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A b s t r a c t  

Best-first probabilistic chart parsing attempts 
to parse efficiently by working on edges that 
are judged ~'best" by some probabilistic figure 
of merit (FOM). Recent work has used proba- 
bilistic context-free grammars (PCFGs) to as- 
sign probabilities to constituents, and to use 
these probabilities as the starting point for the 
FOM. This paper extends this approach to us- 
ing a probabilistic FOM to judge edges (incom- 
plete constituents), thereby giving a much finer- 
grained control over parsing effort. We show 
how this can be accomplished in a particularly 
simple way using the common idea of binarizing 
the PCFG. The results obtained are about a fac- 
tor of twenty improvement over the best prior 
results m that is, our parser achieves equivalent 
results using one twentieth the number of edges. 
Furthermore we show that this improvement is 
obtained with parsing precision and recall levels 
superior to those achieved by exhaustive pars- 
ing. 

1 I n t r o d u c t i o n  

Finding one (or all) parses for a sentence accord- 
ing to a context-free grammar requires search. 
Fortunately, there are well known O(n 3) algo- 
rithms for parsing, where n is the length of the 
sentence. Unfortunately, for large grammars 
(such as the PCFG induced from the Penn II 
WSJ corpus, which contains around 1.6. i04 
rules) and Iongish sentences (say, 40 words and 
punctuation), even O(n 3) looks pretty bleak. 

One well-known O(n 3) parsing method (Kay, 
1980) is chart parsing. In this approach one 
maintains an agenda of items remaining to be 
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processed, one of which is processed during each 
iteration. As each item is pulled off the agenda, 
it is added to the chart (unless it is already 
there, in which case it can be discarded) and 
used to extend and create additional items. In 
"exhaustive" chart parsing one removes items 
from the agenda in some relatively simple way 
(last-in, first-out is common), and continues to 
do so until nothing remains. 

A commonly discussed alternative is to re- 
move the constituents from the agenda accord- 
ing to a figure of merit (FOM). The idea is that 
the FOM selects "good" items to be processed, 
leaving the ~'bad" ones--  the ones that are not, 
in fact, part of the correct parse---- sitting on 
the agenda. When one has a completed parse, 
or perhaps several possible parses, one simply 
stops parsing, leaving items remaining on the 
agenda. The time that would have been spent 
processing these remaining items is time saved, 
and thus time earned. 

In our work we have found that exhaustively 
parsing maximum-40-word sentences from the 
Penn II treebank requires an average of about 
1.2 million edges per sentence. Numbers like 
this suggest that any approach that offers the 
possibility of reducing the work load is well 
worth pursuing, a fact that has been noted 
by several researchers. Early on, Kay (1980) 
suggested the use of the chart agenda for this 
purpose. More recently, the statistical ap- 
proach to language processing and the use of 
probabilistic context-free grammars (PCFGs) 
has suggested using the PCFG probabilities 
to create a FOM. Bobrow (1990) and Chi- 
trao and Grishman (1990) introduced best-first 
PCFG parsing, the approach taken here. Subse- 
quent work has suggested different FOMs built 
from PCFG probabilities (Miller and Fox. 1994: 
Kochman and Kupin. 1991: Magerman and 
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Marcus, 1991). 
Probably the most extensive comparison of 

possible metrics for best-first PCFG parsing 
is that of Caraballo and Charniak (henceforth 
C&C) (Forthcoming). They consider a large 
number of FOMs, and view them as approxi- 
mations of some "ideal" (but only computable 
after the fact) FOM. Of these they recommend 
one as the best of the lot. In this paper we 
basically adopt both their framework and their 
recommended FOM. The next section describes 
their work in more detail, 

Besides C&C the work that  is most directly 
comparable to ours is that  of Goodman (1997) 
and Ratnaparki (1997). Goodman uses an FOM 
that is similar to that  of C&C but  one that 
should, in general, be somewhat more accu- 
rate. However, both Goodman's  and Ratna- 
parki's work assumes that  one is doing a beam 
search of some sort, rather than a best-first 
search, and their FOM are unfortunately tied 
to their frameworks and thus cannot be adopted 
here. We briefly compare our results to theirs 
in Section 5. 

