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Abstract 

This paper describes a formal approach and a 
practical learning method for automatically ac- 
quiring phonotactic constraints encoded as fi- 
nite automata. It is proposed that the use of 
different classes of syllables with class-specific 
intra-syl]abic phonotactics results in a more ac- 
curate hypothesis of a language's phonological 
grammar than the single syllable class tradi- 
tionally used. Intra-syllabic constraints are en- 
coded as acyclic finite automata with input al- 
phabets of phonemic symbols. These automata 
in turn form the transitions in cyclic finite 
automata that encode the inter-syllabic con- 
straints of word-level phonology. A genetic al- 
gorithm is used to automatically construct finite 
automata from training sets of symbol strings. 
Results are reported for a set of German syl- 
lables and a set of Russian bisyllabic feminine 
n o u n s .  

1 B a c k g r o u n d  

1.1 P h o n o t a c t i c  Descr ipt ion  

In recent years, phonology - -  partly under the 
influence of computational models - -  has moved 
away from procedural, rule-based approaches 
towards explicitly declarative statements of the 
constraints that hold on possible phonological 
forms. Such statements form sets of constraints 
that apply at a given level of description, and 
ill-formedness is often defined as constraint vi- 
olation. 

Phonotactic descriptions state the constraints 
that hold for possible sequences of phonetic or 
phonemic features or symbols, usually at the 
level of the syllable (more rarely for onset, peak 
and coda separately). Phonological words are 
defined as sequences of at least one syllable. 

A phonotactic description is typically thought 

to be adequate only if it generalises beyond the 
set of phonological forms that exist in a lan- 
guage to a superset of possible forms that also 
includes forms that could exist but do not. This 
distinction between non-existent but possible 
forms on the one hand, and non-existent and 
impossible forms on the other, is often described 
in terms of accidental vs. systematic gaps (e.g. 
Carson-Berndsen (1993), Gibbon (1991), and 
originally Chomsky (1964)). 

Carson-Berndsen (1993) lists five encoding 
schemes for phonotactic description at the sylla- 
ble level found in the literature: templates that 
merely state the number of consonants permit- 
ted in the onset and coda, distribution matrices 
with a separate matrix for each type of conso- 
nant duster, enhanced templates which add the 
notion of phoneme classes, feature-based phono- 
tactic networks using feature bundles, natu- 
ral classes, variables, defaults and underspeci- 
fication, and phrase-structure rules which have 
the same (potential) representative power as 
feature-based phonotactic networks. 

In the approach presented here, finite state 
automata (FSA) encoding is preferred over 
these other schemes, since they can an equiv- 
alently be represented by FSAs - -  what is de- 
scribed is always a regular language - -  in the 
most general sense of the term, and since finite- 
state machinery in itself does not have the dis- 
advantage of necessarily overgenerating forms 
(as do templates), or of excluding the possibil- 
ity of multi-tier description (as do most of the 
above). 

1.2 F S A s  and Phonotac t i c  Descr ipt ion  

FSAs have been used to encode syllable phono- 
tactics e.g. to reduce the search space for lexi- 
cal hypotheses (Carson-Berndsen, 1993) and to 
detect unknown words (Jusek et al., 1994) in 
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speech recognition, but are usually constructed 
in a painstaking manual process. The aim 
of the research presented here is to develop a 
completely automatic  method for constructing 
phonotactic descriptions. This requires a for- 
mal theoretical approach to the task as well as a 
practical automat ic  inference method.  The for- 
mer is outlined in the following section, while 
Section 3 describes the genetic algorithm devel- 
oped for the latter. The remainder of this sec- 
tion briefly summarises the standard FSA no- 
tation and definitions used in this paper as well 
as some non-standard usages. 

Following (Hopcroft and Ullman, 1979, p.17), 
• a deterministic finite-state automaton A is a 5- 
tuple (S, I ,  ~, so, F) ,  in which S is a finite set of 
states, I is a finite input a alphabet,  ~ is the 
state transition function mapping S x I to S, 
so E S is the initial state, and F C S is the set 
of final states. For every state s E S and every 
symbol a E I ,  ~(s, a) is a state. Ordinarily, the 
S-notation (sometimes ~) is also used for the 
input of strings x E I*, such that  ~ maps S × I* 
to S. The language L accepted by A, denoted 
L(A), is {xl~(s0 ,x) E F}.  

