
A Decision Tree Method for Finding and Classifying Names
in Japanese Texts

S a t o s h i S e k i n e R a l p h G r i s h m a n
Compute r Science D e p a r t m e n t

New York Univers i ty
715 Broadway, 7th floor

New York, NY 10003, USA
[s e k i n e] g r i shman] ©cs. nyu . edu

H i r o y u k i S h i n n o u
Depar tmen t of Sys tems Engineering

Ibaraki Univers i ty
Nakanarusawa, 4-12-1

Hitachi, Ibaraki, 316, J apan
shinnou~lily.dse.ibaraki.ac.jp

A b s t r a c t

This paper describes a system which uses a deci-
sion tree to find and classify names in Japanese
texts. The decision tree uses part-of-speech,
character type, and special dictionary informa-
tion to determine the probability that a particu-
lar type of name opens or closes at a given po-
sition in the text. The output is generated from
the consistent sequence of name opens and name
closes with the highest probability. This system
does not require any human adjustment. Ex-
periments indicate good accuracy with a small
amount of training data, and demonstrate the
system's portability. The issues of training data
size and domain dependency are discussed.

1 I n t r o d u c t i o n

For some NLP applications, it is important to
identify, "named entities" (NE), such as person
names, organization names, time, date, or money
expressions in the text. For example, in informa-
tion extraction systems, it is crucial to identify
them in order to provide the knowledge to be
extracted, and in machine translation systems,
they are useful for creating translations of un-
known words or for disambiguation. However, it
is not easy to identify these names, because they
involve unknown words, and hence the strategy
of listing candidates won' t work. Also, it is some-
times hard to determine the category of proper
nouns, like distinguishing a person name from
a company name. These phenomena are often
different from domain to domain. One domain
may use a special pattern which is not found in
other domains.

In this paper, we will present a supervised
learning system whicil finds and classifies named
entities in Japanese newspaper texts. Recently,
several systems have been proposed for this task,
but many of them use hand-coded patterns. Cre-

171

ating these patterns is laborious work, and when
we adapt these systems to a new domain or a
new definition of named entities, it is likely to
need a large amount of additional work. On
the other hand, in a supervised learning system,
what is needed to adapt the system is to make
new training data.. While this is also not a very
easy task, it would be easier than creating com-
plicated rules. For example, based on our expe-
rience, 100 training articles can be created in a
day.

There also have been several machine learning
systems applied to this task. However, these ei-
ther 1) partially need hand-made rules, 2) have
parameters which must be adjusted by hand, or
3) do not perform well by fully automatic means.
Our system does not work fully automatically
and also needs special dictionaries, but performs
welt and does not have parameters to be adjusted
by hand. We will discuss one of the related sys-
tems in a later section.

The issue of training data size will be dis-
cussed based on experiments using different
sizes of training data. In order to demonstrate
the portability of our system, we ran the system
on a new domain with a new type of named en-
tity. The experiment shows that the portability
of the system is quite good and the performance
is satisfactory.

2 T a s k

The task is to find and classify several types of
named entity items in texts, shown in Table 1.
We use the task definition provided in the MET-
2 guidelines (Multilingual Entity Task; the for-
mal definition will be published in May 1998).
"Executive position" is a new category which is
used in the portability experiment only and is
not part of the MET definition.

There are some idiosyncratic definitions. For

Named Entity Examples
Organization

Person
Location
Position

Date
Time

Money
Percent

Matsushita, M atsushita
Electric Industrial Co.Ltd.
Mr. Matsushita, Mike
U.S.A., Matsushita
President, Professor
March 5, 21st century
12:09, noon, morning
100,000 yen, 1 ECU
10%, a quarter

Table h Named Entities (NE)

example, a sub-organization expression like "Ex-
ecutive Staff" should be identified only when it
follows an organization in proper expression. So,
in the expression "Defense Ministry's Executive
Staff", "Executive Staff" should be identified;
however, it should not be identified if it appears
alone in a sentence. Also, a country expression
at the head of an organization should be iden-
tified if it is expressed by one Chinese charac-
ter, but it should not when it is expressed by
Katakana characters. Although we find some id-
iosyncratic definitions in the guidelines, we will
use them, because there are such difficulties in
nature and we can't easily find another reason-
able definition.

