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A b s t r a c t  

Finite-state morphology has been successful 
in the description and computational imple- 
mentation of a wide variety of natural lan- 
guages. However, the particular challenges of 
Arabic, and the limitations of some implementa- 
tions of finite-state morphology, have led many 
researchers to believe that finite-state power 
was not sufficient to handle Arabic and other 
Semitic morphology. This paper illustrates how 
the morphotactics and the variation rules of 
Arabic have been described using only finite- 
state operations and how this approach has 
been implemented in a significant morpholog- 
ical analyzer/generator. 

1 I n t r o d u c t i o n  
In Arabic, as in other natural languages, the 
two challenges of morphological analysis are the 
description of 1) the morphotactics and 2) the 
variation rules. Morphotactics is the study of 
how morphemes combine together to make well- 
formed words. Variations are the discrepan- 
cies between the underlying or morphophone- 
mic strings and their surface realization, which 
are either phonological or orthographical strings 
depending on the purpose of the grammar. 

The key insight and claim of the finite-state 
approach to morphology (Karttunen, 1991; 
Karttunen et al., 1992; Karttunen, 1994)is 
that both morphotactics and variation gram- 
mars can be written as regular expressions, 
which are compiled and implemented on com- 
puters as finite-state automata. Such grammars 
are interesting theoretically because they are 
highly constrained; and in practical computa- 
tional linguistics for natural languages, finite- 
state automata are fast, usually compact in 
size, bidirectional, combinable using all valid 
finite-state operations, and consultable using 

language-independent lookup code. 
Finite-state approaches to morphology, in- 

cluding the readily available implementation 
known as Two-Level Morphology (Koskenniemi, 
1983; Antworth, 1990), have been shown to 
work in significant projects for French, English, 
Spanish, Portuguese, Italian, Finnish, Turkish 
and a wide variety of other natural languages. 
But despite the high attractiveness of finite- 
state computing, many investigators have con- 
cluded that finite-state techniques are not ad- 
equate for describing Semitic root-and-pattern 
morphology. This paper will present the case 
that fully implemented finite-state morphology 
can be and has been used successfully for Ara- 
bic. 

2 R e g u l a r  E x p r e s s i o n s  

When writing a finite-state morphological 
grammar, linguists state morphotactic and vari- 
ation rules in the metalanguage of regular ex- 
pressions or in higher-level languages that are 
convenient shorthand notations for complex 
regular expressions. 

2.1 Regular  Expressions,  Regular  
Relat ions,  and  Fin l te -Sta te  
Transducers  

A regular expression that contains an alphabet 
of one-level symbols defines a regular language 
and compiles into a finite-state machine (FSM) 
that accepts this regular language. A regular 
expression that contains an alphabet of paired 
symbols defines a regular relation (a relation 
between two regular languages) and compiles 
into a finite-state transducer (FST) that maps 
from every string of one language into strings 
of the other. H the necessary finite-state algo- 
rithms and compilers are available, components 
of the grammar, including various sublexicons 
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and rules, can be compiled into separate trans- 
ducers and then combined together using any 
operations that are mathematically valid. 

The Xerox implementation of finite-state 
morphology includes a complete range of fun- 
damental algorithms (concatenation, union, in- 
tersection, complementation, etc.) plus higher- 
level shorthand languages such as lexc (Kart- 
tunen, 1993), twolc (Karttunen and Beesley, 
1992) and Replace Rules (Karttunen, 1995; 
Karttunen and Kempe, 1995; Karttunen, 1996). 

