
Using Suffix Arrays to Compute Term Frequency
and Document Frequency for All Substrings in a Corpus

Mikio Yamamoto

University of Tsukuba

1-1-1 Tennodai,

Tsukuba 305-8573, JAPAN

myama@is.tsukuba.ac.jp

Kenneth W. Church

AT&T Labs - Research

180 Park Avenue

Florham Park, NJ 07932, U.S.A

kwc @research.att.com

Abstract

Mutual Information (MI) and similar
measures are often used in corpus-based
linguistics to find interesting ngrams. MI
looks for bigrams whose term frequency (~ is
larger than chance. Residual Inverse
Document Frequency (RIDF) is similar, but it
looks for ngrams whose document frequency
(df) is larger than chance. Previous studies
have tended to focus on relatively short
ngrams, typically bigrams and trigrams. In
this paper, we will show that this approach
can be extended to arbitrarily long ngrams.
Using suffix arrays, we were able to compute
tf, d f and RIDF for all ngrams in two large
corpora, an English corpus of 50 million
words of Wall Street Journal news articles and
a Japanese corpus of 216 million characters of
Mainichi Shimbun news articles.

1 M I a n d RIDF

Mutual Information (MI), l(x;y), compares the
probability of observing word x and word y
together (the joint probabil i ty) with the
probabilities of observing x and y independently
(chance).

l(x;y) = log (P(x,y) / e(x)e(y))

MI has been used to identify a variety of
interesting linguistic phenomena, ranging from
semantic relations of the doctor/nurse type to
lexico-syntactic co-occurrence preferences of the
save/from type (Church and Hanks, 1990).

Church and Gale (1995) proposed Residual

28

Inverse Document Frequency (RIDF), the
difference between the observed IDF and what
would be expected under a Poisson model for a
random word or phrase with comparable
frequency. RIDF is a variant of IDF, a standard
method for weighting keywords in Information
Retrieval (IR). Let D be the number of documents,
tf be the term frequency (what we call '~frequency"
in our field) and dfbe the document frequency (the
number of documents which contain the word or
phrase at least once). RIDF is defined as:

Residual IDF ~ observed IDF - predicted IDF

= -log(df/D) +log(1-exp(- 8))

= -log(df/D) +log(1-exp(-tf/D)).

RIDF is, in certain sense, like MI; both are the log
of the ratio between an empirical observation and
a chance-based estimate. Words or phrases with
high RIDF or MI have distributions that cannot be
attributed to chance. However, the two measures
look for different kinds of deviations from chance.
MI tends to pick out general vocabulary, the kind
of words one would expect to find in a dictionary,
whereas RIDF tends to pick out good keywords,
the kind of words one would not expect to find in
a dictionary. This distinction is not surprising
given the history of the two measures; MI, as it is
currently used in our field, came from
lexicography whereas RIDF came from
Information Retrieval.

In addition, it is natural to compute RIDF
for all substrings. This is generally not done for
MI, though there are many ways that MI could be
generalized to apply to longer ngrams. In the next
section, we will show an algorithm based on suffix

arrays for computing tf, df and RIDF for all
substrings in a corpus in O(NlogN) time.

In section 3, we will compute RIDF's for all
substrings in a corpus and compare and contrast
MI and RIDF experimentally for phrases in a
English corpus and words/phrases in a Japanese
corpus. We won't try to argue that one measure is
better than the other; rather we prefer to view the
two measures as mutually complementary.

2 C o m p u t i n g t f a n d d f for all substrings
2.1 Suffix a r r ays

A suffix array is a data structure designed to make
it convenient to compute term frequencies for all
substrings in a corpus. Figure 1 shows an example
of a suffix array for a corpus of N=6 words. A
suffix array, s, is an array of all N suffixes,
pointers to substrings that start at position i and
continue to the end of the corpus, sorted
alphabetically. The following very simple C
function, suffixarray, takes a corpus as input and
returns a suffix array.

int suffix_compare(char **a, char **b){

return strcmp(*a, *b); }

/ * The input is a string, terminated with a null * /
char **suffix_array(char *corpus){

int i, N = strten(corpus);
char **result=(char **)rnalloc(N*sizeof(char *));
/ * initialize result[i] with the ith suffix * /
for(i=0; i < N; i++) result[il = corpus + i;
ClSOr't(result, N, sizeof(char *), suffix_compare);
return result; }

Nagao and Mori (1994) describe this
procedure, and report that it works well on their
corpus, and that it requires O(NlogN)t ime,
assuming that the sort step requires O(NlogN)
comparisons, and that each comparison requires
0(1) time. We tried this procedure on our two
corpora, and it worked well for the Japanese one,
but unfortunately, it can go quadratic for a corpus
with long repeated substfings, where strcmp takes
O(N) time rather than 0(1) time. For our English
corpus, after 50 hours of cpu time, we gave up and
turned to Doug Mcllroy's implementat ion
(http : //cm. bell-labs, corrJcm/cs/ who/doug/ssort, c)
of Manber and Myers' (1993) algorithm, which
took only 2 hours. For a corpus that would

29

otherwise go quadratic, the Manber and Myers'
algorithm is well worth the effort, but otherwise,
the procedure described above is simpler, and
often a bit faster.

