
r

g

!

H o w to def ine a contex t - f ree b a c k b o n e for DGs:
I m p l e m e n t i n g a D G in the LFG f o r m a l i s m

N o r b e r t B r S k e r
Universitiit Stut tgar t

Azenbergstr. 12
D-70174 Stut tgar t

NOBI~IMS.UNI-STUTTGART.DE

A b s t r a c t

This paper presents a multidimensional Depen-
dency Grammar (DG), which decouples the de-
pendency tree from word order, such that sur-
face ordering is not determined by traversing
the dependency tree. We develop the notion
of a word order domain structure, which is
linked but structurally dissimilar to the syn-
tactic dependency tree. We then discuss the
implementation of such a DG using constructs
from a unification-based phrase-structure ap-
proach, namely Lexical-Functional Grammar
(LFG). Particular attention is given to the anal-
ysis of discontinuities in DG in terms of LFG's
functional uncertainty.

1 I n t r o d u c t i o n

Recently, the concept of valency has gained con-
siderable attention. Not only do all linguis-
tic theories refer to some reformulation of the
traditional notion of valency (in the form of 0-
grid, subcategorization list, argument list, or ex-
tended domain of locality); there is a growing
number of parsers based on binary relations be-
tween words (Eisner, 1997; Maruyama, 1990).
Even theories based on phrase structure may
have processing models based on relations be-
tween lexical items (Rambow & Joshi, 1994).

Against the background of this interest in the
valency concept, and the fact that word order
is one of the main difference between phrase-
structure based approaches (henceforth PSG)
and dependency grammar (DG), this paper will
propose a word order description for DG and
describe its implementation. First, we will mo-
tivate the separation of surface order and depen-
dency relations within DG, and make a specific
architectural proposal for their linking. Second,
we will briefly sketch Lexical-Functional Gram-
mar (LFG), and then show in detail how one

might use the formal constructs provided by
LFG to encode the proposed DG architecture.

Our position will be that dependency re-
lations are motivated semantically (Tesni~re,
1959), and need not be projective. We argue
for so-called word order domains, consisting of
partially ordered sets of words and associated
with nodes in the dependency tree. These order
domains constitute a tree defined by set inclu-
sion, and surface word order is determined by
traversing this tree. A syntactic analysis there-
fore consists of two linked, but dissimilar trees.

The paper thus sheds light on two questions.
A very early result on the weak generative equiv-
alence of context-free grammars and DGs sug-
gested that DGs are incapable of describing sur-
face word order (Gaifman, 1965). J This result
has been criticised to apply only to impover-
ished DGs which do not properly represent for-
mally the expressivity of contemporary DG vari-
ants (Neuhaus & BrSker, 1997), and our use of
a context-free backbone with further constraints
imposed by dependency relations further sup-
ports the view that DG is not a notational ~r i -
ant of context-free grammar. The second ques-
tion addressed is that of efficient processing of
discontinuous DGs. By converting a native DG
grammar into LFG rules, we are able to profit
from the state of the art in context-free parsing
technology. A context-free base (or skeleton)
has often been cited as a prerequisite for practi-
cal applicability of a natural language grammar
(Erbach & Uszkoreit, 1990), and we here show
that a DG can meet this criterion with ease.

Sec. 2 will briefly review approaches to word
order in DG, and Sec. 3 introduces word order
domains as our proposal. LFG is briefly intro-
duced in Sec. 4, and the encoding of DG within
the LFG framework is the topic of Sec. 5.

29

I
I
I
I
I
I
I
I
I
i
I
l
I
I
i
I
!
i

2 W o r d O r d e r in D G

A very brief characterization of DG is that
it recognizes only lexical, not phrasal nodes,
which are linked by directed, typed, binary rela-
tions to form a dependency tree (Tesni~re, 1959;
Hudson, 1993). If these relations are moti-
vated semantically, such dependency trees can
be non-projective. Consider the extracted NP
in "Beans, I know John likes". A projective tree
would require "Beans" to be connected to either
"1" or "know" - none of which is conceptually di-
rectly related to "Beans". It is "likes" that deter-
mines syntactic features of "Beans" and which
provides a semantic role for it. The only con-
nection between "know" and "Beans" is that the
finite verb allows the extraction of"Beans", thus
defining order restrictions for the NP. The fol-
lowing overview of DG flavors shows that var-
ious mechanisms (global rules, general graphs,
procedural means) are generally employed to lift
the limitation of projectivity and discusses some
shortcomings of these proposals.

