
Arabic Morphology Using Only Finite-State Operations

K e n n e t h R. B E E S L E Y
Xerox Research Centre Europe

Grenoble Laboratory
6, chemin de Maupertuis

38240 MEYLAN
France

Ken. Beesley©xrce. xerox, com

A b s t r a c t

Finite-state morphology has been successful
in the description and computational imple-
mentation of a wide variety of natural lan-
guages. However, the particular challenges of
Arabic, and the limitations of some implementa-
tions of finite-state morphology, have led many
researchers to believe that finite-state power
was not sufficient to handle Arabic and other
Semitic morphology. This paper illustrates how
the morphotactics and the variation rules of
Arabic have been described using only finite-
state operations and how this approach has
been implemented in a significant morpholog-
ical analyzer/generator.

1 I n t r o d u c t i o n
In Arabic, as in other natural languages, the
two challenges of morphological analysis are the
description of 1) the morphotactics and 2) the
variation rules. Morphotactics is the study of
how morphemes combine together to make well-
formed words. Variations are the discrepan-
cies between the underlying or morphophone-
mic strings and their surface realization, which
are either phonological or orthographical strings
depending on the purpose of the grammar.

The key insight and claim of the finite-state
approach to morphology (Karttunen, 1991;
Karttunen et al., 1992; Karttunen, 1994)is
that both morphotactics and variation gram-
mars can be written as regular expressions,
which are compiled and implemented on com-
puters as finite-state automata. Such grammars
are interesting theoretically because they are
highly constrained; and in practical computa-
tional linguistics for natural languages, finite-
state automata are fast, usually compact in
size, bidirectional, combinable using all valid
finite-state operations, and consultable using

language-independent lookup code.
Finite-state approaches to morphology, in-

cluding the readily available implementation
known as Two-Level Morphology (Koskenniemi,
1983; Antworth, 1990), have been shown to
work in significant projects for French, English,
Spanish, Portuguese, Italian, Finnish, Turkish
and a wide variety of other natural languages.
But despite the high attractiveness of finite-
state computing, many investigators have con-
cluded that finite-state techniques are not ad-
equate for describing Semitic root-and-pattern
morphology. This paper will present the case
that fully implemented finite-state morphology
can be and has been used successfully for Ara-
bic.

2 R e g u l a r E x p r e s s i o n s

When writing a finite-state morphological
grammar, linguists state morphotactic and vari-
ation rules in the metalanguage of regular ex-
pressions or in higher-level languages that are
convenient shorthand notations for complex
regular expressions.

2.1 Regular Expressions, Regular
Relat ions, and Fin l te -Sta te
Transducers

A regular expression that contains an alphabet
of one-level symbols defines a regular language
and compiles into a finite-state machine (FSM)
that accepts this regular language. A regular
expression that contains an alphabet of paired
symbols defines a regular relation (a relation
between two regular languages) and compiles
into a finite-state transducer (FST) that maps
from every string of one language into strings
of the other. H the necessary finite-state algo-
rithms and compilers are available, components
of the grammar, including various sublexicons

50

and rules, can be compiled into separate trans-
ducers and then combined together using any
operations that are mathematically valid.

The Xerox implementation of finite-state
morphology includes a complete range of fun-
damental algorithms (concatenation, union, in-
tersection, complementation, etc.) plus higher-
level shorthand languages such as lexc (Kart-
tunen, 1993), twolc (Karttunen and Beesley,
1992) and Replace Rules (Karttunen, 1995;
Karttunen and Kempe, 1995; Karttunen, 1996).

2.2 F in i te -S ta te Opera t ions
When defining morphotactics or variations via
regular expressions, the linguist has access to all
the operations that are mathematically valid on
regular languages and relations. The following
is a brief outline of regular expressions in the
Xerox notation:

For each symbol s, the regular expression s
denotes a regular language consisting of the sin-
gle string "s". If A and B are regular languages,
then the regular expressions in Figure 1 also de-
note regular languages. The cross-product of A
and B, denoted A .x. B, relates each string in
A, the upper language, to every string of B, the
lower language, and vice versa. A .x. B thus
denotes a regular relation. Where u and 1 are
symbols, u:l is a notation equivalent to u .x. 1.
For formal reasons, relations are not quite as
manipulable as simple languages; in particular,
relations are closed under concatenation, union,
and iteration, but not under intersection, sub-
traction or complementation.