2.2 F in i te -S ta te  Opera t ions  
When defining morphotactics or variations via 
regular expressions, the linguist has access to all 
the operations that are mathematically valid on 
regular languages and relations. The following 
is a brief outline of regular expressions in the 
Xerox notation: 

For each symbol s, the regular expression s 
denotes a regular language consisting of the sin- 
gle string "s". If A and B are regular languages, 
then the regular expressions in Figure 1 also de- 
note regular languages. The cross-product of A 
and B, denoted A .x. B, relates each string in 
A, the upper language, to every string of B, the 
lower language, and vice versa. A .x. B thus 
denotes a regular relation. Where u and 1 are 
symbols, u:l is a notation equivalent to u .x. 1. 
For formal reasons, relations are not quite as 
manipulable as simple languages; in particular, 
relations are closed under concatenation, union, 
and iteration, but not under intersection, sub- 
traction or complementation. 

Relations are closed under composition, a 
somewhat more difficult operation to concep- 
tualize. Let A, B and C denote regular lan- 
guages; let X denote a regular relation between 
an upper-side language A and a lower-side lan- 
guage B; and let Y denote a regular relation 
between the upper-side language B and a lower- 
side language C. Then the composition of Y 
under X, denoted X .o. Y, denotes a regular 
relation Z that maps directly between languages 
A and C; the intermediate language B disap- 
pears in the process of composition. 

In defining natural-language morphotactics, 
union and concatenation are the basic oper- 
ations required. Variation rules and long- 
distance-dependency filters are applied using 
composition. And we shall illustrate below how 
Arabic root-and-pattern interdigitation can be 

performed via intersection and composition. 

3 R e g u l a r - E x p r e s s i o n  G r a m m a r s  

3.1 Conca tena t ive  Morphotac t i cs  

Individual morphemes of natural language typ- 
ically consist of one or more symbols, simply 
concatenated together. Thus the English mor- 
phemes s, ed and ing represent the concatena- 
tions [s], [e d] and [i n g] respectively. Where 
0 represents e (the zero-length string), the set 
of regular verb suffixes of English can be repre- 
sented as the union [Is] I [ e  d] [ [i n g] I 0]. 
The set of verb stems taking these endings in- 
cludes wreck, walk, and talk, which can also be 
formalized using concatenation and union: [[w 
r e c k] I [w a 1 k] ] It a 1 k]]. The union 
of endings can then be concatenated on the end 
of the union of verb stems to form a larger ex- 
pression that denotes a language that looks like 
a subset of English verbs: [[w r e e k] I [w a 1 
k] l  [t a l k]] [[s]l [e d] I[i  n g ] l  0]. 

If the linguist defines the symbols + V e r b ,  
+ 3 P S  (for "third personal singular"), + P a s t ,  
+ P r P a r t  (for "present participle") and 
+Bare ,  the following expression denotes 
the relation that maps lower-side (surface) 
string like "talks" to the upper-side string 
"talk+Verb+3PS", and vice-versa. The pre- 
ceding plus signs of these "tag" symbols are 
included simply to improve the human read- 
ability of the resulting strings; because the plus 
sign is normally a special Kleene Plus symbol 
in regular expressions, it is literalized in the 
examples below with a preceding percent sign. 

[[w:w r:r  e:e c:c k:k] I [w:w a:a hi k:k] 
I [t:t a:a hl k:k]] %+Verb:O [[%+3PS:s] I 
[%+Pas t : e  O:d] I [ ~ + P r P a r t : i  O:n O:g] I 
%+Bare:O] 
By convention in Xerox regular expressions de- 
noting relations, the relation s:s can be written 
simply as s, as in the following: 

[[w r e c k] I [w a I k] I It a 1 k]] 
• % + V e r b : 0  [[%+3PS:s] I [%+Pas t : e  0:d] l  
[ % + P r P a r t : i  0:n 0:g] 1%+Bare :0 ]  

The English-verb fragment shown here was 
carefully chosen to be simple. However, there 
are three classes of phenomena for which union 
and concatenation, by themselves, are general])' 
inadequate or at least very inconvenient for de- 
scribing all and only the strings that appear in 
a natural language: 
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0 
[A] 
AB 
A ] B 
A&B 
(A) 
A* 
A+ 
A/B 
? 

