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A b s t r a c t  

This paper describes a system, WOLFIE (WOrd Learning 
From Interpreted Examples), that acquires a semantic 
lexicon from a corpus of sentences paired with represen- 
tations of their meaning. The lexicon learned consists of 
words paired with meaning representations. WOLFIE is 
part of an integrated system that learns to parse novel 
sentences into semantic representations, such as logical 
database queries. Experimental results are presented 
demonstrating WOLFIE'S ability to learn useful lexicons 
for a database interface in four different natural lan- 
guages. The lexicons learned by WOLFIE are compared 
to those acquired by a comparable system developed by 
Siskind (1996). 

1 I n t r o d u c t i o n  &: O v e r v i e w  

The application of learning methods to natural-language 
processing (NLP) is a growing area. Using machine 
learning to help automate the construction of NLP sys- 
tems can eliminate much of the difficulty of building such . 
systems by hand. The semantic lexicon, or the mapping 
from words to meanings, is one component that is typ- 
ically challenging and time consuming to construct and 
update by hand, as noted by Copestake et al. (1995) and 
Walker and Amsler (1986). In addition, new lexicons are 
needed when transferring a system to new applications 
or domains. Johnston et al. (1995) also discuss the need 
for systems that can learn the meanings of novel words. 

This paper describes a system, WOLFIZ (WOrd Learn- 
ing From Interpreted Examples), that learns a seman- 
tic lexicon of word/meaning pairs from input consisting 
of sentences paired with semantic representations. The 
goal of this research is to automate lexicon construction 
for an integrated NLP system that acquires semantic 
parsers and lexicons. A subgoal is to learn a lexicon that 
is as good or better than a manually-built one based on 
performance on a chosen task. 

Although a few others (Siskind, 1996; Hastings and 
Lytinen, 1994; Brent, 1991) have presented systems for 
semantic lexicon acquisition, this work is unique in com- 
bining several features. First, interaction with a system, 

CHILL (Zelle, 1995), that learns to parse sentences into 
their semantic representations, is demonstrated. Sec- 
ond, it uses a fairly simple batch, greedy algorithm that 
is quite fast and accurate. Third, it is easily extendible 
to new representation formalisms. Finally. it is able ro 
bootstrap from an existing lexicon. 

We tested WOLFIE on its ability to acquire a semantic 
lexicon for the task of answering geographical database 
queries, using a corpus of queries collected from human 
subjects and annotated by an expert with their exe- 
cutable logical form. To perform this test. WOLFIE was 
integrated with CHILL, which learns parsers but requires 
a semantic lexicon (previously built manually). The re- 
sults demonstrate that the final acquired system per- 
forms nearly as accurately at answering novel questions 
when using a learned lexicon as compared to a hand-built 
lexicon. The system is also compared to an alternative 
lexicon acquisition system developed by Siskind (1996), 
demonstrating superior performance on this task. Fi- 
nally, we translated the corpus from English into Span- 
ish, Japanese, and Turkish and ran experiments on learn- 
ing database interfaces with these languages as well. 

Overall, the results demonstrate a robust ability to 
acquire accurate lexicons to be directly used for se- 
mantic parsing. Because we have developed this inte- 
grated system, the task of building a semantic pars- 
ing system for a new domain is simplified. One now 
only needs to build one representative corpus of sen- 
tence/representation pairs for the new domain. This one 
corpus allows the acquisition of both a semantic lexicon 
and a semantic parser that can together process that 
corpus. 

2 B a c k g r o u n d  

The output produced by WOLFm can be used to assist 
a larger language acquisition system; in particular, it is 
currently used as part of the input to a parser acquisition 
system called CHILL (Constructive Heuristics Induction 
for Language Learning). CHILL uses inductive logic pro- 
gramming (Muggleton, 1992; Lavra~ and D~eroski, 1994) 
to learn a deterministic shift-reduce parser written in 
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Figure 1: The Integrated System 

Prolog. The input to CHILL is a corpus of sentences 
paired with semantic representations, the same input re- 
quired by WOLFm. The parser learned is capable of 
mapping the sentences into their correct representations,  
as well as generalizing well to novel sentences. 