Relations are closed under composition, a
somewhat more difficult operation to concep-
tualize. Let A, B and C denote regular lan-
guages; let X denote a regular relation between
an upper-side language A and a lower-side lan-
guage B; and let Y denote a regular relation
between the upper-side language B and a lower-
side language C. Then the composition of Y
under X, denoted X .o. Y, denotes a regular
relation Z that maps directly between languages
A and C; the intermediate language B disap-
pears in the process of composition.

In defining natural-language morphotactics,
union and concatenation are the basic oper-
ations required. Variation rules and long-
distance-dependency filters are applied using
composition. And we shall illustrate below how
Arabic root-and-pattern interdigitation can be

performed via intersection and composition.

3 R e g u l a r - E x p r e s s i o n G r a m m a r s

3.1 Conca tena t ive Morphotac t i cs

Individual morphemes of natural language typ-
ically consist of one or more symbols, simply
concatenated together. Thus the English mor-
phemes s, ed and ing represent the concatena-
tions [s], [e d] and [i n g] respectively. Where
0 represents e (the zero-length string), the set
of regular verb suffixes of English can be repre-
sented as the union [Is] I [e d] [[i n g] I 0].
The set of verb stems taking these endings in-
cludes wreck, walk, and talk, which can also be
formalized using concatenation and union: [[w
r e c k] I [w a 1 k]] It a 1 k]]. The union
of endings can then be concatenated on the end
of the union of verb stems to form a larger ex-
pression that denotes a language that looks like
a subset of English verbs: [[w r e e k] I [w a 1
k] l [t a l k]] [[s]l [e d] I[i n g] l 0].

If the linguist defines the symbols + V e r b ,
+ 3 P S (for "third personal singular"), + P a s t ,
+ P r P a r t (for "present participle") and
+Bare , the following expression denotes
the relation that maps lower-side (surface)
string like "talks" to the upper-side string
"talk+Verb+3PS", and vice-versa. The pre-
ceding plus signs of these "tag" symbols are
included simply to improve the human read-
ability of the resulting strings; because the plus
sign is normally a special Kleene Plus symbol
in regular expressions, it is literalized in the
examples below with a preceding percent sign.

[[w:w r:r e:e c:c k:k] I [w:w a:a hi k:k]
I [t:t a:a hl k:k]] %+Verb:O [[%+3PS:s] I
[%+Pas t : e O:d] I [~ + P r P a r t : i O:n O:g] I
%+Bare:O]
By convention in Xerox regular expressions de-
noting relations, the relation s:s can be written
simply as s, as in the following:

[[w r e c k] I [w a I k] I It a 1 k]]
• % + V e r b : 0 [[%+3PS:s] I [%+Pas t : e 0:d] l
[% + P r P a r t : i 0:n 0:g] 1%+Bare :0]

The English-verb fragment shown here was
carefully chosen to be simple. However, there
are three classes of phenomena for which union
and concatenation, by themselves, are general])'
inadequate or at least very inconvenient for de-
scribing all and only the strings that appear in
a natural language:

51

0
[A]
AB
A] B
A&B
(A)
A*
A+
A/B
?

A-B
\B

"B

the zero-length string (often called E)
bracketing; denotes the same language as A
the concatenation of B after A
the union of A and B
the intersection of A and B
optionality, equivalent to [A I 0]
Kleene star iteration, zero or more concatenations of A
equivalent to [A A*]) i.e. one or more concatenations of A
the regular language A, ignoring any instances of B
any symbol, i.e. the union of all single-symbol strings
language A, minus all strings in language B
equivalent to [? - B], the union of all single-symbol

strings minus the strings in B
equivalent to [?* - B], the complement of B

Figure h Some Finite-State Notations

.

