
Edge-Based Best-First Chart Parsing *

E u g e n e C h a r n i a k and S h a r o n G o l d w a t e r and M a r k J o h n s o n
(ec/s jg/mj@cs.brown.edu)

Depa r tmen t s of Compu te r Science/Cognit ive and Linguistic Sciences
Brown University

Providence RI 02912

A b s t r a c t

Best-first probabilistic chart parsing attempts
to parse efficiently by working on edges that
are judged ~'best" by some probabilistic figure
of merit (FOM). Recent work has used proba-
bilistic context-free grammars (PCFGs) to as-
sign probabilities to constituents, and to use
these probabilities as the starting point for the
FOM. This paper extends this approach to us-
ing a probabilistic FOM to judge edges (incom-
plete constituents), thereby giving a much finer-
grained control over parsing effort. We show
how this can be accomplished in a particularly
simple way using the common idea of binarizing
the PCFG. The results obtained are about a fac-
tor of twenty improvement over the best prior
results m that is, our parser achieves equivalent
results using one twentieth the number of edges.
Furthermore we show that this improvement is
obtained with parsing precision and recall levels
superior to those achieved by exhaustive pars-
ing.

1 I n t r o d u c t i o n

Finding one (or all) parses for a sentence accord-
ing to a context-free grammar requires search.
Fortunately, there are well known O(n 3) algo-
rithms for parsing, where n is the length of the
sentence. Unfortunately, for large grammars
(such as the PCFG induced from the Penn II
WSJ corpus, which contains around 1.6. i04
rules) and Iongish sentences (say, 40 words and
punctuation), even O(n 3) looks pretty bleak.

One well-known O(n 3) parsing method (Kay,
1980) is chart parsing. In this approach one
maintains an agenda of items remaining to be

" This material is based on work supported in past by
NSF grants IRI-9319516 and SBR-9720368. and by ONR
grant N0014-96.- 1-0549.

processed, one of which is processed during each
iteration. As each item is pulled off the agenda,
it is added to the chart (unless it is already
there, in which case it can be discarded) and
used to extend and create additional items. In
"exhaustive" chart parsing one removes items
from the agenda in some relatively simple way
(last-in, first-out is common), and continues to
do so until nothing remains.

A commonly discussed alternative is to re-
move the constituents from the agenda accord-
ing to a figure of merit (FOM). The idea is that
the FOM selects "good" items to be processed,
leaving the ~'bad" ones-- the ones that are not,
in fact, part of the correct parse---- sitting on
the agenda. When one has a completed parse,
or perhaps several possible parses, one simply
stops parsing, leaving items remaining on the
agenda. The time that would have been spent
processing these remaining items is time saved,
and thus time earned.

In our work we have found that exhaustively
parsing maximum-40-word sentences from the
Penn II treebank requires an average of about
1.2 million edges per sentence. Numbers like
this suggest that any approach that offers the
possibility of reducing the work load is well
worth pursuing, a fact that has been noted
by several researchers. Early on, Kay (1980)
suggested the use of the chart agenda for this
purpose. More recently, the statistical ap-
proach to language processing and the use of
probabilistic context-free grammars (PCFGs)
has suggested using the PCFG probabilities
to create a FOM. Bobrow (1990) and Chi-
trao and Grishman (1990) introduced best-first
PCFG parsing, the approach taken here. Subse-
quent work has suggested different FOMs built
from PCFG probabilities (Miller and Fox. 1994:
Kochman and Kupin. 1991: Magerman and

127

Marcus, 1991).
Probably the most extensive comparison of

possible metrics for best-first PCFG parsing
is that of Caraballo and Charniak (henceforth
C&C) (Forthcoming). They consider a large
number of FOMs, and view them as approxi-
mations of some "ideal" (but only computable
after the fact) FOM. Of these they recommend
one as the best of the lot. In this paper we
basically adopt both their framework and their
recommended FOM. The next section describes
their work in more detail,

Besides C&C the work that is most directly
comparable to ours is that of Goodman (1997)
and Ratnaparki (1997). Goodman uses an FOM
that is similar to that of C&C but one that
should, in general, be somewhat more accu-
rate. However, both Goodman's and Ratna-
parki's work assumes that one is doing a beam
search of some sort, rather than a best-first
search, and their FOM are unfortunately tied
to their frameworks and thus cannot be adopted
here. We briefly compare our results to theirs
in Section 5.