CHILL requires a lexicon as background knowledge in 
order to learn to parse into deeper semantic representa- 
tions. By using WOLFIE, the lexicon can be provided 
automatically, easing the task of parser acquisition. Fig- 
ure 1 illustrates the inputs and outputs  of the complete 
system. The output  of WOLFIE is a lexicon of (phrase, 
meaning} pairs; these aspects will be discussed more 
thoroughly in the following sections. 

One of the components of CHILL is 311 initial ow~rly- 
general parser, used to analyze the training data. This 
initial parser is specialized by the learner to generate 
only correct parses for the training examples. Given a 
correct lexicon, the overly-general parser should be able 
to parse all of the training examples. 

In this paper,  we limit our discussion of CHmL to its 
ability to learn parsers that  map natural- language ques- 
tions directly into Prolog queries tha t  can be executed to 
produce an answer (Zelle and Mooney, 1996). Following 
are two sample queries for a database on U.S. Geography 
paired with their corresponding Prolog query: 

What  is the capital of the state  with the biggest 
population? 

answer(C, (capital(S,C), l a r g e s t C P ,  
(state(S), population(S,P))))). 

What  state  is Texarkana located in? 
answer(S, (state (S), 

eq(C, cityid (texarkana, 3 ), 
l o c  (C, S ) ) ) .  

Given a sufficient corpus of such sentence/representat ion 
pairs, CHILL iS able to learn a parser that correctly parses 
many novel sentences into logical queries. 

CHILL treats parser induction as a problem of learn- 
ing rules to control the actions of the shift-reduce parser 
mentioned above. During parsing, the current context is 
contained in the contents of a stack and a buffer contain- 
ing the remaining input. When parsing is complete, the 
stack contains the representation of the input sentence. 

There are three types of operators  used by the parser 
to construct logical queries. One is the introduction 
onto the stack of a predicate needed in the sentence 
representation, due to the appearance a phrase at the 
front of the input buffer. The  semantic lexicon asso- 
ciates phrases and their representations for use by this 
type of operator.  A second type of operator  unifies vari- 
ables appearing in stack items. For example, in the first 
representation of a sample query given above, the first 
argument of answer is unified with the second argument 
of c a p i t a l .  Finally, a stack item may be embedded 
into the argument of another  stack item, as is required 
for the first sentence/representat ion pair given above, to 
embed s t a t e ( _ )  and p o p u l a t i o n ( _ , _ )  into the second 
argument of l a r g e s t .  

In sum, we concentrate on using machine learning 
methods to build a system for processing sentences in 
a narrow domain, but  with the goal of obtaining deep 
semantic representations. This is in contrast to work in 
this general area that  a t tempts  to process broader cor- 
pora, but only obtains shallow representations as a result 
of processing. 

3 T h e  S e m a n t i c  L e x i c o n  A c q u i s i t i o n  
P r o b l e m  

We now define the learning problem at hand. Given a set 
of sentences, each consisting of an ordered list of words 
and annotated with a single semantic representation, we 
assume that  each representat ion can be f r a c t u r e d  into 
all of its components  (Siskind, 1992). The fracturing 
method depends upon the given representation and must 
be explicitly provided or implicit in the algorithm that  
forms hypotheses for word meanings. Given a valid set 
of components, they can be constructed into a valid sen- 
tence meaning using a relation we will call compose. 

The goal is to find a semantic lexicon that  will as- 
sist parsing. Such a lexicon consists of (phrase, mean- 
ing) pairs, where the phrases and their meanings are 
extracted from the input sentences and their represen- 
tations, respectively, such that  each sentence's represen- 
tation can be composed from a set of components each 
chosen from the possible meanings of a (unique) phrase 
appearing in the sentence. If such a lexicon is found, we 
say that the lexicon covers the corpus. We will also talk 
about the coverage of components  of a representation (or 
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sentence/representation pair) by a lexicon entry. Ideally, 
we would like to minimize the ambiguity and size of the 
learned lexicon, since this should ease the parser acqui- 
sition task. Note that this notion of semantic lexicon 
acquisition is distinct from work on learning selectional 
restrictions (Manning, 1993; Brent, 1991) and learning 
clusters of semantically similar words (Riloff and Shep- 
erd, 1997). 

