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Incorporating external information during a learn- 
ing process is expected to improve its efficiency. We 
study a method for incorporating noun-class infor- 
mation, in the context of learning to resolve Prepo- 
sitional Phrase Attachment (PPA) disambiguation. 
This is done within a recently introduced architec- 
ture, SNOW, a sparse network of threshold gates uti- 
lizing the Winnow learning algorithm. That archi- 
tecture has already been demonstrated to perform 
remarkably well on a number of natural language 
learning tasks. 

The knowledge sources used were compiled from 
the WordNet database for general linguistic pur- 
poses, irrespective of the PPA problem, and are be- 
ing incorporated into the learning algorithm by en- 
riching its feature space. We study two strategies 
of using enriched features and the effects of using 
class information at different granularities, as well 
as randomly-generated knowledge which serves as a 
control set. 

Incorporating external knowledge sources within 
SNOW yields a statistically significant performance 
improvement. In addition, we find an interesting 
relation between the granularity of the knowledge 
sources used and the magnitude of the improvement. 
The encouraging results with noun-class data pro- 
vide a motivation for carrying out more work on 
generating better linguistic knowledge sources. 

1 I n t r o d u c t i o n  

A variety of inductive learning techniques have been 
used in recent years in natural language process- 
ing. Given a large training corpus as input and 
relying on statistical properties of language usage, 
statistics-based and machine learning algorithms are 
used to induce a classifier which can be used to re- 
solve a disambiguation task. Applications of this 
line of research include ambiguity resolution at dif- 
ferent levels of sentence analysis: part-of speech tag- 
ging, word-sense disambiguation, word selection in 
machine translation, context-sensitive spelling cor- 
rection, word selection in speech recognition, and 
identification of discourse markers. 

Many natural language inferences, however, seem 
to rely heavily on semantic and pragmatic knowl- 
edge about the world and the language, that is not 
explicit in the training data. The ability to incor- 
porate knowledge from other sources of information, 
be it knowledge that is acquired across modalities: 
prepared by a teacher or by an expert, is crucial for 
going beyond low level natural language inferences. 

Within Machine Learning, the use of knowledge is 
often limited to that of constraining the hypothesis 
space (either before learning or by probabilistically 
biasing the search for the hypothesis) or to tech- 
niques such as EBL (DeJong, 1981; Mitchell et al., 
1986; DeJong and Mooney, 1986) which rely on ex- 
plicit domain knowledge that can be used to explain 
(usually, prove deductively) the observed examples. 

The knowledge needed to perform language- 
understanding related tasks, however, does not exist 
in any explicit form that is amenable to techniques of 
this sort, and many believe that it will never be avail- 
able in such explicit forms. An enormous amount 
of useful "knowledge" may be available, though. 
Pieces of information that may be found valuable in 
language-understanding related tasks may include: 
the root form of a verb; a list of nouns that are in 
some relation (e.g., are all countries) and can thus 
appear in similar contexts; a list of verbs that can 
be followed by a food item; a list of items you can 
see through, things that are furniture, a list of dan- 
gerous things, etc. 

This rich collection of information pieces does not 
form any domain theory to speak of and cannot 
be acquired from a single source of information. 
This knowledge is noisy, incomplete and ambiguous. 
While some of it may be acquired from text, a lot 
if it may only be acquired from other modalities, 
as those used by humans. We believe that integra- 
tion of such knowledge is essential for NLP to attain 
high-level natural-language inference. 

Contrary to this intuition, experiments in text re- 
trieval and natural language have not shown much 
improvement when incorporating information of the 
kind humans seem to use (Krovetz and Croft, 1992; 
Kosmynin and Davidson, 1996; Kar0v and Edelman, 
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1996; Junker, 1997). The lack of significant improve- 
ment in the presence of more "knowledge" may be 
explained by the type of-knowledge used, the way 
it is incorporated, and the learning algorithms em- 
ployed. 

In the present paper we study an effective way of 
incorporating incomplete and ambiguous informa- 
tion sources of the abovementioned type within a 
specific learning approach, and focus on the knowl- 
edge sources that can be effective in doing so. The 
long-term goal of our work is understanding (1) what 
types of knowledge sources can be used for perfor- 
mance improvement, and at what granularity level 
and (2) which computational mechanisms can make 
the best use of these sources. 