.

.

Discontiguous dependencies between mor-
phemes in a word,

Non-concatenative morphotact ic processes
such as reduplication and Semitic interdig-
itation, and

Variations, typically assimilations, dele-
tions and epentheses, that map between the
abstract morphophonemic strings and their
correct surface realizations.

We continue with illustrations of how such phe-
nomena can be handled in a finite-state gram-
mar.

3.2 D i s c o n t i g u o u s D e p e n d e n c i e s

To illustrate discontiguous dependencies, let us
ignore for a second the internal structure of Ara-
bic stems and postulate a set of noun stems in-
cluding kaatib ("scribe"), kitaab ("book"), and
daaris ("s tudent") , formalized as [[k a a t i
b]] [k i t a a b] I [d a a r i s]]. The set
of possible case endings includes the definite set
u (nominative), a (accusative) and i (genitive)
as well as the indefinite set un (nominative),
an (accusative) and in (genitive). 1 The most
straightforward way to proceed to describe the
morphotact ics of a fragment of Arabic nouns is
to concatenate the possible case endings onto
the noun stems. Informative multicharacter

1The spellings un , a n and i n roughly represent the
pronunciation. Orthographically, the indefinite case end-
ings consist of single symbols that are distinct from the
single symbols used for definite endings.

(P r e p % + : b 0:i) (Art°70+:l) [[k a a t
i b] [[k i t a a b] I [d a a r
i s]] ~ + N o u n : O [[%+Def :O [% + N o m : u
] ~ + A c c : a] % + G e n : i]] I [% + I n d e f : O
[% + N o m : u 0 :n 1 % + A c c : a 0 : n] % + G e n : i
0"n]]]

Figure 2: An Overgenerating Lexicon Fragment
for Arabic Nouns

symbols, + N o u n , + D e f (for "definite"), + I n -
d e f (for "indefinite") and + N o m , + A c c and
+ G e n are defined for the upper-side language.

Ilk a a t i b] t [k i t a a b] I [d a a
r i s]] • + N o u n : 0 [[% + D e f : 0 [% + N o m : u
1 % + A c c : a I ~o+Gen: i]] I [7 o + I n d e f : 0
[~ + N o m : u 0 :n 1 % + A c c : a 0 :n I ~ + G e n : i
0"n]ll
The resulting relation includes pairs of strings
like

Upper: kaatib+Noun+Indef+Acc
Lower: kaatiban

Arabic nouns can also have a prefixed definite
article, which we will represent as l, and prefixed
prepositions like bi. Both are optional, and if
bi and l cooccur, then bi must come first. The
most straightforward way to allow these prefixes
is to concatenate them on the front of the regu-
lar expression as in Figure 2. P r e p + and A r t +
are interpreted as mult icharacter symbols, and
the parentheses indicate optionality, as shown
in Figure 1.

52

However, Arabic words with a prefixed defi-
nite article l are in fact precluded from taking
indefinite case suffixes. And words with a pre-
fixed bi are compatible only with genitive case
suffixes. The expression, as written in Figure 2,
overgenerates, producing ill-formed string pairs
like the following:

Upper: hrt+kaatib+Noun+Indef+Acc
Lower: Ikaatiban

Upper: Prep+Art+kaatib+Noun+Def+Nom
Lower: bilkaatibu

It is possible to rewrite the regular expression
in various ways to eliminate the overgeneration,
but this is tedious and dangerous, requiring the
making and subsequent parallel maintenance of
multiple copies of the noun stems. In practice, it
is much more convenient to let the core lexicon
overgenerate and subsequently filter out the bad
strings, either at compile time or at runtime.
The most straightforward method is to remove
the ill-fonued strings via composition of finite-
state filters. Starting with the overgenerating
grammar of Figure 2, one set of illegal strings
to be eliminated contains both the A r t + and
the + I n d e f symbols on the upper side. We
can characterize these illegal strings in a regular
expression:

?* A r t ~ + 7" ~ + I n d e f ?*
Other illegal strings contain P r e p + and then
either + N o m or + A c c on the upper side.