As noted, our paper takes off from that of 
C&C and uses the same FOM. The major differ- 
ence is simply that our parser uses the FOM to 
rank edges (including incomplete edges), rather 
than simply completed constituents, as was 
done by C&C. What is interesting about our ap- 
proach is that such a seemingly simple change 
can produce rather dramatic results. Rather 
than the thousands of edges required by C&C, 
the parser presented here requires hundreds, or 
even, if one is willing to pay a small price in 
accuracy, tens. 

2 C o n s t i t u e n t - B a s e d  B e s t - F i r s t  
C h a r t  P a r s i n g  

In the approach taken in C&C, only completed 
edges, i.e., constituents, are entered into the 
agenda; incomplete edges are always processed 
as soon as they are constructed. At each it- 
eration the constituent with the highest figure 
of merit is removed from the agenda, added to 
the chart, and used to extend current partially 
completed constituents. Thus  we characterize 
their work as constituent-based best-first chart 
parsing. 

C&C take as an "ideal" FOM the quantity 
p(N~,~ [ to,n). Here N~,k is aconst i tuent  of type i 
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(e.g., NP,  VP,  etc.) that  spans the constituents 
from j up to but  not including k, and t0,n are the 
n parts-of-speech (tags) of the sentence. Note 
that  C&C simplify parsing by assuming that  the 
input is a sequence of tags, not words. We make 
the same assumption in this paper. Thus taking 
p(Nj, k [ t0,n) as an FOM says that one should 
work on the constituent that  is most  likely to 
be correct given the tags of the sentence. 

As p(N~, k [ to,n) can only be computed pre- 
cisely after a full parse of the sentence, C&C 
derive several approximations, in each case 
starting from the well known equation for 
P(Nj,k ] to,n) in terms of the inside and outside 
probabilities,/3(Nj,k) and a(N~,k). 

i i ~6(Nj.k)a(Nj.~) 
P(Nj'k l t°'") = p(to,,) (1) 

where /3(Nj,k) and a(N~,k) are defined as fol- 
lows: 

B(N~, k) = p(tj,k l gj.k) ( 2 )  

~(Nj, k) = p(toj, N;, k,tk,n) (3) 

C&Cs best approximation is based upon the 
equation: 

p(Nj,kl to, . )  ~ p(Nj,~ I t . /-i)~(N~,k)p(ttl  
P(ti,k l tj-~)P(tk l tk-~) 

(4) 
Informally, this can be obtained by approximat- 
ing the outside probability ot(Nj,k) in Equation 
1 with a bitag estimate. 

Of the five terms in Equation 4, two can 
be directly estimated from training data: the 
"boundary statistics" p(Nj, k I tj) (the probabil- 
ity of a consti tuent of type Nj,kstarting just af- 

ter the tag tj) and p(tk I N~, k) (the probabil- 
ity of tk appearing just  after the end of a con- 
sti tuent of type Nj k)- The tag sequence proba- 
bilitiy in the denominator  is approximated using 
a bi-tag approximation: 

k 

p(tj,k) = Hp(ti l (5) 
i = j  

The basic algorithm then is quite simple. One 
uses the s tandard chart-parsing algorithm, ex- 
cept at each iteration one takes from the agenda 
the consti tuent that  maximizes the FOM de- 
scribed in Equation 4. 



There are, however, two minor complexities 
that  need to be noted. The first relates to the 
inside probability ~(N;,k). C&C approximate 
it with the sum of the probabilities of all the 
parses for N~, k found at that  point in the parse. 
This in turn requires a somewhat complicated 
scheme to avoid repeatedly re-evaluating Equa- 
tion 4 whenever a new parse is found. In this 
paper we adopt a slightly simpler method.  We 
approximate fl(N~,k) by the most probable parse 

for N~ , rather than the sum of all the parses. j~k 
We justify this on the grounds that  our parser 
eventually returns the most probable parse, so it 
seems reasonable to base our metric on its value. 
This also simplifies updat ing i fl(Nj,k) when new 

parses are found for N~ k- Our algorithm com- 
pares the probability of the new parse to the 
best already found for Nj, k. If the old one is 
higher, nothing need be done. If the new one is 
higher, it is simply added to the agenda. 

