates which of the b-type FSTs are
sequential, i.e. always produce exactly one tagging
result, and which of the FSTs are non-sequential.

For all tag sets, the FSTs with no look-back

(/5 = 0) and/or no look-ahead (a = 0) behaved se-
quentially. Here 100 % of the tagged sentences had
only one result. Most of the other FSTs (/5. o~ > 0)
behaved non-sequentially. For example, in the case
of 27 tags w i t h l 3 = l a n d a = l , 90 .08%of the
tagged sentences had one result, 9.46 % had two re-
sults, 0.23 % had tree results, etc.

Non-sequentiality decreases with growing look-
back and look-ahead,/5+c~, and should completely
disappear with sufficiently large/5+~. Such b-type
FSTs can, however, only be computed for small tag
sets. We could compute this kind of FST only for
the case of 9 tags with/5=3 and a=l .

The set of alternative tag sequences for a sentence,
produced by a b-type FST with/5, a > 0, always
contains the tag sequence that corresponds with the
result of the underlying HMM.

Kempe 35 Look-Back and Look-Ahead in the Conversion of HMMs

I Sentences with n tagging results
Transducer (in %)

n= 11 n= 21n= 31n= 41 5-8] 9-16
74 tags, 297 dasses (origina~ tag set)
b-FST (fl.a=0) I 1°°1
b-FST (fl=l,a=l) 75.14120.18 t 0.341 3.421 0.801 0.11
b-FST (~=2,a=l) FST was not computable
45 tags, 214 classes (reduced tag set)
b-rSZ(a.4=0) I 1°°1 I l I I
b-FST (fl=1,4=1)175.71119.731 0.68[3.191 0.68]
b-FST (fl=2,4=1)[FST was not computable
36 tags, 181 classes (reduced tag set)
b-FST (fl-a=0) 100
b-FST (fl=1,4=1) 78.56 17.90 0.34 2.85 0.34
b-FST (/3=2,4=1) 99.77 0.23
27 tags, 119 classes (reduced tag set)
b-FST (/3-4=0} 100
b-FST (fl=1,a=l) 90.08 9.46 0.23~ 0.11 0.11
b-FST (fl=2,a=l) 99.77 0.23
18 tags, 97 classes (reduced tag set)
b-FST (fl-a=0) 100
b-FST (fl=l,4=l)[93.04 6.84 0.11
b-FST (fl--2,a--1)199.89 0.11
9 tags, 67 classes (reduced tag set)
b-FST (fl-4=0) 1001
b.-FST (fl=l,4=l) 86.66112.43 0.91
b-FST (fl=2,4=1) 99.771 0.23
b-FST (fl=3,4=1) 100

Language: English 1
ITest corpus: 19 934 words, 877 sentences
[Types of FST (Finite-State Transducers) cf. table 1

Table 3: Percentage of sentences with a par-
ticular number of tagging results

5 C o n c l u s i o n a n d F u t u r e R e s e a r c h

The algorithm presented in this paper describes the
construction of a finite-state transducer (FST) that
approximates the behaviour of a Hidden Markov
Model (HMM) in part-of-speech tagging.

The algorithm, called b-type approximation, uses
look-back and look-ahead of freely selectable length.

The size of the FSTs grows with both the size of
the tag set and the length of the look-back plus look-
ahead. Therefore, to keep the FST at a computable
size, an increase in the length of the look-back or
look-ahead, requires a reduction of the number of
tags. In the case of small tag sets (e.g. 36 tags), the
look-back and look-ahead can be sufficiently large
to obtain an FST that is almost equivalent to the
original HMM.

In some tests s-type FSTs (Kempe, 1997) and
b-type FSTs reached equal tagging accuracy. In
these cases s-type FSTs are smaller because they
encode the most frequent ambiguity class sequences

of a training corpus very accurately and all other
sequences less accurately, b-Type FSTs encode all
sequences with the same accuracy. Therefore, a
b-type FST can reach equivalence with the original
HMM, but an s-type FST cannot.

The algorithms of both conversion and tagging are
fully implemented.

The main advantage of transforming an HMM is
that the resulting FST can be handled by finite state
calculus ~ and thus be directly composed with other
FSTs.

The tagging speed of the FSTs is up to six times
higher than the speed of the original HMM.

F u t u r e r e sea rch will include the composition of
HMM transducers with, among others:

• FSTs that encode correction rules for the most
frequent tagging errors in order to significantly
improve tagging accuracy (above the accuracy
of the underlying HMM). These rules can ei-
ther be extracted automatically from a corpus
(Brill, 1992) or written manually (Chanod and
Tapanalnen, 1995).