7" PrepS'o+ ?* [°]'o+Nom] ~ + A c c] ?*
The union of these two expressions character-
izes the ill-formed upper-side strings to be elim-
inated, and the complement (notated ") of that
union denotes the good strings.

"[[?* A r t ~ + ?* ~ + I n d e f 7*] I [?*
P r e p % + ?* [°'/o+Nom I °]'oWAcc] ?*]]

When this "filter" expression is composed on
top of the overgenerating lexicon transducer,
only the legal strings are matched, and the ille-
gal strings are in fact eliminated from the result,
which is again a finite-state transducer. There
are several variations of this method that pro-
duce the same effect (Beesley, 1998d), with dif-
ferent penalties in the size of the resulting trans-
ducer or in the performance; but in the end the
constraint of discontiguous dependencies is eas-
ily accomplished using finite-state techniques.

3.3 Non-Coneatenative Morphotactics
While the morphotactic structure of many nat-
ural languages can be satisfactorily described
using just concatenation, perhaps with subse-
quent filtering to constrain discontiguous de-
pendencies, there are other languages with mor-
photactic phenomena that are notoriously non-
concatenative, in particular reduplication, in-
fixation and Semitic stem interdigitation (also
known as intercalation). We will concentrate on
Arabic here, arguing that roots, patterns and
vocalizations can be formalized as regular ex-
pressions denoting regular languages, and that
stems are formed by the intersection of these
regular languages.

For illustration, let us assume, following
the influential McCarthy (1981) analysis fairly
closely, that Arabic stems consist of a root
like ktb , a consonant-vowel template such as
C V C V C , and a vocalization like ui. Where
McCarthy proposed an extension of autoseg-
mental theory, placing each of these morphemes
on a separate tier, and proposing "association
rules" to combine and linearize them into the
stem kutib, we propose to formalize the same
data in purely finite-state terms.

Let each root like k tb be formalized as [k
t b]/7, i.e. as the language consisting of all
strings containing k, t and b, in that order, ig-
noring the presence of any other symbols. (The
notation [k t b] /? is equivalent to [7" k 7" t
7" b 7*].) Let C denote the union of all rad-
ical consonants, and let V denote [a] i] u],
the union of all vowels. CV templates are de-
fined as concatenations of Cs and Vs. Using
the Xerox xfst interface, these definitions can
be computed as

define ktb [k t b]/? ;
define drs [d r s]/? ;

define C [k ~ t ~ b [d m r m s] ;
define V [a I i] u] ;
define FormI [C V C V C] ;
define FormII [C V C X V C] ;
define formIII [C V V C V C] ;

Vocalizations are also defined as regular expres-
sions denoting regular languages, e.g. Perfect
Active as [a*] / \V, the set of all strings contain-
ing zero or more as, ignoring all other symbols
except vowels. Other vocalizations are defined
similarly:

53

define PerfActive [a*]/\V ;
define PerfPassive [u* i]/\V ;
define ImperfPassive [u a*]/\V ;

Given the definitions above, xfs t will evalu-
ate the expressions on the left below, indicating
the intersection of a root, a pat tern and a vocal-
ization, and return a language consisting of the
single string on the right, an interdigitated but
still morphophonemic stem (Beesley, 1998a).

[ktb & FormI ~ PerfActive] ~ katab
[ktb & FormIII ~ PerfPassive] ~ kuutib
[drs ~ FormII & PerfActive] ~ darXas

The X in the Form II pat tern indicates the
gemination (or lengthening) of the previous con-
sonant, and its realization is controlled by varia-
tion rules. Consonant spreading, as in Form IX
and Form XII, and biliteral roots also use the
morphophonemic X symbol (Beesley, 1998c).
Form I vocalizations are in fact idiosyncratic
for each root, and those for the Imperfect Ac-
tive are more troublesome, but the same kind
of formalism applies. 2 If patterns are allowed to
contain non-radical consonants, as in the anal-
yses of Harris (1941) and Hudson (1986), then
the definitions must be complicated slightly to
prevent radicals from intersecting with the non-
radical consonants (Beesley, 1998b). For a dif-
ferent formalization of this and other models
proposed by McCarthy, but using techniques
that go beyond finite-state power, see Kiraz
(1996).

