
Parsing with Dependency Relations
and Robust Parsing

Jacques Courtin, Damien Genthial
CLIPS - I M A G CAMPUS

B P 53
38040 GRENOBLE CEDEX 9
Phone: +33 476 51 49 15

E-Mai l : Jacques.Courtin@imag.fr, Damien.Genthial@imag.fr

A b s t r a c t

After a short recall of our view of dependency
grammars, we present two dependency parsers.
The first uses dependency relations to have a
more concise expression of dependency rules
and to get efficiency in parsing. The second
uses typed feature structures to add some se-
mantic knowledge on dependency trees and
parses in a more robust left to right manner.

1. Introduction
Our team has been working with dependency
grammars for more than twenty-five years
(Courtin 73). Two dependency parsers built by
our team are presented in this paper. The first
one uses the notion of dependency relations in
order to implement dependency grammars effi-
ciently; it is described in the first part of the text.
The second one was built with the following
objectives: adding the use of some semantic
knowledge in the process of syntactic parsing
and obtaining a robust parser (second part o f
the text).

2. Parsing with dependency r e l a t i o n s

The linguistic model we use for dependency is
inspired by the Tesni&e model (Tesni~re 59),
which we will recall shortly in order to define
precisely our terminology.

2.1. The linguistic model
Relationship between words is the fundamental
concept associated with dependency structures
(DS). Given two words of the language, a rela-
tion is established between them, defining a
dominated word (or dependent) and a domi-
nating word (or governor). This relation can be
represented by an arc between two nodes, where
each node is labelled by a word. The arc de-
scends from the governor to the dependent.

Example: the dependency structure for the sen-
tence (, we present two parsers ,~:

/ present

we ~ parsers

We can also use a linear notation with brackets
and write: (we) present ((two) parsers).
But the graphical representation is more read-
able and shows clearly the hierarchy between the
governor and its dependents, which of course,
can also have dependents.

Dependency grammars
A dependency grammar (formalism used by
(Hays 64)) on a vocabulary V is made of:

• a family of parts Ci of V such that the union
of Ci is equal to V.

• a set of rules, each having one of the two
following forms:

i) * (X)

ii) X (XI ... Xi * Xi+l ... Xn)

Ci are word classes or lexico-syntactic categories
and are denoted by their name (Determiner,
Noun, Adjective,...). Xi in the rules above are
category names.

The star shows the place of the governor rela-
tively to its dependents, so in a type ii) rule,
X l...Xi are left dependents of the X governor
and Xi+l ... Xn are its right dependents.

When n = 0, the rule is written X(*) and is a
terminating rule; type i)rules are initial rules.

G r a m m a r example:
We use the following categories: Determiner (D),
Noun (N), Adjective (A), Verb (V).
• (V)
V(N, *,N)
N(D,*) N(D,A, *) N(A, *)
D(*) V(*) A(*) N(*)

95

V={drinks, eats) D={the, a}
N={dog, cat, cup, milk)
A=tblack, white, hot}

With this grammar one can build the structure:
d r i n k s

/
cat: ~milk

hot:

Generation
Dependency grammars are generative, working
with the following generating rules:

a) choose a type i) rule (which determines the
main governor),

b) choose and apply type ii) rules until we ob-
tain a complete structure, entirely made o f
terminating rules.

With the example grammar above, we can make
the following derivation (which matches the
sentence: ~ the black cat drinks hot milk ,0:
* (V)
* (V(N, *,N))
* (V(N(D,A,*) ,*,N))
* (V(N(D,A,*), *,N(A,*)))
* (V(*) (N(D,A,*),*,N(A,*)))

; ivi; . i cNc*
t

N(*) (A(*),*)))

Remark:
For a given governor, the dependency grammar
must contain as many rules as there are possible
configurations of dependents below this gover-
nor. For example, if we want nominal phrases
with at least a noun, an optional determiner and
0,1 or 2 adjectives before the noun, we will have
the grammar:
N(*) N(A,*) N(A,A,*)
N(D, *) N(D,A, *) N(D,A,A, *)

T h e formalism proposed below shows a better
way to describe the same things.

