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A b s t r a c t  

This paper describes a novel statistical named- 
entity (i.e. "proper name") recognition system built 
around a maximum entity framework. By work- 
ing v,ithin the framework of maximum entropy the- 
ory and utilizing a flexible object-based architecture, 
the system is able to make use of an extraordinar- 
ily diverse range of knowledge sources in making its 
tagging decisions. These knowledge sources include 
capitalization features, lexical features, features in- 
dicating the current section of text  (i.e. headline or 
main body), and dictionaries of single or multi-word 
terms. The purely statistical system contains no 
hand-generated patterns and achieves a result com- 
parable with the best statistical systems. However, 
when combined with other handcoded systems, the 
system achieves scores that  exceed the highest com- 
parable scores thus-far published. 

1 I N T R O D U C T I O N  

Named entity recognition is one of the simplest of 
the common message understanding tasks. The ob- 
jective is to identify and categorize all members  of 
certain categories of "proper names" from a given 
corpus. The specific test bed which will be the sub- 
ject of this paper  is that  of the Seventh Message Un- 
derstanding Conference (MUC-7), in which the task 
was to identify "names" falling into one of seven cat- 
egories: person, organization, location, date, time, 
percentage, and monetary amount.  

This paper describes a new system called "Max- 
imum Entropy Named Entity" or "MENE" (pro- 
nounced "meanie"). By working within the frame- 
work of maximum entropy theory and utilizing a 
flexible object-based architecture, the system is able 
to make use of an extraordinarily diverse range of 
knowledge sources in making its tagging decision. 
These knowledge sources include capitalization fea- 
tures, lexical features, and features indicating the 
current section of text. It makes use of a broad array 
of dictionaries of useful single or multi-word terms 
such as first names, company names, and corpo- 
rate suffixes, and automatically handles cases where 
words are in more than one dictionary. Our dictio- 
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naries required no manual editing and were either 
downloaded from the web or were simply "obvious" 
lists entered by hand. 

This system, built from off-the-shelf knowledge 
sources, contained no hand-generated pat terns and 
achieved a result which is comparable with that  of 
the best statistical systems. Further experiments 
showed that  when combined with handcoded sys- 
tems from NYU, the University of Manitoba, and 
IsoQuest, Inc., MENE was able to generate scores 
which exceeded the highest scores thus-far reported 
by any system on a MUC evaluation. 

Given appropriate  training data,  we believe that  
this system is highly portable to other domains and 
languages and have already achieved good results 
on upper-case English. We also feel that  there are 
plenty of avenues to explore in enhancing the sys- 
tem's performance on English-language newspaper 
text. 

2" M A X I M U M  E N T R O P Y  

Given a tokenization of a test corpus and a set 
of n (for MUC-7, n = 7) tags which define the 
name categories of the task at hand~ the problem 
of named entity recognition can be reduced to the 
problem of assigning one of 4n + l tags to each 
token. For any particular tag x from the set of 
n tags, we could be in one of 4 states: x_start, 
x_continue, x_end, and x_unique. In addition, a to- 
ken could be tagged as "other" to indicate that  it is 
not part  of a named entity. For instance, we would 
tag the phrase [Jerry Lee Lewis flew to Paris] as [per- 
son_start, person_continue, person_end, other, other, 
location_unique I. This approach is essentially the 
same as (Sekine et al., 1998). 

The 29 tags of MUC-7 form the space of "fu- 
tures" for a maximum entropy formulation of our 
N.E. problem. A maximum entropy solution to this, 
or any other similar problem allows the computa- 
tion of p(f[h) for any f from the space of possible 
futures, F, for every h from the space of possible 
histories, H. A "history" in maximum entropy is all 
of the conditioning data  which enables you to make 
a decision among the space of futures. In the named 



entity problem, we Could reformulate this in terms 
of finding the probability of f associated with the 
token at index ~ in the test corpus as: 

/ " I n f ° r m a t i ° n  derivable f r o m t t h e )  p(f]ht) p 
\ ] l t e s t  corpus relative to token 

The computation of p(flh) in M.E. is dependent 
on a set of "features" which, hopefully, are helpful 
in making a prediction about the future. Like most 
current M.E. modeling efforts in computational lin- 
guistics we restrict ourselves to features which are 
binary functions of the history and future. For in- 
stance, one of our features is 

g(h,f) = 1 : capitalized(h) = true 
and f = location_start 

0 : else 
(1) 

Here "current-token-capitalized(h)" is a binary func- 
tion which returns true if the "current token" of the 
history h (the token whose tag we are trying to de- 
termine) has an initial capitalized letter. 