As mentioned above, suffix arrays were
designed to make it easy to compute term
frequencies (~ . If you want the term frequency of
"to be," you can do a binary search to find the first
and last position in the suffix array that start with
this phrase, i and j, and then tfl"to be") =j- i+l . In
this case, i=5 and j=6, and consequently, tfl"to
be")=6-5+1=2. Similarly, tfl"be")= 2-1+1 = 2, and
~"to")=6-5+1=2. This straightforward method of
computing tf requires O(logN) string comparisons,
though as before, each string comparison could
take O(N) time. There are more sophisticated
algorithms that take O(logN) time, even for
corpora with long repeated substrings.

A closely related concept is lcp (longest
common prefix). Lcp is a vector of length N,
where lcp[i] indicates the length of the common
prefix between the ith suffix and the /+ /s t suffix in
the suffix array. Manber and Myers (1993) showed
how to compute the lcp vector in O(NlogN) time,
even for corpora with long repeated substrings,
though for many corpora, the complications
required to avoid quadratic behavior are
unnecessary.

Corpus: "to be or not to be"

s[i]
s[z]
s[3]
s[4]
s[s]
s[s]

1 2 3 4

Alphabet: [to, be, or, not}

... lcp

 -Ior not to be I
not to be I
or not to
to be
to be or

be]

not to be]

0
0
0
2
0

Lcp's are denoted by bold vertical lines as well as the Icp table.

Figure 1: An example of a Suffix Array with lcp's

2.2 Classes of subs t r ings

Thus far we have seen how to compute tf for a
single ngram, but how do we compute tfand dffor
all ngrams? There are N(N+I)/2 substrings in a
text of size N. If every substring has a different tf
and df, the counting algorithm would require at
least quadratic time and space. Fortunately many
substrings have the same tf and the same df. We

will cluster the N(N+I)/2 substrings into at most
2N-1 classes and compute t f and df over the
classes. There will be at most N distinct values of
RIDF.

Let <i,j> be an interval on the suffix array:
{s[i], s[i+l] s[j]}. We call the interval LCP-
delimited if the lcp's are larger inside the interval
than at its boundary:

min(lcp[i], lcp[i+ l] lcp[j-1])

> max(lcp[i-1], Icp[l]) (1)

In Figure 1, for example, the interval <5,6> is
LCP-delimited, and as a result, 0fCto") = tf("to be")
= 2, and dfCto")=dfCto be").

The interval <5,6> is associated with a class
of substrings: "to" and "to be." Classes will turn
out to be important because all of the substrings in
a class have the same tf(property l) and the same
df (property 2). In addition, we will show that
classes partition the set of substrings (property 3)
so that we can compute t f and df on the classes,
rather than substrings. Doing so is much more
efficient because there many fewer classes than
substfings (property 4).

Classes of substrings are defined to be the
(not necessarily least) common prefixes in an
interval. In Figure 1, for example, both "to" and
"to be" are common prefixes throughout the
interval <5,6>. That is, every suffix in the interval
<5,6> starts with "to," and every suffix also starts
with "to be". More formal ly , we def ine
class(<ij>) as: {s[i]ml LBL<rn_<SIL}, where s[i]rn
is a substring (the first m characters of s[i]),
LBL(longest boundary lcp) is the fight hand of (1)
and SIL (shortest interior Icp) is the left hand side"
of (1). In Figure 1, for example, SIL(<5,6>) =
min(lcp[5]) = 2, LBL(<5,6>) = max(lcp[4], lcp[6])
=0, and class(<5,6>) = {s[5]m I 0<m_<2} = {"to",
"to be"}.

Figure 2 shows six LCP-delimited intervals
and the LBL and SIL of <2,4>. For <2,4>, the
bound ing lcp's are lcp[1] = 2 and lcp[4]=3
(LBL=3), and the interior lcp's are lcp[2]=4 and
lcp[3]=6 (SIL=4). The interval <2,4> is LCP-
delimited, because L B L<SIL. Class(<2,4>)=
{s[2]m13<m~<4} = {aacc}. The interval <3,3> is

*) SIL(<i,i>) is defined to be infinity, and consequently,
all intervals <i,i> are LCP-delimited, forall i.

30

Doc-id
(..,. 382 s[1]
~84987 stZ]
\6892 s[3]

- - 3 8 2 s[4]
2566 s[5]

s[6]

1 2 3 4 5 6 7 . . .

a a l b b c c d...
a aLc old d e . . .

4,
: :

Bounding Icps, LBL, SIL, Intedor Icps of <2, 4>
Vertical lines denote lcps. Gray area denotes endpoints
of substrings in class(<2,4>).

LCP-delimited Class
interval
<2,4> {aacc}
<3,4> {aacce, aaccee}
<1,1> {aab, aabb, aabbc, ...}
<2,2> {aaccd, aaccdd, ...}
<3,3> {aacceef, ...}
<4,4> {aacceeg, ...}

LBL SIL tf

2 4 3
3 6 2
2 infinity 1
4 infinity 1
6 infinity]
6 infinity 1

Figure 2: Examples of intervals and classes

LCP-delimited because SIL is infinite and LBL=6.
The interval <2,3> is not LCP-delimited because
SIL is 4 and LBL is 6 (LBL>SIL).