Funct ional Genera t ive Descr ip t ion (Sgall
et al., 1986) assumes a language-independent
underlying order, which is represented as a pro-
jective dependency tree. This abstract represen-
tation of the sentence is mapped via ordering
rules to the concrete surface realization. Re-
cently, Kruijff (1997) has given a categorial-
style formulation of these ordering rules. He as-
sumes associative categorial operators, permut-
ing the arguments to yield the surface ordering.
One difference to our proposal is that we ar-
gue for a representational account of word order
(based on valid structures representing word or-
der), eschewing the non-determinism introduced
by unary categorial operators; the second differ-
ence is the avoidance of an underlying structure,
which stratifies the theory and makes incremen-
tal processing difficult.

Mean ing-Tex t T h e o r y (Melc'flk, 1988) as-
sumes seven strata of representation. The rules
mapping from the unordered dependency trees
of surface-syntactic representations onto the an-
notated lexeme sequences of deep-morphological
representations include global ordering rules
which allow discontinuities. These rules have
not yet been formally specified (Melc'~k &
Pertsov, 1987p.187f) (but see the proposal by
Rambow & Joshi (in print)).

30

Word G r a m m a r (WG, Hudson (1990)) is
based on general graphs instead of trees. The
ordering of two linked words is specified together
with their dependency relation, as in the propo-
sition "object of verb fol lows it". Extrac-
tion of, e.g., objects is analyzed by establish-
ing an additional dependency called v i s i t o r
between the verb and the extractee, which re-
quires the reverse order, as in " v i s i t o r of
verb precedes it". Resulting inconsistencies,
e.g. in case of an extracted object, are not re-
solved. This approach compromises the seman-
tic motivation of dependencies by adding purely
order-induced dependencies.

D e p e n d e n c y Unif icat ion G r a m m a r
(DUG, Hellwig (1986)) defines a tree-like
data structure for the representation of syntac-
tic analyses. Using morphosyntactic features
with special interpretations, a word defines
abstract positions into which modifiers are
mapped. Partial orderings and even discon-
tinuities can thus be described by allowing
a modifier to occupy a position defined by
some transitive head. The approach requires
that the parser interprets several features in a
special way, and it cannot restrict the scope of
discontinuities.

Slot G r a m m a r (McCord, 1990) employs a
number of rule types, some of which are ex-
clusively concerned with precedence. So-called
head/slot and slot/slot ordering rules describe
the precedence in projective trees, referring to
arbitrary predicates over head and modifiers.
Extractions (i.e., discontinuities) are merely
handled by a mechanism built into the parser.

3 W o r d O r d e r D o m a i n s

Extending the previous discussion, we require
the following of a word order description for DG:

• not to compromise the semantic motivation
of dependencies,

• to be able to restrict discontinuities to cer-
tain constructions and delimit their scope,

• to be lexicalized without requiring lexical
ambiguities for the representation of order-
ing alternatives,

• to be declarative (i.e., independent of an
analysis procedure), and

Ii

I ,
i ,

I ,

,!

' / , " . ,. der J u n g e ; i gess.ehen.', , :
, , . :

• , " d e n M a n n ; ; " - . . - " , ,
• - - - . _ . o . •

Figure 1: Dependency Tree and Order Domains
for (1)

do

,.
Mann Junge gesehen

Figure 2: Order Domain Structure for (1)

• to be formally precise and consistent.

The subsequent definition of an order domain
structure and its linking to the dependency tree
satisify these requirements.

3.1 T h e O r d e r D o m a i n S t r u c t u r e

A word order domain is a set of words, general-
izing the notion of positions in DUG. The car-
dinality of an order domain may be restricted
to at most one element, at least one element,
or - by conjunction - to exactly one element.
Each word is associated with a sequence of order
domains, one of which must contain the word
itself, and each of these domains may require
that its elements have certain features. Order
domains can be partially ordered based on set
inclusion: If an order domain d contains word
w (which is not associated with d), every word
w' contained in a domain d t associated with w
is also contained in d; therefore, d' C d for each
d' associated with w. This partial ordering in-
duces a tree on order domains, which we call
the order domain structure. The order domain
structure constitutes a projective tree over the
input, where order domains loosely correspond
to partial phrases.

(1) Den Mann hat der Junge gesehen.
the manAcc has the bOyNOM seen
'The boy has seen the man. '

Take the German example (1). Its dependency
tree is shown in Fig. 1, with word order domains
indicated by dashed circles. The finite verb,
"hat", defines a sequence of domains, (dl, d2, d3),
which roughly correspond to the topological
fields in the German main clause. The nouns
and the participle each define a single order do-
main. Set inclusion gives rise to the domain
structure in Fig. 2, where the individual words
are attached by dashed lines to their including
domains.