In particular, the effect of noun-class informa- 
tion on learning Prepositional Phrase Attachment 
(PPA, cf. Sec. 2) is studied. This problem is stud- 
ied within SNO IF, a sparse architecture utilizing an 
on-line learning algorithm based on Winnow (Little- 
stone, 1988). That algorithm has been applied for 
natural language disambiguation tasks and related 
problems and perform remarkably well (Golding and 
Roth, 1996; Dagan et al., 1997; Roth and Zelenko, 
1998). 

The noun-class data was derived from the Word- 
Net database (Miller, 1990) which was compiled for 
general linguistic purposes, irrespective of the PPA 
problem. We derived the classes at different granu- 
larities. At the highest level, nouns are classified 
according to their synsets. The lower levels are 
obtained by successively using the hypernym rela- 
tion defined in WordNet. In addition, we use the 
Corelex database (Buitelaar, 1998). Consisting of 
126 coarse-grained semantic types covering around 
40,000 nouns, Corelex defines a large number of sys- 
tematic polysemous classes that are derived from an 
analysis of sense distributions in WordNet. 

The results indicate that a statistically significant 
improvement in performance is achieved when the 
noun-class information is incorporated into the data. 
The absolute performance achieved on the task is 
slightly better than other systems, although it is still 
significantly worse than the performance of a human 
subject tested on this task. The granularity of the 
class information appears to be crucial for improving 
performance. The addition of too many overlapping 
classes does not help performance, but with fewer 
classes - the improvement is significant. 

In addition to semantic information, using classes 
carries with it some structural information. A class 
feature may be viewed as a disjunction of other fea- 
tures, thereby increasing the expressivity of the hy- 
pothesis used for prediction. In order to control for 
the possibility that the performance improvements 
seen are due mainly to the structural information, 
we generated random classes. Some of these had 
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exactly the same distribution over the original fea- 
tures as do the semantic classes. Surprisingly, we 
find that a non-negligible part of the improvement 
is due merely to the structural information, although 
most of it can be attributed to the semantic content 
of the classes. 

Along with promoting work on the incorporation 
of problem-independent incomplete knowledge into 
the learning process, the encouraging results with 
incorporating noun-class data provide a motivation 
for carrying out more work on generating better lin- 
guistic knowledge sources. 

The paper is organized as follows: we start by pre- 
senting the task, PPA and the SNOW architecture 
and algorithm. In section 4 we describe the classes 
and present the main experiments with the semantic 
and random classes. Section 5 concludes. 

2 P r e p o s i t i o n a l  p h r a s e  a t t a c h m e n t  

The PPA problem is to decide whether the preposi- 
tional phrase (PP) attaches to the direct object NP 
as in Buy the car with the steering wheel (n- 
attachment) or to the verb phrase buy, as in Buy 
the car with his money (v-attachment). PPA is 

• a common cause of structural ambiguity in natural 
language. 

Earlier works on this problem (Ratnaparkhi et al., 
1994; Brill and Resnik, 1994; Collins and Brooks, 
1995; Zavrel et al., 1997) represented an example by 
the 4-tuple <v, nl, p, n2> containing the VP head, 
the direct object NP head, the preposition, and the 
indirect object NP head respectively. The first ex- 
ample in the previous paragraph is thus represented 
by <buy, car, with, wheel>. 

The experiments reported here were done using 
data extracted by Ratnaparkhi et al. (1994) from 
the Penn Treebank (Marcus et al., 1993) WSJ cor- 
pus. It consists of 20801 training examples and 3097 
separate test examples. 

The preposition of turns out to be a very strong 
indicator for noun attachment. Among the 3097 test 
examples, 925 contain the preposition of; in all but 
9 of these examples, of has an n attachment. 

Since almost all (99.1%) of these test cases are 
classified correctly regardless of the SNOW archi- 
tecture or parameter choice, we omit the examples 
which include of from the test set, as they obscure 
the real performance. Only the last table will in- 
clude those examples, so results may be compared 
with other systems evaluated on this data set. 