By construction, the suffixes within the
interval <i,j> all start with the substrings in
class(<i,j>), and no suffixes outside this interval
start with these substfings. As a result, if sl and s2
are two substfings in class(<ij>) then

Property 1: tflsJ) = tfls2) = j - i + l

• and

Property 2: dr(s1) = df(s2).

The calculation of dfis more complicated than tf,
and will be discussed in section 2.4.

It is not uncommon for an LCP-delimited
interval to be nested within another. In Figure 2,
for example, the in~rval <3,4> is nested within
<2,4>. The computation of df in section 2.4 will
take advantage of a very convenient nesting
property. Given two LCP-del imited intervals,
either one is nested within the other (e.g., <2,4>
and <3,4>), or one precedes the other (e.g., <2,2>
and <3,4>), but they cannot overlap. Thus, for
example, the intervals <1,3> and <2,4> cannot
both be LCP-del imited because they overlap.
Because of this nesting property, it is possible to
express the dfo f an interval recursively in terms of
its constituents or subintervals.

As mentioned aboye, we will use the
following partitioning property so that we can

compute tfand dfon the classes rather than on the
substrings.

Property 3: the classes partition the set of
all substrings in a text.

There are two parts to this argument: every
substfing belongs to at most one class (property
3a), and every substring belongs to at least one
class (property 3b).

Demonstration of property 3a (proof by
contradiction): Suppose there is a substfing, s, that
is a member of two classes: class(<ij>) and
class(<u,v>). There are three possibilities: one
interval precedes the other, they are property
nested or they overlap. The only interesting case is
the nesting case. Suppose without loss of
generality that <u,v> is nested within < i j> as in
Figure 3. Because <u,v> is LCP-delimited, there
must be a bounding lcp of <u,v> that is smaller
than any lcp within <u,v>. This bounding Icp must
be within <i j>, and as a result, class(<ij>) and
class(<u,v>) must be disjoint. Therefore, s cannot
be in both classes.

t Suffix Array / SIL of <i,j>

$[i]1 I 1 I
s[.]/ ^ I , II

/ I I
s[v]/ I ,fl I
sb] , .< . . j" l

?h~s is an interior lcp of <i,j>
and the LBL of <u, v>.

Figure 3: An example of nested intervals

Demonstration of property 3b (constructive
argument): Let s be an arbitrary substring in the
corpus. There will be at least one suffix in the
suffix array that starts with s. Let i be the first
such suffix and let j be the last such suffix. By
construction, the interval <i j > is LCP-delimited
(LBL(<ij>) < Isl and S1L(<ij>) >_ Isl), and s is an
element of class(<ij>).

Finally, as mentioned above, computing
over classes is much more eff ic ient than
computing over the substfings themselves because
there are many fewer classes (at most 2N-l) than
substrings (N(N+I)/2).

31

Property 4: There are N classes with tf=l
and at most N-1 classes with ~'> 1.

The first clause is relatively straightforward.
There are N intervals <i,i>. These are all and only
the intervals with tf=l . By construction, these
intervals are LCP-delimited.

To argue the second clause, we will make
use of a uniqueness property: an LCP-delimited
interval <i j> can be uniquely determined by its
S1L and a representative element k (i.~.k<j).
Suppose there were two distinct intervals, <id>
and <u,v>, with the same SIL , SIL(<ij>)=
SIL(<u,v>), and the same representative, i.~.k<j and
u_<k<v. Since they share a common representative,
k, the two intervals must overlap. But since they
are distinct, there must be a distinguishing
element, d, that is in one but not the other. One of
these distinguishing elements, d, would have to be
a bounding lcp in one and an interior lcp in the
other. But then the two intervals couldn't both be
LCP-delimited.

Given this uniqueness property, we can
determine the N-1 upper bound on the number of
LCP-delimited intervals by considering the N-1
elements in the Icp vector. Each of these elements,
lcp[k], has the opportunity to become the SIL of an
LCP-delimited interval < i j> with a representative
k. Thus there could be as many as N-1 LCP-
delimited intervals (though there could be fewer if
some of the opportunities don't work out).
Moreover, there couldn't be any more intervals
with 0f>l, because if there were one, its SIL should
have been in the lcp vector. (Note that this lcp
counting argument excludes intervals with t~-I
discussed above, because their SILs need not be in
the lcp vector.)

From property 4, it follows that there are at
most N distinct values of RIDF. The N intervals
<i,i> have just one RIDF value since 0~-'-df=l for
these intervals. The other N-1 intervals could have
another N-1 RIDF values.

In summary, the four propert ies taken
collectively make it practical to compute tf, df and
RIDF over a relatively small number of classes; it
would have been prohibitively expensive to
compute these quantities direct ly over the
N(N+ 1)/2 substrings.