Given a set of features and some training data, 
the maximum entropy estimation process produces 
a model in which every feature gi has associated 
with it a parameter  ai.  This allows us to compute 
the conditional probability as follows (Berger et al., 
1996): 

P(flh) = ~i°~  '(h'I) (2) 
Z~(h) 

Z~(h) = ~ I ~ I ~  '(h'~) (a) 
ff i 

The maximum entropy estimation technique guar- 
antees that for every feature gi, the expected value 
of gi according to the M.E. model will equal the em- 
pirical expectation of gi in the training corpus. In 
other words: 

Z t5(h' f).gi(h, f) = Z 15(h)'Z PME(flh)'gi(h, f) 
h,f  h [ 

(4) 
Here P is an empirical probability and PME is the 
probability assigned by the M.E. model. 

More complete discussions of M.E. as applied to 
computational linguistics, including a description 
of the M.E. estimation procedure can be found in 
(Berger et al., 1996) and (Della Pietra et al., 1995). 
The following are some additional references which 
are useful as introductions and examples of applica- 
tions: (Ramaparkhi,  1997b) (Ristad, 1.998) (Jaynes, 
1996). As many authors have remarked, though, the 
most useful thing about maximum entropy modeling 
is that it allows the modeler to concentrate on find- 
ing the features that  characterize the problem while 
letting the M.E. estimation routine worry about as- 
signing the relative weights to the features. 

3 S Y S T E M  A R C H I T E C T U R E :  
H i s t o r i e s  a n d  F u t u r e s  

MENE consists of a set of C + +  and Perl modules 
which forms a wrapper around a publicly available 
M.E. toolkit (Ristad, 1998) which computes the val- 
ues of the a parameters  of equation 2 from a pair 
of training files created by MENE. MENE's flex- 
ibility is due to its object-based treatment  of the 
three essential cOmponents of a maximum entropy 
system: histories, futures, and features (Borthwick 
et al., 1997). 

History objects in MENE act as containers for a 
list of "history views". The history view classes each 
represent a different type of information about the 
history object. When the features a t tempt  to de- 
termine whether or not they fire on a given history, 
they request an appropriate  history view object from 
the history object and then query the history view 
object to determine whether their firing conditions 
are satisfied. Note that  these history views generally 
hold information about  a limited window around the 
current token. If the current token is denoted as w0, 
then our model only holds information about tokens 
w - 1 . . . w l  for all history views except the lexicai 
ones. For these views, the window is w--2. . ,  w.z. 

Future objects, on the other hand, are trivial in 
that their only piece of data  is an integer indicating 
which of the 29 members  of the future space they 
represent. 

4 F E A T U R E S  

Features are implemented as binary valued functions 
which query the history and future objects to deter- 
mine whether or not they "fire". In the following 
sections, we will look at each of MENE's feature 
classes in turn. 

4.1 B i n a r y  F e a t u r e s  

While all of MENE's  features have binary-valued 
output, the "binary" features are features whose as- 
sociated history-view can be considered to be either 
on or off for a given token. Examples are "the token 
begins with a capitalized letter" or "the token is a 
four-digit number".  Equation 1 gives an example of 
a binary feature. The 11 binary history-views used 
by MENE's binary features are very similar to those 
used in BBN's Nymble/ldentifinder system (Bikel et 
al., 1997) with two exceptions: 

• Nymble used a feature for "significant" (i.e. 
non-sentence-beginning) capitalization. We 
didn't  include this, believing that  MENE could 
make these judgments from the surrounding lex- 
icai content. 

• Nymble's features were non-overlapping. I.e. 
the all-cap feature took precedence over the 
initial-cap feature. Given two features, a and 
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b, when the (history, filture) space on which fea- 
ture b activates must be a subset of the space 
for feature a, it can be shown that  the M.E. 
model will yield the same results whether a and 
b are included as features or if (a - b) arid b 
are features. Consequently, MENE allows all 
features to fire in overlapping cases. For in- 
stance, in MENE the initial cap features ac- 
tivate on the histories "Clinton", "IBM", and 
"ValuJet" while in Nymble the feature would 
only be active on "Clinton" because the "All- 
Cap" feature would take precedence on "IBM" 
and an "Initial-and-internal-cap" feature would 
take precedence on "ValuJet". 