In summary, our data set consists of 15224 train- 
ing examples, (5338 tagged n, 9886 tagged v) and 
2172 test examples (910 and 1262, resp.). This leads 
to a baseline performance of 58.1% if we simply pre- 
dict according to the most common attachment in 
the training corpus: v. (Simply breaking this down 
to different prepositions does not yield better re- 
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! suits.) For reference, assuming a binomial distribu- 

tion, the standard deviation on the test set is 0.85%. 
That figure is a crude estimator of the standard de- 
viation of the results. 

A study of the possible features which may be ex- 
tracted from the data, shows that the best feature 
set is that composed of all the possible conjunctions 
of words in the input 4-tuple. In addition, lemmatiz- 
ing all the nouns and verbs yielded a further perfor- 
mance improvement. In the following section we will 
use the lemmatized data "lemma" as a basic set. 

3 The S N O W  Approach 
The SNOW architecture is a network of threshold 
gates. Nodes in the first layer of the network repre- 
sent the input features; target nodes are represented 
by nodes in the second layer. Links from the first to 
the second layer have weights; each target node is 
thus defined as a (linear) function of the lower level 
nodes. 

For example, in PPA, the two target nodes repre- 
sent n and v attachments. Each target node can be 
thought of as an autonomous subnetwork, although 
they all feed from the same input. The subnetworks 
are sparse in that a target node needs not be con- 
nected to all nodes in the input layer. For example, 
it is not connected to input nodes (features) that 
were never active with it in the same example, or 
it may disconnect itself from some of the irrelevant 
inputs while training. 

Learning in SNOW proceeds in an on-line fash- 
ion I. Every example is treated autonomously by 
each target subnetwork, viewed as a positive exam- 
ple of a few subnetworks and a negative example for 
the others. In PPA, examples labeled n (v, resp.) 
are treated as positive for the n (v) target node and 
as negative for the v (n) target node. Thus, every 
example is used once by all the nodes to refine their 
definition, and then discarded. At prediction time, 
given an input which activates a subset of the input 
nodes, each subnetwork evaluates the total activ- 
ity it receives. Subnetworks compete on determin- 
ing the final prediction; the one which produces the 
highest activity gets to determine the prediction. 

In general, a target node in the SNOW architec- 
ture is represented by a collection of subnetworks, 
which we call a cloud, but in the application de- 
scribed here we have used cloud size of I so this will 
not be discussed here. 

The Winnow local mistake-driven learning algo- 
rithm (Littlestone, 1988) is used at each target node 
to learn its dependence on the input nodes. Winnow 
updates the weight on the links in a multiplicative 
fashion. We do not supply the details of the algo- 
rithm and just note that it can he implemented in 

1 In the experimental study we do not update the network 
while testing. 

such a way that the update time of the algorithm 
depends on the number of active features in the ex- 
ample rather than the total number of features in 
the domain. The sparse architecture along with the 
representation of each example as a list of active 
features is reminiscent of infinite attribute models 
of Winnow (Blum, 1992). 

Theoretical analysis has shown that multiplica- 
tive update algorithms, like Winnow, have excep- 
tionally good behavior in the presence of irrelevant 
attributes, noise, and even a target function chang- 
ing in time (Littlestone, 1988; Littlestone and War- 
muth, 1994; Herbster and Warmuth, 1995). In par- 
ticular, Winnow was shown to learn efficiently any 
linear threshold function (Littlestone, 1988), with a 
mistake bound that depends on the margin between 
positive and negative examples. The key feature 
of Winnow is that its mistake bound grows linearly 
with the number of relevant attributes and only log- 
arithmically with the total number of attributes n. 
In particular, Winnow still maintains its abovemen- 
tioned dependence on the number of total and rele- 
vant attributes even when no linear-threshold func- 
tion can make a perfect classification (Littlestone, 
1991; Kivinen and Warmuth, 1995). 

Even when there are only two target nodes and 
the cloud size is 1, the behavior of SNO Wis different 
from that of pure Winnow. While each of the target 
nodes is learned using a positive Winnow algorithm, 
a winner-take-all policy is used to determine the pre- 
diction. Thus, we use the learning algorithm here in 
a more complex way than just as a discriminator. 
One reason is that the SNOW architecture, influ- 
enced by the Neuroidal system (Valiant, 1994), is 
being used in a system developed for the purpose of 
learning knowledge representations for natural lan- 
guage understanding tasks, and is being evaluated 
on a variety of tasks for which the node allocation 
process is of importance. 