The second complexity has to do with the 
fact that in Equation 4 the probability of the 
tags tj,k are approximated using two different 
distributions, once in the numerator  where we 
use the PCFG probabilities, and once in the 
denominator,  where we use the bi-tag proba- 
bilities. One fact noted by C&C, but not dis- 
cussed in their paper, is that  typically the bi- 
tag model gives higher probabilities for a tag 
sequence than does the PCFG distribution. For 
any single tag tj, the difference is not much, 
but as we use Equation 4 to compute our FOM 
for larger constituents, the numerator  becomes 
smaller and smaller with respect to the denom- 
inator, effectively favoring smaller constituents. 
To avoid this one needs to normalize the two 
distributions to produce more similar results. 

We have empirically measured the normal- 
ization factor and found that  the bi-tag distri- 
bution produces probabilities that  are approxi- 
mately 1.3 times those produced by the PCFG 
distribution, on a per-word basis. We correct 
for this by making the PCFG probability of a 
known tag r/ > 1. This has the effect of mul- 
tiplying the inside probability ~(Ni,k ) by rl k - j  

3 
In Section 4 we show how the behavior of our 
algorithm changes for r/s between 1.0 and 2.4. 

3 C h a r t  p a r s i n g  a n d  b i n a r i z a t i o n  

Informally, our algorithm differs from the one 
presented in C&C primarily in that  we rank 

all edges, incomplete as well as complete, with 
respect to the FOM. A straight-forward way 
to extend C&C in this fashion is to transform 
the grammar so that  all productions are either 
unary or binary. Once this has been done there 
is no need for incomplete edges at all in bottom- 
up parsing, and parsing can be performed using 
the CKY algorithm, suitably extended to han- 
dle unary productions. 

One way to convert a PCFG into this 
form is left-factoring (Hopcroft and Ullman, 
1979). Left-factoring replaces each production 
A ~ /3 : p, where p is the production proba- 
bility and Jill = n > 2, with the following set of 
binary productions: 

A ~ '~1,n- l ' f ln  :P 
'fll,i' ~ '~ l , i - l '  ~i : 1.0 
'/~1,2' ~ /~1 ~2 :1 .0  

for i e [3, n] 

In these productions j3i is the ith element of 
~3 and '~3i,j' is the subsequence /3i. . .flj  of fl, 
but treated as a 'new' single non-terminal in 
the left-factored grammar  (the quote marks in- 
dicate that this subsequence is to be considered 
a single symbol). 

For example, the production 

V P - + V N P N P P P  :0.7 

left-factors to the following productions: 

VP ~ ' V N P N P '  PP : 0.7 

' V N P N P '  ~ ' V N P ' P P  :1.0 

'VNP'  --~ V N P  :1.0 

It is not difficult to show that  the left-factored 
grammar defines the same probability distribu- 
tion over strings as the original grammar,  and 
to devise a tree transformation that  maps each 
parse tree of the original g rammar  into a unique 
parse tree of the left-factored grammar of the 
same probability. 

In fact, the assumption that  all productions 
are at most binary is not extraordinary, since 
tabular parsers that  construct  complete parse 
forests in worst-case O(n 3) t ime explicitly or 
implicitly convert their grammars  into binary 
branching form (Lang, 1974; Lang, 1991). 

Sikkel and Nijholt (1997) describe in detail 
the close relationship between the CKY algo- 
rithm, the Earley algorithm and a bot tom-up 
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variant of the Earley algorithm. The key obser- 
vation is that the 'new' non-terminals 'fll,i' in a 
CKY parse using a left-factored grammar corre- 
spond to the set of non-empty incomplete edges 
A ~ fll,i "fli+l,n in the bo t tom-up  variant of tim 
Earley algorithm, where A ~ fll,n is a produc- 
tion of the original grammar. Specifically, the 
fundamental rule of chart parsing (Kay, 1980), 
which combines an incomplete edge A ~ a .  B f l  
with a complete edge B ~ '7- to yield the edge 
A ~ a B .  fl, corresponds to the left-factored 
productions ' a B '  ~ a B if fl is non-empty or 
A ~ ' a ' B  if fl is empty. Thus in general a 
single 'new' non-terminal in a CKY parse us- 
ing the left-factored grammar abbreviates  sev- 
eral incomplete edges in the Earley algorithm. 