3.2 Su r f ace O r d e r i n g

How is the surface order derived from an or-
der domain structure? First of all, the ordering
of domains is inherited by their respective ele-
ments, i.e., "Mann" precedes (any element of)
d2, "hat" follows (any element of) dl, etc.

Ordering within a domain, e.g., of "hat" and
d6, or ds and d6, is based on precedence pred-
icates (adapting the precedence predicates of
WG). There are two different types, one order-
ing a word with respect to any other element of
the domain it is associated with (e.g., "hat" with
respect to d6), and another ordering two modi-
tiers, referring to the dependency relations they
occupy (d5 and d6, referring to subj and vpar t) .
A verb like "hat" introduces three precedence
predicates, requiring other words (within the
same domain) to follow itself and the participle
to follow subject and object, resp.: 1

"hat" => <.
A subj < vpar t
A obj < vpart

Informally, the first conjunct is satisfied by
ally domain in which no word precedes "hat",
and the second and third conjuncts are satisfied
by any domain ill which no subject or object
follows a participle (vpart). The obj must be
mentioned for "hat", although "hat" does not di-
rectly govern objects, because objects may be
placed by "hat", and not their immediate gov-
ernors. The domain structure in Fig.2 satisfies
these restrictions since nothing follows the par-
ticiple, and because "den Mann" is not an ele-
ment of (]2, which contains "hat". This is an im-
portant interaction of order domains and prece-
dence predicates: Order domains define scopes

1For more details on the exact syntax and the seman-
tics of these propositions, see (BrSker, 1998b).

31

I
1
i
I
I
!

I
1
I
1
I
I
I
i
i
I
I
I
I

for precedence predicates. In this way, we take
into account that dependency trees are flatter
than PS-based ones 2 and avoid the formal in-
consistencies noted above for WG.

3.3 L ink ing D o m a i n S t r u c t u r e a n d
D e p e n d e n c y T r e e

Order domains easily extend to discontinuous
dependencies. Consider the non-projective tree
in Fig.1. Assuming that the finite verb gov-
erns the participle, no projective dependency
between the object "den Mann" and the partici-
ple "gesehen" can be established. We allow non-
projectivity by loosening the linking between de-
pendency tree and domain structure: A modi-
fier (e.g., "Mann") may not only be inserted into
a domain associated with its direct head ("gese-
hen"), but also into a domain of a transitive head
("hat"), which we will call the positional head.

The possibility of inserting a word into a do-
main of some transitive head raises the ques-
tions of how to require continuity (as needed
in nmst cases), and how to limit the distance
between the governor and the modifier. Both
questions will be soh,ed with reference to the
dependency relation. From a descriptive view-
point, the syntactic construction is often cited to
determine the possibility and scope of disconti-
nuities (Bhatt, 1990; Matthews, 1981). In PS-
based accounts, the construction is represented
by phrasal categories, and extraction is lim-
ited 1)3-" bounding nodes (e.g., Haegeman (1994),
Becker et al. (1991)). In dependency-based ac-
counts, the construction is represented by the
dependency relation, which is typed or labelled
to indicate constructional distinctions which are
configurationally defined in PSG. Given this cor-
respondence, it is natural to employ dependen-
cies in the description of discontinuities as fol-
lows: For each modifier, a set of dependency
types is defined which may link the direct head
and the positional head of the modifier ("gese-
hen" and "hat", respectively). If this set is
empty, both heads are identical and a contin-
uous at tachment results. The impossibility of
extraction from, e.g., a finite verb phrase follows
from the fact that the dependency embedding fi-
nite verbs, propo, may not appear on any path

2Note that each phrasal level in PS-based trees defines
a scope for linear precedence rules, which only apply to
sister nodes.

32

between a direct and a positional head.

4 A B r i e f R e v i e w o f L F G

This section introduces key concepts of LFG
which are of interest in Sec. 5 and is necessarily
very short. Further information can be found in
Bresnan & Kaplan (1982) and Dalrymple et al.
(1995).

LFG posits several different representation
levels, called projections. Within a projection,
a certain type of linguistic knowledge is repre-
sented, which explains differences in the formal
setup (data types and operations) of the projec-
tions. The two standard projections, and those
used here, are the constituent (c-) structure and
the functional (f-) structure (Kaplan (1995) and
Halvorsen & Kaplan (1995) discuss the projec-
tion idea in more detail). C-structure is defined
in terms of context-free phrase structure rules,
and thus forms a projective tree of categories
over the input. It is assumed to encode lan-
guage particularities with respect to the set of
categories and the possible orderings. The f-
structure is constructed fi'om additional annota-
tions attached to the phrase structure rules, and
has the form of an attribute-value matrix or fea-
ture structure. It is assumed t o represent more
or less langnage-independent information about
grammatical functions and predicate-argument
structure. In addition to the usual unification
operation, LFG employs existential and nega-
tive constraints on features, which allow the for-
nmlation of constraints about the existence of
features without specifying the associated value.