We have experimented extensively with various 
architectures of SNOWon the PPA problem but can 
present in this paper only a small part of these ex- 
periments. The best performance, across a few pa- 
rameter sets and data, is achieved with a full archi- 
tecture. In this case we initially link a target node 
to a/l features which occur in the training (with a 
constant initial value), and only then start training. 
Since training in SNOW is always done in an on-line 
fashion - each example is used only once for updating 
the weights, and only if a mistake on it was made. 

4 I n c o r p o r a t i n g  S e m a n t i c  
K n o w l e d g e  

In this section we describe the effect of incorporating 
semantic knowledge on learning PPA with SNOW. 
The information sources are briefly described in 
Sec. 4.1, the experimental results are reported in 
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Sec. 4.2, and results with random classes, used as 
a control set, are presented in Sec. 4.3. 

Winnow has three parameters: a threshold 0 and 
two update parameters, a promotion parameter a > 
1 and a demotion parameter 0 < ~ < 1. The experi- 
ments reported here were made using the full SNOW 
architecture, with/3 = 0.85, a = ~, 0 = 1, and all 
the weights initialized to 0.1. 

4.1 Semantic  Data  Sources 

The semantic data sources specify for each noun a 
set of semantic classes. These classes result from a 
general linguistic study, hence not biased so as to 
present data in the context of PPA. In addition, the 
vocabularies which the semantic data cover overlaps 
our train and test data vocabulary only partially. 
Table 1 shows a summary of the class data. The 
knowledge sources which were incorporated are: 

WordNet (WN):  WordNet-l.6 noun class infor- 
mation was used at various granularity levels. In the 
highest level, denoted by WN1, nouns are classified 
according to their synsets. The lower levels are ob- 
tained by successively using the hypernym relation 
defined in WordNet. Thus, WN2 is obtained by re- 
placing each WN1 synset with the set of hypernyms 
to which it points, WN3 - by performing a similar 
process on the WN2 hypernyms, etc. We have used 
WN1, WN5, WN10, and WN15, Table 1 lists prop- 
erties of these datasets. 

CoreLex(CL): The Corelex database (Buitelaar, 
1998) was derived from WordNet as part of a linguis- 
tic research attempting to provide a unified approach 
to the systematic polysemy and underspecification 
of nouns. Systematic polysemy is the phenomena 
of word senses that are systematically related and 
therefore predictable over classes of lexical items. 
The thesis behind this data base is that acknowl- 
edging the systematic nature of polysemy allows one 
to structure ontologies for lexical semantic process- 
ing that may help in generating more appropriate 
interpretations within context. The data base es- 
tablishes an ontology and semantic database of 126 
semantic types, covering around 40,000 nouns that 
were derived by an analysis of sense distributions in 
WordNet. 

It is clear that with such a coarse-grained ontol- 
ogy, a lot of information is being lost. This is a 
many-to-one mapping in which many words fall into 
a class due only to one of their senses, and there 
are cases of incomplete and inaccurate information. 
For example, observatory falls into the class of 
ax ' t i fact  s tate;  words like dog, l i on ,  t ab le  are 
missing from the vocabulary. 

Format Features (FF): These are two classes 
into which one can classify nouns using simple 
heuristics. The first consists of numbers (e.g., 
1, 2, 100, three, million), and the second contains 
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proper nouns. Each noun beginning with a capital 
letter was classified as a proper noun, which clearly 
gives a very crude approximation. 

4.2 Exper imenta l  Resul ts  
In this section we present results of incorporating 
various semantic data and their combinations. Since 
the classes were not compiled specifically for the 
PPA problem, some of the class information may 
be irrelevant or even slightly misleading. The re- 
sults provide an assesment of the relative relevance 
of each knowledge source. 