The transition function ~(s, a) is often repre- 
sented as a 2-dimensional state transition ma- 
trix, and (in contrast to most related research 
which uses sets of production rules of the form 
Sl - -  as2) this matrix is used to represent FSAs 
in the learning method described in Section 3. 

The term FSA is taken to refer to n-level 
transducers, where the input alphabet consists 
either of individual symbols a E I or of strings 
x E I*. Although only experiments for l-level 
transducers with labels a E I have been carried 
out so far, the approach will be extended to the 
general case, permit t ing multi-tier phonological 
description. Another  type of FSA is used which 
can be considered a further generalisation step, 
i.e. FSAs where the transitions are themselves 
FSAs. 

2 F o r m a l  A p p r o a c h  t o  t h e  
A u t o m a t i c  A c q u i s i t i o n  o f  
P h o n o t a c t i c s  

2.1 Sy l lab le  Classes  

The phonological word is usually defined as a 
sequence of syllables, in fact not taking this 
general approach would mean ignoring a ba- 
sic phonological regularity (the standard argu- 

meats in favour of the syllable are summarised 
e.g. in Blevins (Blevins, 1994)). Phonological 
description has, as a rule, described syllables in 
terms of a single structure consisting of smaller 
units of description (usually onset, peak and 
coda) on which certain constraints hold, and 
words as sequences of one or more occurrences 
of this structure, on which by assumption no 
further constraints hold. In many languages, 
however, word-initial and /or  word-final conso- 
nant clusters differ from other consonant clus- 
ters with regard to (co-)occurrence constraints. 
Goldsmith (1990, p. 107if) lists several exam- 
ples from different languages. This has resulted 
in the use of the notion of extrasyllabicity to 
account for 'extra'  consonantal segments at the 
beginnings and the ends of words. Similar prob- 
lems occur with regard to tonal and metrical 
regularities, where the first and/or  the last vow- 
els in words are often referred to as 'extratonal '  
and/or  'extrametrical '1. 

There are two problems here. The first is 
that  if a phonological theory assumes a sin- 
gle syllable class for a language and if the lan- 
guage has idiosyncratic word-initial and word- 
final phonotactics, then the set of possible words 
that  the theory hypothesises is necessarily too 
large, and includes words that  form systematic 
(rather than accidental) gaps in a language. 

The second problem is that  if extrasyllabic- 
ity is used to reduce the first problem, then 
the resulting theory of syllable s tructure fails 
to account for everything that  it is intended to 
account for, and is forced to integrate extrasyl- 
labic material directly at the word level. 

Furthermore, it is likely that  all languages 
display some phonological idiosyncracy at the 
beginnings and/or  ends of phonological words. 
For these reasons, it seems more practical to 
make the general assumption that  a word is of 
the form SISM*SF (where $1 stands for initial 
syllable, SM for medial syllable, and SF for final 
syllable 2. These basic syllable classes with dif- 
ferent associated sets of phonotactic constraints 
enable the integration at the syllable level of seg- 

1E.g. in the case of Kirundi, where words with an 
initial vowel have no tone assigned to the first vowel 
by word-level phonology, and in Central Siberian Yup'ik 
where final syllables are never stressed (Goldsmith, 1990, 
p. 29 and p.179 respectively). 

2I am grateful to John Goldsmith for advice on this 
matter. 
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Total  n u m b e r  of  word  forms:  408,603 

Uniquely occurring syllables: 

TOTAL:  9,851 
Initial: 3,851 
Medial: 3,858 
Final: 7, 119 
Monosyllabic words: 5,120 

Intersections: 

Initial 
Medial 
Final 

Medial Final Mono 
2,626 1,478 1,394 

1,946 1,187 
3,877 

Initial n Medial n Final : 1092 

Initial I'1 Medial n Final Cl Mono : 728 

Hypothesised sets of possible German words: 

length S + S ,  SM*SF (Smono) CELEX 
1 9,851 5,120 5,120 
2 9.7 * 10 7 2.74 * l0 T 54,754 
3 9.55 * 1011 1.05 * 1011 105,031 
4 9.41 * 1015 4.08.1014 90,278 

Figure 1: German syllable statistics (from 
CELEX). 

ments tradit ionally accounted for by extrasyl- 
labicity, and result in a more accurate hypothe- 
sis of a language's set of possible words. Mono- 
syllabic words - -  often highly idiosyncratic 3 - -  
may have to be accounted for separately, by a 
syllable class Smono. 