2.3 Calcu la t ing classes us ing Suff ix A r r a y

This section will describe a single pass procedure
for Computing classes. Since LCP-delimited
intervals obey a convenient nesting property, the
procedure is based on a push-down stack. The
procedure outputs 4-tuples, <s[i],LBL,SIL,~>, one
for each LCP-delimited interval. The stack
elements are pairs (x,y), where x is an index,
typically the left edge of a candidate LCP-
delimited interval, and y is the SIL of this
candidate interval. Typically, y=lcp[x], though not
always, as we will see in Figure 5.

The algorithm sweeps over the suffixes in
suffix array s[1..N] and their lcp[1..N] (lcp[N]=O)
successively. While Icp's of suff ixes are
monotonically increasing, indexes and lcp's of the
suffixes are pushed into a stack. When it finds the
i-th suffix whose lcp[i] is less than the lcp on the
top of the stack, the index and Icp on the top are
popped off the stack. Popping is repeated until the
lcp on the top becomes less than the lcp[i].

A stack element popped out generates a
class. Suppose that a stack element composed of
an index i and lcp[i] is popped out by lcp[1]. Lcp[i]
is used as the SIL. The LBL is the Icp on the next
top element in the stack or lcp[j]. If the next top
Icp will be popped out by lcp[j], then the algorithm
uses the next top lop as the LBL, else it uses the
lcp[j]. Tf is the offset between the indexes i and j,
that is, j-i+1.

Figure 4 shows the detailed algorithm for
Create and clear stack.
Push (-1, -1) (dummy).
Repeat i = 1 N do

top (index1, Icpl).
if Icp[i] > Icpl then

push (i, Icp[i]).
else

while Icp[i] _< Icpl do
pop(index1, Icpl)
top (index2, Icp2)
if Icp[i] _< Icp2 then

output <s[index 1], Icp2, Icpl, i-index1 +1 >
else

output <s[indexl], Icp[i], Icpl, i-index1+1>
push (indext, Icp[i])
Icpl = Icp2.

Figure 4: An algorithm for computing all classes

32

computing all classes with tf > 1. If classes with tf
= 1 are needed, we can easily add the line to
output those into the algorithm. The expressions,
push(x,y) and pop(x,y), operate on the stack in the
obvious way, but note that x and y are inputs for
push and outputs for pop. The expression, top(x,y),
is equivalent to pop(x,y) followed by push(x,y); it
reads the top of the stack without changing the
stack pointer.

As mentioned above, the stack elements are
typically pairs (x,y) where y=lcp[x], but not
always. Pairs are typically pushed onto the stack
by line 6, push(i , Icp[i]), and consequently,
y=lcp[x], in many cases, but some pairs are pushed
on by line 15. Figure 5 (a) shows the typical case
with the suffix array in Figure 2. At this point,
i=3 and the stack contains 4 pairs, a dummy
element (-1, -1), followed by three pairs generated
by line 6: (1, Icp[l]), (2, lcp[2]), (3, lcp[3]). In
contrast, Figure 5 (b) shows an atypical case. In
between snapshot (a) and snapshot (b), two LCP-
delimited intervals were generated, <s[3], 4, 6, 2>
and <s[2], 3, 4, 3>, and then the pair (2, 3) was
pushed onto the stack by line 15, push(indexl,
lcp[i]), to capture the fact that there is a candidate
LCP-delimited interval starting at indexl=2,
spanning past the representative element i=4, with
an SIL of lcp[i=4].

index lcp Note!

(3, 6)]]Popped
ilout ('2, 3) (2, 4) [- s[4]. , 2) (1, 2) (1

(-1,-1) I dummy (-1,-1)

I

I
] ushod

(a) end of processing s[3] (b) end of processing s[4]

Figure 5: Snapshots of the stack

2.4 Computing df for all classes

This section will extend the algorithm in Figure 4
to include the calculation of dr. Straightforwardly
computing dfindependently for each class would
require at least quadratic time, because the
program must check document id's for all
substfings (N at most) in all classes (N-I at most).
Instead of this, we will take advantage of the
nesting property of intervals. The df for one

interval can be computed recursively in terms of
its constituents (nested subintervals), avoiding
unnecessary recomputation.

The stack elements in Figure 5 is augmented
with two additional counters: (1) a df counter for
summing the dfs over the nested subintervals and
(2) a duplication counter for adjusting for
overcounting documents that are referenced in
multiple subintervals. The df for an interval is
simply the difference of these two counters, that is,
the sum of the dfs of the subintervals, minus the
duplication. A C code implementation can be
found at
http://www.milab.is.tsukuba.ac.jp/-myama/oedf/tfdf c.

The df coun te r s are r e l a t i ve ly
straightforward to implement. The crux of the
problem is the adjustment for duplication. The
adjustment makes use of a document link table, as
illustrated in Figure 6. The left two columns
indicate that suffixes s[101], s[104] and s[107] are

Suffix Document Document id link (index)
s[101] 382 - ~ 66 j
s[102] 84987 ~ 1 7 2 ~
silO31 -- 6892 21
s[104l 382 - 01
s[105] 2566 / 1 1 2 ~)
s[106] -- 6892 03
s[107] 382 - ~ , - I 0 4 ' , /
stl08] l - 84987 .. [1 0 2 "~-.,,~.,

Figure 6: An example of document link table

s[i]

sbq

s[k ~.

s[t

Suffix Array
characters (suffix)

.