A-B 
\B 

"B 

the zero-length string (often called E) 
bracketing; denotes the same language as A 
the concatenation of B after A 
the union of A and B 
the intersection of A and B 
optionality, equivalent to [ A I 0 ] 
Kleene star iteration, zero or more concatenations of A 
equivalent to [ A A* ]) i.e. one or more concatenations of A 
the regular language A, ignoring any instances of B 
any symbol, i.e. the union of all single-symbol strings 
language A, minus all strings in language B 
equivalent to [? - B], the union of all single-symbol 

strings minus the strings in B 
equivalent to [?* - B], the complement of B 

Figure h Some Finite-State Notations 

. 

. 

. 

Discontiguous dependencies between mor- 
phemes in a word, 

Non-concatenative morphotact ic  processes 
such as reduplication and Semitic interdig- 
itation, and 

Variations, typically assimilations, dele- 
tions and epentheses, that  map between the 
abstract  morphophonemic strings and their 
correct surface realizations. 

We continue with illustrations of how such phe- 
nomena  can be handled in a finite-state gram- 
mar. 

3.2 D i s c o n t i g u o u s  D e p e n d e n c i e s  

To illustrate discontiguous dependencies, let us 
ignore for a second the internal structure of Ara- 
bic stems and postulate  a set of noun stems in- 
cluding kaatib ("scribe"), kitaab ("book"),  and 
daaris  ("s tudent") ,  formalized as [[k a a t i 
b] ] [k i t a a b] I [d a a r i s]]. The set 
of possible case endings includes the definite set 
u (nominative),  a (accusative) and i (genitive) 
as well as the indefinite set un (nominative),  
an (accusative) and in (genitive). 1 The most  
straightforward way to proceed to describe the 
morphotact ics  of a fragment of Arabic nouns is 
to concatenate the possible case endings onto 
the noun stems. Informative multicharacter 

1The spellings un ,  a n  and i n  roughly represent the 
pronunciation. Orthographically, the indefinite case end- 
ings consist of single symbols that are distinct from the 
single symbols used for definite endings. 

( P r e p % + : b  0:i) (Art°70+:l)  [[k a a t 
i b] [ [k i t a a b] I [d a a r 
i s]] ~ + N o u n : O  [ [%+Def :O [ % + N o m : u  
] ~ + A c c : a  ] % + G e n : i ] ]  I [ % + I n d e f : O  
[ % + N o m : u  0 :n  1 % + A c c : a  0 : n ]  % + G e n : i  
0"n]]] 

Figure 2: An Overgenerating Lexicon Fragment  
for Arabic Nouns 

symbols, + N o u n ,  + D e f  (for "definite"), + I n -  
d e f  (for "indefinite") and + N o m ,  + A c c  and 
+ G e n  are defined for the upper-side language. 

Ilk a a t i b] t [k i t a a b] I [ d a  a 
r i s]] • + N o u n : 0  [ [ % + D e f : 0  [ % + N o m : u  
1 % + A c c : a  I ~o+Gen: i ] ]  I [ 7 o + I n d e f : 0  
[ ~ + N o m : u  0 :n  1 % + A c c : a  0 :n  I ~ + G e n : i  
0"n]ll 
The resulting relation includes pairs of strings 
like 

Upper: kaatib+Noun+Indef+Acc 
Lower: kaatiban 

Arabic nouns can also have a prefixed definite 
article, which we will represent as l, and prefixed 
prepositions like bi. Both are optional, and if 
bi and l cooccur, then bi must  come first. The 
most  straightforward way to allow these prefixes 
is to concatenate them on the front of the regu- 
lar expression as in Figure 2. P r e p +  and A r t +  
are interpreted as mult icharacter  symbols, and 
the parentheses indicate optionality, as shown 
in Figure 1. 
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However, Arabic words with a prefixed defi- 
nite article l are in fact precluded from taking 
indefinite case suffixes. And words with a pre- 
fixed bi are compatible only with genitive case 
suffixes. The expression, as written in Figure 2, 
overgenerates, producing ill-formed string pairs 
like the following: 