3 A l g o r i t h m

In this section, the algorithm of the system will
be presented. There are two phases, one for
creating the decision tree from training data
(training phase) and the other for generating the
tagged output based on the decision tree (testing
phase). We use a Japanese morphological ana-
lyzer, JUMAN (JUMAN, 1997) and a program
package for decision trees, C4.5 (Quinlan, 1993).
We use three kinds of feature sets in the decision
tree:

• Part-of-speech tagged by JUMAN
We define the set of our categoriefi based on
its major category and minor category.

• Character type information
Character type, like Kanji, Hiragana,
Katakana, alphabet, number or symbol, etc.
and some combinations of these.

172

• Special Dictionaries
Lists of entities created based on JUMAN
dictionary entries, lists found on the Web or
based on human knowledge. Table 2 shows
the number of entities in each dictionary.
Organization name has two types of dictio-
nary; one for proper names and tile other
for general nouns. An example of the latter
case is "Executive Staff", mentioned before.

name- name name-
Entity prefix suffix
Org. 9 7018/49 96

Person 0 17851 7
Loc. 0 14863 61

Position 0 75 0
Date 24 198 29
Time 2 25 5

Money 22 0 39
Percent 0 99 3

Table 2: Special Dictionary Entry

Creating the special dictionaries is not very easy,
but it is not very laborious work. The initial dic-
tionary was built in about a week. In tile course
of the system development, in particular while
creating the training corpus, we added some en-
tities to the dictionaries.

The decision tree gives an output for the be-
ginning and tile ending position of each token. It
is one of the 4 possible combinations of opening,
continuation and closing for each named entity
type, or having no named entity, shown in Table
3. When we have 8 named entity types, there
are 33 kinds of output . For example, if an or-

output

OP-CL

OP-CN

CN-CN

CN-CL

none

beginning ending token
of token of token is
opening
opening

cont.
cont.
none

closing
cont.
cont.

closing
none

NE itself
starting NE

middle of NE
ending NE

not NE

Table 3: Five types of Output

ganization name covers three words, h. B and C~

/ /

and the next word D has no named entity, then
we will have the following data:

A : org-OP-CN

B : org-CN-CN

C : org-CN-CL

D : none

Note that there is no overlapping or embedding
of named entities. An example of real data is
shown in Appendix A.

There could be a problem, in the testing phase,
if we just use the deterministic decision created
by the tree. Because the decisions are made lo-
cally, the system could make an inconsistent se-
quence of decisions overall. For example, one
token could be tagged as the opening of an orga-
nization, while the next token might be tagged
as the closing of person name. We can think of
several strategies to solve this problem (for ex-
ample, the method adopted by (Bennett et al.
1997) will be described in a later section), but
we used a probabilistic method.

There will usually be more than one tag in the
leaf of a decision tree. At a leaf we don't just
record the most probable tag; rather, we keep the
probabilities of tile all possible tags for that leaf.
In this way we can salvage cases where ~ tag
is part of the most probable globally-consistent
tagging of the text, even though it is not the
most probable tag for this token, and so would be
discarded if we made a deterministic decision at
each token. Note that. we did not apply smooth-
ing technique, which might be able to avoid the
data sparseness problem. More about the proba-
bilistic method will be explained in the next sec-
tion.

Tra in ing P h a s e

First, the training sentences are segmented
and part-of-speech tagged by JUMAN. Then
each token is analyzed by its character type and
is matched against entries in the special dictio-
naries. One token can match entries in several
dictionaries. For example, "Matsush i ta" could
match the organization, person anfflocation dic-
tionaries.

Using the training data, a decision tree is built.
It learns about the opening and closing of named
entities based on the three kinds of information
of the previous, current and following tokens.

173

The three types of information are tile part-of-
speech, character type and special dictionary in-
formation described above.