Consider the following rules, which are used
for illustration only and do not constitute a
canonical LFG analysis.

S =~ NP VP
(TosJ)=~ 1"=$

(,tcAsE)=acc

NP =~ Det N
(I"sPEC)~"~J " T--J,

VP =~ V NP
T = J . (l"svsJ)=~

(,I.TENSE) (J.CASE)=nom

V
(TvcoMP)=J.
,-,(~.'reNse)

Assuming reasonable lexical insertion rules,
the context-free part of these rules assigns the
c-structure to the left of Fig. 3 to example
(1). The annotations are associated with right-
hand side elements of the rules and define the

! ,!
i]

!! r

F~
k:

'i

II

= == a¢: 1

"" [CASE nom]
• SUBJ

':"'.1 ,,,...- v ,:,.,../'-,,,."" '
I I t I " " - ° o - "

Den Mann hat der Junge gesehen

Figure 3: C-structure (left) and f-structure (right) for (I)

f-structure of the sentence, which is displayed to
the right of Fig. 3. Each c-structure node is asso-
ciated with an f-structure node as shown by the
arrows. The f-structure node associated with
the left-hand side of a rule may be accessed with
the $ metavariable, while the f-structure node
of a right-hand side element may be accessed
with the $ metavariable. The mapping from c-
structure nodes to f-structure nodes is not one-
to-one, however, since the feature structures of
two distinct c-structure nodes may be identi-
fied (via the $=$ annotation), and additional
embedded features may be introduced (such as
CASE). Assuming that only finite verbs carry
the TENSE feature, the existential constraint
($TENSE) requires a finite verb at the begin-
ning of the VP, while the negative constraint
.~($TENSE) forbids finite verbs at the end of
the VP. Note that unspecified feature structures
are displayed as [] in the figure, and that much
more information (esp. predicate-argument in-
formation) will come from the lexical entries.

Another important construct of LFG is func-
tional uncertainty (Kaplan & Zaenen, 1995;
Kaplan & Maxwell, 1995). Very often (most
notably, in extraction or control constructions)
the path of f-structure attributes to write down
is indeterminate. In this case, one may write
down a description of this path (using a regu-
lar language over attr ibute names) and let the
parser check every path described (possibly re-
sulting in ambiguities warranted by f-structure
differences only). Our little grammar may be
extended to take advantage of functional uncer-
tainty in two ways. First, if you want to permute
subject and object (as is possible in German),
you might change the S rule to the following:

S =~ NP VP
(t{os~ I susJ})=~ t=~

The f-structure node of the initial NP may
now be inserted in either the OBJ or the SUBJ
attribute of the sentence's f-structure, which is
expressed by the disjunction {OBJiSUBJ} in
the annotation. (Of course, you have to restrict
the CASE feature suitably, which can be done in
the verb's subcategorization.) The other regular
notation which we will use is the Kleene star.
Assume a different f-structure analysis, where
the object of infinite verbs is embedded under
VCOMP. The S rule from above would have t o

be changed to the following:

S => NP VP
('~{(VCOMP) OBJ I SUBJ})=~ ~'=~,

But this rule will only analyse verb groups
with zero or one auxiliary, because the VCOMP
attribute is optional in the path description.
Examples like Den Mann will der Junge gese-
hen haben with several auxiliaries are not cov-
ered, because the main verb is embedded under
(VCOMP VCOMP). The natural solution is to
use the Kleene star as follows, which allows zero
or more occurrences of the attribute VCOMP.

S =~ NP VP
(l"{vcoMP* oBJ I suBJ})=~ t--~.

A property which is important for our use of
functional uncertainty is already evident from
these examples: Functional uncertainty is non-
constructive, i.e., the attribute paths derived
from such an annotation are not constructed
anew (which in case of the Kleene star would
lead to infinitely many solutions), but must al-
ready exist in the f-structure.

33

I
I
I
I
I
l
I
i
i
I
I
I
II
I
l
I
i
I
I

5 E n c o d i n g D G in L F G 5.2 Topologica l fields

5.1 T h e I m p l e m e n t a t i o n P l a t t f o r m As we have seen in Sec. 3, the order domain
The plattform used is the Xerox Lin- structure is a projective tree over the input. So
guistic Environment (XLE, see also it is natural to encode the domain structure in
http://www.parc.xerox, com/istl/groups/nltt/xlef~ ntext'free rules, resulting in a tree as shown
which implements a large part of LFG theory in Fig. 4. Categories which have a status as or-
plus a number of abbreviatory devices. It der domains are named dora*, to be distinguish-
includes a parser, a generator, support for two-
level morphology and different types of lexica
as well as a user-friendly graphical interface
with the ability to browse through the set of
analyses, to work in batch mode for testing
purposes, etc.