Consider as an example the syllable statistics 
from the German part  of the lexical database 
CELEX (Baayen et al., 1995) shown in Fig- 
ure 1. The statistics of set sizes and intersec- 
tions suggest tha t  4 syllable classes are needed 
for German (initial, medial, final and monosyl- 
lables). Hypotheses for possible German words 
based on a single syllable class (5 :+) would ar- 
rive at much larger word sets than  a hypothesis 
based on 4 syllable classes, and because it over- 
generates, the theory would not reflect some of 
the phonotact ic  constraints tha t  the statistics 
suggest hold for German.  

In addition to word-initial and word-final po- 

ZDafydd Gibbon, personal communication. 

sition, syllables may have idiosyncratic phono- 
tactics as a result of tone and stress e f f e c t s  4. 

It therefore seems natural  to propose language- 
specific syllable class systems where each 
class has its own set of phonotact ic  con- 
straints (intra-syllabic constraints) assigned to 
it. Words can then be defined as sequences 
of syllables, where language-specific 'syllable- 
tactics'  (inter-syllabic constraints) constrain the 
possible combinations of syllables from differ- 
ent classes, and hence the possible phonological 
forms of words s. 

2.2 Syllabic Sections 

For an automat ic  method of constructing 
phonotactic descriptions, the syllable as a unit 
of description is problematic in that  the meth- 
ods available for syllabification have recourse to 
morphological knowledge, an underlying, more 
abstract ,  underspecified level of description, 
and /o r  involve the notion of extrasyllabicity, 
and generally tend to require an amount  of 
prior knowledge of language-specific phonotac- 
tics that  is unacceptable where the aim is to 
discover these very constraints automatically.  

The main problems with syllabification arise 
from difficulties in assigning consonantal  seg- 
ments to exactly one syllable, or drawing unam- 
biguous syllable boundaries between adjacent 
codas and onsets. Locating syllable peaks, or 
dividing lines between vocalic and consonantal  
segments (distinguishable in the acoustic signal) 
is less problematic, and the approach to word 
segmentation proposed here involves utilising 
the relative ease with which peak boundaries 
can be located 6. This requires the introduc- 
tion of the te rm sy l l ab ic  s e c t i o n  to describe a 
grouping of phonological segments consisting of 
a peak and the consonantal material  between it 
and either the preceding or the following peak. 
While the resulting sections are not syllables in 
the traditional sense, they are syllabic in that  
they form single stress and tone-bearing units. 

4An example from Russian is that the vowel/o/only 
occurs in the peak of stressed syllables. 

5Stress and tone effects are ignored in this paper, as 
they are the subject of ongoing research. 

*Ambiguous material such as glides on peak bound- 
aries poses no problem as long as it is consistently 
grouped either with the peak or with the surrounding 
consonantal material. 
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2.3 L e a r n i n g  T a s k  

Phonological words are thus analysed in terms 
of intra-syllabic and inter-syllabic constraints as 
described in Section 2.1, while the traditional 
syllable is replaced by syllabic sections for rea- 
sons outlined in the last section. 

In some languages (such as German, e.g. in 
the analysis from (Jusek et al., 1994) shown in 
Figure 3) only peak and coda constrain each 
other, while in other languages (such as Rus- 
sia.n) only onset and peak are mutually con- 
strained (e.g. Halle, (1971)). The third possi- 
bility is that  both types of constraints occur in 
the same language. 

In order to allow for all three possibilities, 
the following approach is taken: each word 
in a given training sample is scanned and 
segmented in two ways, once by division before 
the peak and once after. This two-way word 
segmentation results in the following two 
analyses: 

Initial Medial  Final 
(or*) (VM+CM*)" (VF+cF ") 

+) 

In both cases, the initial and final sections 
together contain three subsections that  can be 
interpreted as the onset, peak and coda of a tra- 
ditional syllable, which makes it possible to use 
the same analysis to account for words of arbi- 
trary length, including monosyllables if appro- 
priate. This approach also has the advantage 
that  it can incorporate constraints that  cross 
the boundaries of traditional syllables, such as 
assimilation phenomena.  