As noted, our paper takes off from that of
C&C and uses the same FOM. The major differ-
ence is simply that our parser uses the FOM to
rank edges (including incomplete edges), rather
than simply completed constituents, as was
done by C&C. What is interesting about our ap-
proach is that such a seemingly simple change
can produce rather dramatic results. Rather
than the thousands of edges required by C&C,
the parser presented here requires hundreds, or
even, if one is willing to pay a small price in
accuracy, tens.

2 C o n s t i t u e n t - B a s e d B e s t - F i r s t
C h a r t P a r s i n g

In the approach taken in C&C, only completed
edges, i.e., constituents, are entered into the
agenda; incomplete edges are always processed
as soon as they are constructed. At each it-
eration the constituent with the highest figure
of merit is removed from the agenda, added to
the chart, and used to extend current partially
completed constituents. Thus we characterize
their work as constituent-based best-first chart
parsing.

C&C take as an "ideal" FOM the quantity
p(N~,~ [to,n). Here N~,k is aconst i tuent of type i

128

(e.g., NP, VP, etc.) that spans the constituents
from j up to but not including k, and t0,n are the
n parts-of-speech (tags) of the sentence. Note
that C&C simplify parsing by assuming that the
input is a sequence of tags, not words. We make
the same assumption in this paper. Thus taking
p(Nj, k [t0,n) as an FOM says that one should
work on the constituent that is most likely to
be correct given the tags of the sentence.

As p(N~, k [to,n) can only be computed pre-
cisely after a full parse of the sentence, C&C
derive several approximations, in each case
starting from the well known equation for
P(Nj,k] to,n) in terms of the inside and outside
probabilities,/3(Nj,k) and a(N~,k).

i i ~6(Nj.k)a(Nj.~)
P(Nj'k l t°'") = p(to,,) (1)

where /3(Nj,k) and a(N~,k) are defined as fol-
lows:

B(N~, k) = p(tj,k l gj.k) (2)

~(Nj, k) = p(toj, N;, k,tk,n) (3)

C&Cs best approximation is based upon the
equation:

p(Nj,kl to, .) ~ p(Nj,~ I t . /-i)~(N~,k)p(ttl
P(ti,k l tj-~)P(tk l tk-~)

(4)
Informally, this can be obtained by approximat-
ing the outside probability ot(Nj,k) in Equation
1 with a bitag estimate.

Of the five terms in Equation 4, two can
be directly estimated from training data: the
"boundary statistics" p(Nj, k I tj) (the probabil-
ity of a consti tuent of type Nj,kstarting just af-

ter the tag tj) and p(tk I N~, k) (the probabil-
ity of tk appearing just after the end of a con-
sti tuent of type Nj k)- The tag sequence proba-
bilitiy in the denominator is approximated using
a bi-tag approximation:

k

p(tj,k) = Hp(ti l (5)
i = j

The basic algorithm then is quite simple. One
uses the s tandard chart-parsing algorithm, ex-
cept at each iteration one takes from the agenda
the consti tuent that maximizes the FOM de-
scribed in Equation 4.

There are, however, two minor complexities
that need to be noted. The first relates to the
inside probability ~(N;,k). C&C approximate
it with the sum of the probabilities of all the
parses for N~, k found at that point in the parse.
This in turn requires a somewhat complicated
scheme to avoid repeatedly re-evaluating Equa-
tion 4 whenever a new parse is found. In this
paper we adopt a slightly simpler method. We
approximate fl(N~,k) by the most probable parse

for N~ , rather than the sum of all the parses. j~k
We justify this on the grounds that our parser
eventually returns the most probable parse, so it
seems reasonable to base our metric on its value.
This also simplifies updat ing i fl(Nj,k) when new

parses are found for N~ k- Our algorithm com-
pares the probability of the new parse to the
best already found for Nj, k. If the old one is
higher, nothing need be done. If the new one is
higher, it is simply added to the agenda.