Upper: hrt+kaatib+Noun+Indef+Acc 
Lower: Ikaatiban 

Upper: Prep+Art+kaatib+Noun+Def+Nom 
Lower: bilkaatibu 

It is possible to rewrite the regular expression 
in various ways to eliminate the overgeneration, 
but this is tedious and dangerous, requiring the 
making and subsequent parallel maintenance of 
multiple copies of the noun stems. In practice, it 
is much more convenient to let the core lexicon 
overgenerate and subsequently filter out the bad 
strings, either at compile time or at runtime. 
The most straightforward method is to remove 
the ill-fonued strings via composition of finite- 
state filters. Starting with the overgenerating 
grammar of Figure 2, one set of illegal strings 
to be eliminated contains both the A r t +  and 
the + I n d e f  symbols on the upper side. We 
can characterize these illegal strings in a regular 
expression: 

?* A r t ~ +  7" ~ + I n d e f  ?* 
Other illegal strings contain P r e p +  and then 
either + N o m  or + A c c  on the upper side. 

7" PrepS'o+ ?* [°]'o+Nom ] ~ + A c c ]  ?* 
The union of these two expressions character- 
izes the ill-formed upper-side strings to be elim- 
inated, and the complement (notated ") of that 
union denotes the good strings. 

"[[?* A r t ~ +  ?* ~ + I n d e f  7*] I [?* 
P r e p % +  ?* [°'/o+Nom I °]'oWAcc] ?*]] 

When this "filter" expression is composed on 
top of the overgenerating lexicon transducer, 
only the legal strings are matched, and the ille- 
gal strings are in fact eliminated from the result, 
which is again a finite-state transducer. There 
are several variations of this method that pro- 
duce the same effect (Beesley, 1998d), with dif- 
ferent penalties in the size of the resulting trans- 
ducer or in the performance; but in the end the 
constraint of discontiguous dependencies is eas- 
ily accomplished using finite-state techniques. 

3.3 Non-Coneatenative Morphotactics 
While the morphotactic structure of many nat- 
ural languages can be satisfactorily described 
using just concatenation, perhaps with subse- 
quent filtering to constrain discontiguous de- 
pendencies, there are other languages with mor- 
photactic phenomena that are notoriously non- 
concatenative, in particular reduplication, in- 
fixation and Semitic stem interdigitation (also 
known as intercalation). We will concentrate on 
Arabic here, arguing that roots, patterns and 
vocalizations can be formalized as regular ex- 
pressions denoting regular languages, and that 
stems are formed by the intersection of these 
regular languages. 

For illustration, let us assume, following 
the influential McCarthy (1981) analysis fairly 
closely, that Arabic stems consist of a root 
like ktb ,  a consonant-vowel template such as 
C V C V C ,  and a vocalization like ui. Where 
McCarthy proposed an extension of autoseg- 
mental theory, placing each of these morphemes 
on a separate tier, and proposing "association 
rules" to combine and linearize them into the 
stem kutib, we propose to formalize the same 
data in purely finite-state terms. 

Let each root like k tb  be formalized as [k 
t b]/7,  i.e. as the language consisting of all 
strings containing k, t and b, in that order, ig- 
noring the presence of any other symbols. (The 
notation [k t b] /?  is equivalent to [7" k 7" t 
7" b 7*].) Let C denote the union of all rad- 
ical consonants, and let V denote [a ] i ] u], 
the union of all vowels. CV templates are de- 
fined as concatenations of Cs and Vs. Using 
the Xerox xfst interface, these definitions can 
be computed as 

define ktb [k t b]/? ; 
define drs [d r s]/? ; 

define C [ k ~ t ~ b [ d m r m s ] ; 
define V [ a I i ] u ] ; 
define FormI [ C V C V C ] ; 
define FormII [ C V C X V C ] ; 
define formIII [ C V V C V C ] ; 

