
A Computational Morphology System for Arabic
Riyad AI-Shalabi

Martha Evens
Department of Computer Science and Applied Mathematics

Illinois Institute of Technology
10 West 31st Street
Chicago, IL 60616

alshriy@minna.cns.iit.edu, mwe@math.nwu.edu
312-567-5153

Abstract
This paper describes a new algorithm for
morphological analysis of Arabic words,
which has been tested on a corpus of 242
abstracts from the Saudi Arabian National
Computer Conference. It runs an order of
magnitude faster than other algorithms in the
literature.

1. Introduction

This paper describes a computer system for
Arabic morphology that employs a new,
faster algorithm to find roots and patterns for
verb forms and for nouns and adjectives
derived from verbs. The program has been
tested on a corpus of 242 abstracts from the
Saudi Arabian National Conferences and we
are in the process of extending the list of
roots to handle a newspaper corpus as well.

To represent the Arabic character set, we
used the Nafitha software developed by 01
system, Manama, Bahrain (Nafitha 1988).

The morphology system was written with
the goal of supporting natural language
processing programs such as parsers and
information retrieval systems. It is
coordinated with a large Arabic lexicon
(A1Samara, 1996). It can, however, be used
to display whole paradigms for Arabic verbs.
It can also display a single form, if the user
chooses to specify not just the root but the
mood, gender, number, and person. It can
also analyze any verb form given to it. In

addition to 1,116 roots for regular verbs, the
system stores forms for the thirty-nine most
common irregular verbs. The Arabic word
for morphology is "t(a)Sryf' based on the
root "Srf', which has a basic idea of
changing direction, averting, and flowing
freely. "t(a)Sryf" is the total range of
morphological patterns used with a given
root (Owens, 1988). Here the "S" in the

word "T(a)Sryf" stands for the letter"o,,"

since there is no corresponding letter in
English for this letter.

We became involved in problems of
morphology because we need to find stems
and roots for purposes of information
retrieval (A1-Kharashi and Evens, 1994;
Abu-Salem, 1992; Hmeidi, 1995) and parsing
(Abu-Arafah, 1995). The morphology system
is coordinated with a large lexicon for Arabic
(Hammouri, 1994; A1Samara, 1996).
The organization of this paper is very
straightforward. The next section contains an
overview of other approaches to
computational morphology. Then we
describe our approach to Arabic morphology
and its extension to four and five letter roots
as well as the three letter roots that are much
more common. Finally, we show examples
of the output that the program produces
when it is used interactively and conclude
with plans for future research.

66

2. Rev iew of S o m e O t h e r
Morphology Sys tems , Systematic
attempts at computational morphology in the
West were successful enough by 1992 to
lead to the almost simultaneous publication
of two major books, Sproat (1992) and
Ritchie et al. (1992). At about the same time
the PC-Kimmo program became widely
available (Antworth, 1992). It had been
obvious from the very beginning of Arabic
language processing that morphology
systems were an absolute necessity, because
of the extremely complex morphology that
Arabic shares with other Semitic languages.
Hegazi and EISharkawi (1986) designed a
system to detect the root of any Arabic word
along with morphological patterns and word
categories. Their system has also been used
for detection and correction &mistakes in
spelling and vowelization.

Saliba and Ai-Dannan (1989) developed
a Comprehensive Arabic Morphological
Analysis and Generation System at the IBM
Scientific Center in Kuwait. Their analyzer
examines the input word for different word
types and attempts to find all possible
analyses. In the analysis process the longest
valid prefix and suffix are stripped from the
word and the remaining part of the word,
which is called the stem, is used to identify a
valid Arabic word. If the stem is accepted as
a content word (noun or verb)then further
analysis processes will be carried out.

EI-Sadany and Hashish (1989)
developed an Arabic morphological system
also designed to carry out both analysis and
generation, capable of dealing with
vowelized, semivowelized, and
nonvowelized Arabic words. This system
was developed at the IBM Cairo Scientific
Center. The system has the ability to
vowelize nonvowelized words. The system
was implemented in Prolog on the IBM PS/2
Model 60.

A1-Fedaghi and A1-Anzi (1989) present
an algorithm to generate the root and the
pattern of a given Arabic word. The main
concept in the algorithm is to locate the
position of the three letters of a possible
triliteral root in the pattern and check to see
whether the candidate trigram appears in a
list of known roots.

When we began to work on the
morphology problem ourselves, our first
reaction was to start with PC-Kimmo, which
we had used in some experiments with much
simpler problems in English morphology. But
when we communicated with Evan Antworth
of the Summer Institute of Linguistics, he
discouraged us:
"The basic two level mechanism as it is
implemented in PC-KIMMO can't easily
handle (if at all) the distinctive semitic
patterns of consonantal root and intercalated
vowels".

When we received this message we
abandoned our plans to use PC KIMMO and
resolved to first extend the E1-Anzi and A1-
Fedaghi Algorithm to handle quadriliteral
roots and then to look for ways to improve
on it.