The second complexity has to do with the
fact that in Equation 4 the probability of the
tags tj,k are approximated using two different
distributions, once in the numerator where we
use the PCFG probabilities, and once in the
denominator, where we use the bi-tag proba-
bilities. One fact noted by C&C, but not dis-
cussed in their paper, is that typically the bi-
tag model gives higher probabilities for a tag
sequence than does the PCFG distribution. For
any single tag tj, the difference is not much,
but as we use Equation 4 to compute our FOM
for larger constituents, the numerator becomes
smaller and smaller with respect to the denom-
inator, effectively favoring smaller constituents.
To avoid this one needs to normalize the two
distributions to produce more similar results.

We have empirically measured the normal-
ization factor and found that the bi-tag distri-
bution produces probabilities that are approxi-
mately 1.3 times those produced by the PCFG
distribution, on a per-word basis. We correct
for this by making the PCFG probability of a
known tag r/ > 1. This has the effect of mul-
tiplying the inside probability ~(Ni,k) by rl k - j

3
In Section 4 we show how the behavior of our
algorithm changes for r/s between 1.0 and 2.4.

3 C h a r t p a r s i n g a n d b i n a r i z a t i o n

Informally, our algorithm differs from the one
presented in C&C primarily in that we rank

all edges, incomplete as well as complete, with
respect to the FOM. A straight-forward way
to extend C&C in this fashion is to transform
the grammar so that all productions are either
unary or binary. Once this has been done there
is no need for incomplete edges at all in bottom-
up parsing, and parsing can be performed using
the CKY algorithm, suitably extended to han-
dle unary productions.

One way to convert a PCFG into this
form is left-factoring (Hopcroft and Ullman,
1979). Left-factoring replaces each production
A ~ /3 : p, where p is the production proba-
bility and Jill = n > 2, with the following set of
binary productions:

A ~ '~1,n- l ' f ln :P
'fll,i' ~ '~ l , i - l ' ~i : 1.0
'/~1,2' ~ /~1 ~2 :1 .0

for i e [3, n]

In these productions j3i is the ith element of
~3 and '~3i,j' is the subsequence /3i. . .flj of fl,
but treated as a 'new' single non-terminal in
the left-factored grammar (the quote marks in-
dicate that this subsequence is to be considered
a single symbol).

For example, the production

V P - + V N P N P P P :0.7

left-factors to the following productions:

VP ~ ' V N P N P ' PP : 0.7

' V N P N P ' ~ ' V N P ' P P :1.0

'VNP' --~ V N P :1.0

It is not difficult to show that the left-factored
grammar defines the same probability distribu-
tion over strings as the original grammar, and
to devise a tree transformation that maps each
parse tree of the original g rammar into a unique
parse tree of the left-factored grammar of the
same probability.

In fact, the assumption that all productions
are at most binary is not extraordinary, since
tabular parsers that construct complete parse
forests in worst-case O(n 3) t ime explicitly or
implicitly convert their grammars into binary
branching form (Lang, 1974; Lang, 1991).

Sikkel and Nijholt (1997) describe in detail
the close relationship between the CKY algo-
rithm, the Earley algorithm and a bot tom-up

129

variant of the Earley algorithm. The key obser-
vation is that the 'new' non-terminals 'fll,i' in a
CKY parse using a left-factored grammar corre-
spond to the set of non-empty incomplete edges
A ~ fll,i "fli+l,n in the bo t tom-up variant of tim
Earley algorithm, where A ~ fll,n is a produc-
tion of the original grammar. Specifically, the
fundamental rule of chart parsing (Kay, 1980),
which combines an incomplete edge A ~ a . B f l
with a complete edge B ~ '7- to yield the edge
A ~ a B . fl, corresponds to the left-factored
productions ' a B ' ~ a B if fl is non-empty or
A ~ ' a ' B if fl is empty. Thus in general a
single 'new' non-terminal in a CKY parse us-
ing the left-factored grammar abbreviates sev-
eral incomplete edges in the Earley algorithm.