4.2 Lexica l  F e a t u r e s  

To create a lexical history view, the tokens at  
w-2 . . .  w2 are compared with a vocabulary and their 
vocabulary indices are recorded. For a given train- 
ing corpus, we define the vocabulary to be all tokens 
with a count of three or more. Words not found 
in the vocabulary are assigned a distinguished "Un- 
known" index. Lexical feature example: 

g(h,f) = 1 : View(token_l(h)) = "Mr" 
and f = person_unique 

0 : else 

• Correctly predicts: Mr ,Jones 

A more subtle feature picked up by MENE: pre- 
ceding word is "to" and future is "location_unique". 
Given the domain of the MUC-7 training data  (avi- 
ation disasters), "to" is a weak indicator, but a real 
one. This is an example of a feature which MENE 
can make use of but which the constructor of a hand- 
coded system would probably regard as too risky to 
incorporate. This feature, in conjunction with other 
weak features, can allow MENE to pick up names 
that  other systems might miss. 

As discussed later, these features are automati-  
cally acquired and the system can attain a very high 
level of performance using these features alone. This 
is encouraging since these lexical features are not 
dependent on any external knowledge source or lin- 
guistic intuition and thus are completely portable to 
new domains. 

4.3 Sec t i on  F e a t u r e s  

The New York Times articles which constituted the 
MUC-7 test and training corpora were composed of 
six distinct sections including "Date",  "Preamble",  
and "Text". Section features activate according to 
which of these sections the current token is in. Ex- 
ample feature: 

if Section-View(tokeno(h)) } 
g(h,f) = 1 : = "Preamble" and f = 

person_unique 
0 : else 

Activation example: C L I N T O N  WARNS H U S -  
S E I N  ABOUT IRAQI DEFIANCE.  Note that,  as- 
suming that  this headline is in the preamble, the 
above feature will fire on all of these words. Of 
course, this feature's prediction will only be correct 
on "CLINTON" and "HUSSEIN".  

Section features establish the background prob- 
ability of the occurrence of the different futures. 
For instance, in NYU's  evaluation system, the 
value assigned to the feature which predicts "other" 
given a current section of "main body of text" is 
7.9 times stronger than the feature which predicts 
"person_unique" in the same section. Thus the sys- 
tem predicts "other" by default. On the other hand, 
in the preamble (which contains headline, author,  
etc. information), the feature predicting "other" is 
much weaker in most  cases. It is only about 2.6 
times as strong as "organization_start" and "organi- 
zation_end", for instance. 

4.4 D i c t i o n a r y  F e a t u r e s  

Multi-word dictionaries are a key element of MENE. 
Each entry in a MENE dictionary consists of a 
term which is one or more tokens long. Dictionar- 
ies can be case-sensitive or not on a dictionary-by- 
dictionary basis. A pre-processing step summarizes 
the information in the dictionary on a token-by- 
token basis by assigning to every token one of the fol- 
lowing five tags for each dictionary: start ,  continue, 
end, unique, other. I.e. if "British Airways" was 
in our dictionary, a dictionary feature would see the 
phrase "on British Airways Flight 962" as "other, 
start,  end, other, other".  Table 1 lists the dictionar- 
ies.used by MENE in the MUC-7 evaluation. Below 
is an example of a dictionary feature: 

{ if First-Name-Dictionary- } 
View( tokeno(h ) ) = 

g(h,f) = 1 : "unique" and f = per- 
son_start 

0 : else 

• Example: R i c h a r d  M. Nixon-assuming that  
"Richard" is in the first name dictionary. 

Note that,  similar to the case of overlapping bi- 
nary features, we don ' t  have to worry about  words 
appearing in the dictionary which are commonly 
used in another sense. I.e. we can leave dangerous- 
looking names like "April" in the first-name dictio- 
nary because whenever the first-name feature fires 
on "April", the lexical and date-dictionary features 
for "April" will also fire and, assuming that  the use 
of April as "date" exceeded the use of April as per- 
son.start  or person_unique, we can expect that  the 
lexical feature will have a high enough c~ value to 
outweigh the first-name-dictionary feature. This was 
confirmed in our test runs: no instance of "April" 
was tagged as a name, including one case, "The 
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Dictionary 

:first names 
corporate names 

"'corporate names 
without suffixes 
colleges and universities 

Number Data Source 
of Entries 

1245 www.babyfikme.com 
10300 www.marketguide.com 

10300 

1225 

"corporate names" processed 
through a Perl script 
ht tp: / /www.utexas .edu/world/  
univ/a lpha/  