4 T h e  E x p e r i m e n t  

For our experiment, we used a tree-bank gram- 
mar induced from sections 2-21 of the Penn 
Wall Street Journal text (Marcus et al., 1993), 
with section 22 reserved for testing. All sen- 
tences of length greater than 40 were ignored 
for testing purposes as done in both  C&C and 
Goodman (1997). We applied the binarization 
technique described above to the grammar.  

We chose to measure the amount  of work done 
by the parser in terms of the average number of 
edges popped off the agenda before finding a 
parse. This method has the advantage of be- 
ing platform independent,  as well as providing 
a measure of "perfection". Here, perfection is 
the minimum number of edges we would need 
to pop off the agenda in order to create the cor- 
rect parse. For the binarized grammar,  where 
each popped edge is a completed constituent,  
this number is simply the number of terminals 
plus nonterminals in the sentence--- on average, 
47.5. 

Our algorithm includes some measures to re- 
duce the number of items on the agenda, and 
thus (presumably) the number of popped edges. 
Each time we add a consti tuent  to the chart, we 
combine it with the consti tuents on either side 
of it, potentially creating several new edges. For 
each of these new edges, we check to see if a 
matching consti tuent (i.e. a consti tuent with 
the same head, start ,  and end points) already 
exists in either the agenda or the chart. If there 
is no match, we simply add the new edge to the 
agenda. If there is a match but  the old parse 
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of Nj, k is be t ter  than the new one, we discard 
the new parse. Finally, if we have found a bet- 
ter parse of N~,k, we add the new edge to the 
agenda, removing the old one if it has not al- 
ready been popped.  

We tested the parser on section section 22 of 
the WSJ text with various normalization con- 
stants r/, working on each sentence only until 
we reached the first full parse. For each sen- 
tence we recorded the number  of popped edges 
needed to reach the first parse, and the precision 
and recall of that  parse. The  average number 
of popped edges to first parse as a function of 
is shown in Figure 1, and the average precision 
and recall are shown in Figure 2. 

The number of popped edges decreases as r/ 
increases from 1.0 to 1.7, then begins to increase 
again. See Section 5 for discussion of these re- 
sults. The precision and recall also decrease as 
r/increases. Note that ,  because we used a bina- 
rized grammer for parsing, the trees produced 
by the parser contain binarized labels rather 
than the labels in the treebank.  In order to 
calculate precision and recall, we "debinarized" 
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the parser's output  and then calculated the fig- 
ures as usual. 

These results suggest two further  questions: 
Is the higher accuracy with lower r /due  in part  
to the higher number of edges popped? If so, 
can we gain accuracy with higher r / by  letting 
the parser continue past the first parse (i.e. pop 
more edges)? To answer these questions, we ran 
the parser again, this time allowing it to con- 
tinue parsing until it had popped 20 times as 
many edges as needed to reach the first parse. 
The results of this experiment are shown in 
Figure 3, where we plot (precision + recall)/2 
(henceforth "accuracy") as a function of edges. 

Note that regardless of r/ the accuracy of the 
parse increases given extra time, but  that all of 
the increase is achieved with only 1.5 to 2 times 
as many edges as needed for the first parse. For 
77 between 1.0 and 1.2, the highest accuracy is 
almost the same, about 75.2, but  this value is 
reached with an average of slightly under 400 
edges when r/ = 1.2, compared to about 650 
when r / =  1.0. 

5 R e s u l t s  

To better understand the experimental results 
it first behooves us to compare them to those 
achieved previously. Goodman's  results (1997) 
are hard to compare against ours because his 
parser returns more than a singe best parse and 
because he measures processing time, not edges. 
However he does give edges/second for one of his 
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parsers and this plus his parsing times suggests 
that for him edges/sentence will measure in the 
tens of thousands - -  a far cry from our hun- 
dreds. Ratnaparki 's  (1997) beam search pars- 
ing procedure produces higher accuracy results 
than our PCFG model, and achieves this with 
a beam width of 20. Unfortunately his paper 
does not give statistics which can be directly 
compared with ours. 