Note that  we allow phrases to have multiple mean- 
ings (homonymy) and for multiple phrases to have the 
same meaning (synonymy). Also, some phrases in the 
sentences may have a null meaning. We make only a 
few fairly straightforward assumptions about  the input. 
First is compositionality, i.e. the meaning of a sentence is 
c o m p o s e d  from the meanings of phrases in that  sentence. 
Since we allow multi-word phrases in the lexicon (e.g. 
([kick t h e  bucket ] ,  die(_))), this assumption seems 
fairly unproblematic. Second, we assume each compo- 
nent of the representation is due to the meaning of a 
word or phrase in the sentence, not to an external source 
such as noise. Third, we assume the meaning for each 
word in a sentence appears only once in the sentence's 
representation. The second and third assumptions are 
preliminary, and we are exploring methods for relaxing 
them. If any of these assumptions are violated, we do 
not guarantee coverage of the training corpus; however, 
the system can still be run and learn a potentially useful 
lexicon. 

4 The  WOLFIE Algo r i t hm and  an 
Example  

In order to limit search, a greedy algorithm is used 
to learn phrase meanings. At each step, the best 
phrase/meaning pair is chosen, according to a heuris- 
tic described below, and added to the lexicon. The ini- 
tial list of candidate meanings for a phrase is formed 
by finding the common substructure between sampled 
pairs of representations of sentences in which the phrase 
appears. 1 In the current implementation, phrases are 
limited to at most two words. This is for efficiency 
reasons only, and in the future we hope to incorporate 
an efficient method for including potentially meaningful 
phrases of more than two words. 

The WOLFIE algorithm, outlined in Figure 2, has been 
implemented to handle two kinds of semantic represen- 
tations. One is a case-role meaning representation based 
on conceptual dependency (Schank, 1975}. For example, 
the sentence "The man ate the cheese" is represented by: 
[ingest, agent : [person, sex:male, age : adult], 

1We restrict ourselves to a sampled pairs instead of all pairs 
because this provides enough information to get good initial can- 
didate meanings. Using all pairs is possible but not generally 
necessary. 

For each phrase (of at most two words): 
1) Sample the examples in which the phrase appears 
2) Find largest common subexpressions of pairs of 

representations from these examples 
Until the input representations are covered, or there are 

no remaining candidate pairs do: 
1) Add the best phrase/meaning pair to the lexicon. 
2) Constrain meanings of phrases occurring in the 

same sentences as the phrase just learned 
Return the lexicon of learned phrase/meaning pairs. 

Figure 2: WOLFIE Algorithm Overview 

p a t i e n t  : [ f o o d ,  t y p e :  c h e e s e ]  ].  Experiments in this 
domain were presented in Thompson (1995). 

The second representation handled is the logical query 
representation illustrated earlier, and is the focus of the 
current paper. To find the common substructure be- 
tween pairs of query representations, we use a method 
similar to finding the Least General Generalization of 
first-order clauses (Plotkin, 1970). However. instead of 
using subsumption to guide generalization, we find the 
set of largest common substructures that two representa- 
tions share. For example, given the two queries from Sec- 
tion 2, the (unique} common substructure is s t a t e  (_).2 

One of the key ideas of the algorithm is that each 
phrase/meaning choice can constrain the candidate 
meanings of phrases yet to be learned. This is the sec- 
ond step of the loop in Figure 2. Such constraints exist 
because of the assumption that  each portion of the rep- 
resentation is due to at most one phrase in the sentence. 

• Therefore, once part of a sentence's representation is cov- 
ered by the meaning of one of its phrases, no other phrase 
in the sentence has to be paired with that meaning (for 
that  sentence}. 

For example, assume we have the sentence/rep- 
resentation pairs in Section 2, plus the additional pair: 

What  is the highest point of the state with the 
biggest area? 

answer(P, (high-point (S,P) , 
largest(A, (state(S),area(S,A))))). 