, Idf-

df-counter] h

h h
,,tdf-counter I

Adf-counterl I6

-"----... _ ;,11;,I I ; , 4 df-cou.te,T----IL_ II
. I,o

dup-counter I-~ In

document links ~.~ ~Interval

endpoints of substrings in the class of the interval

Figure 7: Dfrelations among an interval
and its constituents

33

all in document 382, and that several other suffixes
are also in the same documents. The third column
links together suffixes that are in the same
document. Note, for example, that there is a
pointer from suffix 104 to 101, indicating that
s[104] and s[101] are in the same document. The
suffixes in one of these linked lists are kept sorted
by their order in the suffix array. When the
algorithm is processing s[t], the algorithm searches
the stack to find the suffix, s[k], with the largest k
such k_<i and s[i] and s[k] are in the same
document. This search can be performed in
O(logN) time.

Figure 7 shows the LCP-delimited intervals
in a suffix array and four suffixes included in the
same document. I1 has four immediate constituents
of intervals. S[j] is included in the same document
of s[i]. Count for the document of s[j] will be
duplicated at computing df of 11. At the point of
processing sO'], the algorithm will increment
duplication-counter of I! to cancel dfcount of sO'].
As the same way, df count of s[k] has to canceled
at computing df of 11.

Figure 8 shows a snapshot of the stack after
processing s[4] in Figure 2. Each stack element is
a 4-tuple of the index of suffix array, lcp, df-
counter and duplication-counter, (i, lcp, df dc).
Figure 2 shows s[1] and s[4] are in the same
document. Looking up the document link table,
the algorithm knows s[1] is the nearest suffix
which is in the same document of s[4]. The
duplication-counter of the element of s[1] is
incremented. The duplication of counting s[1] and
s[4] for the class generated by s[1] will be avoided
using this duplication-counter.

At some processing point, the algorithm
uses only a part of the document link table. It

duplication
lcp counter

(2, 3, 3,0)
[(1, 2, 1,1)
I (- 1 , - 1 , - , -)

Figure 8: A snapshot of
the stack in dfcomputing

Nearest
Doc-id index
. . °

382 4
o H

6892 3
° , °

84987 2
Figure 9: Nearest indexes

of documents

needs only the nearest index on the link, but not
the whole of the link. So we can compress the link
table to dynamic one in which an entry of each
document holds the nearest index. Figure 9 shows
the nearest index+ table of document after
processing s[4].

The final algorithm to calculate all classes
with tfand dftakes O(NlogN) time and O(N) space
in the worst case.

3 Exper imenta l results

3.1 RIDF and MI for English and Japanese

We computed all RIDF's for all substrings of two
corpora, Wall Street Journal of ACL/DCI in
English (about 50M words and 113k articles) and
Mainichi News Paper 1991-1995 (CD-Mainichi
Shimbun 91-95) in Japanese (about 216M
characters and 436k articles), using the algorithm
in the previous section. In English, we tokenized
the text into words, delimited by white .space,
whereas in Japanese we tokenized the text into
characters (usually 2-bytes) because Japanese text
has no word delimiter such as white space.

It took a few hours to compute all RIDF's
using the suffix array. It takes much longer to
compute the suffix array than to compute tfand df.
We ignored substrings with t f< 10 to avoid noise,
resulting in about 1.6M English phrases (#classes
= 1.4M) and about 15M substrings of Japanese
words/phrases (#classes = 10M).

MI of the longest substring of each class was
also computed by the following formula.

, p(xyz)
MI(xyz) = xog p(xy)p(z I y)

Where xyz is a phrase or string, x and Z are a
word or a character and y is a sub-phrase or sub-
string.

3.2 Little correlation between RIDF and MI

We are interested in comparing and contrasting
RIDF and MI. Figure 10 (a) plots RIDF vs MI for
phrases in WSJ (length > 1), showing little, if any,
correlation between RIDF and MI. Figure 10 (b)
also plots RIDF vs MI but this time the corpus is in
Japanese and the words were manually selected by
the newspaper to be keywords. Both Figures I0
(a) and 10 (b) suggest that RIDF and MI are

34

largely independent. There are many substrings
with a large RIDF value and a small MI, and vice
v e r s a .

MI is very different from RIDF. Both pick
out interesting phrases, but phrases with large MI
are interesting in different ways from phrases with
large RIDF. Consider the phrases in Table 1,
which all contain the word "having." These
phrases have large MI values and small RIDF
values. A lexicographer such as Patrick Hanks,
who works on dictionaries for learners, might be
interested in these phrases because these kinds of
collocations tend to be difficult for non-native
speakers of the language. On the other hand, these
kinds of collocations are not very good keywords.

Table 2 is a random sample of phrases
containing the substring/Mr/, sorted by RIDF. The
ones at the top of the list tend to be better
keywords than the ones further down.