Tes t ing P h a s e

In the testing phase, the first three steps, to-
ken segmentation and part-of-speech tagging by
JUMAN, analysis of character type, and special
dictionary look-up, are identical to that in the
training phase. Then, in order to find the proba-
bilities of opening and closing a named entity for
each token, the properties of the previous, cur-
rent and following tokens are examined against
the decision tree. Appendix 13 shows two exam-
ple paths in the decision tree. For each token,
the probabilities of 'none' and the four combina-
tions of answer pairs for each named entity type
are assigned. For instance, if we have 7 named
entity types, then 29 probabilities are generated.

Once the probabilities for all the tokens in
a sentence are assigned, the remaining task is
to discover the most probable consistent path
through the sentence. Here, a consistent path
means that for example, a path can't have
org-0P-CN and date-0P-CL in a row, but call
have loc-0P-CN and loc-CN-CL. The output
is generated from the consistent sequence with
the highest probability for each sentence. The
Viterbi algorithm is used in the search; this can
be run in time linear in the length of the input.

4 E x a m p l e

Appendix A shows an example sentence along
with three types of information, part-of-speech.
character type and special dictionary informa-
tion, and information of opening and closing of
named entities. Appendix 13 shows two example
paths in the decision tree. For the purpose of
demonstration, we used the seventh and eighth
token of the example sentence in Appendix A.
Each line corresponds to a question asked by
the tree nodes along the path. The last line
shows the probabilities of named entity informa-
tion which have none-zero probability. This in-
stance demonstrates how the probability method
works. As we can see, the probability of none for
the seventh token (I s u r a e r u = Israel) is higher
than that for the opening of organization (0.67
to 0.33), but in the eighth token (K e i s a t s u =
Police), the probability of closing organization is

much higher than none (0.86 to 0.14). The com-
bined probabilities of the two consistent pw:hs
are calculated. One of these paths makes the
two tokens an organization entity while along the
other path, neither token is part of a named en-
tity. The probabilities are higher in the first case
(0.28) than that in the latter case (0.09), So the
two tokens are tagged as an organization entity.

5 E x p e r i m e n t s

In this section, the experiments will be de-
scribed. We chose two domains for the exper-
iments. One is the vehicle accident report do-
main. Newspaper articles in the domain report
accidents of vehicles, like car, train or airplane.
The other is the executive succession domain,
articles in this domain report succession events
of executives, like president, vice president or
CEO. We have 103 training articles in the acci-
dent domain, which contain 2.368 NE's and 11
evaluation articles which were hidden from the
developer, In the evaluation articles, there are
258 NE items (58 organization, 30 person, 100
location, 47 date, 21 time and 2 money expres-
sions). Also, we have 70 training articles, which
contain 2,406 NE's and 17 evaluation articles in
the succession domain. In the evaluation arti-
cles, there are 566 NE items (113 organization,
114 person, 67 location. 183 position. 77 date. 1
time. 9 money and 2 percent expressions).

5.1 A c c i d e n t R e p o r t D o m a i n

First. we will report on the experiment on the ac-
cident domain. Basically, this is the initial target
domain of the system.

The result is shown in Table 4. The F-scores
based on recall and precision are shown. 'Re-
call' is the percentage of the correct answers
among the answers in the key provided by hu-
man. 'Precision' is the percentage of the correct
answers among the answers proposed by the sys-
tem. 'F-score' is a measurement combining the
two figures. See (Tipster2, 1996) for more "de-
tail" definition of F-score, recall and precision.
They are compared with the results produced
by JUMAN's part-of-speech information and the
average scores in MET1, reported in (Tipster2,
1996). The result from JUMAN is created based
on JUMAN version 3.3's output alone 1. When

I Latest version may have better performance than the
results reported here. Also remember that the definitions

it identifies a sequence of locations, persons or .
other proper nouns, then we tag the sequence
with location, person or organization, respec-
tively. The MET1 evaluation was conducted on
completely different texts and on a. different do-
main, so it is not directly comparable, but since
the task definitions are almost the same, we be-
lieve it gives a rough point of comparison. Note
that for the MET1 evaluation, there were about
300 training articles compared to our 100 train-
ing articles. Also, they did not report the scores
by each individual participant.