3 . 4 Def in ing V a r i a t i o n Ru le s

When underlying morphemes are concatenated
and intersected together, the resulting strings

2The Form I perfect active stem vowel for ktb hap-
pens to be /a/, so the general PerfectActive vocaliza-
tion [a*]/\V works in this case; other roots will require
[a i]/\V or [a u]/\V. For the Imperfect Passive, the vo-
calization is [u a*]/kV for all forms. For the Imperfect
Active, the least attractive case for vowel abstraction,
the Form I roweling is [a*]/\V, [a i] / \V or [a u]/\V,
depending on the root; the Form II through IV vow-
eling is [u a* i]/\V; the Form V and VI voweling is
[a*]/kV; and the remaining forms VII to XV use [a*
i]/\V. If such generalization of vocalization appears ten-
uous, the alternative is simply to keep the vowels in the
patterns, resulting in a two-way intersection of roots and
patterns (Harris, 1941; Kataja and Koskenniemi, 1988).

are often still very abstract or morphophone-
mic; there may be many phonological or or-
thographical variations between these morpho-
phonemic strings and their ultimate surface pro-
nunciation or spelling. For example, English
nouns usually pluralize by taking an s suffix,
as in book~books, but words like fly pluralize
as flies rather than *flys. The variation be-
tween underlying y and the surface ie can be
defined in terms of two-level rules or Replace
Rules, which partially mimic traditional rewrite
rules in their superficial syntax (Chomsky and
Halle, 1968). Johnson (1972) demonstrated
that rewrite-rules, as used by linguists, had only
finite-state power and could be implemented as
finite-state transducers; this important result,
unfortunately overlooked at the time and later
rediscovered by Kaplan and Kay (1981) (see
also Kaplan and Kay (1994)) is a key mathe-
matical foundation for finite-state morphology
and phonology.

The variation rules required for Arabic were
relatively difficult to write, but they are not dif-
ferent in kind or power from the rules required
for other languages. The most difficult chal-
lenges involve the so-called weak roots, those
containing a w (.~), y (~) or hamza (glottal stop)

as one of the radicals.
Via concatenation and intersection, the lex-

icon produces morphophonemic strings like
ka tab-Fa , the Form I perfect active of k tb ,
with a masculine singular Wa suffix; similarly
for daras-{-a, based on drs . These particular
strings are very surfacy already, being realized
in their fully-voweled form as kataba, rendered

as (.~, and darasa, rendered as (~,~.~). When
trivial "relaxation" rules are composed on the
bottom of the lexicon, allowing optional dele-
tion of the short vowels, the system is also able
to analyze the surface forms ktb (.,J) and drs

(~r,)#) and all the other partially voweled vari-

ations.
With weak roots, however, such as the fi-

nally weak bny, the dictionary generates paral-
lel morphophonemic forms like banay-{-a, but
the surface form is properly spelled with a y-
like 'alif maqs.uura, ~ . , rather than with a

normal y with two dots (~ . is not a possible

spelling for underlying b a n a y + a) . This or-

54

thographical change reflects the fact that the
word is pronounced /banal / rather than /ba-
naja/ . The perfect passive buniy%a, however,
is still spelled as bny (~ .) , reflecting a pronun-

ciation of /buni ja / , although in Egyptian ortho-
graphical practice the dots are usually dropped
here as well, yielding ~ . again. With the fem-

inine ending, banay- fa t , the underlying y dis-
appears completely, both phonologically and or-
thographically, yielding surface bnt (,:~.).