Table 3.A and 3.B show a few phrases
starting with/the/, sorted by MI (Table 3.A) and
sorted by RIDF (Table 3.B). Most of the phrases
are interesting in one way or another, but those at
the top of Table 3.A tend to be somewhat

. + + •

!$ • o •+ . • : .'.~- : .-
• ,

. : '~Mi~-.t ' . . . •
, . ~ l l t ~ . ~ z : L = :

o MI lo 20
(a) English phrases

o"l~

-lo o MI lo

(b) Japanese strings
Figure 10: Scatter plot of RIDF and MI

i,-Table5
20

Table 1: phrases with 'having'
ff df RIDF MI Phrase

18 18 -0.0001 10.4564 admits to having
14 14 -0.0001 9.7154 admit to having
25 23 0.1201 8.8551 diagnosed as having
20 20 -0.0001 7.4444 suspected of having

301 293 0.0369 7.2870 without having
15 13 0.2064 6.9419 denies having
59 59 -0.0004 6.7612 avoid having
18 18 -0.0001 5.9760 without ever having
12 12 -0.0001 5.9157 Besides having
26 26 -0.0002 5.7678 denied having

Table 2: phrases with 'Mr'
tf df RIDF MT Phrase

ii 3 1.8744 0.6486 . Mr. Hinz
18 5 1.8479 6.5583 Mr. Bradbury
51 16 1.6721 6.6880 Mr. Roemer
67 25 1.4218 6.7856 Mr. Melamed
54 27 0.9997 5.7704 Mr. Burnett
16 9 0.8300 5.8364 Mrs. Brown
Ii 8 0.4594 1.0931 Mr. Eiszner said
53 40 0.4057 0.2855 Mr. Johnson .
21 16 0.3922 0.1997 Mr. Nichols said .
13 i0 0.3784 0.4197 . Mr. Shulman
176 138 0.3498 0.4580 Mr. Bush has
13 ii 0.2409 1.5295 to Mr. Trump's
13 Ii 0.2409 -0.9301 Mr. Bowman ,
35 32 0.1291 1.1673 wrote Mr.
12 ii 0.1255 1.7330 M r. Lee to
22 21 0.0670 1.4293 facing Mr.
ii ii -0.0001 0.7004 Mr. Poehl also
13 13 -0.0001 1.4061 inadequate . " Mr.
16 16 -0.0001 1.5771 The 41-year-old Mr.
19 19 -0.0001 0.4738 14 . Mr.
26 26 -0.0002 0.0126 in November . Mr.
27 27 -0.0002 -0.0112 " For his part , Mr.
38 38 -0.0002 1.3589 . AMR ,
39 39 -0.0002 -0.3260 for instance , Mr.

tf df

Table 3.A: Worse Keywords
RIDF MI Phrase

ii ii -0.0001 11.0968 the up side
73 66 0.1450 9.3222 the will of
16 16 -0.0001 8.5967 the sell side
17 16 0.0874 8.5250 the Stock Exchange of
16 15 0.0930 8.4617 the buy side
20 20 -0.0001 8.4322 the down side
55 54 0.0261 8.3287 the will to
14 14 -0.0001 8.1208 the saying goes
15 15 -0.0001 7.5643 the going gets

tf df

Table 3.B: Better Keywords
RIDF MI Phrase

37 3 3.6243 2.2561 the joint commission
66 8 3.0440 3.5640 the SSC
55 7 2.9737 2.0317 the Delaware &
37 5 2.8873 3.6492 the NHS
22 3 2.8743 3.3670 the kibbutz
22 3 2.8743 4.1142 the NSA's
29 4 2.8578 4.1502 the DeBartolos
36 5 2.8478 2.3061 the Basic Law
21 3 2.8072 2.2983 the national output

Table 3.C: Concordance of the phrase "the Basic Law"
The first col. is the token id and the last col. is the doc id (position of the start word in the corpus)

2229521: line in the drafting of
2229902: s policy as expressed in
9746758: he U.S. Constitution and

11824764: any changes must follow
33007637: sts a tentative draft of
33007720: the relationship between
33007729: onstitution . Originally
33007945: wer of interpretation of
33007975: tation of a provision of
33008031: interpret provisions of
33008045: ration of a provision of
33008115: etation of an article of
33008205: nland representatives of
33008398: e : Mainland drafters of
33008488: pret all the articles of
33008506: y and power to interpret
33008521: pret those provisions of
33008545: r the tentative draft of
33008690: d of being guaranteed by
33008712: uncilor , is a member of
39020313: sts a tentative draft of
39020396: the relationship between
39020405:
39020621:
39020651:
39020707:
39020721:
39020791:
39020881:
39021074:
39021164:
39021182:
39021197:
39021221:
39021366:
39021388:

onstitution . Originally
wet of interpretation of
tation of a provision of
interpret provisions of

tation of a provision of
etation of an article of
nland representatives of
e : Mainland drafters of
pret all the articles of
y and power to interpret
pret those provisions of
r the tentative draft of
d of being guaranteed by
uncilor , is a member of