Entity Our
score

Org. 86
Person 91

Loc. 87
Date 96
Time ; I 91

Money 100
Percent
Overall 85

JUMAN MET1
only ave. score
56
63
51

73
77
82
94
93
95
96

Table 4: Result in Accident Report Domain

We believe these results are quite good and
indicate the capability of our system. In terms of
execution time, the training phase takes about 5
minutes, of which JUMAN and the decision tree
creation take most of the time. It takes less than
a minute to create the named entity output, and
again JUMAN takes the bulk of the time.

5.2 I s sue o f T r a i n i n g Size

It is quite nice that we can get this level of perfor-
mance with only about 100 training articles. It
is interesting to investigate how much training
data is needed to achieve a good performance.
We created 8 small training sets of different size,
and ran the system using these training data.
Note that we used the same dictionaries for all
the experiments, which were generated by sev-
eral means including the items in the entire train-
ing data. Table 5 shows the results. The size of
the training set is indicated by the number of ar-
ticles and the number of NE in the training data.
It is amazing that the performance is not greatly
degraded even with 9 articles. Also, even with

are different.

174

only one article, our system can achieve 68 F-
score. Actually, the three sets of 1-article train-
ing data were created from each article in the
3-article training data, and we can see that the
performance using tlle 3-article training data. is
mainly derived from the high performance sin-
gle article. So, we believe that once you have a
good coverage dictionaries and some amount of
standard patterns in the training data, the sys-
tem can achieve fairly good performance. We
observed that tile article which gives high perfor-
mance contains a good variety of many named
entities.

Size of
Training

103 (2368)
69 (1586)
35 (721)
18 (384)
9 (216)
3 (59)

1 (23/13/23)

score

85
86
80
81
79
71

68/21/41

Table 5: Result for Training Data Size

zation, location dictionary, etc. We believe
that these dictionaries can be relatively do-
main independent.

2. Modify the program
Assign a new ID number for the position en-
tity in the decision tree program and modify
the input /output routine accordingly. This
also took less than an hour.

In less than two hours for the system modifica-
tion, and about a day's work for the preparation
of the training data, the new system becomes
runnable, Table 6 shows the result of the experi-
ment. The result is quite satisfactory. However,

Entity score
Org. : 72

Person 88
Loc. 67

Position 93
Date 89
Time 100

Money 90
Percent 100
Overall 84

5.3 E x e c u t i v e S u c c e s s i o n D o m a i n
- P o r t a b i l i t y -

In general, one of the advantages of automatic
learning systems is their portability. In this sub--
section, we will report an experiment of moving
tile system to a new domain, the executive suc-
cession domain. Also, in order to see the porta-
bility of the system, we add a new kind of named
entity. In this domain, executive positions ap-
pear very often and it is an important entity
type for understanding those articles. So, we add
a new entity class, 'position'. When porting the
system, only the following two changes are re-
quired.

1. Add a new dictionary
Create a new dictionary for positions. In
practice, many of them were listed in the
person prefix in the previous-experiment.
So we separate them and add several po-
sition names which appeared in or could be
inferred from the training data. This took
less than an hour. Note that we did not
change any other dictionaries, i.e. organi-

1 7 5

Table 6: Result in Executive Succession Domain

it "is not as good as the result in the previous
domain, in particular, for organization and lo-
cation. Observing the output, we noticed do-
main idiosyncrasies which we had not thought
of before. For example, in the new domain,
there are many Chinese company names, which
have the suffix "Yuugenkoushi ' . This is never
used for Japanese company names and we don' t
have the suffix in our organization suffix dic-
tionary. Another interesting example is a Chi-
nese character "Shou". In Japanese, the char-
acter is used as a suffix of official organizations,
like "Monbu-Shou" (Department of Education),
but in Chinese it is used as a suffix of location
names, like "Kanton-Shou" (Canton District).
In the accident domain, we did not encounter
such Chinese location names, so we just had the
token in the organization suffix dictionary. This
led to many errors in location names in the new
domain. Also, we find many unfamiliar foreign
location names and company names. We believe
these make the result relatively worse.