2.2. D e p e n d e n c y r e l a t i o n s

The method used in the PILAF ! system (Courtin
77) to build dependency structures is a direct
analysis: we transform the input word chain in a
dependency tree by using a form of depend-
ency grammar and no intermediate structure.
But the algorithm does not directly use Tesni~re

Iprocfdures Interactives Linguistiques Appliqufes au
Fran~ais (Interactive Linguistic Procedures Applied to
French)

96

type dependency grammars because, as we seen
before, these grammars impose a combinatorial
description of all the possible configurations of
dependents for a given governor. To overcome
this drawback, we introduce dependency rela-
tions between two lexico-syntactic categories.

Example:
To say that N governs the g we simply write
N -> Jt

Dependency Relations (DR) must not only code
the relation itself but also:

• the relative positions of the dependent and
the governor: is it a left dependent or a right
one ?

• the relative positions of all dependents of a
given governor.

Example:
We want to describe the sentence ,~ The black cat
drinks hot milk ,~ which gives the sequence of
categories:

DANVAN
and the dependency tree given above.

Dependency relations must stipulate that a noun
can appear on the left or on the fight below a
verb and that below a noun, the determiner pre-
cedes the adjective. So we attach to each relation
an vector of integers (either positive or negative)
and we write:

GOUV-> DEP := (x I Xn),

which says that we can have 0,1...n dependents
of the DEP category below the governor of the
GOV category.

The integers are presented in ascending order,
showing the relative position of DEP below
GORY. For any given governor, the integer values
also determine the relative positions of all its
different possible dependents.

Example:
N -> A := (-14, -15)
N -> D := (-16)
V -> N := (-20, + 20)

Positive integers concern right dependents and
negative integers left dependents. The integer of
the second relation stipulate that the determiner,
if any, will be placed before the adjectives, be-
cause -16 is less than -15 and -14. From the first
relation we can see that no word can be placed,
below the noun, between the two adjectives
(there is no integer between - 15 and -14).
These relations can be drawn as the following
trees:

/v\
N N D A A
-20 +20 -16 -15 -14

An important thing to be noted is that each inte-
ger position gives the possibility for a dependent
to be present at that position, but never imposes
that presence.

So the three relations above are equivalent to the
following dependency grammar:
N(A,*) N(A,A,*)
N(D,*) N(D,A,*) N(D,A,A, *)
V(N,*) V(*,N) V(N,*,N)
N(*) A(*) D(*) V(*)

It can be noted that these relations are in some
sense similar to disjunctive forms of Sleator's
link grammars (Sleator and Temperley 91).

2.3. P a r s i n g a l g o r i t h m
This algorithm supposes that the morphological
step is finished and that it has produced the se-
quence of lexico-syntactic categories for the
input sentence, each word corresponding to one
category - or several if the word is ambiguous.

So the parser's inputs are:

• the sequence XI...Xn of categories computed
by the morphological parser;

• the set of dependency relations and the asso-
ciated integer vectors.

We add to the Xi sequence the pseudo category
SI~'T=X0 which will help in determining the
possible governor of the sentence (to initiate the
parsing process). If, for example, possible main
governors of a sentence are coordination con-
junction (el and verb, we will have the relations:
SENT -> V := (+i)
SENT-> C := (+I)

As we can have only one governor for a sen-
tence, these two relations are mutually exclusive.
This is expressed by the value of the integer: +1,
which is the same for the two possible depend-
ents of SENT.

In order to build the dependency tree (or trees)
associated with the given sequence of categories,
the parser first initializes the square array of
figure 1.

As (Sleator And Temperley 91), we only want
projective structures (or planar structures), i.e.
trees which can be traversed by a left to right
infix algorithm to find the original linear order
of the sentence. The motivations for this limita-
tion to projective structures are the following:

97

it is important to be able to retrieve, from the
tree, the original linear form of the sentence;

this limitation leads to greater parsing effi-
ciency: for each governor, the search for its
dependents will be made in two separate
spaces: a left and a right space.