We will be using two abbreviatory devices be-
low, which are shortly introduced here. Both do
not show up in the final output, rather they al-
low the grammar writer to state various general-
izations more succintly. The first is the so-called
metacategory, which allows several c-structure
categories to be merged into one. So if we
are writing (2), we introduce a metacategory
domVfin (representing the domain sequence of
finite verbs) to be used in other rules, but we
will never see such a category in the c-structure.
Rather, the expansion of the metacategory is di-
rectly attached to the mother node of the meta-
category (cf. Fig. 4).

(2) domVfin = domINITIAL domMIDDLE domFINAL

able from preterminal categories (such as Vfin,
I, . . . ; these cannot be converted to metacate-
gories). As notational convention, domC will be
the name of the (meta)category defining the or-
der domain sequence for a word of class C. Elim-
inating the preterminal categories yields exactly
the domain structure given in Fig. 2.

A complete algorithmic description of how to
derive phrase-structure rules from order domain
definitions would require a lenghty introduction
to more of XLE's c-structure constructs, and
therefore we illustrate the conversion with hand-
coded rules. For example, a noun introduces
one order domain without cardinality restric-
tions. Assuming a metacategory DOMAIN stand-
ing for an arbitrary domain, we define the fol-
lowing rules for the domain sequences of nouns,
full stops, and determiners:

(5) domN =~ DOMAIN* N DOMAIN*.

domI =~ DOMAIN I.
domD =~ D.

The second abbreviatory construct is the tem-
plate, which groups several functional annota-
tions under one heading, possibly with some
parameters. A very important template is the
VALENCY template defined in (3), which defines
a dependency relation on f-structure (see be-
low for discussion). We require three parame-
ters (each introduced by underscore), the first of
which indicates optionality (opt vs. r eq values),
the second gives the name of the dependency re-
lation, and the third the word class required of
the modifier. (4) shows a usage of a template,
which begins with an @ (at) sign and lists the
template name with any parameters enclosed in
parentheses.

VALENCY (_o _d _c) = { _o = opt
~(T_d)

(3) ~ (?_d CLASS) = _c
(?_d LEXEME)) .

(4) @(VALENCY req OBJ N).

A complex example is the finite verb, which
introduces three domains, each with different
cardinality restrictions. This is encoded in the
following rules:

domVfin ffi domINITIAL domMIDDLE domFINAL.

(6) domINITIAL~ DOMAIN.
domMIDDLE ~ DOMAIN* Vfin DOMAIN*.
domFINAL ~ (DOMAIN).

Note tile use of a metacategory here, which
does not appear in tlle c-structure output (as
seen in Fig. 4), but still allows you to refer to
all elements placed by a finite verb in one word.
The definition of DOMAIN is trivial: It is just a
metacategory expandable to every domain: 3

aA number of efficiency optimizations can be di-
rectly compiled into these c-structure rules. Mentioning
DOMAIN is much too permissive in most cases (e.g., within
the NP), and can be optimized to allow only domains in-
troduced by words which may actually be modifiers at
this point.

34

!

m !

ml

C$ 1: R00T: 220i

. . ..I
d o ~ I : 2 1 8

...... ...::.:::?-?" i ~ : ' ~ . " : ' ~ ' 1 = : ' : . ~ -.-.>

domlNITI/~L : 1 5 9 do~IDDLE : 189 do~FIbrAL : 19S- : I : 117

I :""~":~'~'<::'= I
d 0 ~ : 1 4 9 V £ i a : 4 2 do~N:lTSi :do~Vpp:188: . . :118

. ¢ : "::~

dosaD:14S N : 2 8 : . h a t : 4 3 d o] a D : 1 7 3 : N : 7 4 Vpp: lO8

I I I •1 • I •
V : l Mann:29 D:$2 J t m g e : 7 5 gesehen:109

I I
den : 2 d e r : g l

Figure 4: C-structure for (1)

(7) DOMAIN = { domVfin I domI I domN I
domD }.