For a given training sample of words, in the 
first scan, all initial syllabic sections resulting 
from the word segmentation described above are 
grouped together in data  set D1, all final sec- 
tions in data  set D3, and all remaining sections 
(regardless of how many result from each word) 
in D2. The same process results in data  sets 
D4-D6 for the second scan. The learning task 
is then to automatically construct an acyclic 
FSA on the basis of each data  set, resulting in 
six au tomata  A1-A6. Two cyclic au tomata  C1 
and C2 are then constructed (corresponding to 
the two scans) that  have the following structure, 

where A1 and A4 correspond to Ai, A2 and A5 
to AM and A3 and A6 to AF: 

A_M 

The final result is a hypothesis of the (word- 
level) phonological grammar  of a given lan- 
guage, based on a given training sample, en- 
coded by the intersection of C1 and C2 (i.e. a 
word has to be accepted by both in order to be 
considered well-formed). The present discussion 
is restricted to a basic syllable class system, but 
it is likely that  descriptive accuracy can be fur- 
ther improved by extending this basic system 
to include tone and stress effects. This would 
of course result in more complex au tomata  C1 
and C2 (trivially inferrable here). 

3 L e a r n i n g  M e t h o d  

3.1 B a c k g r o u n d  

T h e  G r a m m a t i c a l  I n f e r e n c e  P r o b l e m  
Generally, the problem considered here is that  
of identifying a language L from a fixed finite 
sample D = ( D + , D - ) ,  where D + C L and 
D -  N L  = 0 ( D -  may be empty).  If D -  is 
empty, and D + is structurally complete with 
regard to L, the problem is not complex, and 
there exist a number of reliable inference algo- 
rithms. If D + is an arbitrary strict subset of L, 
the problem is less clearly defined. Since any fi- 
nite sample is consistent with an infinite number 
of languages, L cannot be identified uniquely 
from D +. "...the best we can hope to do is to 
infer a grammar  that  will describe the strings 
in D + and predict other strings that  in some 
sense are of the same nature as those contained 
in D +'', (Fu and Booth, 1986, p.345). 

To constrain the set of possible languages 
L, the inferred grammar  is typically required 
to be as small as possible, in accordance with 
a more general principle of machine learning 
which holds that  a solution should be the short- 
est or the most economical description consis- 
tent with all examples, as e.g. suggested in 
Michalski (1983). However, the problem of find- 
ing a minimal grammar  consistent with a given 
sample D was shown to be NP-hard by Gold 
(1978). Li & Vazirani (1988), Kearns ~ Valiant 
(1989) and Pit t  & Warmuth (1993) have added 
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nonapproximability results of varying strength. 
In the special case where D contains ail strings 
of symbols over a finite alphabet I of length 
shorter than k, a polynomial-time algorithm can 
be found (Trakhtenbrot and Barzdin, 1973), but 
if even a small fraction of examples is missing, 
the problem is again NP-hard (Angluin, 1978). 

G e n e t i c  S e a r c h  Given the nature of the in- 
ference problem, a search algorithm is the obvi- 
ous choice. Genetic Algorithms (GAs) are par- 
ticularly suitable because search spaces tend to 
be large, discontinuous, multimodal and high- 
dimensional. The power of GAs as general- 
purpose search techniques derives partly from 
their ability to efficiently and quickly search 
large solution spaces, and from their robustness 
and ability to approximate good solutions even 
in the presence of discontinuity, multimodai- 
ity, noise and highdimensionality in the search 
space. The most crucial difference to other 
general-purpose search and optimisation tech- 
niques is that  GAs sample different areas of the 
search space simultaneously and are therefore 
able to escape local optima, and to avoid poor 
solution areas in the search space altogether. 