5.4 D o m a i n D e p e n d e n c y

As we have training and evaluation data on two
different domains, it is interesting to observe the
domain dependency of the system. Namely, we
will see how the performance differs if we use
the knowledge (decision tree) created from a dif-
ferent domain. We conducted two new exper-
iments, tagging named entities for texts in 1:he
succession domain based on the decision tree cre-
ated for the accident domain, and vice versa.

Table 7 shows the comparison of these re-
suits. The performance in the accident domain
decreased from 85 to 71 using the decision tree
of the other domain. Also, the performance de-
creased from 82 to 59 in the succession domain.

Test \ Train Acc. Suc.
Accident 85 71

Succession , 59 82

Table 7: Result on Domain Dependency

The result demonstrates the domain depen-
dency of the method used, at least for the two
domains. Obviously, making a general comment
based on these small experiments is dangerous,
but it suggests that we should consider the do-
main dependency when we port the system to a
new domain.

6 R e l a t e d W o r k

There have been several efforts to apply machine
learning techniques to the same task (Cowie,
1995) (Bikel et al, 1997) (Gallippi, 1996) (Ben-
nett et al, 1997) (Borthwick et al, 1997). In this
section, we will discuss a system which is one of
the most advanced and which closely resembles
our own (Bennett et al, 1997). A good review of
most of the other systems can be found in their
paper.

Their system uses the decision tree algorithm
and almost the same features. However, there
are significant differences between the systems.
The main difference is that they have-more than
one decision tree, each of which decides if a par-
ticular named entity s tar ts /ends at the current
token. In contrast, our system has only one de-
cision tree which produces probabilities of infor-
mation about the named entity. In this regard,

we are similar to (Bikel et al, 1997), which also
uses a probabilistic method in their HMM based
system. This is a crucial difference which also
has important consequences. Because the sys-
tem of (Bennett et al, 1997) makes multiple de-
cisions at each token, they could assign multiple,
possibly inconsistent tags. They solved the prob-
lem by introducing two somewhat idiosyncratic
methods. One of them is the distance score,
which is used to find an opening and closing pair
for each named entity mainly based on distance
information. The other is a tag priority scheme,
which chooses a named entity among different
types of overlapping candidates based on the pri-
ority order of named entities. These methods re-
quire parameters which must be adjusted when
they are applied to a new domain. In contrast ,
our system does not require such methods, as the
multiple possibilities are resolved bv the proba-
bilistic method. This is a strong advantage, be-
cause we don't need manual adjustments.

The result they reported is not comparable to
our result, because the text and definition are
different. But the total F-score of our system
is similar to theirs, even though the size of our
training data is much smaller.

7 D i s c u s s i o n

This paper has described a system which uses
a .decision tree to find and classify names in
Japanese texts. Experiments indicate good ac-
curacy with a small amount of training data,
and demonstrate the system's portability. The
issues of training data size and domain depen-
dency were discussed.

We would like to discuss the issue of the hand
created dictionaries. People might think that the
hand made dictionaries play the mQor role in the
system. It may be true, but we should remem-
ber that the experiment in the Executive Succes-
sion Domain use the same pre-exist dictionar-
ies used in the Accident Domain. We did not
modify any dictionaries used in the previous do-
main, we only added the dictionary for the posi-
tion. Although we found some dictionary entities
which should be added, the fact that we achieved
good performance in the new domain by using
the same dictionaries shows that dictionaries are
not so domain dependent. Once we prepared the
dictionaries, we might not need to modify them
to a great degree. Also, Table 7 suggests that the

176

decision tree rules are more domain dependent
rather the dictionaries.

We have several ideas in order to improve our
system.

The most crucial and most elaborate step in
building up the system is creating the dictionar-
ies. It was done by hand, because 100 training
articles are not enough to acquire even prefixes
and suffixes. One possibility is to use a boot-
strapping method. Starting with core dictionar-
ies, we can run the system on untagged texts,
and increase the entities in the dictionaries.