With a medially-weak root like qwl, the mor-
phophonemic Form I perfect active qawul-t-a
gets realized as qAl (J~), reflecting the pronun-

ciation /qalla/ . When the suffix begins with a
consonant, as in qawuld-ta , the surface spelling
is qlt, reflecting the pronunciation/qulta/ . An
initially weak example like taWwlidJcu, based
on root wld, yields .~ , with the deletion of the

initial radical w, while tud-wlad%u, with an
initial tud- prefix, yields aJ~ with the w in-

tact. Similarly for root w 'd , but with hamza
complications: yad-w'id-l-u yields a~. while

yu%w'ad-{-u yields ~2-"

The rule writer must also handle a number
of assimilations, as in the Form VIII of root
5kr, underlying 8takar-{-a, which is pronounced
/Piddakara/ and written accordingly, including
diacritics for clarity, as "~! . Similary, for roots

with an initial pharyngealized saad (~,,) or d. aad

(~j,) radical, such as .drb, the underlying Form

VIII is .dtarab-{-a, emerging with the infixed
Form VIII t assimilating to its pharyngealized
version t. in ~ . ' ~ ! . None of these phenom-

ena is phonologically surprising; local assimila-
tions and contextual instabilities in semiconso-
nants l i k e / w / a n d / y / a r e garden-variety vari-
ations, elegantly handled with finite-state vari-
ation rules.

4 P r a c t i c a l A p p l i c a t i o n s

4.1 H i s to ry of C o m p u t i n g Semit ic
S tems via In t e r sec t ion

Classic Two-Level (Koskenniemi, 1983; Kart-
tunen, 1983; Antworth, 1990) and finite-state
lexicons (Karttunen, 1993) build underlying
strings via concatenation only, but this limita-

tion is not characteristic of the overall theory
but only of the computational implementations.
Kataja and Koskenniemi (1988) were appar-
ently the first to understand that concatenating
languages were just a special case; they showed
that by generalizing lexicography to allow regu-
lar expressions, Semitic (specifically Akkadian)
roots and patterns could denote regular lan-
guages, and that stems could be computed as
the intersection of these regular languages. 3

This principle was borrowed in the ALP-
NET prototype analyzer for Arabic morphol-
ogy (Beesley, 1989; Beesley, 1991); but it used
an implementation of Two-Level Morphology
enhanced with a "detouring" mechanism that
simulated the intersection of roots and patterns
at runtime. This prototype grew into a large
commercial system in 1989 and 1990 (Beesley
et al., 1989; Beesley, 1990). In 1989, Lauri
Karttunen (personal communication) also pro-
posed and demonstrated in an Interlisp script
the intersection of roots, patterns and vocal-
izations as an alternative to the finite-state so-
lution of (Kay, 1987), which used a four-tape
finite-state transducer transducer.

4.2 C u r r e n t Xerox S y s t e m
The current Xerox morphological analyzer for
Arabic is based on dictionaries licensed from
ALPNET, but the rules and organization of the
system have been extensively rewritten.

4.2.1 Sys t em C o m p o n e n t s
The Arabic morphological analyzer starts out
as a dictionary database containing entries for
prefixes, suffixes, roots and patterns of Arabic.
The database also includes morphotactic cod-
ings. Perl scripts extract the pertinent infor-
mation from this database, reformatting it as
lexc files, which are then compiled into a finite-
state transducer that we label the "core" lex-
icon transducer. On top of the core FST, fil-
ters are composed to remove the strings that
are ill-formed because of discontiguous depen-
dencies. Finite-state rules that intersect roots
and patterns are compiled into transducers and
composed on the bottom of the core, leaving

SKataja (personal communication) wrote compara-
tive two-level grammars of the Neo-Babylonian and Neo-
Assyrian dialects of Akkadian. The source dictionaries
contained separate sublexicons for roots and patterns;
these were intersected via awk scripts into Koskenniemi's
TwoL format, which was then compiled.

55

Filters

°O°

Core Lexicon

,o.