the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic
the Basic

Law that will determine how Hon 2228648
Law -- as Gov. Wilson's debut s 2228648
Law of the Federal Republic of 9746014
Law , Hong Kong's miniconstitut 11824269
Law , and although this may be 33007425
Law and the Chinese Constitutio 33007425
Law was to deal with this topic 33007425
Law shall be vested in the NPC 33007425
Law , the courts of the HKSAR { 33007425
Law . If a case involves the in 33007425
Law concerning defense , foreig 33007425
Law regarding " defense , forei 33007425
Law Drafting Committee fear tha 33007425
Law simply do not appreciate th 33007425
Law . While recognizing that th 33007425
Law , it should irrevocably del 33007425
Law within the scope of Hong Ko 33007425
Law , I cannot help but conclud 33007425
Law , are being redefined out o 33007425
Law Drafting Committee . <EOA> 33007425
Law , and although this may be 39020101
Law and the Chinese Constitutio 39020101
Law was to deal with this topic 39020101
Law shall be vested in the NPC 39020101
Law , the courts of the HKSAR { 39020101
Law . If a case involves the in 39020101
Law concerning defense , foreig 39020101
Law regarding " defense , forei 39020101
Law Drafting Committee fear tha 39020101
Law simply do not appreciate th 39020101
Law . While recognizing that th 39020101
Law , it should irrevocably del 39020101
Law within the scope of Hong Ko 39020101
Law , I cannot help but conclud 39020101
Law , are being redefined out o 39020101
Law Drafting Committee . <EOA> 39020101

35

tf d f RIDF MI

Table 4: Phrases with prepositions

Phrase with ' for' t f df RIDF
14 14
15 15
12 12
i0 5
12 4
13 13
23 21
I0 2
i0 9
19 16

-0.0001 14.5587
-0.0001 14.4294
-0.0001 14.1123
0.9999 13.7514
1.5849 13.7514

-0.0001 13.6803
0.1311 13.6676
2,3219 13.4009
0.1519 13.3591
0.2478 12.9440

t f d f RIDF MI

feedlots for fattening ii 5 1.1374
error for subgroups II i0 0.1374
Voice for Food 13 12 0.1154
Quest for Value 16 16 -0.0001
Friends for Education 12 12 -0.0001
Commissioner for Refugee~ 12 12 -0.0001
meteorologist for Weathe] 22 18 0.2894
Just for Men ii ii -0.0001
Witness for Peace 17 12 0.5024
priced for reoffering 22 20 0.1374

Phrase with'by' t f d f RIDF

Ii ii
13 13
13 13
15 15
16 16
61 59
17 17
12 12
ii ii
20 20

-0,0001 12.8665
-0.0001 12.5731
-0,0001 12.4577
-0,0001 12.4349
-0.0001 11.8276
0,0477 11.5281

-0,0001 11.4577
-0.0001 11.3059
-0.0001 10.8176
-0.0001 10.6641

piece by piece ii i0 0.1374
guilt by association 12 5 1.2630
step by step 16 16 -0.0001
bit by bit 14 13 0.1068
engineer by training 10 9 0.1519
side by side ii II -0.0001
each by Korea's i0 9 0.1519
hermaed in by I0 8 0.3219
dictated by formula 12 12 -0.0001
70%-owned by Exxon 16 4 1.9999

Table 5: Examples of keywords
with interesting RIDF and MI

R I D F MI Substrings Features

~E(native last name)
SUN (company name)

High Low z,J-~'(foreign name)
10% 10% ~Z~ b(brush)

V 7 7 - - (sofa)

~ <]'fl,~ (huge)

Low High '~l~J (passive)
I,~ 19 (determination)

1 0 % 1 0 % /~ j J (na t ive full name)
~ii~l~'(native full name)

Kanji character
English character
Katakana character
Hiragana character
Loan word, Katakana

General vocabulary
General vocab., Kanji
General vocabulary
Kanji character
Kanji character

idiomatic (in the WSJ domain) whereas those at
the top of Table 3.B tend to pick out specific
stories or events in the news. For example, the
phrase, "the Basic Law," selects for stories about
the British handover of Hong Kong to China, as
illustrated in Table 3.C.

Table 4 shows a number of phrases with
high M! containing common prepositions. The
high MI indicates an interesting association, but
again most of them are not good keywords, though
there are a few exceptions such as "Just for Men,"
a well-known brand name.

RIDF and MI for Japanese substrings tend to
be similar. Substrings with both high RIDF and MI
tend to be good keywords such as ~ (merger),

(stock certificate), ~ , ~ (dictionary), J~l~ (wireless)

36

MI Phrase with 'on '

14.3393 Terrorist on Trial
13.1068 War on Poverty
12.6849 Institute on Drug
12.5599 dead on arrival
11.5885 from on high
11.5694 knocking on doors
11.3317 warnings on cigarette
11.2137 Subcon~ittee on Oversight
11.1847 Group on Health
11.1421 free on bail

MI Phrase with ' o f

16.7880 Joan of Arc
16.2177 Ports of Call
16.0725 Articles of Confederation
16.0604 writ of mandamus
15.8551 Oil of Olay
15.8365 shortness of breath
15.6210 Archbishop of Canterbur
15.3454 Secret of My
15.2030 Lukman of Nigeria
15.1600 Days of Rage

and so on. Substrings with both low RIDF and MI
tend to be poor keywords such as "~" ~ q ~
(current regular-season game) and meaningless
fragments such as *& ,_.~" (??). Table 5 shows
examples where MI and RIDF point in opposite
directions (rectangles in Figure 10 (b)). Words
with low RIDF and high MI tend to be general
vocabulary (often written in Kanji characters). In
contrast, words with high RIDF and low MI tend

• to be domain specific words such as loan words
(often written in Katakana characters). MI is high
for words in general vocabulary (words found in
dictionary) and RIDF is high for good keywords
for IR.