When a noun belongs to a class, one may replace 
the explicit noun feature by its classes. Using the 
classes in addition to the original noun (Brill and 
R~nik, 1994; Resnik, 1992; Resnik, 1995)seems, 
however, a better strategy. Consider, for example, 
the feature <prep,indirect-object=n2>. Suppose 
the noun n2 belongs to two classes c l  and c2. The 
class information will be incorporated by creating 
two additional features: <prep,indirect-object=c 1 > 
and <prep,indirect-object=c2>, thereby enhancing 
the feature set without losing the original informa- 
tion. As mentioned above, giving up the original 
feature yielded degraded results. 

The results of adding features from a single knowl- 
edge source, presented in Table 2, show that FF 
have yielded small improvements over the l e n a  set, 
within the noise-level; the WN1 synset information 
caused a slight degradation, and the CL and other 
WN knowledge resulted in a significant improvement 
over the lemma case. 

An important property of the CL class informa- 
tion is that each CL class defines a distinct set of 
nouns, as each noun belongs to one CL class. The 
synset (WN1) distribution differs greatly from that 
of the CL classes; each noun may belong to a few 
synsets - allowing more potential conflicts. That 
property of the synset distribution gives rise to the 
performance degradation. 

Another important difference between CL and 
WN1 classes is their granularity. There are around 
60000 synsets, whereas there are only 126 CL classes. 
The finer synset granularity means that a synset car- 
ries less information; thus, the CL classes add richer 
disjunctions than WN synsets do. The results of CL, 
WNS, WN10, and WN15 improve over the FF set, 
these results are within the noise level (cf. Sec. 2). 

The FF set covers relatively few nouns, hence the 
improvement it yields is quite small. The Word- 
Net and CL vocabularies do not include those begin- 
ning with a capital as well as numbers, therefore the 
WN and CL knowledge may be augmented with the 
FF information without loss of consistency. Never- 
theless, since each number-word (e.g., "one", "two", 
etc.) belongs to a different synset, augmenting WNI 
with a numeric class is not expected to be very effec- 
tive because the words "one", "two", and "1" will all 
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nouns in train 6 5 3 3  2025  3 0 8 3  4 0 1 2  4 0 1 2  4012 4ulz 
nouns in test 1805 150 1 1 0 7  1 5 5 9  1 5 5 9  1559 1559 
nouns in both 1452 83 902 1 3 2 2  1 3 2 2  1322 1322 
classes in train - 2 110 10029 521 33 9 
classes in test - 2 92 5216 353 28 9 
classes in both - 2 91 4863 343 28 9 

Table 1: Sizes and coverage of the noun vocabulary and classes in the various noun-class sources. 
leftmost column shows the noun vocabulary size and coverage for the train and test data. 

The 

58.1 77.4 77.8 78.6 77.2 79.1 78.5 78.6 

Table 2: Learning results  for a single knowledge source: Baseline refers to simply predicting according 
to the most common attachment in the training corpus, namely (v). :temma is our basic feature set, as in Sec. 2 
The other columns present the prediction accuracy when adding each of our knowledge sources separately. 

belong to different classes: synset(one), synset(two), 
and FF(is-number), respectively. 

As a measure of numeric class assignment, we have 
examined the words: "one", "two", "three", "ten", 
"hundred" and "million"; only CL, WN3 and sub- 
sequent WN knowledge sources assign the same hy- 
pernym to these words, therefore we have augmented 
these sources. 

The results are presented in Table 3, comparison 
with Table 2 shows that augmenting with FF knowl- 
edge yielded a slight improvement only for the CL 
set. There may be two explanations for that: (i) 
the CL classes are more appropriate for the PPA 
problem than the WN hypernyms, therefore the FF 
information fit with less conflicts. (ii) The coverage 
of CL nouns is about 70% that of WN for the test 
data (cf. Table 1), therefore there axe more examples 
in which the CL and FF classes do not conflict. This 
issue requires further study. 

4.3 Comparison with R a n d o m  Classes 

Adding semantic class information improved SNOW 
learning results. However, adding class information 
is equivalent to adding disjunctions of the original 
features and, taldng aside the semantic origin of the 
classes, the mere introduction of disjunctions en- 
riches the knowledge representation and may yield a 
performance improvement. 

The motivation for using semantic classes goes, 
however, beyond this structural information. Nouns 
which haven't appeared in the training data may 
appear in the test data under a known class; such 
nouns will thus be handled based on the experience 
gathered for the class. 