Intersect Rules

°0,

Variation Rules

Figure 3: Constructing the Common FST

linearized lexical strings for the variation rules
(also compiled into FSTs) to apply to, as shown
in Figure 3. The result of the composition is a
single "common" FST, with slightly enhanced
fuUy-voweled strings in the lower language.

For generation purposes, where the user prob-
ably wants to see only formally correct fully-
roweled strings, the bottom level is trivially
cleaned up by yet another layer of composed
rules. For recognition purposes, the rules ap-
plied to the bottom side include

[a I i I u I o I -] (->) 0 ;

which optionally maps the fatha (a), kasra (i),
d.amma (u), sukuun (o) and shadda (') to the
empty string. The resulting "analysis" trans-
ducer recognizes fully-voweled, partially vow-
eled, and the usual unvoweled spellings. Where
diacritics are present in the input, the output is
correspondingly less ambiguous.

4.2.2 Sys tem Status
The current dictionaries contain 4930 roots,
each one hand-coded to indicate the subset of
patterns with which it legally combines (Buck-
walter, 1990). Various combinations of pre-
fixes and suffixes, concatenated to the inter-
sected stems, and filtered by composition, yield
over 72,000,000 abstract, fully-voweled words.
Sixty-six finite-state variation rules map these
abstract strings into fully-voweled orthographi-
cal strings, and additional rules are then applied

to optionally delete short vowels and other di-
acritics, allowing the system to analyze unvow-
eled, partially voweled, and fully-roweled or-
thographical variants of the 72,000,000 abstract
words. New entries are added easily to the orig-
inal le:dcal database.

A full-scale version of the current sys-
tem is available for testing on the Internet
at ht tp://www.xrce.xerox.com/research/mltt /
arabic. A Java interface renders Arabic words
in traditional Arabic script, both for input and
output.

R e f e r e n c e s

Evan L. Antworth. 1990. PC-KIMMO: a two-
level processor for morphological analysis.
Number 16 in Occasional publications in aca-
demic computing. Summer Institute of Lin-
guistics, Dallas.

Kenneth R. Beesley, Tim Buckwalter, and Stu-
art N. Newton. 1989. Two-level finite-state
analysis of Arabic morphology. In Proceed-
ings of the Seminar on Bilingual Computing
in Arabic and English, Cambridge, England,
September 6-7. No pagination.

Kenneth R. Beesley. 1989. Computer analysis
of Arabic morphology: A two-level approach
with detours. In Third Annual Symposium on
Arabic Linguistics, Salt Lake City, March 3-
4. University of Utah. Published as Beesley,
1991.

Kenneth R. Beesley. 1990. Finite-state de-
scription of Arabic morphology. In Proceed-
ings of the Second Cambridge Conference on
Bilingual Computing in Arabic and English,
September 5-7. No pagination.

Kenneth R. Beesley. 1991. Computer analy-
sis of Arabic morphology: A two-level ap-
proach with detours. In Bernard Comrie and
Mushira Eid, editors, Perspectives on Arabic
Linguistics III: Papers from the Third An-
nual Symposium on Arabic Linguistics, pages
155-172. John Benjamins, Amsterdam. Read
originally at the Third Annual Symposium on
Arabic Linguistics, University of Utah, Salt
Lake City, Utah, 3-4 March 1989.

Kenneth R. Beesley. 1998a. Arabic morphologi-
cal analysis on the Internet. In ICEMCO-g8,
Cambridge, April 17-18. Centre for Middle
Eastern Studies. Proceedings of the 6th Inter-
national Conference and Exhibition on Multi-

56

lingual Computing. Paper number 3.1.1; no
pagination.

Kenneth R. Beesley. 1998b. Arabic stem mor-
photactics via finite-state intersection. Paper
presented at the 12th Symposium on Ara-
bic Linguistics, Arabic Linguistic Society, 6-7
March, 1998, Champaign, IL.

Kenneth R. Beesley. 1998c. Consonant spread-
ing in Arabic stems. In COLING'98.

Kenneth R. Beesley. 1998d. Constraining sep-
arated morphotactic dependencies in finite-
state grammars. In FSMNLP-98, Bilkent.
Bilkent University.