Vocalizations are also defined as regular expres- 
sions denoting regular languages, e.g. Perfect 
Active as [a*] / \V,  the set of all strings contain- 
ing zero or more as, ignoring all other symbols 
except vowels. Other vocalizations are defined 
similarly: 
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define PerfActive [a*]/\V ; 
define PerfPassive [u* i]/\V ; 
define ImperfPassive [u a*]/\V ; 

Given the definitions above, xfs t  will evalu- 
ate the expressions on the left below, indicating 
the intersection of a root, a pat tern and a vocal- 
ization, and return a language consisting of the 
single string on the right, an interdigitated but 
still morphophonemic stem (Beesley, 1998a). 

[ktb & FormI ~ PerfActive ] ~ katab 
[ktb & FormIII ~ PerfPassive ] ~ kuutib 
[drs ~ FormII & PerfActive ] ~ darXas 

The X in the Form II pat tern indicates the 
gemination (or lengthening) of the previous con- 
sonant, and its realization is controlled by varia- 
tion rules. Consonant spreading, as in Form IX 
and Form XII, and biliteral roots also use the 
morphophonemic X symbol (Beesley, 1998c). 
Form I vocalizations are in fact idiosyncratic 
for each root, and those for the Imperfect Ac- 
tive are more troublesome, but the same kind 
of formalism applies. 2 If patterns are allowed to 
contain non-radical consonants, as in the anal- 
yses of Harris (1941) and Hudson (1986), then 
the definitions must be complicated slightly to 
prevent radicals from intersecting with the non- 
radical consonants (Beesley, 1998b). For a dif- 
ferent formalization of this and other models 
proposed by McCarthy, but using techniques 
that  go beyond finite-state power, see Kiraz 
(1996). 

3 . 4  Def in ing  V a r i a t i o n  Ru le s  

When underlying morphemes are concatenated 
and intersected together, the resulting strings 

2The Form I perfect active stem vowel for ktb hap- 
pens to be /a/, so the general PerfectActive vocaliza- 
tion [a*]/\V works in this case; other roots will require 
[a i]/\V or [a u]/\V. For the Imperfect Passive, the vo- 
calization is [u a*]/kV for all forms. For the Imperfect 
Active, the least attractive case for vowel abstraction, 
the Form I roweling is [a*]/\V, [a i] / \V or [a u]/\V, 
depending on the root; the Form II through IV vow- 
eling is [u a* i]/\V; the Form V and VI voweling is 
[a*]/kV; and the remaining forms VII to XV use [a* 
i]/\V. If such generalization of vocalization appears ten- 
uous, the alternative is simply to keep the vowels in the 
patterns, resulting in a two-way intersection of roots and 
patterns (Harris, 1941; Kataja and Koskenniemi, 1988). 

are often still very abstract or morphophone- 
mic; there may be many phonological or or- 
thographical variations between these morpho- 
phonemic strings and their ultimate surface pro- 
nunciation or spelling. For example, English 
nouns usually pluralize by taking an s suffix, 
as in book~books, but words like fly pluralize 
as flies rather than *flys. The variation be- 
tween underlying y and the surface ie can be 
defined in terms of two-level rules or Replace 
Rules, which partially mimic traditional rewrite 
rules in their superficial syntax (Chomsky and 
Halle, 1968). Johnson (1972) demonstrated 
that rewrite-rules, as used by linguists, had only 
finite-state power and could be implemented as 
finite-state transducers; this important result, 
unfortunately overlooked at the time and later 
rediscovered by Kaplan and Kay (1981) (see 
also Kaplan and Kay (1994)) is a key mathe- 
matical foundation for finite-state morphology 
and phonology. 