As a simplification, assume sentences are stripped of 
phrases that  we know a priori have a null meaning (al- 
though in general this is not required}. In the exam- 
pie sentences, these phrases are [what] ,  [is], [with], 
and [the]. From these three examples, the mean- 
ing of [state],  the only phrase common to all sen- 
tences, is determined to be s t a t e ( _ ) ,  which is the 
only predicate the three representations have in com- 
mon. Before determining this, the candidate meaning for 

~Since CHILL initializes the pv.r~e stack with the ansv6r predi- 
cate, it is first stripped from the input given to WOLFIE. 
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[biggest]  is [largest(_, state(_))] (the largest sub- 
structure shared by the representations of the two sen- 
tences containing "biggest"). However, since s t a t e ( _ )  
is now covered by ([state], s t a t e ( _ ) ) ,  it can be elim- 
inated from consideration as part  of the meaninl~ of 
[biggest] ,  and the candidate meaning for [biggest]  be- 
comes [ l a r g e s t  (_,_)]. 

We now describe the algorithm in more detail. The 
first step is to select a random sample of the sentences 
that  each one and two word phrase appears  in, and de- 
rive an initial set of candidate meanings for each phrase. 
This is done by deriving common substructure  between 
pairs of representations of sentences that  contain these 
phrases. For example, let us suppose we have the follow- 
ing pairs as input: 

What is the capital of the state with the biggest 
population? 

answer (C, (capital (S,C), 
largest (P, (state (S), population(S, P) ) ) ) ). 

What is the highest point of the state with the 
biggest area? 

ansver (P, (high-point (S, P), 
largest(A, (state(S), area(S,A))))). 

What state is Texarkana located in? 
ansver ($,  (statue (S) ,  

eq(C, cityid (tezarkana,_)), loc (C, S) ) ). 

What is the area of the United States? 
answer (A, (area (C, A), eq (C, countryid (usa)) ) ). 

What is the population of the states bordering 
Minnesota? 
answer(P, (populat ion(S,P),  s t a t e (S ) ,  

n e x t . t o  (S, H), eq(M, s t a t e i d  (minnesota)  ) ) ) .  

The sets of initial candidate meanings for some of the 
phrases in this corpus are: 
[biggest]:  [ l a r g e s t  (_, s t a t e ( _ ) ) ] ,  

[state]: [ s t a t e  (_), l a r g e s t  (_, s t a t e  (J)],  
[area]: [area(_)], 
[popu la t ion] :  [ ( p o p u l a t i o n ( _ , _ ) ,  s t a t e ( _ ) ) ] ,  

[capital]:  [ ( c a p i t a l  (S ,_) ,  
l a r g e s t ( P ,  (state(S), population(S,P))))]. 

Note that [state] has two candidate meanings, each gen- 
erated from a different pair of representations of sen- 
tences in which it appears. A detail is tha t  for phrases 
that  only appear in one sentence, we use the entire rep- 
resentation of the sentence in which they appear  as an 
initial candidate meaning. An example in this corpus is 
[capital] .  As we will see, this type of pair typically has 
a low score, so the meaning will usually get pared down 
to just the correct port ion of the representation, if any. 
Finally, if a phrase is ambiguous, the pairwise matchings 

to generate candidate items, together  with the constrain- 
ing of representations: would enable multiple meanings 
to be learned for it. 

After deriving these initial meanings, the greedy 
search begins. The heuristic used to evaluate candidates 
has five weighted components: 

1. Ratio of the number of times the phrase appears 
with the meaning to the number  of times the phrase 
appears, or P(meaninglphrase ). 

2. Ratio of the number of times the phrase appears 
with the meaning to the number  of times the mean- 
ing appears, or P(phraselmeaning ). 

3. Frequency of the phrase, or P(phrase~. 

4. Percent of orthographic overlap between the phrase 
and its meaning. 

5. The generality of the meaning. 

The first measure helps reduce ambiguity (homonymy) 
by preferring phrases that  indicate a particular meaning 
with high probability. The second measure helps reduce 
%monymy by favoring pairs in which the meaning ap- 
pears with few other phrases. The  third measure is used 
because frequent phrases are more likely to be paired 
with a correct meaning since we have more information 
about the representations of sentences in which they ap- 
pear. 