Corporate Suffixes 244 Tipster resource 
Dates and times 51 Hand Entered 
2-ietter State Abbreviations 50 www.usps.gov 
World'Regions 14 www.yahoo.com 

Examples 

John, 3ulie, April 
Exxon Corporation 
Motorola, Inc. 
Exxon; Motorola 

New York University; 
Oberlin College 
Inc.; Incorporated; AG 
Wednesday ' April, EST, a.m. 
NY, CA 
Africa, Central America, 
Caribbean, Pacific Rim 

Table 1: Dictionaries used in MENE 

death of Ron Brown in April in a similar plane crash 
. . . "  which could be thought of as somewhat tricky 
because the month was not followed by a specific 
date. Note that  the system isn't foolproof: if a "dan- 
gerous" dictionary word appeared in only one dictio- 
nary and did not appear often enough in the training 
corpus to be included in the vocabulary, but did ap- 
pear in the test corpus, we would probably mistag 
it. 

4.5  E x t e r n a l  S y s t e m  F e a t u r e s  

For NYU's official entry in the MUC-7 evaluation, 
MENE took in the output of an enhanced version of 
the more traditional, hand-coded "Proteus" named- 
entity tagger which we entered in MUC-6(Grishman, 
1995). In addition, subsequent to the evaluation, the 
University of Manitoba (Lin, 1998) and IsoQuest, 
Inc. (Krupka and Hausman, 1998) shared with us 
the outputs of their systems on our training corpora 
as well as on various test corpora. The output  sent 
to us was the standard MUC-7 output, so our col- 
laborators didn't  have to do any special processing 
for us. These systems were incorporated into MENE 
as simply three more history views by the following 
2 step process: 

1. Each system's output is tokenized by MENE's 
tokenizer and cross-system tokenization dis- 
crepancies are resolved. 

2. The tag assigned to each token by each sys- 
tem is noted. This tag will be one of the 29 
tags mentioned above (i.e. person-start,  loca- 
tion.continue, etc.) 

The result of all this is that  the "futures" pro- 
duced by the three external systems become three 
"external system histories" for MENE. Here is an 

example feature: 

if Proteus-System- / 
~/iew( tokeno(h ) ) = 

g(h , f )  = 1 : "person_start' and f 
= person.start  

0 : else 

* Example: R i c h a r d  M. Nixon, in a case where 
Proteus has correctly tagged "Richard". 

It  is important to note that  MENE has features 
which predict a different future than the future pre- 
dicted by the external system. This can be seen as 
the process by which MENE learns the errors which 
the external system is likely to make. An example 
of i:his is that  on the evaluation system the feature 
which predicted person_unique given a tag of per- 
son_unique by Proteus had only a 76% higher weight 
than the feature which predicted person-start  given 
person_unique. In other words, Proteus had a ten- 
dency to chop off multi-word names at the first word. 
MENE learned this and made it easy to override 
Proteus in this way. In fact, an analysis of the dif- 
ferences between the Proteus output  and the MENE 
+ Proteus output  turned up a significant number of 
instances in which MENE extended or contracted 
name boundaries in this way. Given proper training 
data, MENE can pinpoint and selectively correct the 
weaknesses of a handcoded system. 

5 Compound Features 
MENE currently has no direct ability to learn com- 
pound features or "pa t te rns"- the  "history" side of a 
lexical feature activates based on only a single word, 
for instance. A sort of pattern-like ability comes 
into the system from multiple features firing at once. 
I.e. to predict that  "York" in the name "New York" 
is the end of a location, we will have two features 
firing: one predicts location_end when token-i is 
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"new". The other predicts location_end when tokeno 
is "york". 

Nevertheless, it is possible that  compound fi.,a- 
tures would behave differently from two simultane- 
ously firing "atomic" features. We integrated t:his 
into the model in an ad hoc manner for the exter- 
nal system features, where we constructed features 
which essentially query the external system history 
and the section history simultaneously to determ!ine 
whether they fire. I.e. a particular feature might 
fire if Proteus predicts person_start, the current sec- 
tion is "main body of text",  and the future is "per- 
son_start". This allows MENE to assign a lower a 
to a Proteus prediction in the preamble vs. a predic- 
tion in the main body of text. Proteus, like many 
hand-coded systems, is more accurate in the main 
body of the text than in headline-type material .  We 
found that  this compound feature gave the system 
slightly higher performance than we got when we 
just used section features and external system fea- 
tures separately. 