The variation rules required for Arabic were 
relatively difficult to write, but they are not dif- 
ferent in kind or power from the rules required 
for other languages. The most difficult chal- 
lenges involve the so-called weak roots, those 
containing a w (.~), y (~ )  or hamza (glottal stop) 

as one of the radicals. 
Via concatenation and intersection, the lex- 

icon produces morphophonemic strings like 
ka tab-Fa ,  the Form I perfect active of k tb ,  
with a masculine singular Wa suffix; similarly 
for daras-{-a, based on drs .  These particular 
strings are very surfacy already, being realized 
in their fully-voweled form as kataba, rendered 

as (.~, and darasa, rendered as (~,~.~). When 
trivial "relaxation" rules are composed on the 
bottom of the lexicon, allowing optional dele- 
tion of the short vowels, the system is also able 
to analyze the surface forms ktb (.,J) and drs 

(~r,)#) and all the other partially voweled vari- 

ations. 
With weak roots, however, such as the fi- 

nally weak bny, the dictionary generates paral- 
lel morphophonemic forms like banay-{-a, but 
the surface form is properly spelled with a y- 
like 'alif maqs.uura, ~ . ,  rather than with a 

normal y with two dots ( ~ .  is not a possible 

spelling for underlying b a n a y + a ) .  This or- 
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thographical change reflects the fact that the 
word is pronounced /banal /  rather than /ba- 
naja/ .  The perfect passive buniy%a,  however, 
is still spelled as bny ( ~ . ) ,  reflecting a pronun- 

ciation of /buni ja / ,  although in Egyptian ortho- 
graphical practice the dots are usually dropped 
here as well, yielding ~ .  again. With the fem- 

inine ending, banay- fa t ,  the underlying y dis- 
appears completely, both phonologically and or- 
thographically, yielding surface bnt (,:~.). 

With a medially-weak root like qwl, the mor- 
phophonemic Form I perfect active qawul-t-a 
gets realized as qAl (J~), reflecting the pronun- 

ciation /qalla/ .  When the suffix begins with a 
consonant, as in qawuld-ta ,  the surface spelling 
is qlt, reflecting the pronunciation/qulta/ .  An 
initially weak example like taWwlidJcu,  based 
on root wld,  yields .~ ,  with the deletion of the 

initial radical w, while tud-wlad%u,  with an 
initial tud- prefix, yields aJ~ with the w in- 

tact. Similarly for root w 'd ,  but with hamza 
complications: yad-w'id-l-u yields a~. while 

yu%w'ad-{-u yields ~2-" 

The rule writer must also handle a number 
of assimilations, as in the Form VIII of root 
5kr, underlying 8takar-{-a, which is pronounced 
/Piddakara/ and written accordingly, including 
diacritics for clarity, as "~! .  Similary, for roots 

with an initial pharyngealized saad (~,,) or d. aad 

(~j,) radical, such as .drb, the underlying Form 

VIII is .dtarab-{-a, emerging with the infixed 
Form VIII t assimilating to its pharyngealized 
version t. in ~ . ' ~ ! .  None of these phenom- 

ena is phonologically surprising; local assimila- 
tions and contextual instabilities in semiconso- 
nants l i k e / w / a n d / y / a r e  garden-variety vari- 
ations, elegantly handled with finite-state vari- 
ation rules. 

4 P r a c t i c a l  A p p l i c a t i o n s  

4.1 H i s to ry  of  C o m p u t i n g  Semit ic  
S tems  via In t e r sec t ion  

Classic Two-Level (Koskenniemi, 1983; Kart- 
tunen, 1983; Antworth, 1990) and finite-state 
lexicons (Karttunen, 1993) build underlying 
strings via concatenation only, but this limita- 

tion is not characteristic of the overall theory 
but only of the computational implementations. 
Kataja and Koskenniemi (1988) were appar- 
ently the first to understand that concatenating 
languages were just a special case; they showed 
that by generalizing lexicography to allow regu- 
lar expressions, Semitic (specifically Akkadian) 
roots and patterns could denote regular lan- 
guages, and that stems could be computed as 
the intersection of these regular languages. 3 