The fourth measure is useful in some domains since 
sometimes phrases have many  characters in common 
with their meanings, as in a r e a  and a rea (_ ) .  It mea- 
sures the maximum number of consecutive characters in 
common between the phrase and the terms and predi- 
cates in the meanings, as an average of the percent of 
both the number of characters in the phrase and in the 
term and predicate names. However, as we will demon- 
strate in our experiments,  the use of this port ion of the 
heuristic is not required to learn useful lexicons. 

The final measure, generality, measures the number of 
terms and predicates in the meaning. Preferring a mean- 
ing with fewer terms helps evenly distribute the predi- 
cates in a sentence's representat ion among the meanings 
of the phrases in that  sentence and thus leads to a lexi- 
con that  is more likely to be correct.  To see this, we note 
that  some words are likely to co-occur with one another,  
and so their joint representat ion (meaning) is likely to 
be in the list of candidate meanings for both words. By 
preferring a more general meaning, we more easily ig- 
nore these incorrect joint  meanings. In the candidate 
set above for example, if all else were equal, the general- 
ity portion of the heuristic would prefer s t a t e ( _ )  over 
l a r g e s t  (_, s t a t e  (_)) as the meaning of s t a t e .  

For purposes of this example, we will use a weight of 
50 for each of the first four parameters ,  and a weight of 8 
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for the last. The first four components have smaller val- 
ues than the last, so they have higher weights. Results 
are not overly-sensitive to the heuristic weights. Au- 
tomatically setting the weights using cross-validation on 
the training set (Kohavi and John, 1995) had little effect 
on overall performance. In all of the experiments, these 
same weights were used. To break ties, we choose less 
"ambiguous" phrases first and learn short phrases before 
longer ones. A phrase is considered more ambiguous if 
it currently has more meanings in the partially learned 
lexicon. 

The heuristic measure for the above six pairs is: 
[[biggest], la..rgest (_,state(_))/ :  50(2/2) + 50(2/2) + 
50(2/21) + 50((4/12 + 4/7)/2)-  8 . 2  = 111 

[[area], area(_)] :  50(2/2) + 50(2/2) + 50(2/21) + 
50 ( (4 / 4+  4 / 4 ) / 2 ) -  8 . 1  = 147 

[[state], s t a t e (_ ) ] :  50(3/3) + 50(3/4) + 50(3/21) + 
5 0 ( ( 5 / 5  + 5 / 5 ) / 2 )  - s • 1 = 13~ 

[[state]. l a r g e s t ( _ , s t a t e ( _ ) ) ] :  110 

[ [popula t ion] ,  ( p o p u l a t i o n ( : , _ ) ,  s t a t e ( _ ) ) / :  130 

[[capital], ( c a p i t a l ( S , _ ) ,  l a r g e s t  (P, 
( s t a t e ( S ) ,  p o p u l a t i o n ( S , P ) ) ) ) ] :  101 

The best pair by our measure is ([area], a r ea (_ ) ) ,  so it 
is added to the lexicon. 

The next step in the algorithm is to constrain the re- 
maining candidate meanings for the learned phrase, if 
any, so as to only consider sentences for which no mean- 
ing has yet been learned for the phrase. In our exam- 
ple, the learned pair covers all occurrences of [area], so 
there are no remaining meanings that  need to be con- 
strained. Next, for the remaining unlearned phrases, 
their candidate meanings are constrained to take into 
account the meaning just learned, as was discussed at 
the beginning of this section. In our example, learning 
[area] would not affect any of the meanings listed above, 
but  t h e  next best pair, [[state], s t a t e ( _ ) / ,  would con- 
strain the (only) candidate meaning for [ p o p u l a t i o n  l 
to become p o p u l a t i o n ( _ , _ ) ,  the candidate meaning 
for [capital] to become ( c a p i t a l ( S , _ ) ,  l a r g e s t ( P ,  
p o p u l a t i o n ( S , p ) ) ) ,  and the candidate meaning for 
[biggest  I to become l a r g e s t  (_,_). The greedy search 
continues until the lexicon covers the training corpus. 