R e l a t e d  R e s e a r c h  A number of results have 
been reported for inference of regular and 
context-free grammars  with evolutionary tech- 
niques, e.g. by Zhou & Grefenstette (1986), 
Kammeyer & Belew (1996), Lucas (1994), 
Dupont (1994), Wyard (1989) and (1991). Re- 
sults concerning the inference of stochastic 
grammars with genetic algorithms have been 
described by Schwehm & Ost (1995) and Keller 

Lutz (1997a) and (1997b) describe. Much 
of this research bases inference on both nega- 
tive and positive examples, and no real linguis- 
tic data sets have been used. Genotype repre- 
sentation is always based on sets of production 
rules, and knowledge of the target grammar  is 
often utilised. Of these, Zhou & Grefenstette 
is the one approach directly comparable to the 
present method,  and some comparative results 
are given in Section 4. 

3.2 T h e  G e n e t i c  A l g o r i t h m  

The present algorithm 7 maintains a population 
of individuals represented by genotypes of vary- 

rThe algorithm described here was developed in col- 
laboration with Berkan Eskikaya, School of Cognitive 
and Computing Sciences, University of Sussex. 

ing length which are initialised to random gene 
values and length. In the iteration typical of 
GAs, individuals are (1) evaluated according 
to the fitness function, (2) selected for repro- 
duction by a process that  gives fitter individ- 
uals a higher chance at reproduction, (3) off- 
spring are created from two selected individu- 
als by crossover and mutation, and (4) weaker 
parents are replaced by fitter offspring. These 
steps are repeated until either the population 
converges (when the genotypes in the popula- 
tion have reached a degree of similarity beyond 
which further improvement is impossible), or 
the nth generation is reached. 

The remainder of this section outlines the fit- 
ness function (corresponding to the evaluation 
function common to all search techniques), and 
describes how generalisation over the training 
set is achieved. Full details of the GA can be 
found in Belz ~ Eskikaya (1998). 

F i t n e s s  E v a l u a t i o n  The fitness of au tomata  
is evaluated according to 3 fitness criteria that  
assess (C1) consistency of the language covered 
by the automaton with the data  sample, (C2) 
smallness and (C3)general isat ion to a super- 
set of the data sample. For the evaluation of 
C1, the number of strings in the data  sam- 
ple that  a given automaton parses are counted. 
Partial parsing of prefixes of strings is also re- 
warded, because the acquisition of whole strings 
by the au tomata  would otherwise be a mat ter  of 
chance. Size (C2) is assessed in terms of num- 
ber of states, the reward being higher the fewer 
states an FSA has. This criterion serves as an 
additional pressure on au tomata  to have few 
states, although the number of states and, more 
explicitly, the number of transitions is already 
kept low by crossover and mutation.  General- 
isation (C3) is directly assessed only in terms 
of the size of the language covered by an au- 
tomaton,  where the reward is higher the closer 
language size is to a specified target size (ex- 
pressing a given degree of generalisation). 

When the goodness of a candidate solution 
to a problem, or the fitness of an individual, is 
most naturally expressed in terms of several cri- 
teria, the question arises how to combine these 
criteria into a single fitness value, or, alterna- 
tively, how to compare several individuals ac- 
cording to several criteria, in a way that  accu- 
rately reflects the goodness of a candidate solu- 
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tion. In the present context, trial runs showed 
that the structural and functional properties of 
solution automata are very directly affected by 
each of the three fitness criteria described above. 
Therefore, it was most natural to normalise the 
three criteria to make up one third of the fit- 
ness value each, but to attach weights to them 
which can be manipulated (increased and de- 
creased) to affect the structural and functional 
characteristics of resulting automata. 

Raising the weight on a fitness criterion (in- 
creasing its importance relative to the other cri- 
teria) has very predictable effects, in that the 
criterion with the highest weight is most reli- 

a b l y  satisfied. Lowering the weight on C3 to- 
wards 0 has the result that language size be- 
comes unpredictable, while lowering the weight 
on C2 simply increases the average size of the 
resulting automata.  The weight on C1 tends 
to have to be increased with increasing sample 
size. 

G e n e r a l i s a t i o n  There are two main parame- 
ters that influence the degree of generalisation 
a given population achieves: the fitness criteria 
of size (C2) and degree of overgeneration (C3). 
C2 encourages automata to be as small as pos- 
sible, which - -  in the limit - -  leads to universal 
automata that parse all strings x E I*. This is 
counterbalanced by C3 which limits the number 
of strings not in the training set which automata 
are permitted to overgenerate. To control the 
quality of generalisation, transitions that are 
not used by any member of the training set are 
eliminated, because automata would otherwise 
accept arbitrary strings in addition to training 
set members to make up the required target lan- 
guage size. 