4 T h e E x p e r i m e n t

For our experiment, we used a tree-bank gram-
mar induced from sections 2-21 of the Penn
Wall Street Journal text (Marcus et al., 1993),
with section 22 reserved for testing. All sen-
tences of length greater than 40 were ignored
for testing purposes as done in both C&C and
Goodman (1997). We applied the binarization
technique described above to the grammar.

We chose to measure the amount of work done
by the parser in terms of the average number of
edges popped off the agenda before finding a
parse. This method has the advantage of be-
ing platform independent, as well as providing
a measure of "perfection". Here, perfection is
the minimum number of edges we would need
to pop off the agenda in order to create the cor-
rect parse. For the binarized grammar, where
each popped edge is a completed constituent,
this number is simply the number of terminals
plus nonterminals in the sentence--- on average,
47.5.

Our algorithm includes some measures to re-
duce the number of items on the agenda, and
thus (presumably) the number of popped edges.
Each time we add a consti tuent to the chart, we
combine it with the consti tuents on either side
of it, potentially creating several new edges. For
each of these new edges, we check to see if a
matching consti tuent (i.e. a consti tuent with
the same head, start , and end points) already
exists in either the agenda or the chart. If there
is no match, we simply add the new edge to the
agenda. If there is a match but the old parse

4o0

3oo

2oo

lO0

Figure h r/vs. Popped Edges

, ! !
1.0 1.5 2.0

Normal izat ion constant

J

Figure 2: r] vs. Precision and Recall

76

74

72

"~ ~ 70

~ m 68

66 i

~ precision

. ° .

. . . . | I , , , ,
1.0 1.5 2.0

Normal izat ion constant

of Nj, k is be t ter than the new one, we discard
the new parse. Finally, if we have found a bet-
ter parse of N~,k, we add the new edge to the
agenda, removing the old one if it has not al-
ready been popped.

We tested the parser on section section 22 of
the WSJ text with various normalization con-
stants r/, working on each sentence only until
we reached the first full parse. For each sen-
tence we recorded the number of popped edges
needed to reach the first parse, and the precision
and recall of that parse. The average number
of popped edges to first parse as a function of
is shown in Figure 1, and the average precision
and recall are shown in Figure 2.

The number of popped edges decreases as r/
increases from 1.0 to 1.7, then begins to increase
again. See Section 5 for discussion of these re-
sults. The precision and recall also decrease as
r/increases. Note that , because we used a bina-
rized grammer for parsing, the trees produced
by the parser contain binarized labels rather
than the labels in the treebank. In order to
calculate precision and recall, we "debinarized"

130

75

74.

73-

Figure 3: Popped Edges vs. Accuracy

~ n = l . 0 . .

¢ ~ o ~ ""-=.~..~.~ n = l . l
,'.." "~/~"- "-..~ n=l.2

~ " ~ ' ~ / " . "-. ~ - - - - - - n = 1 3
/ t : ' , z.¢~ Y ' . : ' ' . """. .~ n = l . 4

/ W ' ' "% • \ " . " ' - . . . ~ n = 1.5

I "',. " ' ~ " : - : ? ~ " ' -

l

72 !

o 5o0
• • !

10O0

Average Number of Popped Edges

! • !

1500 2000

the parser's output and then calculated the fig-
ures as usual.

These results suggest two further questions:
Is the higher accuracy with lower r /due in part
to the higher number of edges popped? If so,
can we gain accuracy with higher r / by letting
the parser continue past the first parse (i.e. pop
more edges)? To answer these questions, we ran
the parser again, this time allowing it to con-
tinue parsing until it had popped 20 times as
many edges as needed to reach the first parse.
The results of this experiment are shown in
Figure 3, where we plot (precision + recall)/2
(henceforth "accuracy") as a function of edges.

Note that regardless of r/ the accuracy of the
parse increases given extra time, but that all of
the increase is achieved with only 1.5 to 2 times
as many edges as needed for the first parse. For
77 between 1.0 and 1.2, the highest accuracy is
almost the same, about 75.2, but this value is
reached with an average of slightly under 400
edges when r/ = 1.2, compared to about 650
when r / = 1.0.