A detail of the search not yet mentioned is to check if 
covered sentence/representation pairs can be parsed by 
CHILL'S overly-general parser. If this is not the case, we 
know that some phrase in the sentence has a meaning 
that is not useful to CHILL. Therefore, whenever a sen- 
tence is covered, we check whether it can be parsed. If 
not, we retract  the most recently learned pair, and adjust 
that  phrase's candidate meanings to omit that  meaning. 
We call this the parsability heuristic. 

5 Experimental  Results  

This section describes our experimental results on a 
database query application. The corpus contains 250 
questions about U.S. geography paired with logical rep- 
resentations. This domain was chosen due to the avail- 
ability of an existing hand-built natural language inter- 
face, Geobase, to a simple geography database containing 
about 800 facts. This interface was supplied with Turbo 
Prolog 2.0 (Borland International, 1988), and was de- 
signed specifically for this domain. The questions were 
collected from uninformed undergraduates and mapped 
into their logical form by an exp, r .  Examples from the 
corpus were given in the previous sections. To broaden 
the test, we had the same 250 sentences translated into 
Spanish, Turkish~ and Japanese. The Japanese transla- 
tions are in word-segmented Roman orthography. Trans- 
lated questions were paired with the appropriate logical 
queries from the English corpus. 

To evaluate the learned lexicons, we measured their 
utility as background knowledge for CHILL. This is per- 
formed by choosing a random set of 25 test examples 
and then creating lexicons and parsers using increasingly 
larger subsets of the remaining 225 examples. The test 
examples are parsed using the learned parser, the result- 
ing queries submitted to the database, the answers com- 
pared to those generated by the correct representation, 
and the percentage of correct answers recorded. By mak- 
ing a comparison to the "gold standard" of retrieving a 
correct answer to the original query, we avoid measures 
of partial accuracy which do not give a picture of the real 
usefulness of the parser. To improve the statistical sig- 
nificance of the results, we repeated the above steps for 
ten different random splits of the data  into training and 
test sets. For all significance tests we used a two-tailed, 
paired t-test and a significance level of p < 0.05. 

We compared our system to that  developed by Siskind 
(1996). Siskind's system is an on-line (incremental) 
learner, while ours is batch. To make a closer com- 
parison between the two, we ran his in a "simulated" 
batch mode, by repeatedly presenting the corpus 500 
times, analogous to running 500 epochs to train a neu- 
ral network. We also made comparisons to the parsers 
learned by CHILL when using a hand-coded lexicon as 
background knowledge. This lexicon was available for 
this domain because when CHILL was originally devel- 
oped, WOLFIE had not yet been developed. 

In this application, there are many terms, such as state 
and city names, whose meanings are easily extracted 
from the database. Therefore, all tests below were run 
with such names given to the learner as an initial lexicon, 
although this is not required for learning in general. 
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Figure 3: Accuracy on English Geography Corpus Figure 4: Accuracy Given Closed Class Words 

5.1 Compar i sons  using Engl ish 

The first experiment was a comparison of the two sys- 
tems on the original English corpus. However, since 
Siskind has no measure of orthographic overlap, and it 
could arguably give our system an unfair advantage on 
this data, we ran WOLFIE with a weight of zero for this 
component. We also did not use the parsability heuris- 
tic for this test. By making these adjustments, we at- 
tempted to generate the fairest head-to-head comparison 
between the two systems. 

Figure 3 shows learning curves for CHILL when using 
the lexicons learned by WOLFIE (CHILL+WOLFIE) and 
by Siskind's system (CHILL+Siskind). The uppermost 
curve (CHILL+corrlex) is CHILL'S performance when 
given the hand-built lexicon. Finally, the horizontal line 
shows the performance of the Geobase benchmark. The 
results show that a lexicon learned by WOLFIE led to 
parsers that were almost as accurate as those generated 
using a hand-buih lexicon. The best accuracy is achieved 
by the hand-built lexicon, followed by WOLFIE followed 
by Siskind's system. All the systems do as well or better 
than Geobase by 225 training examples. The differences 
between WOLFIE and Siskind's system are statistically 
significant at 25 and 175 examples. These results show 
that WOLFZZ can learn lexicons that lead to successful 
learning of parsers, and that are somewhat better from 
this perspective than those learned by a competing sys- 
tem. 