It seems reasonable that  adding an ability to han- 
dle fully general compound features (i.e. feature A 
fires if features B and C both fire) would improve 
system performance based on this limited experi- 
ment. In addition to allowing us to predict futures 
based on multi-word patterns, it would also let us 
use other promising combinations of features such 
as distinguishing between capitalization in a head- 
line vs. in the main body of the text. Unfortunately, 
this experiment will have to wait until we deploy a 
more sophisticated method of feature selection, as 
discussed in the next section. 

6 F E A T U R E  S E L E C T I O N  

Features are chosen by a very simple method. All 
possible features from the classes we want included 
in our model are put into a "feature pool". For in- 
stance, if we want lexical features in our model which 
activate on a range of token_~.., token.x, our vocab- 
ulary has a size of V, and we have 29 futures, we 
will add (5. (V + 1). 29) lexical features to the pool. 
The V + 1 term comes from the fact that  we include 
all words in the vocabulary plus the unknown word. 
From this pool, we then select all features which fire 
at least three times on the training corpus. Note 
that  this algorithm is entirely free of human inter- 
vention. Once the modeler has selected the classes 
of features, MENE will both select all the relevant 
features and train the features to have the proper 
weightings. 

We deviate from this basic algorithm in three 
ways: 

1. We exclude features which activate on some sort 
of "default" value of a history view. Many 
history views have some sort of default value 

which they display for the vast majori ty of to- 
kens. For instance, a first-name-dictionary his- 
tory view would say that  the current token is 
not a name in over 99% of the cases. Rather 
than adding features which activate both when 
the token in question is and when it is not a 
first name, we only include features which acti- 
vate when the token is a first name. A feature 
which activated when a token was not a first 
name, while theoretically not harmful, would 
have practical disadvantages. First of all, the 
feature would probably be redundant,  because 
if the frequency of a future given a first-name- 
dictionary hit is constrained (by equation 4), 
then the future frequency given a non-hit is also 
implicitly constrained. Secondly, since this fea- 
ture would fire on nearly every token, it would 
slow down run-time performance. Finally, while 
maximum entropy models are designed to han- 
dle feature overlap, a very high degree of over- 
lap requires more iterations of the maximum en- 
tropy estimation routine and can lead to numer- 
ical difficulties (Ristad, 1998). 

2. Features which predict the future "other" have 
to fire six times to be included in the model 
rather  than three. Experiments showed that  
doing this had no impact on performance and 
reduced the size of the model by about 20%. 

3. As another way of reducing the model size, 
lexical features which activate on token_2 and 
token2 are excluded if they predict "other". 
Like the previous heuristic, this is based on the 
idea that  features predicting named entities are 
more useful than features predicting the default. 

Note that  this method of feature selection would 
probably break down if we tried to incorporate gen- 
eral compound features into our model as described 
in the previous section. The model currently has 
about  24,000 features when trained on 350 articles 
of text. If we even considered all pairs of features as 
potential compound features, the O(n 2) compound 
features which we could build from our atomic fea- 
tures would undoubtedly yield an unacceptable slow- 
down in the model 's  performance. Clearly a more 
sophisticated feature selection routine such as the 
ones in (Berger et al., 1996), or (Berger and Printz, 
1998) would be required in this case. 

7 D E C O D I N G  a n d  V I T E R B I  
S E A R C H  

After having trained the features of an M.E. model 
and assigned the proper  weight (a  values) to each 
of the features, decoding (i.e. "marking up") a new 
piece of text  is a fairly simple process: 

1. Tokenize the text. 
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2. Compute each of the history views by looking 
up words in the dictionary, checking the output 
of the external systems, checking whether words 
are capitalized or not, etc. 

3. For each article of the text 

(a) For each token of the text, check each fea- 
ture to see whether it fires, and combine the 
a values of the firing features according to 
equation 2. This will give us a conditional 
probability for each of the 29 futures for 
each token in the article. 

(b) Run a Viterbi search to find the highest 
probability legal path through the lattice 
of conditional probabilities. 

The Viterbi search is necessary because simply 
taking the highest-probability future assigned to 
each token would result in incompatible assign- 
ments. For instance, an assignment of [person_start, 
location_end] to two consecutive tokens would be in- 
valid. The Viterbi search finds the highest probabil- 
ity path in which there are no two tokens in which 
the second one cannot follow the first, as defined 
by a table of all such invalid transitions (a similar 
approach to (Sekine et al., 1998)). 