5 R e s u l t s

To better understand the experimental results
it first behooves us to compare them to those
achieved previously. Goodman's results (1997)
are hard to compare against ours because his
parser returns more than a singe best parse and
because he measures processing time, not edges.
However he does give edges/second for one of his

t ~

Figure 4: Edges vs. Sentences Parsed
100

80

70 "

60

50 ;

40 ":

. °
° ° o

° ° °
° -

°°
° •

°t

t - Our parser
. C&C's parser

I | $ L I

2000 4000 6000 8000 1O000

Number of Popped Edges

parsers and this plus his parsing times suggests
that for him edges/sentence will measure in the
tens of thousands - - a far cry from our hun-
dreds. Ratnaparki 's (1997) beam search pars-
ing procedure produces higher accuracy results
than our PCFG model, and achieves this with
a beam width of 20. Unfortunately his paper
does not give statistics which can be directly
compared with ours.

The work by C&C is easier to compare. In
Figure 4 we reproduce C&C's results on the
percentage of sentences (length 18-26) parsed
as a function of number of edges used. We per-
formed the same experiment, and our results
are incliaded there as well. This figure makes
dramatic the order of magni tude improvement
provided by our new scheme, but it is not too
easy to read numbers off of it. Such numbers
are provided in Table 1.

131

Table 1: Edges vs. Sentences Parsed

% Sents Parsed Our Edges C&C Edges
40 90 2000
71 150 3000
82 220 4000
91 320 6000
95 490 9000
96 520 10000
100 1760

Our figures were obtained using rl = 1.2. As
can be seen, our parser requires about one twen-
tieth the number of edges required by C&C.

Indeed, the low average number of edges to
first parse is probably the most striking thing
about our results. Even allowing for the fact
that considerably more edges must be pushed
than are popped, the total number of edges re-
quired to first parse is quite small. Since the
average number of edges required to construct
just the (left-factored) test corpus trees is 47.5,
our parsing system considers as few as 3 times
as many edges as are required to actually pro-
duce the output tree.

Almost as interesting, if r I is below 1.4, the
precision and recall scores of the first parse
are bet ter than those obtained by running the
parser to exhaustion, even though the proba-
bility of the first parses our algorithm returns
cannot be higher than that found by the ex-
haustive version. Furthermore, as seen in Fig-
ure 3, running our parser past the first parse
by a small amount (150% of the edges required
for the first parse) produces still more accurate
parses. At 150% of the minimum number of
edges and r I = 1.2 the precision/recall figures
are about 2% above those for the maximum like-
lihood parse.

We have two (possibly related) theories of
these phenomona. It may be that the FOM
metric used to select consti tuents forces our
parser to concentrate on edges which are plausi-
ble given their surrounding preterminals; infor-
mation which is ignored by the exhaustive maxi-
mum likelihood parser. Alternatively, it may be
that because our FOM causes our parser to pre-
fer edges with a high inside times (estimated)
outside probability, it is in fact partially mim-

132

icking Goodman's (Goodman, 1996) 'Labelled
Recall' parsing algorithm, which does not re-
turn the highest probabili ty parse but a t tempts
to maximize labelled bracket recall with the test
set.

Finally, it is interesting to note that the mini-
mum number of edges per parse is reached when
r / ~ 1.65, which is considerably larger than the
theoretical estimate of 1.3 given earlier. Notice
that one effect of increasing rl is to raise the
FOM for longer constituents. It may be that on
average a partial parse is completed fastest if
larger constituents receive more at tention since
they are more likely to lead quickly to a com-
plete analysis, which would be one consequence
of the larger than expected r/.

This last hypothesis is also consistent with
the observation that average precision and re-
call sharply falls off when r/ is increased be-
yond its theoretically optimal value, since then
the parser is presumably focusing on relatively
larger constituents and ignoring other, strictly
more plausible, smaller ones.

6 C o n c l u s i o n

It is worth noting that while we have presented
the use of edge-based best-first chart parsing
in the service of a rather pure form of P C F G
parsing, there is no particular reason to assume
that the technique is so limited in its domain of
applicability. One can imagine the same tech-
niques coupled with more informative proba-
bility distributions, such as lexicalized P C F G s
(Charniak, 1997), or even grammars not based
upon literal rules, but probabil i ty dis tr ibut ions
that describe how rules are built up from smaller
components (Magerman, 1995; Collins, 1997).
Clearly further research is warranted.