OOV Xo Xx Xa XN
DEP SENT

go ~ POl Pc~ Port
SENT

i

x , P~o ® P~ P~
xa ~ ~z~ o ~zn

Pij: set of integers determined by the relations

Xj -> X i.

PiF 0

Figure l : Square array fo r a sentence

So for a given governor Xj, all its left depend-
ents must have an index i < j (the index order
matches the word order in the sentence). The
same is true for right dependents, with index k >
j. So we can remove from the top-right triangle
of the array all positive numbers and from the
bottom-left triangle all negative ones. We then
have the two properties:

• 1< i , j < n, i > j, if Pij ~ 0 then
V p e P i j , w e h a v e p>O.

• 1< i, j < n, i < j , ifPij ~ 0 then
V p ¢ Pij , we have p<O.

After having initialized the array and removed
useless parts of it, the parser builds, with a de-
scendant and recursive algorithm, all depend-
ency structures compatible with the array:

a) For each possible governor of the sentence
(SENT column):

b) build all left sub-trees and all right sub-
trees (rocursively);

c) build the final structures by merging
the partial fight and left ones.

One can say that we catch the SENT category
and ,~ pull ~, the structures out of the array. The
algorithm succeeds if at least one ~ pulled ~,
structure contains all the words of the input
sentence.

With real sentences, of course, we have lexical
ambiguities or structural ambiguities. In both

cases, the algorithm is non-deterministic and
builds all possible solutions by blind combinato-
rial enumeration.
Dependency relations, associated with the algo-
rithm described above, constitute a grammatical
model with very few constraints. We can quickly
state that the parser will succeed on more sen-
tences than the language sentences. This feature
can be viewed as an advantage in the framework
of a man-machine communication system,
where the essential quality of an utterance is to
be interpretable, even if it is not syntactically
correct: . C l o s e file),, for example, is un-
grammatical but we can interpret it and execute
the associated command.

On the contrary, this lack of constraints is pe-
nalizing efficiency: the algorithm will build a lot
of incorrect structures because we can not state
for example, that a given governor must have at
least one dependent at that position, that a given
relation only apply in a given context

These limits and the necessary addition of some
semantic knowledge in the syntactic parsing
process lead us to design the new method for
dependency tree construction presented in the
second part.

2 .4 . C o n c l u s i o n

Despite its relatively limited power of expres-
sion, this parser builds dependency structures
extremely quickly (,<instantaneously)> on a
personal computer) as long as the input sentence
is not too long and not too ambiguous (say
when the number of produced trees is less than
20).

The parser has been put to use in a system for
detection and correction of syntactic errors
(Strube de Lima 90). The main purpose was to
check the numerous concordancy rules for gen-
der, number and person in written French sen-
tences. For this type of application, it was of
course essential for the parser not to take into
account morphological properties of words
while building dependency structures.

By its lack of constraints and its high practical
efficiency, this algorithm could be used in ap-
plications for man-machine interfaces where
exchanges are short and language often ap-
proximative.

3. R o b u s t P a r s i n g

The use of the preceding parser in a system for
detection and correction of syntactic errors in
French has raised the following problems:

• even for a simple task such as detection and
correction of agreement errors in written
texts, you need a powerful parsing mecha-
nism able to determine, for example, the an-
tecedent of a relative pronoun;

• a system for error correction can not rely on
the correctness of the inputs in order to build
a structure which is essential to make a mini-
mal work. So you have to improve the
knowledge of the system, i.e. in our case, to
add some semantic information on words in
order to determine more precisely the rela-
tions between them;

• the syntactic parser of a such system must
also be robust and produce an output even if
the input is completely ill-formed.

These problems lead us to define a new depend-
ency parser which will be able to manipulate
some semantic information and which will be
error resistant. This work results in a prototype
called CADET 2 of a dependency tree transducer,
which we will describe in the following sections.