The overall effect is that a range of general- 
isation can be achieved over the training set, 
from precise training set coverage towards uni- 
versal automata,  while meaningless overgenera- 
tion of strings is avoided. When L(A) = train- 
ing set, only symbols a E I with identical distri- 
butions in the data set can be grouped together 
on the same transition between 2 states. As 
the required degree of generalisation increases, 
symbols with the most similar distributions are 
grouped together first, followed by less similar 
o n e s .  

Figure 2 shows an example of what effects 
can be achieved in the limit. The bottom dia- 

gram is part of the best automaton discovered 
for the second half of the German reduced syl- 
lable set, shown in Figure 4. Here, the degree of 
overgeneration was set to 1 (i.e. L(A) = train- 
ing set), and the size criterion C2 had a small 
weight. This resulted in generalisation being 
completely absent, i.e. the automaton generates 
only nasal/consonant combinations that  actu- 
ally occur in the data set. 

The top diagram in Figure 2 shows the effect 
of having a large weight on the size criterion, 
and increasing target language size. The nasals 
were consistently grouped together under these 
circumstances, because there is a higher de- 
gree of distributional similarity (in terms of the 
sets of phonemes that can follow) between m, 
n,  N than between these and other phonemes. 
This achieves the effect that strings not in the 
data set can be generated in a linguistically use- 
ful way, but also may have the side-effect that 
rarer phoneme combinations (m[p:f], n [ ' t s ] ,  
etc.) are not be acquired, an effect that is de- 
scribed in (Belz, 1998). 

4 R e s u l t s  

This section summarises the results that have 
been achieved for complete presentation of data 
for finite languages (Section 4.1), and incom- 
plete presentation of data for finite (Section 4.3) 
and infinite languages (Section 4.2). 

The last example (Section 4.3) illustrates how 
the GA method can be used in conjunction 
with the formal approach described in Section 2 
to automatically discover word-level phonotac- 
tic descriptions from raw data sets of phoneme 
strings. 

4.1 G e r m a n  Syllables  

Here, the aim was to discover an FSA that 
accepts a known finite language precisely, so 
that (following preliminary small-scale tests) 
the efficiency of the algorithm could be assessed 
against a medium-sized known language. The 
data set was generated with the finite-state au- 
tomaton used by 3usek et al. (1994) to represent 
the phonotactics of reduced German syllables 
(shown in Figure 3, double circles indicate fi- 
nal states). This automaton accepts a language 
of around 11,000 syllables, and because a train- 
ing set of this size is computationally infeasible, 
the automaton was divided in half (where the 
first half covers phonemes preceding the syllable 
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Figure 2: Effect of generalisation on phoneme groupings. 

peak, and the second half covers the remainder), 
a n d  the corresponding strings were used as sep- 
arate training sets (the training set for the first 
half contained 127 strings, that for the second 
82). 

Results are summarised in Table 1, and the 
best automaton that was found is shown in Fig- 
ure 4. Algorithms based on Hopcroft & Ullman 
(1979, equivalence proofs pp. 26-27 and 22- 
23, minimisation algorithm p.70) to eliminate 
e-transitions, determinise and then minimise 
the original manually constructed automaton 
showed that the automatically discovered FSAs 
are the minimal deterministic s equivalents of 
the two halves of the original automaton, and 
therefore represent optimal solutions. 

These results show that the GA is able to lo- 
cate optimal solutions (although it is not guar- 
anteed to find them), and that once an optimum 
has been found, the population also converges 
on it, rather than on another, suboptimal solu- 
tion. 

4.2 Some Non-linguistic Examples 
In order to assess the performance of the GA 
on known infinite languages, and to compare 
it to another GA-based technique with similar 
aims, experiments were carried out for four pre- 
viously investigated learning tasks (Zhou and 
Grefenstette, 1986). Task 1 was to discover 
the language (10)', Task 2 was 0"1"0"1", Task 
3 was "all strings with an even number of 0's 
and an even number of l 's",  and Task 4 was 
"all strings such that the difference between the 
number of l 's and 0's is 3 times n (where n is 
an integer)". Zhou & Grefenstette used both 

SThe 2-dimensional transition matrices that are used 
as genotypes encode only deterministic FSAs. 