As noted above, these tests were run with only the 
meaning of database constants provided as background 
knowledge. Next, we examined the effect of also provid- 
ing closed-class words as background knowledge. Fig- 
ure 4 shows the resulting learning curves. For these 
tests, we also show the advantage of adding both the or- 
thographic overlap and parsability heuristics to WOLFIZ 

(CHILL-fullWOLFIE). Both the additional backgrou- 
knowledge and the improved heuristic increase the ore 
all performance a couple of percentage points. The d 
ferences between Siskind's system and WOLFIE wi tho  
parsing or overlap are statistically significant at 75, 17 
and 225 examples. Finally, we noted that Siskind's s3 
tern run in batch mode on this test averaged 54.8% at 2" 
examples, versus non-batch mode which attained 49.6 
accuracy, giving evidence that batch mode does impro 
his system. 

One of the implicit hypotheses of our approach is th 
coverage of the training pairs implies a good lexicon. 
can compare the coverage of WOLFIE'S lexicons to tho 
of Siskind's and verify that WOLFm's have better co 
erage. For the first experiment above, WOLFIE cover 
100% of the 225 training examples, while Siskind co 
ered 94.4%. For the second experiment, the coverag 
were 100% and 94.5%, respectively. This may accou 
for some of the performance difference between the t,~ 
systems. 

Further differences may be explained by the percer 
age of training examples usable by CHmh, which is t. 
percentage parsable by its overly-general parser. For t. 
first experiment, CHILl., could parse 93.7% of the 225 e 
amples when given the lexicons learned by WOLFIE b 
only 78% of the examples when given lexicons learn 
by Siskind's system. When the lexicon learners are giv 
closed class words, these percentages rise to 98.1% a.. 
84.6%, respectively. In addition, the lexicons learn 
by Siskind's system were more ambiguous than tho 
learned by WOLFIE. WOLFm'S lexicons had 1.1 mea 
ings per word for the second experiment (after 225 trai 
ing examples) versus 1.7 meanings per word in Siskinc 
lexicons. These differences most likely contribute to t. 
differences seen in the generalization accuracy of CHIT_ 
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Figure 5: Accuracy on Spanish 

The ability to learn multiple-word phrases is not a signif- 
icant source of the advantage of WOLFIE over Siskind's 
system, since only 2% of the lexicon entries learned by 
WOLFIE On average contained two-word phrases. 

5.2 Comparisons using Spanish 
Next. we examined the performance of the two systems 
on the Spanish version of the corpus. We again omitted 
orthographic overlap and the parsability heuristic. Fig- 
ure .5 shows the results. In these tests, we also gave closed 
class words to the lexicon learners as background knowl- 
edge, since these results were slightly better for English. 
Though the performance compared to a hand-built lex- 
icon is not quite as close as in English, the accuracy of 
the parser using the learned lexicon is very similar. 

5.3 Accuracy on Other  Languages 
We also had the geography query sentences translated 
into Japanese and Turkish, and ran similar tests to deter- 
mine how well WOLFIE could learn lexicons for these lan- 
guages, and how well CHILL could learn to parse them. 
Figure 6 shows the results. For all four of these tests, 
we used the parsability heuristic, but did not give the 
learner access to the closed class words of any of the 
languages. We also set the weight of the orthographic 
overlap heuristic to zero for all four languages, since this 
gives little advantage in the foreign languages. The per- 
formance differences among the four languages are quite 
small, demonstrating that our methods are not language 
dependent. 

6 R e l a t e d  W o r k  

Pedersen and Chen (1995) describe a method for acquir- 
ing syntactic and semantic features of an unknown word. 
They assume access to an initial concept hierarchy, and 
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do not present any experimental results. Many systems 
(Fukumoto and Tsujii, 1995; Haruno, 1995; Johnston 
et al., 1995; Webster and Marcus, 1995) focus only on 
acquisition of verbs or nouns, rather than all types of 
words. Also, these either do not experimentally evalu- 
ate their systems, or do not show the usefulness of the 
learned lexicons. Manning (1993) and Brent (1991) ac- 
quire subcategorization information for verbs. Finally, 
several systems (Knight, 1996; Hastings and Lytinen. 
1994; Russell, 1993) learn new words from context, as- 
suming that a large initial lexicon and parsing system 
are available. 