3.1. A l a n g u a g e f o r w r i t i n g depend-
ency g r a m m a r s

We have attempted to design a language for the
description of dependency structures retaining
the precision of Tesni~re's grammars, but more
appropriate for automatic treatment. Our basic
idea is that the governor-dependent relation
should not be expressed for two categories in
general, but for two words which are instancia-
tions of these categories in a given sentence. We
therefore think it is necessary, when describing a
governor-dependent relation, to indicate the
context in which the relation is valid.

To build dependency structures, we must be able
to determine, for any two words, caracterized by
their lexical category: determiner, noun, verb
which one governs the other. More generally,
given two dependency trees, we must know how
to merge them into a unique tree.

Example:
N- V ----~ "V

D N N N

D

(D)N, V(N) -> ((D)N)V(N)

We have defined a language based on rewriting
rules; each rule applies to a dependency forest

2 Constructeur d'Arbres de DEpendances Tyl~s (Typed
Dependency Trees Builder).

98

and produces a dependency tree. A set of such
rules constitutes a dependency grammar which
can be applied to a sentence by means of an
interpreter. This interpreter is in fact a tree-
transducer driven by the rules.

Example of a simple rule: (the " - " begins
comments)
N_V [-- Name of the rule
(I:{N), C0, SF:{pv))2:{V)) -- Forest
=>

((i, $F) 2)]-- Resulting tree

This rule applies to any forest which includes a
sequence of an N and a V, whose left dependents
are only preverbal particles pv. It builds a new
tree where the N is added as a dependent of the
V.

The advantage of these rules, compared to sim-
ple binary relations, is that it is possible to ex-
press the context of each category which
appears. It is thus possible to restrict a governor
to one or two dependents only, or to forbid
more than one occurrence of a given category
One can also define linked pairs of binary rela-
tions, as for coordination conjunctions (C):
N _ C [
(I:{N), 2:{C), 3:(N))
=>

((1) 2 (3))]

On the other hand, they present the drawback o f
the primitive dependency grammars: there must
be a rule for almost every pair of lexical catego-
ries (LC). To avoid this problem, we have cho-
sen to use a hierarchy of LCs instead of the
usual linear set of LCs (Genthial & al. 90). This
hierarchy is a set, partially ordered by the i s - a
relation (figure 2).

We can, in this manner, express very general
rules like the two given above (N V and N_C)
or more specific ones like:
aux_~pas [
(i: {xbe; xhave), 2: {pastp})
=>

((1)2)]

By means ofis-a ((cnoun, pnoun}, N) and
is-a ({xbe, xhave, verb, pastp), V)
relations, the N_V rule for instance may be ap-
plied to all the following pairs of categories:
(cnoun, xbe) (pnoun, xbe)
(cnoun, xhave) (pnoun, xhave)
(cnoun, verb) (pnoun, verb)
(cnoun, pastp) (pnoun, pastp)

We can thus define a set of basic categories
which describe words in a very specific way, and
use these categories f o r lexical indexing. The

categories can then be grouped in ,~ meta-
categories ~ according to the structures we want
to build. Finally, we can write the rules which
effectively build these structures.

We can also write grammars in an incremental
fashion, starting with the highest categories (e.g.
N, V, A, C, P) then testing the rules on our cor-
pus, progressively adding more precise rules for
the lowest categories to treat specific phenom-
ena.

So, by using this method, we can avoid the usual
compromise between a very fine set of LCs
(which multiplies morphological ambiguities
and syntactic rules) and a very general set
(which multiplies syntactic ambiguities). We also
obtain a fairly robust syntactic parsing: all un-
known words are given the most general cate-
gory (CLS), to which any rule can apply, thus
an unknown word does not stop the parsing
process.

Similar type hierarchies have already been used
in work on language semantics to represent the
taxonomy of semantic types. We shall therefore
use the same formalism for the representation of
syntactic and semantic knowledge (see §3.3).