Target found Z&G 
Task 'L' 'S' at generation Trials 

Best Avg 
1 4 2 1 2 980 
2 7 161 23 29 1027 
3 6 42 87 110 2820 
4 4 10 69 90 2971 

Table 2: Results for non-linguistic examples. 

positive and negative examples, and moreover 
had to "modify the training examples to make 
the genetic algorithm 'understand' what a per- 
fect concept should be" (p.172). The present 
approach used positive data only, consisting of 
all strings up to a certain length L, resulting in 
datasets of varying size S. L was incremented 
from 0 until the first value was found for which 
5 random runs produced the target automaton 
in under 200 generations. 

In all four cases, the task was to generalise 
over the data set, by discovering the recursive 
nature of the target language from a small sub- 
set of examples. Results are summarised in Ta- 
ble 2. Zhou & Grefenstette measure the amount 
of time it takes for a target automaton to be dis- 
covered in terms of 'number of trials', but fail 
to explain exactly what this refers to. It can 
probably be assumed to refer to the number of 
generations, as this is the way genetic search 
performance is usually measured. Given this in- 
terpretation, the present method outperformed 
the earlier approach in all cases. However, the 
main point is that the method described here 
discovers the target FSAs without reference to 
negative examples or manipulation of the data 
samples. This second set of results shows that 
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Front 

Back 

Consistency Overgeneration 
(Number of strings) 

Best 0 
Average 

Best 
Average 

127(100%) 
127(100%) 
82(100%) 
82(100%) 

States 

1 2.6 
0 9 
0 9.7 

Transitions Best found 
at generation 

36 78 
34.0 93 
61 360 

61.5 780 

Table 1: Results for set of German reduced syllables. 
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Figure 3: Manually constructed automaton for German reduced syllables. 

the GA can find optimal solutions for infinite 
languages. 

4.3 R u s s i a n  D a t a  

For the third experiment the words in a data  
set of 450 bisyllabic feminine Russian nouns 
were divided into sections in the way described 
in Section 2.3. This resulted in five learning 
sets D1-D5 (because the set of final consonants 
is empty in this training set). For each of 
the five learning sets, five au tomata  were in- 
ferred that  precisely generate the learning set. 
On the basis of these, the degree of generalisa- 
tion that  could be expected given the training 
sets was estimated,  and five au tomata  A1-A5 
generalising to between 1.5 and 2.5 times the 
size of their respective learning sets were then 
evolved. Finally, two au tomata  C1 and C2 were 
constructed to encode inter-syllabic constraints, 
with labels A1-A5 representing the au tomata  
that  encode intra-syllabic constraints: 

The resulting phonological grammar  hypoth- 

esis (the intersection of the two au tomata  en- 
coding inter-syllabic constraints) accepted all 
words from the original learning set of 450 Rus- 
sian bisyllabic feminine nouns, generalised to a 
total set of words of around 10 times this size, 
and accepted ca. 85% of nouns from a testing set 
of 200 different such nouns. Generalisation was 
almost always meaningful in that  the greater 
the similarity between two phonemes (in terms 
of the phoneme sequences that  can follow them),  
the higher was the hkelihood that  they were 
grouped together on the same transition. 

5 C o n c l u s i o n  a n d  F u r t h e r  R e s e a r c h  

This paper introduced a formal theoretical ap- 
proach to the automatic  acquisition of phono- 
tactic constraints encoded as finite-state au- 
tomata ,  and described a genetic-search method  
for the construction of such automata .  Results 
show that  the method is reliably successful in 
constructing FSAs that  accurately cover train- 
ing samples and allow a range of generalisa- 
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) 

Figure 4: Best automatically discovered automata for German reduced syllables. 

tion over the learning samples. The approach 
to phonotactic description involving several syl- 
lable classes that is proposed in this paper is 
likely to enable a more accurate account of pos- 
sible phonological forms in a language than ap- 
proaches that assume a single syllable class. Fu- 
ture research will focus on developing word-level 
phonotactic descriptions for larger datasets of 
German and Russian words, and extending the 
approach to descriptions incorporating tone and 
stress effects. 
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