* FSTs for light parsing, phrase extraction and
other text analysis (Ait-Mokhtar and Chanod,
1997).

An HMM transducer can be composed with one
or more of these FSTs in order to perform complex
text analysis by a single FST.

ANNEX: Regular Expression Operators

Below, a and b designate symbols, A and B designate
languages, and R and Q designate relations between
two languages. More details on the following
operators and pointers to finite-state literature can
be found in
http://w~, xrce. xerox, com/research/ml~t/f s~

-A

\a

A*

A^n

a -> b

Complement (negation). Set of all strings
except those from the language A.
Term complement. Any symbol other
than a.
Kleene star. Language A zero or more
times concatenated with itself.
A n times. Language A n times concate-
nated with itself.
Replace. Relation where every a on the
upper side gets mapped to a b on the
lower side.

9A large library of finite-state functions is available
at Xerox.

Kempe 36 Look-Back and Look-Ahead in the Conversion of HMMs

II

II

I!

II

II

II

II

II

II

II

III

II

II

II

II

II

II

II

II

I!

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

a:b

R.i

A B

R.o.q
0 or []
?

Symbol pair with a on the upper and b
on the lower side.
Inverse relation where both sides are ex-
changed with respect to R.
Concatenation of all strings of A with all
strings of B.
Composition of the relations R and •.
Empty string (epsilon).
Any symbol in the known alphabet and
its extensions

A c k n o w l e d g e m e n t s

I am grateful to all colleagues who helped me, par-
ticularly to Lauri Karttunen (XRCE Grenoble) for
extensive discussion, and to Julian Kupiec (Xerox
PARC) for sending me information on his own re-
lated work. Many thanks to Irene Maxwell for cor-
recting various versions of the paper.

R e f e r e n c e s

Ait-Mokhtar, Salah and Chanod, Jean-Pierre
(1997). Incremental Finite-State Parsing. In the
Proceedings of the 5th Conference of Applied .Nat-
ural Language Processing (ANLP). ACL, pp. 72-
79. Washington, DC, USA.

Bahl, Lalit R. and Mercer, Robert L. (1976). Part
of Speech Assignment by a Statistical Decision Al-
gorithm. In IEEE international Symposium on
Information Theory. pp. 88-89. Ronneby.

Brill, Eric (1992). A Simple Rule-Based Part-of-
Speech Tagger. In the Proceedings of the 3rd con-
ference on Applied Natural Language Processing,
pp. 152-155. Trento, Italy.

Chanod, Jean-Pierre and Tapanainen, Pasi (1995).
Tagging French - Comparing a Statistical and a
Constraint Based Method. In the Proceedings of
the 7th conference of the EACL, pp. 149-156.
ACL. Dublin, Ireland. cmp-lg/9S03003

Church, Kenneth W. (1988). A Stochastic Parts
Program and Noun Phrase Parser for Unrestricted
Text. In Proceedings of the 2nd Conference on
Applied Natural Language Processing. ACL, pp.
136-143.

Kaplan, Ronald M. and Kay, Martin (1994). Regu-
lar Models of Phonological Rule Systems. In Com-
putational Linguistics. 20:3, pp. 331-378.

Karttunen, Lauri (1995). The Replace Operator. In
the Proceedings of the 33rd Annual Meeting of the
Association for Computational Linguistics. Cam-
bridge, MA, USA. cmp-lg/9504032

Kempe, Andrd and Karttunen, Lauri (1996). Par-
allel Replacement in Finite State Calculus. In
the Proceedings of the 16th International Confer-
ence on Computational Linguistics, pp. 622-627.
Copenhagen, Denmark. crap-lg/9607007

Kempe, Andrd (1997). Finite State Transducers Ap-
proximating Hidden Markov Models. In the Pro-
ceedings of the 35th Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 460-467.
Madrid, Spain. crap-lg/9707006

Rabiner, Lawrence R. (1990). A Tutorial on Hid-
den Markov Models and Selected Applications in
Speech Recognition. In Readings in Speech Recog-
nition (eds. A. Waibel, K.F. Lee). Morgan Kauf-
mann Publishers, Inc. San Mateo, CA., USA.

Roche, Emmanuel and Schabes, Yves (1995). Deter-
ministic Part-of-Speech Tagging with Finite-State
Transducers. In Computational Linguistics. Vol.
21, No. 2, pp. 227-253.

Viterbi, A.J. (1967). Error Bounds for Convolu-
tional Codes and an Asymptotical Optimal De-
coding Algorithm. In Proceedings of IEEE, vol.
61, pp. 268-278.

Kempe 37 Look-Back and Look-Ahead in the Conversion of HMMs

m

m

m

m

m

m

m

m

m

mm

m

m

m

m

m

m