3. Algorithm to Find
Quadriliteral Roots . The first author
designed and implemented an algorithm to
find quadriliteral roots and their patterns.
This algorithm follows the same strategy as
the algorithm of Al-Fedaghi and A1-Anzi
(1989).

Quadriliteral roots are usually formed as
extensions oftriliteral roots by reduplicating
the final consonant. Thus, the standard
triliteral pattern "t91" becomes the
quadriliteral pattern "t911." Here 9 stands for
the letter "ayn" since there is no
corresponding letter in English for this letter.
The other forms of quadriliteral verbs are
then obtained by adding affixes to the root.

The first step of the algorithm for
quadriliteral roots is to search the input form

67

for a correct pattern. We take a candidate
pattern and look for the four letters in the
input word (corresponding to f, 9, 1, and 1). If
the letters are found we label their positions,
posl, pos2, pos3, and pos4. Otherwise, we
choose the next candidate pattern and try
again. Once we have a match in all four
positions we go to the second step.

The second step is to extract the root
from the input word in the positions posl,
pos2, pos3, and pos4.

4. New Approach to Finding the
Root and the Pa t t e r n . The algorithm for
quadriliteral roots shown in Figure 1 is an
extension of the triliteral algorithm of AI-
Fedaghi and AI-Anzi (1989). Once wehad
implemented i t successfully, we were
concerned that it was somewhat slow, so we
searched for a new approach that would give
us the same result. This new approach was
then implemented for both triliteral and
quadriliteral roots.

We describe how our approach works for
triliteral roots. The first step is to remove the
longest possible prefix. Then we look at the
remainder. The three letters of the root must
lie somewhere in the first four or five
characters of the remainder. What is more,
the first letter of the remainder is the first
letter of the root since we have removed the
longest possible prefix.

We check all possible trigrams within the
first five letters of the remainder. That is, we
check the following six possible trigrams:

• first, second, and third letters
first, second, and fourth
first, second, and fiRh
first, third, and fourth
first, third, and fifth
first, fourth, and fiRh

In order to test the algorithm, we
prepared two files: a file of roots and a file of
prefixes. The program outputs the root and

the pattern for each word in each &the 242
abstracts. Our colleagues in the Arabic
Language Processing Laboratory checked all
the results for correctness.

In the abstracts there are 19,167
running words, 16,775 with triliteral roots,
and 1,124 with quadriliteral roots, none with
quintiliteral roots. The program handles all
these correctly. The other 1,268 words are
nouns not derived from verbal roots (solid
nouns) or borrowings from foreign
languages.

The algorithm requires less space and
much less time than the AI-Fedaghi and AI-
Anzi algorithm. The average time to search
for the roots for all words in an abstract is
2.2 seconds and the average time to search
for roots with the A1-Fedaghi and Al-Anzi
algorithm is 17.2 seconds. The average
length of an abstract is 35 words.

5. The Morphology System. The main
system menu contains the following options.
First, get the various paradigms of the word.
This is most often needed by human users
and perhaps tutoring programs. Second, get
a specific form aRer passing in a word and
mood, person, number, and gender. This is
most often needed by text generation
systems. Third, analyze the input word to
get back the part of speech, person,
number, and gender. This is most oRen
needed by a parser. First, get the root of
the input word. This is most often needed
by information retrieval systems. The main
menu of the system is shown in Figure 2.
From the main menu the user can select one
of the four options. In case the user selects
the first option, he/she will get all the
information about the input word as seen in
Figure 3. When the user selects the second
option, the menus in Figures 4, 5, 6, and 7
appear in sequence to select the appropriate
codes. Examples &the output in these cases
is shown below.

68

begin
get word
for all patterns that have the same length as the input word
do begin

let pat = pattern
locate the positions of the letters f, 9, 1, and I in pat
let posl, pos2, pos3, and pos4 be the positions respectively

replace the letters in the given word at the positions
posl, pos2, pos3, and pos4 with the letters f, 9, 1 and 1 respectively

let new-word be the word formed in the previous step
if (new-word == pat)

then exit the loop

end;

end;
let root = word[pos 1]+word[pos2]+word[pos3]+word[pos4]
return root and the pattern pat

Figure 1. Algorithm to find quadriliteral roots

W E L C O M E TO T H E M O R P H O L O G Y
M A I N M E N U

[1] GetParadigm (display all information)
[2] GetForm (get specific tense form)
[3] Analyze (get mood/person/number/gender)
[4] GetRoot

S Y S T E M

Figure 2. System Main Menu

Given the word ¢.~ aider passing the mood = imperfect, number = plural, gender = masculine,

and person = 3rd person

the form is ~ ,..ak.

When the user selects the third option he/she will get the following output:

the input word ~..xk.

(~.~ verb 3rd sing mast)

When the user selects option four he/she will get the following output:

the input word ~.-~.

the root of~.ak, is ~.~

69

word

root

pattern

stem

Present

0 b_l_-_..

a:-J.:

O J; -

ot, ja .

,:.;,/.ca..