Be this as it may, the take-home lesson from
this paper is simple: combining an edge-based
agenda with the figure of merit from C&C

• is easy to do by simply binarizing the gram-
mar

• provides a factor of 20 or so reduction in
the number of edges required to find a first
parse, and

• improves parsing precision and recall over
exhaustive parsing.

To the best of our knowledge this is currently
the most effecient parsing technique for P C F G

grammars induced from large tree-banks. As
such we strongly recommend this technique to
others interested in PCFG parsing.

R e f e r e n c e s

Robert J. Bobrow. 1990. Statistical agenda
parsing. In DARPA Speech and Language
Workshop, pages 222-224.

Sharon Caraballo and Eugene Charniak. Forth-
coming. New figures of merit for best-first
probabilistic chart parsing. Computational
Linguistics.

Eugene Charniak. 1997 . Statistical pars-
ing with a context-free grammar and word
statistics. In Proceedings of the Fourteenth
National Conference on Artificial Intelli-
gence, pages 598-603, Menlo Park. AAAI
Press/MIT Press.

Mahesh V. Chitrao and Ralph Grishman. 1990.
Statistical parsing of messages. In DARPA
Speech and Language Workshop, pages 263-
266.

Michael John Collins. 1997. Three generative
lexicalised models for statistical parsing. In
Proceedings of the 35th Annual Meeting of
the Association for Computational Linguis-
tics, pages 16-23.

Joshua Goodman. 1996. Parsing algorithms
and metrics. In Proceedings of the 34th An-
nual Meeting of the Association for Compu-
tational Linguistics, pages 177-183.

Joshua Goodman. 1997. Global thresholding
and multiple-pass parsing. In Proceedings of
the Second Conference on Empirical Methods
in Natural Language Processing, pages 11-25.

John E. Hopcroft and Jeffrey D. Ullman. 1979.
Introduction to Automata Theory, Languages
and Computation. Addison-Wesley.

Martin Kay. 1980. Algorithm schemata and
data structures in syntactic processing. In
Barbara J. Grosz, Karen Sparck Jones, and
Bonnie Lynn Weber, editors, Readings in
Natural Language Processing, pages 35-70.
Morgan Kaufmann, Los Altos, California.

Fred Kochman and Joseph Kupin. 1991. Cal-
culating the probability of a partial parse of
a sentence. In DARPA Speech and Language
Workshop, pages 273-240.

Bernard Lang. 1974. Deterministic techniques
for efficient non-deterministic parsers. In
2nd Colloquium on Automata, Languages and

133

Programming, Lecture Notes in Computer
Science 14, pages 225-269. Springer Verlag,
Berlin.

Bernard Lang. 1991. Towards a uniform formal
framework for parsing. In Masaru Tomita,
editor, Current Issues in Parsing Technology,
pages 153-172. Kluwer Academic Publishers,
Dordrecht.

David M. Magerman and Mitchell P. Mar-
cus. 1991. Parsing the voyager domain us-
ing pearl. In DARPA Speech and Language
Workshop, pages 231-236.

David Magerman. 1995. Statistical decision-
tree models for parsing. In Proceedings of the
33rd Annual Meeting off the Association for
Computational Linguistics, pages 276-283.

Mitchell P. Marcus, Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Building
a large annotated corpus of english: The
penn treebank. Computational Linguistics,
19:313-330.

Scott Miller and Heidi Fox. 1994. Auto-
matic grammar acquisition. In Proceedings of
the Human Language Technology Workshop,
pages 268-271.

Adwait Ratnaparki. 1997. A linear observed
time statistical parser based on maximum en-
tropy models. In Proceedings of the Second
Conference on Empirical Methods in Natural

• Language Processing, pages 1-10.
Klaas Sikkel and Anton Nijholt. 1997. Pars-

ing of Context-Free languages. In Grzegorz
Rozenberg and Arto Salomaa, editors, Hand-
book of Formal Languages, volume 2: Lin-
ear Modelling: Background and Application,
chapter 2, pages 61-100. Springer, Berlin.