3.3 W o r d extract ion

Sproat and Shih (1990) found MI to be useful for
word extraction in Chinese. We performed the
following experiment to see if both MI and RIDF
are useful for word extraction in Japanese.

We extracted four random samples of 100
substrings each. The four samples cover all four
combinations of high and low RIDF and high and
low MI, where high is defined to be in the top
decile and low is defined to be in the bottom
decile. Then we manually scored each sample
substring using our own judgment as a good (the
substring is a word) or bad the substring is not a
word) or gray (the judge is not sure). The results
are presented in Table 6, which shows that

Table 6: RIDF and MI are complementary

I M I M I
All MI ! (high 10%) (low 10%)

All RIDF --- 20-44% 2-11%

RIDF
(high 10%) 29-51% 38-55% 11-35%

RIDF
(low 10%) 3-18% 4-13% 0-8%

Each cell is computed over a sample of 100
examples. The smaller values are counts of 'good'
words and the larger values, 'not bad' words ('good'
and 'gray' words). Good or 'not bad' word ratio of
pairs of characters with high MI is 51-76%.

substrings with high scores in both dimensions are
more likely to be words than substrings that score
high in just one dimension. Conversely, substrings
with low scores in both dimensions are very
unlikely to be words.

3.4 Case study: N a m e s

We also compared RIDF and MI for people's
names. We made a list of people's names from
corpora using simple heuristics. A phrase or
substring is accepted as a person's name if English
phrase starts with the title 'Mr.' 'Ms.' or 'Dr.' and is
followed by a series of capitalized words. For
Japanese, we selected phrases in the keyword list
ending with 'L~:' (-shi), which is roughly the
equivalent of the English titles 'Mr.' and 'Ms.'

Figure 11 plots RIDF and MI for names in
English (a) and Japanese (b) with t f _> 10,
respectively• Figure 11 (a) shows that MI has a
more limited range than RIDF, suggesting that
RIDF may be more effective with names than MI.
The English name 'Mr. From' is a particularly

L

° % •

- , . : .
r" l r r . qp ° ° °

• "'" "?:",: i ' : ."" 1
"" " " " .1 5 • : . ' ~ ~ , :

I
1

: " "" "" ~ . - ~ 1 ~ , . ' ~ ' : . I

0 4 MI 8 12 -8 -4 MI4 8 12

(a) English names (b) Japanese names
Figure 11: MI and RIDF of people's names

37

interesting case, since both 'Mr.' and 'From' is a
stop word. In this case, the RIDF was large and the
MI was not.

The Japanese names in Figure 11 (b) split
naturally at RIDF = 0.5. Japanese names with
RIDF below 0.5 are different from names after 0.5.
The group whose RIDF is under 0.5 included first
name and full name (first and last name) at rate of
90% and another group whose RIDF is up to 0.5
included only lastname at rate of 90%. The reason
of this separation is that full name (and first name
as a substring of full name) appears once in the
beginning of the document, but last name is
repeated as a reference in the article. Recall that
RIDF tends to give higher value to substrings
which appear many times in a few documents. In
summary, RIDF can discriminate difference of
some words which cannot be done by MI.

5 Conc lus ion

We showed that RIDF is efficiently and naturally
scalable to long phrases or substrings. RIDF for all
substrings in a corpus can be computed using the
algorithm which computes t f s and d f s for all
substrings based on Suffix Array. It remains an
open question how to do this for MI. We found
that RIDF is useful for finding good keywords,
word extraction and so on. The combination of MI
and RIDF is better than either by itself. R IDF is
like MI, but different•

References

Church, K. and P. Hanks (1990)Word association
norms, mutual information, and lexicography•
Computational Linguistics, 16:1, pp. 22 - 29.

Church, K. and W. Gale (1995) Poisson mixtures.
Natural Language Engineering, 1:2, pp. 163 - 190.

Manber, U. and G. Myers (1993) Suffix array: A new
method for on-line string searches. SIAM Journal
o n Computing, 22:5, pp. 935 - 948.
http://glimpse.cs.arizona, edu/udi.html

Nagao, M. and S. Mori (1994) A new method of n-gram
statistics for large number of n and automatic
extraction of words and phrases from large text data
of Japanese, Coling-94, pp.611-615.

Sproat, R and C. Shih (1990) A statistical method for
finding word boundaries in Chinese text. Computer
Processing of Chinese and Oriental Languages,
Vol.4, pp. 336 - 351.