Tishby and Gorin (Tishby and Gorin, 1994) learn asso- 
ciations between words and actions (as meanings of those 
words). Their system was tested on a corpus of sentences 
paired with representations but they do not demonstrate 
the integration of learning a semantic parser using the 
learned lexicon. 

The aforementioned work by Siskind is the closest. 
His approach is somewhat more general in that it han- 
dles noise and referential uncertainty (multiple possible 
meanings for a sentence), while ours is specialized for 
applications where a single meaning is available. The 
experimental results in the previous section demonstrate 
the advantage of our method for such an application. His 
system does not currently handle multiple-word phrases. 
Also, his system operates in an incremental or on-line 
fashion, discarding each sentence as it processes it, while 
ours is batch. While he argues for psychological plausi- 
bility, we do not. In addition, his search for word mean- 
ings is most analogous to a version space search, while 
ours is a greedy search. Finally, and perhaps most signif- 
icantly, his system does not compute statistical correla- 
tions between words and their possible meanings, while 
ours does. 
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His system proceeds in two stages, first learning what 
symbols are part of a word's meaning, and then learning 
the structure of those symbols. For example, it might 
first learn that c a p i t a l  is part of the meaning of capi- 
tal, then in the second stage learn that c a p i t a l  can have 
either one or two arguments. By using common sub- 
structures, we can combine these two stages in WOLFIE. 

This work also has ties to the work on automatic 
construction of translation lexicons (Wu and Xia, 1995; 
Melamed, 1995; Kumano and Hirakawa, 1994; Catizone 
et al., 1993: Gale and Church, 1991). While most of 
these methods also compute association scores between 
pairs (in their case, word/word pairs) and use a greedy 
algorithm to choose the best translation(s) for each word, 
they do not take advantage of the constraints between 
pairs. One exception is Melamed (1996); however, his 
approach does not allow for phrases in the lexicon or for 
synonymy within one text segment, while ours does. 

7" F u t u r e  W o r k  
Although the current greedy search method has per- 
formed quite well, a better search heuristic or alterna- 
tive search strategy could result in improvements. A 
more important issue is lessening the burden of build- 
ing a large annotated training corpus. We are exploring 
two options in this regard. One is to use active learning 
(COhn et al., 1994) in which the system chooses which 
examples are most usefully annotated from a larger cor- 
pus of unannotated data. This approach can dramati- 
cally reduce the amount of annotated data required to 
achieve a desired accuracy (Engelson and Dagan, 1996). 

Second, we are currently developing a corpus of sen- 
tences paired with SQL database queries. Extending 
our system to handle this representation should be a 
fairly simple matter. Such corpora should be easily con- 
structed by recording queries submitted to existing SQL 
applications along with their original English forms, or 
translating existing lists of SQL queries into English 
(presumably an easier direction to translate). The fact 
that the same training data can be used to learn both a 
semantic lexicon and a parser also helps limit the overall 
burden of constructing a complete NL interface. 

On a separate note, the learning algorithm may be 
applicable to other domains, such as learning for trans- 
lation or diagnosis. We hope to investigate these possi- 
bilities in the future as well. 

8 C o n c l u s i o n s  
Acquiring a semantic lexicon from a corpus of sen- 
tences labeled with representations of their meaning is 
an important problem that has not been widely studied. 
WOLFIE demonstrates that a fairly simple greedy sym- 
bolic learning algorithm performs fairly well on this task 
and obtains performance superior to a previous lexicon 

acquisition system on a corpus of geography queries. Our 
results also demonstrate that our methods extend to a 
variety of natural languages besides English. 

Most experiments in corpus-based natural language 
have presented results on some subtask of natural lan- 
guage, and there are few results on whether the learned 
subsystems can be successfully integrated to build a com- 
plete NLP system. The experiments presented in this 
paper demonstrated how two learning systems. WOLFIE 
and CHILL were successfully integrated to learn a com- 
plete NLP system for parsing database queries into exe- 
cutable logical form given only a single corpus of anno- 
tated queries. 
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