5.3 v a l e n c i e s a n d D e p e n d e n c y
R e l a t i o n s

The dependency tree is, at least in our ap-
proach, an unordered tree with labelled rela-
tions between nodes representing words. This
is very similar to the formal properties of the f-
structure, which we will therefore use to encode
it. We have already presented the VALENCY tem-
plate in (3) and will now explain it. {.-- I ""}
represents a disjunction of possibilities, and the
parameter _o (for optionality)controls their se-
lection. In case we provide the opt value, there

• is an option to forbid the existence of the de-
pendency, expressed by the negative constraint
--~($_d). Regardless of the value of _o, there is
another option to introduce an attr ibute named
_d (for dependency) which contains a CLASS
attribute with a value specified by the third
parameter, _c. The existential constraint for
the LEXEME attribute requires that some other
word (which specifies a LEXFA~IE) is unified into
the feature _d, thereby filling this valency slot.
The use of a defining constraint for the CLASS
attribute constructs the feature, allowing non-
constructive functional uncertainty to fill in the
modifier (as explained below).

A typical lexical entry is shown in (8), where
the surface form is followed by the c-structure
category and some template invocations. These
expand to annotations defining the CLASS and
LEXEME features, and use the VALENCY template
to define the valency frame.

(8)
hat Vfin ©(Vfin a u x - p e r f e c t _)

@(VALENCY req SUBJ N)
@(VALENCY req VPART Vpp).

5 .4 C o n t i n u o u s a n d D i s c o n t i n u o u s
A t t a c h m e n t

So far we get only a c-structure where words
are associated with f-structures containing va-
lency frames. To get the f-structure shown in
Fig. 5~ (numbers refer to c-structure node num-
bers of Fig. 4) we need to establish dependency
relations, i.e., need to put the f-structures asso-
ciated with preterminal nodes together into one
large f-structure. Establishing dependency re-
lations between the words relies heavily on the
mechanism of functional uncertainty. First, we
must identify on f-structure the head of each
order domain sequence. For this, we annotate
in every c-structure rule the category of the
head word with the template ~(HEAV), which
identifies the head word's f-structure with the
order domain's f-structure (cf. (9)). Second,
all other c-structure categories (which represent
modifiers) are annotated with the ~(MODIFIER)
template defined in (10). This template states
that the f-structure of the modifier (referenced
by .~) may be placed under some dependency at-
tribute path of the f-structure of the head (ref-
erenced by ~). These paths are of the form p d,
where p is a (possibly empty) regular expression
over dependency attributes, and d is a depen-
dency attribute, d names the dependency rela-
tion the modifier finally fills, while p describes
the path of dependencies which may separate
the positional from the direct head of the mod-
ifier. The MODIFIER template thus completely
describes the legal discontinuities: If p is empty
for a dependency d, modifiers in dependency d
are always continuously attached (i.e., in an or-
der domain defined by their direct head). This
is thecase for the subject (in dependency SUB J)
and the determiner (in dependency SPEC), in
this example. On the other hand, a non-empty
path p allows the modifier to 'float up' the de-
pendency tree to any transitive head reachable
via p. In our example, objects depending on par-
ticiples may thus float into domains of the finite
verb (across VPART dependencies), and relative
clauses (in dependency RELh) may float from the
noun's domain into the finite verb's domains.

(9) HEAD = I=$.

35

I
I
I
i
I
i
I
!

i
I
I
I
I
I
I
I
I
I
i

117

• L -, FIELD ~iddl eJ

;OBJ ;PEC 5112:XE~ definit_, CLASS D. CASE no
74 .r~l~: Junge_. CLASS N. CASE nora

ROPO)RDER ~L - , FIELD middle]

~n~ [FIELD initial]
F ~ L [42.0~'R-PZLr~0 IJ

/P/L~T)B3 ~PEC I~EXEME def ini t_~ CLASS D, CASE ace
28~.EI~G: Mann~ CLASS N, C,~E a c c

108 .E:~IG: sehen_. C~SS Vpp
42 .E~G: aux-'>erfect_, CLASS Vfin

.E~ME aussage_, CLASS I

Figure 5: F-structure for (1)

(lO)

MODIFIER = $=(T{PROPO
ISUBJ
IVPART* OBJ
IVPART
ISPEC
[{SUBJ[OBJ[VPART}* RELA})

The g rammar defined so far overgenerates in
that, e.g., relative clauses may be placed into the
middle field. To require placement in specific
domains, additional features are used, which dis-
tinguish topological fields (e.g., via ($FIELD) =
middle annotations on c-structure). A relative
clause can then be constrained to occur only in
the final field by adding constraints on these fea-
tures. This mechanism is very similar to de-
scribing agreement or government (e.g., of case
or number), which also uses standard features
not discussed here. With these additions, the
final rules for finite verbs look as follows:

domINITIAL

domMIDDLE

(11)

doBFINAL

DOMAIN:@(MODIFIER)
(~FIELD) = initial.