8 R E S U L T S  
MENE's maximum entropy training algorithm gives 
it reasonable performance with moderate-sized 
training corpora or few information sources, while 
allowing it to really shine when more training data 
and information sources are added. Table 2 shows 
MENE's performance on the MUC-7 "dry run" cor- 
pus, which consisted of 25 articles mostly on the 
topic of aviation disasters. All systems shown were 
trained on 350 articles on the same domain (this 
training corpus consisted of about 270,000 words, 
which our system turned into 321,000 tokens). 

Note the smooth progression of the scores as 
more data is added to the system. Also note that, 
when combined under MENE, the three weakest sys- 
tems, MENE, Proteus, and Manitoba outperform 
the strongest single system, IsoQuest's. Finally, the 
top score of 97.12 from combining all three systems 
is a very strong result. On a different set of data, 
the MUC-7 formal run data, the accuracy of the two 
human taggers who were preparing the answer key 
was tested and it was discovered that  one of them 
had an F-Measure of 96.95 and the other of 97.60 
(Marsh and Perzanowski, 1998). Although we don't  
have human performance measures on the dry run 
test set, it seems that  we have attained a result which 
is at least competitive with that  of a human. 

We also did a series of runs to examine how the 
systems performed with different amounts of train- 
ing data. These experiments are summarized in ta- 
ble 3. Note the 97.38 all-systems result which we 

Systems 
MENE (ME) 

Manitoba (Ma) 
Proteus (Pr) 
MENE + 
lsoQuest 
MENE + 
Proteus 

92.20 

ME + Pr + IQ 
ME + Pr + Ma 

96.27 
93.32 
92.24 

96.55 

96 89 
98 94 
94 92 
95 90 

98 95 

95.61 97 
MENE + 
Manitoba 95.49 97 
ME + Ma + IQ 96.81 98 

96.78 98 
96.48 97 

ME + Pr + Ma 
+ IQ 97.12 98 

94 

94 
95 
96 
95 

96 

Table 2: Combined systems on unseen data from the 
MUC-7 dry-run test set 

achieved by adding 75 articles from the formal-run 
test corpus to the basic 350-article training data. In 
addition to being an outstanding performance fig- 
ure, this number shows MENE's  responsiveness to 
good training material. A few other conclusions can 
be drawn from this data. First of all, MENE needs 
at least 20 articles of tagged training data to get ac- 
ceptable performance on its own. Secondly, there is 
a minimum amount of training data which is needed 
for MENE to improve an external system. For Pro- 
teus and the Manitoba system, this number seems to 
be 'about  80 articles, because they show a degrada- 
tion of performance at 40. Since the IsoQuest system 
was stronger to s ta r t  with, MENE required 150 arti- 
cles to show an improvement. Note the anomaly in 
comparing the 250 and 350 article columns. Proteus 
shows only a very small gain and IsoQuest shows a 
deterioration. These last 100 articles added to the 
system were tagged by us at NYU, and we would 
humbly guess that  we tagged them less carefully 
than the rest of the data  which was tagged by BBN 
and Science Applications International Corporation 
(SAIC). 

MENE has also been run against all-uppercase 
data. On this we achieved an F-measure of 88.19 
for the MENE-only system and 91.38 for the MENE 
+ Proteus system. The latter figure matches the 
best currently published result (Bikel et al., 1997) 
on within-domain all-caps data. On the other hand, 
we scored lower on all-caps than BBN's Identifinder 
in the MUC-7 formal evaluation for reasons which 
are probably similar to the ones discussed in section 
9 in the comparison of our mixed case performances 
(Miller et al., 1998) (Borthwick et al., 1998). We 
have put very little effort into optimizing MENE on 
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Systems 425 , ~ 5 0  250 150 100 80 40 20 10 5 

MENE ~ - ~ " F ' ~ O ' ~ - 9 " ~ , '  90,64 89~17 87,85 84.14 80.97 76.43 63.13 
MENE + Proteus II 95.73 I 95.61 [ 9 5 . 5 6 [ 9 4 4 . 6 [ 9 4 . 3 0  [ 93.44 [91.69 [ [ I I 
MENE + Manitoba 11 95-6°1 95.49 1 95-2¢~ [ 948- 6 ] 74_-5° I 94.15 1 93.06 1 I I ] 
MENE + ]soQuest II 96.73 [ 96.55 [ 96.70 
M E +  Pr + M a + I Q  

Table 3: Systems' performances with different numbers of articles 

this type of corpus and believe that  there is room 
for improvement here. 