In this section we attempt to isolate the semantic 
content of the classes from their disjunctive mean- 
ing. Random classes, which mimic in different as- 
pects the structure of the semantic CL classes, were 

constructed. Comparing the results obtained with 
these classes with the results using CL classes, one 
can see the influence of the semantic aspect of CL 
classes. Only some of the randomization strategies 
used axe described here, these are: 
[CL200:] 200 classes uniformly distributed over CL 
n o u n s .  

[CL126:] 126 classes uniformly distributed over CL 
nouns. Here the number of classes in CL is main- 
tained. 
[CL-PERM:] A permutation of CL nouns among 
their classes. This random structure preserves the 
original class distribution of CL. 

The random class results, shown in Table 4, in- 
dicate that indeed some of the gain in using classes 
may be due to the structural additions. However, 
the improved performance introduced by semanti- 
cally meaningful CL classification is a lot more sig- 
nificant. 

4.4 Comparison with o the r  works 

This section presents a comparison of our work with 
other works on the PPA task. In order to ob- 
tain a fair comparison we have tested our system 
on the complete data set, including the preposi- 
tion of (cf. Sec. 2). The results are compared 
with a maximum-entropy method (Ratnaparkhi et 
al., 1994), transformation-based learning (TBL, Brill 
and Resnik (1994)), an instantiation of the back- 
off estimation (Collins and Brooks, 1995) and a 
memory-based method (Zavrel et al., 1997). All 
these works have used the same train and test data 
set. Table 5 presents the comparison. 

In all cases, the quoted figures axe the best results 
obtained by the authors; with the exception of the 
Brill and Resnik (1994) result, which was obtained 
by Zavrel et al. (1997) using the same method. Orig- 
inally, TBL was evaluated by Brill and Resnik (1994) 
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Bas~l ine l lemma[  +CL+FF [ W N 5 + F F I W N 1 0 + F F  [ WN15+FF [ 
58.1 77.4 79.1 78.8 78.1 77.9 

Table 3: Learning resul ts  for combina t ions  of  FF and other  sources:  The four leftmost columns 
indicate the classes added to our basic feature set, 1emma. 

I Accuracy [ lemma 77.9 ] 77.4 ] lemma+CL I I l 
Table 4: R a n d o m  Classes: Results with various randomizations strategies. 

on a smaller data set. 
Although all systems have used the same data, 

they have not used similar feature sets. Both Collins 
and Brooks (1995) and Zavrel et al. (1997) have en- 
hanced the feature generation in various ways; as de- 
scribed in this paper, this was also done for SNOW. 

5 Conclusion 
Over several decades, research on high level infer- 
ences such as natural language understanding has 
emphasized programmed systems, as opposed to 
those that learn. However, experience in AI research 
over the past few decades shows that it is unlikely 
that hand programming or any form of knowledge 
engineering will generate a robust, non-brittle rea- 
soning system in a complex domain. 

An approach that puts learning at the center of 
high level inferencing (Khardon and Roth, 1997; 
Valiant, 1995} should suggest ways to make progress 
in massive knowledge acquisition and, in particular, 
ways of incorporating incomplete and noisy knowl- 
edge from various information sources such as dif- 
ferent modalities, teachers or experts, into a highly 
scalable learning process. 

The present work made preliminary steps in this 
direction. We have studied ways to incorporate ex- 
ternal knowledge sources into a learning algorithm 
in order to improve its performance. This inves- 
tigation was done within the S N O W  architecture, 
a sparse network of threshold gates utilizing the 
Winnow on-line learning algorithm. The linguistic 
knowledge sources, noun-class datasets, were com- 
piled for general reasons, irrespective of the task 
studied here. Knowledge incorporation resulted in 
a statistically significant performance improvement 
on PPA, a challenging natural language disambigua- 
tion task which has been investigated extensively. 

Using random noun classes, we have demonstrated 
that the semantic nature of the external knowledge 
is essential. In addition, the granularity of the data 
was shown to play an important role in the learning 
performance. A highly granular synset classification 
failed to improve the results. 

A lot of future work is to be done in order to 

substantiate the results presented here, study more 
tasks and prepare and investigate the effectiveness 
of other information sources. 
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