Vfin:@(HEAD)
(~FIELD) = middle;

DOMAIN*:~(MODIFIER)
($FIELD) = middle;

(DOMAIN:©(MODIFIER)
(~FIELD) = final).

5 . 5 Miss ing Links

As is to be expected if you use something for
purposes it was not designed to be used for,
there are some missing links. The most promi-
nent one is the lack of binary precedence predi-
cates over dependency relations. There is, how-
ever, a close relative, which might be used for

implementing precedence predicates. Zaenen &
Kaplan (1995) introduced f-precedence < ! into
LFG, which allows to express on f-structure con-
straints on the order of the c-structure nodes
mapping to the current f-structure. So we might
write the following annotations to order the fi-
nite verb with respect to its modifiers, or to or-
der subject and object.

(12) (T) </ (T{SUBJIOBJ[VPART}).
(J'SUBJ) </ (J'oBa).

Tile problem with f-precedence, however, is
that is does not respect the scope restrictions
which we defined for precedence predicates• I.e.,
a topicalized object is not exempt from the
above constraints, and thus would result in pars-
ing failure. To restrict the scope of f-precedence
to order domains (aka, certain c-structure cat-
egories) would require an explicit encoding of
these domains on f-structure•

6 C o n c l u s i o n

We have presented a new approach to word
order which preserves traditional notions (se-
mantically motivated dependencies, topological
fields) while being fully lexicalized and formally
precise (BrSker, 1997). Word order domains are
sets of partially ordered words associated with
words. A word is contained in an order domain
of its head, or may float into an order domain
of a transitive head, resulting in a discontinu-
ous dependency tree while retaining a projec-
tive order domain structure. Restrictions on the
floating are expressed in a lexicalized fashion in

36

,I
,i

II i I:

!

I i I

ti

t e rms of dependency relations. V~re have also
shown how the order domains can be used to
define a context-free backbone for DG, and used
a grammar development environment for anno-
tated phrase-structure grammars to encode the
DG.

A number of questions immediately arise,
some of which will hopefully be answered un-
til the time of the workshop. On the theoretical
side, this work has argued for a strict separa-
tion of precedence and categorial information in
LFG (or PSG in general, see (BrSker, 1998a)).
Can these analyses and insights be transferred?
On the practical side, can the conversion we
sketched be used to create efficient large-scale
DGs? Or will the amount of f-structural inde-
terminacy introduced b y our use of functional
uncertainty lead to overly long processing? And,
last and most challenging, when will the first
large treebank with dependency annotation be
available, and will it be derived from XLE's f-
structure output?

References
Becker, T., A. Joshi & O. Rambow (1991). Long-

Distance scrambling and tree-adjoining gram-
mar. In Proc. 5th Conf, of the European Chap-
ter of the ACL, pp. 21-26.

Bhatt, C. (1990). Die syntaktische Struktur der
Nominalphrase im Deutschen. Studien zur
deutschen Grammatik 38. Tiibingen: Narr.

Bresnan, J. & R. Kaplan (Eds.) (1982). The Men-
tal Representation of Grammatical Relations.
Cambridge, MA: MIT Press.

BrSker, N. (1997). Eine Dependenzgrammatik
zur Kopplung heterogener Wissenssysteme auf
modallogischer Basis. Dissertation, Deutsches
Seminar, Universit~it Freiburg.

BrSker, N. (!998a). A Projection Architecture for
Dependency Grammar and How it Compares
to LFG. In Proc. 1998 lnt'l Lexical-Functional
Grammar Conference. (accepted as alternate
paper) Brisbane/AUS: Jun 30-Jul 2, 1998.

BrSker, N. (1998b). Separating Surface Order and
Syntactic Relations in a Dependency Grammar.
In COLING-ACL 98 - Proc. of the 17th Intl.
Conf. on Computational Linguistics and 36th
Annual Meeting of the ACL. Montreal/CAN,
Aug 10-14, 1998.

Dalrymple, M., R. Kaplan, J. Maxwell & A. Zae-
nen (Eds.) (1995). Formal Issues in Le~cal-
Functional Grammar. CSLI Lecture Notes 47,
Stanford/CA: CSLI.

Eisner, J. (1997). Bilexical Grammars and a Cubic-
Time Probabilistic Parser. In Proc. of lnt'l

Workshop on Parsing Technologies, pp. 54--65.
Boston/MA: MIT.

Erbach, G. & H. Uszkoreit (1990). Grammar Engi-
neering: Problens and Prospects. CLAUS Re-
port 1. Saarbrficken/DE: University of Saar-
briicken.