Past

b-u,

The Paradigm in the Third Person

Gender Pronoun

(mas)

(mas) t~

(mas)

(fem) ,,~

(fern)
(fern)

The Paradigm in the Second Person

Imperative Present Past Gender
~t~l ~ ~ (mas)

t . ~ ot-~-_: ~ (mas)

bA~l o~a.s r : ~ (mas)

~.d~l c-.J:s ~ (fern)

t~ l ? t ~ b_,-J- (fern)

~.t~l ~___. _l.: ~ (fem)

Past Present

The Paradigm in the First Person

Gender Pronoun
(mas) t;~

(mas)

Pronoun
¢..~1

Figure 3. The Complete Analysis of the Word "m(a)91wmat"

70

[1] For Perfect
[2] For Imperfect
[3] For Imperative

Enter the mood Code

Figure 4. Mood Code Menu

Enter the Gender Code
If the mood is imperative enter [1]
[1] For Masculine
[2] For Feminine

Figure 5. Gender Code Menu

Enter the Person Code
If the mood is imperative enter [2]
[1] For 1 st Person
[2] For 2nd Person
[3] For 3rd Person

Figure 6. Person Code Menu

Enter the Number Code
If the mood is imperative enter [1] or [3]

[1] For Singular
[2] For Dual
[3] For Plural

Figure 7. Number Code Menu

6. Conclus ion. Morphological analysis is
the first step of most natural language
processing applications. We have developed
a new algorithm that runs an order of
magnitude faster than other algorithms in the
literature. We plan to make efforts to extend
our system to generate adjectives and
generate different types of derived nouns.

The area of vowelization deserves further
research. It is very important in resolving
ambiguity in the meaning of the words and
the correct pronunciation of the words.
Vowelizing Arabic text is the process of
placing the short vowels above and below
Arabic consonants. Our concentration in this
project has been on the analysis of non-
vowelized text. The next step is to
investigate more about this area, in order to

build a morphological system that can
analyze the vowelized text.

References

Abu-Arafah, A. 1995. A Grammar for the
Arabic Language Suitable for Machine
Parsing and Automatic Text Generation.
Ph.D. Dissertation, Computer Science
Department, Illinois Institute of
Technology, Chicago, IL.
Abu-Salem, H. 1992. A Microcomputer

Based Arabic Bibliographic Information
Retrieval System with Relational Thesauri
(Arabic ~) . h. D i ssertatioa,
Computer Science Department, Illinois
Institute of Technology, Chicago, IL.

71

Al-Fedaghi, S. S., and A1-Anzi, F. S. 1989.
A New Algorithm to Generate Arabic
Root-Pattern Forms, Proceedings of the
1 lth National Computer Conference and
Exhibition, March, Dharan, Saudi Arabia,
391-400.
AI-Kharashi, I., and Evens, M. 1994.
Comparing Words, Stems, and Roots as
Index Terms in an Arabic Information
Retrieval System. Journal of the American
Society for Information Science. Vol.45,
No.8, September 1994, 548-560.
AISamara, K. 1996. An Arabic Lexicon to
Support Information Retrieval, Parsing and
text Generation. Ph .D. Dissertation,
Computer Science Department, Illinois
Institute of Technology, Chicago, IL.
Antworth, E., 1992. Glossing Text with the

PC-KIMMO Morphological Parser.
Computers and the Humanities. Vol-26.
Nos. 5-6, December 1992, 389-398.

EI-Sadany, T. A., and Hashish, M. A. 1989.
An Arabic Morphological System. IBM
Systems Journal. Vol.28, No.4, 600-612.
Hammouri, A. 1994. An Arabic Lexicon

Database to Support Natural Language
Processing. Ph.D. Dissertation, Computer
Science Department, Illinois Institute of
Technology.Chicago, IL.
Hegazi, N., and EISharkawi, A. A. 1986.
Natural Arabic Language Processing,
Proceedings of the 9th National
Computer Conference and Exhibition,
Riyadh, Saudi Arabia, 1-17.
Hmeidi, I. I. 1995. Design and
Implementation of Automatic
Word and Phrase Indexing for Information
Retrieval with Arabic Documents. Ph.D.
Dissertation, Computer Science Department,
Illinois Institute of Technology, Chicago, IL.

Nafitha 1988. User's Guide and Advanced
Programmers Reference, release 3.0,
Manama, Bahrain: 01 system.

Owens, J. 1988. An Introduction to
Medieval Arabic Gramatical Theory. The
Foundations of Grammar. John Benjamins,
Amsterdam.
Ritchie, G., Black, A., Russell, G., and
Pulman, S. 1992. Computational
Morphology. MIT Press, Cambridge, MA.

Saliba, B., and Al-Dannan, A. 1989.
Automatic Morphological Analysis of
Arabic: A Study of Content Word Analysis.
Proceedings of the First Kuwait Computer
Conference, Kuwait, March, 3-5.
Sproat, R. 1992. Morphology and

Computation. MIT press, Cam- bridge, MA.

72