This principle was borrowed in the ALP- 
NET prototype analyzer for Arabic morphol- 
ogy (Beesley, 1989; Beesley, 1991); but it used 
an implementation of Two-Level Morphology 
enhanced with a "detouring" mechanism that 
simulated the intersection of roots and patterns 
at runtime. This prototype grew into a large 
commercial system in 1989 and 1990 (Beesley 
et al., 1989; Beesley, 1990). In 1989, Lauri 
Karttunen (personal communication) also pro- 
posed and demonstrated in an Interlisp script 
the intersection of roots, patterns and vocal- 
izations as an alternative to the finite-state so- 
lution of (Kay, 1987), which used a four-tape 
finite-state transducer transducer. 

4.2 C u r r e n t  Xerox  S y s t e m  
The current Xerox morphological analyzer for 
Arabic is based on dictionaries licensed from 
ALPNET, but the rules and organization of the 
system have been extensively rewritten. 

4.2.1 Sys t em C o m p o n e n t s  
The Arabic morphological analyzer starts out 
as a dictionary database containing entries for 
prefixes, suffixes, roots and patterns of Arabic. 
The database also includes morphotactic cod- 
ings. Perl scripts extract the pertinent infor- 
mation from this database, reformatting it as 
lexc files, which are then compiled into a finite- 
state transducer that we label the "core" lex- 
icon transducer. On top of the core FST, fil- 
ters are composed to remove the strings that 
are ill-formed because of discontiguous depen- 
dencies. Finite-state rules that intersect roots 
and patterns are compiled into transducers and 
composed on the bottom of the core, leaving 

SKataja  (personal communication) wrote compara- 
tive two-level grammars of the Neo-Babylonian and Neo- 
Assyrian dialects of Akkadian. The source dictionaries 
contained separate sublexicons for roots and patterns; 
these were intersected via awk scripts into Koskenniemi's 
TwoL format, which was then compiled. 
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Filters 

°O° 

Core Lexicon 

,o. 

Intersect Rules 

°0, 

Variation Rules 

Figure 3: Constructing the Common FST 

linearized lexical strings for the variation rules 
(also compiled into FSTs) to apply to, as shown 
in Figure 3. The result of the composition is a 
single "common" FST, with slightly enhanced 
fuUy-voweled strings in the lower language. 

For generation purposes, where the user prob- 
ably wants to see only formally correct fully- 
roweled strings, the bottom level is trivially 
cleaned up by yet another layer of composed 
rules. For recognition purposes, the rules ap- 
plied to the bottom side include 

[ a I i I u I o I - ] (->) 0 ; 

which optionally maps the fatha (a), kasra (i), 
d.amma (u), sukuun (o) and shadda ( ' )  to the 
empty string. The resulting "analysis" trans- 
ducer recognizes fully-voweled, partially vow- 
eled, and the usual unvoweled spellings. Where 
diacritics are present in the input, the output is 
correspondingly less ambiguous. 

4.2.2 Sys tem Status  
The current dictionaries contain 4930 roots, 
each one hand-coded to indicate the subset of 
patterns with which it legally combines (Buck- 
walter, 1990). Various combinations of pre- 
fixes and suffixes, concatenated to the inter- 
sected stems, and filtered by composition, yield 
over 72,000,000 abstract, fully-voweled words. 
Sixty-six finite-state variation rules map these 
abstract strings into fully-voweled orthographi- 
cal strings, and additional rules are then applied 

to optionally delete short vowels and other di- 
acritics, allowing the system to analyze unvow- 
eled, partially voweled, and fully-roweled or- 
thographical variants of the 72,000,000 abstract 
words. New entries are added easily to the orig- 
inal le:dcal database. 

A full-scale version of the current sys- 
tem is available for testing on the Internet 
at ht tp://www.xrce.xerox.com/research/mltt / 
arabic. A Java interface renders Arabic words 
in traditional Arabic script, both for input and 
output. 
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