The work by C&C is easier to compare. In 
Figure 4 we reproduce C&C's results on the 
percentage of sentences (length 18-26) parsed 
as a function of number of edges used. We per- 
formed the same experiment,  and our results 
are incliaded there as well. This figure makes 
dramatic the order of magni tude improvement 
provided by our new scheme, but  it is not too 
easy to read numbers off of it. Such numbers 
are provided in Table 1. 
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Table 1: Edges vs. Sentences Parsed 

% Sents Parsed Our Edges C&C Edges 
40 90 2000 
71 150 3000 
82 220 4000 
91 320 6000 
95 490 9000 
96 520 10000 
100 1760 

Our figures were obtained using rl = 1.2. As 
can be seen, our parser requires about  one twen- 
tieth the number of edges required by C&C. 

Indeed, the low average number  of edges to 
first parse is probably the most striking thing 
about  our results. Even allowing for the fact 
that  considerably more edges must be pushed 
than are popped, the total number  of edges re- 
quired to first parse is quite small. Since the 
average number of edges required to construct  
just  the (left-factored) test corpus trees is 47.5, 
our parsing system considers as few as 3 times 
as many edges as are required to actually pro- 
duce the output  tree. 

Almost as interesting, if r I is below 1.4, the 
precision and recall scores of the first parse 
are bet ter  than those obtained by running the 
parser to exhaustion, even though the proba- 
bility of the first parses our algorithm returns 
cannot be higher than that found by the ex- 
haustive version. Furthermore, as seen in Fig- 
ure 3, running our parser past the first parse 
by a small amount (150% of the edges required 
for the first parse) produces still more accurate 
parses. At 150% of the minimum number of 
edges and r I = 1.2 the precision/recall figures 
are about  2% above those for the maximum like- 
lihood parse. 

We have two (possibly related) theories of 
these phenomona. It may be that  the FOM 
metric used to select consti tuents forces our 
parser to concentrate on edges which are plausi- 
ble given their surrounding preterminals; infor- 
mation which is ignored by the exhaustive maxi- 
mum likelihood parser. Alternatively, it may be 
that  because our FOM causes our parser to pre- 
fer edges with a high inside times (estimated) 
outside probability, it is in fact partially mim- 
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icking Goodman's  (Goodman, 1996) 'Labelled 
Recall' parsing algorithm, which does not re- 
turn the highest probabili ty parse but  a t tempts  
to maximize labelled bracket recall with the test 
set. 

Finally, it is interesting to note that  the mini- 
mum number of edges per parse is reached when 
r / ~  1.65, which is considerably larger than the 
theoretical estimate of 1.3 given earlier. Notice 
that  one effect of increasing rl is to raise the 
FOM for longer constituents. It may be that  on 
average a partial parse is completed fastest if 
larger constituents receive more at tention since 
they are more likely to lead quickly to a com- 
plete analysis, which would be one consequence 
of the larger than expected r/. 

This last hypothesis is also consistent with 
the observation that  average precision and re- 
call sharply falls off when r/ is increased be- 
yond its theoretically optimal value, since then 
the parser is presumably focusing on relatively 
larger constituents and ignoring other, strictly 
more plausible, smaller ones. 

6 C o n c l u s i o n  

It is worth noting that while we have presented 
the use of edge-based best-first chart  parsing 
in the service of a rather pure form of P C F G  
parsing, there is no particular reason to assume 
that the technique is so limited in its domain of 
applicability. One can imagine the same tech- 
niques coupled with more informative proba- 
bility distributions, such as lexicalized P C F G s  
(Charniak, 1997), or even grammars not based 
upon literal rules, but  probabil i ty dis tr ibut ions 
that describe how rules are built up from smaller 
components (Magerman, 1995; Collins, 1997). 
Clearly further research is warranted. 

Be this as it may, the take-home lesson from 
this paper is simple: combining an edge-based 
agenda with the figure of merit from C&C 

• is easy to do by simply binarizing the gram- 
mar 

• provides a factor of 20 or so reduction in 
the number of edges required to find a first 
parse, and 

• improves parsing precision and recall over 
exhaustive parsing. 

To the best of our knowledge this is currently 
the most effecient parsing technique for P C F G  



grammars induced from large tree-banks. As 
such we strongly recommend this technique to 
others interested in PCFG parsing. 
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