Another issue is aliases. In newspaper articles,
aliases are often used. The full name is used
only the first time the company is mentioned
(Matsushita Denki Sangyou gabushiki Kaisya
= Matsushita Electric Industrial Co. Ltd.)
and then aliases (Matsush i ta or M a t s u s h i t a
Densan = Matsushita E.I.) are used in the later
sections of the article. Our system cannot handle
these aliases, unless the aliases are registered in
tile dictionaries.

Also. lexical information should help the accu-
racy. For example, a name, possibly a person or
an organization, in a particular argument slot of
a verb can be disambiguated by the verb. For
example, a name in the object slot of the verb
'hire' might be a person, while a name in the
subject slot of verb 'manufacture ' might be an
organization.

8 A c k n o w l e d g m e n t

We would like to thank our colleague at NYU, in
particular Mr.Andrew Borthwick and Mr.John
Sterling. There comments and discussion were
useful for the research.

R e f e r e n c e s

Defense Advanced Research Projects Agency
1996 Proceedings of Workshop on Tipster
Program Phase II Morgan Kaufmann Pub-
lishers

Scott Bennett, Chinatsu Aone and Craig Lovell
1997 Learning to Tag Multilingual Texts
Through Observation Conference on Empiri-
cal Methods in Natural Language Processing

Daniel Bikel, Scott Miller, Richard Schwartz and
Ralph Weischedel 1997 Nymble: a High-
Performance Learning Name-finder Proceed-
ings of the Fifth Conference on Applied Nat-
ural Language Processing

Andrew Borthwick, John Sterling, Eugene
Agichtein and Ralph Grishman 1998 Exploit-
ing Diverse Knowledge Sources via Maximum
Entropy in Named Entity Recognition Pro-
ceedings of the Sizth Workshop on Very Large
Corpora

Anthony Gallippi 1996 Learning to Recognize
Names Across Languages Proceedings of the
16th International Conference on Computa-
tional Linguistics (COLING-96)

Jim Cowie 1995 Description of the CRL/NMSU
Systems Used for MUC-6 Proceedings of Sixth
Message Understanding Conference (31UC-6}

Ross J. Quinlan 1993 C4.5: Program for Ma-
chine Learning Morgan Kaufmann Publishers

Yuuji Matsumoto, Sadao Kurohashi, Osamu Ya-
maji, Yuu Taeki and Makoto Nagao 1997
Japanese morphological analyzing System:
JUMAN Kyoto University and Nara Institute
of Science and Technology

177

Appendix A: Example training data

Token POS String Special Named entity

type Dict. answer

[[Sym - -

ERUSAREMU PN-loc Kata loc ioc-OP-CL

26 number Num - date-OP-CN

NICHI N-suf Kanji date-S date-CN-CL

KYOD0 PN Kanji org org-OP--CL

]] Sym - -

ISURAERU PN-loc Kata loc org-0P-.CN

KEISATSU N Kanji org-S org-CN-CL

NI postpos Mira - -

YORU V Hira - -

T O p o s t p o s H i r a - -

, comma Comma - -

ERUSAREMU PM-loc Kata loc ioc-OP--CN

SHI N-suf Kanji loc-S ioc-CN-CL

HOKUBU N Kanji - -

DE postpos M i r a - -

26 number Num - date-OP-CN

NICMI N-suf Kanji date-S date-CN-CL

GOGO N Kanji time, t ime-OP-CL

time-P

, comma Comma - -

Appendix B: Example paths in the tree

ISURAERU (seventh token)

if current token is a location -> yes

if next token is a loc-suffix -> no

if next token is a person-suffix -> no

if next token is a org-suffix -> yes

if previous token is a location -> no

then none = 0.67, org-OP-CN = 0.33

KEISATSU (eighth

if current token

if current token

if current token

if current token

if next token

if current token

if next token

if current token

if current token

if next token

if current token

token)

Is a location

Is a organization

is a time

Is a lot-suffix

Is a time-suffix

Is a time-suffix

is a date-suffix

is a date-suffix

Is a date

Is a location

Is a org-suffix

if previous token Is a location

then none = 0.14, org-CN-CL = 0.86

- > n o

- > n o

- > n o

- > n o

- > n o

- > n o

- > n o

- > n o

- > n o

- > y e s

- > y e s

178