In another experiment, we stripped out all fea- 
tures other than the lexical features and .,;till 
achieved an F-measure of 88.13. Since these features 
do not rely on any external knowledge sources and 
are automatically generated, this result is a strong 
indicator of MENE's  portability. 

The MUC-7 formal evaluation involved a shift in 
topic which was not communicated to the partici- 
pants beforehand-the training data focused on air- 
line disasters while the test data  was on missile and 
rocket launches. MENE fared much more poorly 
on this data than it did on the within-domain data 
quoted above, achieving an F-measure of only 88.80 
for the MENE + Proteus system and 84.22 for the 
MENE-only system. While 88.80 was still the fourth 
highest score out of the twelve participants in the 
evaluation, we feel that  it is necessary to view this 
number as a cross-domain portability result rather 
than as an indicator of how the system can do on 
unseen data within its training domain. We believe 
that  if the system had been allowed to train on mis- 
sile/rocket launch articles, its performance on these 
articles would have been much better.  More MENE 
test results and discussion of the formal run can be 
found in (Borthwick et al., 1998). 

9 R E L A T E D  W O R K  
M.E. has been successfully applied to many other 
tasks in computational linguistics. Some recent work 
for which there are solid comparable benchmarks is 
the work of Adwait Ratnaparkhi  at the University 
of Pennsylvania. He has achieved state-of-the art  
results by applying M.E. to parsing (Ratnaparkhi,  
1997a), part-of-speech tagging (Ratnaparkhi,  1996), 
and sentence-boundary detection (Reynar and Rat- 
naparkhi, 1997). Other recent work has applied 
M.E. to language modeling (Rosenfeld, 1994), ma- 
chine translation (Berger et al., 1996), and reference 
resolution (Kehler, 1997). M.E. was first appl ied 
to named entity recognition at  the MUC-7 confer- 
ence by (Borthwick et al., 1998) and (Mikheev and 
Grover, 1998). 

Note that  part-of-speech tagging is, in many ways, 
a very similar task to that  of named-enti ty recogni- 
tion. Ratnaparkhi 's  tagger is similar to MENE, in 

that  his features look at the surrounding two-word 
lexical context, but his system makes less use of dic- 
tionaries. On the other hand, his system looks at  
word suffixes and prefixes in the case of unknown 
words, which is something we haven ' t  tried with 
MENE and looks at its own output  by looking at 
its previous two tags when making its decision. We 
do this implicitly through our requirement that  the 
futures we output be consistent, but we found that  
an a t tempt  to do this more directly by building a 
consistency feature directly into the model had no 
effect on our results. 

At the MUC-7 conference, there were two other 
interesting systems using statistical techniques from 
the Language Technology Group/Univers i ty  of Ed- 
inborough (Mikheev and Grover, 1998) and BBN 
(Miller et al., 1998). Comparisons with the LTG 
system are difficult since it was a hybrid model in 
which the text was passed through a five-stage pro- 
cess, only three of which involved maximum entropy 
and over half of the system's recall came from the 
two non-statistical phases. The LTG system demon- 
strated superior performance on the formal run rel- 
ative to the MENE-Proteus hybrid system (93.39 
vs 88.80), but it isn't  clear whether their advan- 
tage came from superior handcoded rules or supe- 
rior statistical techniques, because their system is 
not as easily broken down into separate components 
as is MENE-Proteus. It is also possible that  tighter 
system integration between the statistical and hand- 
coded components was responsible for some of LTG's  
relative advantage, but note that  MENE-Proteus  ap- 
pears to have an advantage over LTG in terms of 
portability. We are currently experimenting with 
porting MENE to Japanese, for instance, and ex- 
pect that  it could be combined with a pre-existing 
Japanese handcoded system, but it isn't  clear tha t  
this could be done with the LTG system. Neverthe- 
less, one of our avenues for future research is to look 
at tighter multi-system integration methods which 
won' t  compromise MENE's  essential portability. 