N V A

/on o
cnoun ~xha~vVerb pastp adj

We use the following abbreviations: cnoun and pnoun
for common and proper nouns, xbe and xhave for the

auxiliaries be and have, pastp for past participle, adj for
adjective, P for preposition and C for coordination

conjunction.

Figure 2: Example of hierarchy

3.2. Building dependency s t r u c t u r e s

Given a set of rewriting rules, the tree transducer
proceeds by a left to right scanning of the input
text. Each time a word is recognized by the
morphological parser, it is transmitted to the
syntactic module which includes it in the current
state of the analysis. As the data manipulated by
the tree transducer must be trees or forests, each
word is transformed in a one node tree, where
the root bears the information associated to the
word.

In order to manage multiple interpretations o f
the same word or of the same sentence, the
transducer maintains a list of forests where each

99

t
, is of,he.entente.

These forests, which are the current state of the
analysis, are called stacks because each time a
new word is recognized, a one node tree is

I pushed on each forest and the parsing always _ _
resumes on the top of each forest.

Given a list of stacks, the transducer applies each
I applicable rule to the top of all stacks and each

time a rule applies, a new stack is produced and
added at the end o f the list. Doing so, the trans-
ducer will also apply the rules to the new stacks

I produced, cyclically. If more than one rule ap-
plies to a particular stack, more than one stack
will be produced, but if at least one rule applies
to a stack, this stack will be removed from the D

I list.

Example: (adapted from French)
We consider only four categories: D,A, N, V (for

I determiner, adjective, noun and verb) and we
give the following very simple rules:
D_N [(I:{D}, 2:{N}) => ((I) 2)] N ,N

l A_N [(I:{A), 2:{N}) => ((i) 2)] D"
N_A [(I:{N}, 2:{A)) => (i (2))] D
N_V 2:(V)) => 2)] //N /N ,4
V_N [(I:{V), 2:(N}) => (I (2))] D A D A

n Figure 3 shows the evolution of the list of stacks
during the parsing of the French nominal Figure 3: Stacks evolution
phrase: ,~ la belle ferme ,, which is ambiguous
and leads to the following sequence of catego- Our example gives three correct structures:

I ties: - (la)belle(ferme) the firm beauty
((la)belle)ferme the beauty closes

DIA~N~ (la,belle)ferme the beautiful farm

I The algorithm is guaranted to stop because we &l LV J

We first introduce the word a la ,~ as a one node have added a constraint: rewriting rules are
tree bearing the D category. As no rule can ap- written in such a way that the length of a stack

must reduce each time a rule is applied to it. A i ply to this tree, we then introduce the word
,, belle ,, which is ambiguous. The ambiguity detailed discussion of termination and an
gives two forests which are described on list (1). evaluation of the algorithm can be found in
The D N rule applies to this list and gives list (2). (Genthial 91).

N Introducing the word ferme leads to list 3 .3 . h i e r a r c h i e s (3), T y p e (())

on which we detail rule application. So the rule We have chosen to represent knowledge about
A_N applied to the second stack of the list pro- words and trees with a unique formalism: ~P-

N duces a new forest (or stack) which is appended
to the list. When the transducer ends with the terms (Ait-Kaci 84). ~P-terms are typed features
original list, it finds the new produced stacks and structures which permit the description of types
proceeds with them, applying grammar rules. (in the sense of classical programming lan-

guages such as Pascal), i.e. sets of values. I The D_N rule will then be applied to the new
produced forest (D, (A)N). The process stops Example:
when the transducer reaches the end of the list UL(lex => "eats';
and, after removing the stacks where a rule has c a t => v e r b ;
applied, we obtain list (4). s u b j => UL(sem => S:AN'DIA'I~) ;

A correct interpretation (according to a given ob j => UL(s~-'ta => O : E A T A B I ~) ;
grammar) of the input sentence can be found in sere => /2qGEST(agent => S;
each stack which contains exactly one tree: this p a t i e n t => O))

A tree is a dependency structure of the sentence.

100

The use of reference tags like s or 0 allows
structure sharing, so W-terms are not trees but
graphs.