Gaifman, H. (1965). Dependency Systems and
Phrase Structure Systems. Information and
Control, 8:304-337.

Haegeman, L. (1994). Introduction to Government
and Binding. Oxford/UK: Basil Blackwell.

Halvorsen, P.-K. & R. Kaplan (1995). Projections
and Semantic Description in Lexical-Functional
Grammar. In M. Dalrymple, R. Kaplan, J. I.
Maxwell & A. Zaenen (Eds.), Formal Issues
in Lezical-launctional Grammar, pp. 279-292.
Stanford University.

Hellwig, P. (1986). Dependency Unification Gram-
mar . In Proc. l l th Int'l Conf. on Computa-
tional Linguistics, pp. 195-198.

Hudson, R. (1990). English Word Grammar. Ox-
ford/UK: Basil Blackwell.

Hudson, R. (1993). Recent developments in depen-
dency theory. In J. Jacobs, A. v. Stechow,
W. Sternefeld & T. Vennemann (Eds.), Syn-
tax. Ein internationales Handbuch zeitgenSssis-
cher Forschung, pp. 329-338. Berlin: Walter de
Gruyter.

Kaplan, R. (1995). The formal architecture of
Lexical-FUnctional Grammar. In M. Dalrym-
pie, R. Kaplan, J. I. Maxwell & A. Zae-
nen (Eds.), Formal Issues in Lexical-Functional
Grammar, pp. 7-27. Stanford University.

Kaplan, R. & J. Maxwell (1995). An Algorithm
for Functional Uncertainty. In M. Dalrymp!e,
R. Kaplan, J. I. Maxwell & A. Zaenen (Eds.),
Formal Issues in Lexical-Functional Grammar,
pp. 177-198. Stanford University.

Kaplan, R. & A. Zaenen (1995). Long-distance De-
pendencies, Constituent Structure, and Func-
tional Uncertainty. In M. Dalrymple, R. Ka-
plan, J. I. Maxwell & A. Zaenen (Eds.), For-
mal Issues in Lexical-Functional Grammar, pp.
137-166. Stanford University.

Kruijff, G.-J. v. (!997). A Basic Dependency-Based
Logical Grammar. Draft Manuscript. Prague:
Charles University.

Maruyama, H. (1990). Structural Disambiguation
with Constraint Propagation. In Proc. 28th
Annual Meeting of the ACL, pp. 31-38. Pitts-
burgh/PA.

Matthews, P. (1981). Syntax. Cambridge Text-
books in Linguistics, Cambridge/UK: Cam-
bridge Univ. Press.

McCord, M. (1990). Slot Grammar: A System for
Simpler Construction of Practical Natural Lan-
guage Grammars. In R. Studer (Ed.), Natural

37

Language and Logic, pp. 118-145. Berlin, Hei-
delberg: Springer.

Melc'fik, I. (1988). Dependency Syntax: Theory and
Practice. Albany/NY: State Univ. Press of New
York.

.Melc'fak, I. & N. Pertsov (1987). Surface Syntax
of English: A Formal Model within the MTT
Framework. Philadelphia/PA: John Benjamins.

Neuhaus, P. & N. BrSker (1997). The Complexity of
Recognition of Linguistically Adequate Depen-
dency Grammars. In Prvc. 35th Annual Meet-
ing of the ACL and 8th Conf. of the EACL, pp.
33?-343. Madrid, July 7-12, 1997.

Rainbow, O. & A. Joshi (1994). A Processing Model
for Free Word Order Languages. In C. J.
Clifton, L. brazier & K. Rayner (Eds.), Per-
spectives on Sentence Processing. Hillsdale/NJ:
Lawrence Erlbaum.

Rambow, O. & A. Joshi ((in print)). A Formal
Look at Dependency Grammars and Phrase-
Structure Grammars, with special considera-
tion of word-order phenomena. In L. Wanner
(Ed.), Current Issues in Meaning- Text- Theory.
London: Pinter.

Sgall, P., E. Hajicova & J. Panevova (1986). The
Meaning of the Sentence in its Semantic and
Pragmatic Aspects. Dordrecht/NL: D.Reidel.

Tesni~re, L. (1959). Elemdnts de syntaxe structurale.
Paris: Klincksiek.

Zaenen, A. & R. Kaplan (1995). Formal Devices
for Linguistic Generalizations: West Germanic
Word Order in LFG. In M. Dalrymple, R. Ka-
plan, J. Maxwell & A. Zaenen (Eds.), For-
mal Issues in Lexicab Functional Grammar, pp.
215-240. CSLI Lecture Notes 47, Stanford/CA:
CSLI.

38