Table 4 gives a comparison of BBN's HMM- 
based Identifinder (Miller et al., 1998) and NYU's 
MENE and MENE-Proteus systems on different 
training and test sets. We are not sure why MENE- 
Proteus was hurt more badly by the evaluation- 
time switch from aviation disaster articles to mis- 
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Conditions 

Trained on Official training data 
Tested on dry run (within domain) 
Each organization trained on all of 
its own data and tested on dry run 
Same as above, but run against 
official MUC-7 data 

[] Identifinder MENE MENE + Proteus 

92.5 89.17 94.30 

95.1 92.20 95.61 

90.44 84.22 88.80 

Table 4: Comparison of BBN and NYU statistical systems 

sile/rocket launch articles, but suspect that  it may 
have been due to Identifinder's greater quantity and 
quality of training data. BBN used 790,000 words 
of training data to our 321,000. The quality advan- 
tage may have come from selecting sentences from a 
larger corpus for their annotators to tag which were 
chosen so as to increase the variety of training data. 

When MENE-only and ldentifinder are compared 
training on the same number of articles and test- 
ing on within-domain data, Identifinder still has an 
edge. We speculate that this is due to the dynamic 
updating of Identifinder's vocabulary during decod- 
ing when person or organization names are recog- 
nized, which gives the system a sort of long-distan'ce 
reference resolution which is lacking in MENE. In 
addition, BBN's HMM-based system implictly pre- 
dicts named entities based on consecutive pairs of 
words rather than based on single words, as is done 
in MENE, because each type of name has its own 
bigram language model. In the decoding process, 
the Viterbi algorithm chooses the sequence of names 
which yields the highest joint probability of names, 
words, and features associated with each word. 

In comparing the maximum entropy and HMM- 
based approaches to named entity recognition, we 
are hopeful that M.E. will turn out to be the better 
method in the end. Ire think it is possible that some 
of Identifinder's current advantage can be neutral- 
ized by simply adding the just-mentioned features to 
MENE. On the other hand, we have a harder time 
seeing how some of MENE's strengths can be inte- 
grated into an HMM-based system. It is not clear, 
for instance, how a wide variety of dictionaries could 
be added to Identifinder or whether the system could 
be combined with a handcoded system as was done 
with our system and the one from LTG. 

10 C O N C L U S I O N S  A N D  F U T U R E  
W O R K  

MENE is a very new, and, we feel, still immature 
system. Work started in October, 1397, and the 
system described above was not in place until mid- 
February. 1998. We believe that we can push the 
score of the MENE-only system higher by incorpo- 
rating long-range reference-resolution on MENE's 
output. We are also missing a large number of 

acronyms which could be picked up by dynamically 
building them from entities which MENE had tagged 
elsewhere and then pulling that data in as a new 
class of feature. The other key element missing from 
the current system is a set of general compound fea- 
tures, which, as discussed above, would require the 
use of a more sophisticated feature selection algo- 
rithm. All three of these elements are present in 
systems such as IsoQuest's (Krupka and Hausman, 
1998), and their absence from MENE probably ex- 
plains much of the reason why the MENE-only sys- 
tem failed to perform at the state-of-the-art. We 
intend to add all of these elements to MENE in the 
near future to test this hypothesis. 

Nevertheless, we believe that we have already 
demonstrated some very useful results. MENE is 
highly portable, as we have already demonstrated 
with our result on upper-case English text and even 
in its current state, its results are already compa- 
rable to that of the only other purely statistical 
English NE system which we are aware of (Miller 
et al., 1998). As shown with our result on run- 
ning MENE with only the lexical features that it 
learns from the training corpus, porting MENE can 
be done with very little effort if appropriate training 
data is provided-it isn't even necessary to provide 
it with dictionaries to generate an acceptable result. 
We are working on a port to Japanese NE to further 
demonstrate MENE's flexibility. 

However, we believe that the results on combining 
MENE with other systems are some of the most in- 
triguing. We would hypothesize that, given sufficient 
training data, any handcoded system would benefit 
from having its output passed to MENE as a final 
step. MENE also opens up new avenues for collabo- 
ration whereby different organizations could focus on 
different aspects of the problem of N.E. recognition 
with the maximum entropy system acting as an ar- 
bitrator. MENE also offers the prospect of achieving 
very high performance with very little effort. Since 
MENE starts out with a fairly high base score just on 
its own, we speculate that a MENE user could then 
construct a hand-coded system which only focused 
on MENE's weaknesses, while skipping the areas in 
which MENE is already strong. 

Finally, one can imagine a user acquiring licenses 
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to several different N.E. systems, generating some 
training data, and then combining it all under a 
MENE-like system. We have shown that  this ap- 
proach can yield performance which is competitive 
with that of a human tagger. 
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