Timothy A. Buckwalter. 1990. Le:dcographic
notation of Arabic noun pattern morphemes
and their inflectional features. In Proceed-
ings of the Second Cambridge Conference on
Bilingual Computing in Arabic and English,
September 5-7. No pagination.

Noam Chomsky and Morris Halle. 1968. The
Sound Pattern of English. Harper and Row,
New York.

Zelig Harris. 1941. Linguistic structure of He-
brew. Journal of the American Oriental So-
ciety, 62:143-167.

Grover Hudson. 1986. Arabic root and pattern
morphology without tiers. Journal of Lin-
guistics, 22:85-122. Reply to McCarthy:1981.

C. Douglas Johnson. 1972. Formal Aspects
of Phonological Description. Mouton, The
Hague.

Ronald M. Kaplan and Martin Kay. 1981.
Phonological rules and finite-state transduc-
ers. In Linguistic Society of America Meeting
Handbook. Fifty-Sixth Annual Meeting, New
York. December 27-30. Abstract.

Ronald M. Kaplan and Martin Kay. 1994.
Regular models of phonological rule systems.
Computational Linguistics, 20(3):331-378.

Lauri Karttunen and Kenneth R. Beesley. 1992.
Two-level rule compiler. Technical Report
ISTL-92-2, Xerox Palo Alto Research Center,
Palo Alto, CA, October.

Lauri Karttunen and Andr6 Kempe. 1995.
The parallel replacement operation in
finite-state calculus. Technical Report
MLTT-021, Rank Xerox Research Centre,
Grenoble, France, December. A~ilable at
h ttp : / / www.xrce.xerox.com / publis /mltt /
mltttech.html.

Lauri Karttunen, Ronald M. Kaplan, and Annie

Zaenen. 1992. Two-level morphology with
composition. In COLING'92, pages 141-148,
Nantes, France, August 23-28.

Lauri Karttunen. 1983. KIMMO: a general
morphological processor. In Mary Dalrymple,
Edit Doron, John Goggin, Beverley Good-
man, and John McCarthy, editors, Tezas Lin-
guistic Forum, number 22, pages 165-186.
Department of Linguistics, The University of
Texas at Austin, Austin, TX.

Lauri Karttunen. 1991. Finite-state con-
straints. In Proceedings of the Interna-
tional Conference on Current Issues in Com-
putational Linguistics, Penang, Malaysia,
June 10-14. Universiti Sains Malaysia.

Lauri Karttunen. 1993. Finite-state lexicon
compiler. Technical Report ISTL-NLTT-
1993-04-02, Xerox Palo Alto Research Center,
Palo Alto, CA, April.

Lauri Karttunen. 1994. Constructing lexical
transducers. In COLING'g~, Kyoto, Japan.

Lauri Karttunen. 1995. The replace opera-
tor. In Proceedings of the 33rd Annual Meet-
ing of the ACL, Cambridge, MA. Available
at http://www.xrce.xerox.conl/publis/mltt /
mltttech.html.

Lauri Karttunen. 1996. Directed replacement.
In Proceedings of the 3~rd Annual Meeting of
the ACL, Santa Cruz, CA.

Laura Kataja and Kimmo Koskenniemi. 1988.
Finite-state description of Semitic morphol-
ogy: A case study of Ancient Akkadian. In
COLING'88, pages 313-315.

Martin Kay. 1987. Nonconcatenative finite-
state morphology. In Proceedings of the Third
Conference of the European Chapter of the
Association for Computational Linguistics,
pages 2-10.

George Anton Kiraz. 1996. Computing
prosodic morphology. In COLING'96, pages
664-669.

Kimmo Koskenniemi. 1983. Two-level mor-
phology: A general computational model for
word-form recognition and production. Pub-
lication 11, University of Helsinki, Depart-
ment of General Linguistics, Helsinki.

John J. McCarthy. 1981. A prosodic theory of
nonconcatenative morphology. Linguistic In-
quiry, 12(3):373-418.

57