Simple types are defined in the signature which
is a set partially ordered by the i s - a relation.
This order is extended to W-terms by the unique
operation used to manipulate them: unification.
The unification of two simple types is defined as
the set of lower bounds of these two types (in
the i s - a relation). Unification allows implicit
inheritance of properties, and can be efficiently
implemented (Ai't-Kaci & al. 89).

In our parser, a W-term is attached to each node
of a tree and to transduction rules we have
added expressions which enable us to test and
modify those ~l'-terms. W e can thus simultane-
ously build a syntactic structure (dependency
tree) and a semantic structure (W-term, which
also contains morphological and syntactical
information), and which is built by unification
(see also (Hellwig 86) on the use of unification
for dependency parsing).

Example of rules and application:
We have two words:
UL(lex => "dog" ;

cat => cnoun;
sere => CANINE)

UL (lex => "eats" ;
cat => verb;
subj => UL(sem => S:ANIMATE);
obj => UL(sem => O:EATABLE);
sem => INGEST(agent => S;

patient => O))
and the rule:
subject [(i: {N}, 2:{V})
/Unif (i, 2. subj) / -- Conditions
=>

((1)2);
ASSIGN (2. subj, i) ;] -- Actions

The root of the resulting tree is decorated by:
UL(lex => "eats" ;

cat => verb;
subj => UL(lex => "dog';

cat => cnoun;
sere => S:CANINE);

obj => UL(sem => O:EATABLE);
sem => INGEST(agent => S;

patient => O))

3.4. C o n c l u s i o n

The use o f a category hierarchy simplifies the
writing of the rules and introduces a way o f
manipulating unknown words which is not part
of the mechanisms of the system but which is
integrated in the objects it manipulates. We can

then write rules without thinking about ill-
formedness (i.e. it is not necessary to make the
rules tolerant because the tolerance is implicit in
the system).

More generally, the use of unification in con-
junction with dependency parsing allow to build
syntactic structures efficiently while having the
pFossibility to make very fine descriptions with

-terms.

References
Hassan Ait-Kaci (1984). A Lattice.Theoretic Approach
to Computation Based on a Calculus of Partially-
Ordered Type Structures. Ph.D., University of Penn-
sylvania 1984.

Hassan Air Kaci et al. (1989). Efficient implementa-
tion of Lattice Operations. ACM Transactions on
Programming Languages and Systems 11:1, pp. 116-
146.

Jacques Courtin (1973). Un analyseur syntaxique inter-
actif pour la communication heroine.machine. Intl
Conference of Computational Linguistics, Pise, Italy,
August 1973, Vol. I.

Jacques Courtin (1977). Algorithmes pour le traitement
interactif des langues naturelles. Th~se d'~tat, Grenoble
I, Octobre 1977.

Damien Genthial, Jacques Courtin et Irene Kowarski
(1990). Contribution of a Category Hierarchy to the
Robustness of Syntactic Parsing. 13th CoLing, Hel-
sinki, Finland, August 1990, Vol. 2, pp 139-144.

Damien Genthial (1991). Contribution ~ la construction
d'un syst~me robuste d'analyse du franfais. Th~se, Uni-
versit~ Joseph Fourier, 10janvier 1991.

D. Hays (1964). Dependency theory : a formalism cowl
some observations. Language 40, pp. 511-525.

Peter Heliwig (1986). Dependency Unification Gram-
mar. 1 lth CoLing, Bonn, FRG, August 1986, pp 195-
198.

Daniel Sleator et Davy Temperley (1991). Parsing
English with a Link Grammar. Technical Report CMU-
CS-91-196, School of Computer Science, Pittsburgh,
October 1991.

V~xa Lucia Strube de Lima (1990). Contribution
r~tude du traitement des erreurs au niveau lexico-
syntaxique darts un texte ~crit en franfais. Th~se, Uni-
versit~ Joseph Fourier, Mars 1990.

Lucien Tesni~:re (1959). Eldments de syntaxe ~ t u -
rale. Klincksiek, Paris

101

