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Abstract 

In this paper we describe a semantic depen­
dency model for estimating probabilities in a 
stochastic TAG parser (Resnik, 1992) (Schabes, 
1992), and we compare it with the syntactic de­
pendency model inherent in a TAG derivation 
using the flat treatment of modifiers described 
in (Schabes and Shieber, 1994). 

1 Introduction 

The use of syntactic dependencies to estimate 
parser probabilities is not uncommon (Eisner, 
1996) (Collins, 1997) (Charniak, 1997). Typi­
cally, a maximum probability parse is estimated 
from bigram statistics of lexical items that par­
ticipate in head-modifier or head-complement 
dependencies with other lexical items. These 
dependencies can be characterized as ( head, la­
bel, modifier ) triples and ( head, label, comple­
ment ) triples - or as labeled directed arcs in a 
graph - which have the property that each lexi­
cal item may participate as a modifier or a com­
plement in no more than one dependency. Using 
a TAG derivation tree (Joshi, 1987) with a flat 
treatment of modifiers (Schabes and Shieber, 
1994), it is possible to capture the long dis­
tance dependencies of wh-extractions and rel­
ative clauses as adjacent arcs in a dependency 
structure, making them available for probabil­
ity estimates withiu the parser as well. In this 
case, the head-complement dependencies for a 
sentence correspond to a set S of substitution 
triples (/, rJ, a) (where tree a substitutes into 
tree 'Y at note address ?J), and the head-modifier 
dependencies correspond to a set A of adjunc­
tion triples (/, 1}; ß) (where tree ß adjoins into 
tree 'Y at node address 7J), in a probabilistic TAG 

(Resnik, 1992).1 
Although the TAG-based syntactic depen­

dency rnodel has the necessary domain of local­
ity (in terms of adjacent arcs on the derivation 
tree) to accurately guide a statistical parser, 
it is still susceptible to sparse data effects, in 
part because it does not generalize attachment 
statistics across syntactic transformations. An 
adjective used as a declarative predicate, for 
example, could not draw on attachment statis­
tics for the same adjective used as a modifier, 
or as a predicate in a relative clause, and vice 
versa, because each transformation uses a differ­
ent syntactic dependency structure. The triples 
in the syntactic dependency sets S and A for the 
sentences, 11The damaged handle is attached to 
the drawer," and {CThe handle attached to the 
drawer is damaged," are represented as arcs in 
Figure 1. 

In order to group these attachment statistics 
into denser pools of data, we need to abstract 
a common semantic structure from the various 
syntactic structures, effectively adopting a com­
mon argument frame for each transformation. 
This means that each auxiliary tree must have 
an argument position corresponding to the sub­
ject substitution site in its predicative trans­
formation if it is a modifier auxiliary, or cor­
responding to the wh-object substitution site 
in its object-extraction transformation if it is a 
predicative auxiliary.2 For convention, we place 

1 Although Resnik uses a direct function S(-y, 11, a) to 
the [O - 1) interval where we use a probability of set 
membership 'P(("{, fJ, a) E S). Also note that this corre­
spondence between head-complement dependencies and 
substitution dependencies is not strictly true in the case 
of predicative auxiliaries (Schabes and Shieber, 1994), 
which are handled by adjunction in TAG. 

2See (Schabes and Shieber, 1994) for a descrip­
tion of the distinction between modifier and predicative 
auxiliaries. 

155 



attach to 

~ 
handle door 

NPtod 
'V 

darnage 

The damaged handle is 
attached to the door. 

The handle attached to 
the door is damaged. 

Figure 1: Syntactic dependencies in TAG 

this extra argument position at the foot node of 
the auxiliary tree, so the auxiliary takes the tree 
it adjoins into as an argument. This means that 
our semantic dependency model effectively re­
verses the direction of dependencies involved in 
adjunction from the syntactic model.The triples 
in the semantic dependency set 1) for the sen­
tences, 11The damaged handle is attached to 
the drawer," and "The handle attached to the 
drawer is damaged," are represented as arcs in 
Figure 2. 

Formally, we augment the syntactic depen­
dency sets S and A with a semantic dependency 
set V of ( predicate, label, argument ) triples 
defined as follows: 

• For every substitution (head-complement) 
dependency ('Y, 71, a) in S add a predicate­
argument dependency 
(anchar(ry), argnum(J, 17), anchor(a)} to 
V; and 

• For every adjunction (head-modifier) de­
pendency ('Y, 17, ß) 
in A add a predicate-argument dependency 
(anchar(ß), argnum(ß, f oot(ß)), anchar('Y)) 
to V; 

where anchor(a) returns the lexical and10r of 
tree a, and argnum(a,17} returns the semantic 
argument position corresponding to node 17 in 
tree a. In this way we can combine argument 
attachrnent distributions for initial tree trans- · 
formations and auxiliary tree transformations 
into a common attachment distribution for the 
underlying predicate. 
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Figure 2: Semantic dependencies 

2 Parsing 

Parsing proceeds in three passes of O(n6) com­
plexity. First, the chart is filled in from the bot­
tom up, as described in (Schabes et al., 1988), 
and the input is recognized or rejected. The 
parser then constructs a shared forest (Vijay­
Shanker and Weir, 1993) top-down from the 
elements in the chart, ignoring those items on 
bottom-up dead ends. Finally, the parser pro­
ceeds with the more expensive Operations of fea­
ture unification and probability estimation on 
the reduced set of nodes in the shared forest. 
The chart consists of a set of items that each 
specify a node address 77 in an elementary tree 
a, a top (T) or bottom (.l) marker denoting the 
phase of operation on the node, and four indices 
i,j,k, and l, composing the extent of the node's 
coverage in the sentence: (o:, 77, T 1 i, j, k, l). The 
shared forest consists of an and/or graph, with 
'or' arcs from each non-dead-end chart item 
to instantiations of the parser productions that 
could have produced it, and 'and' arcs from each 
instantiation of a parser production to the chart 
items it would have required. 

In order to select a most-preferred parse for 
an ambiguous input, a highest-probability item 
is selected from the top node in the shared for­
est, and a parse is read off below it by traversing 
the subordinate items with the most probable 
dependencies. The probability of each shared 
forest item is computed as the maximurn of the 
probabilities of its 'or'-adjacent parser produc­
tions. The probability of each instantiation of 
a parser production is cornputed as the proba-
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bility of the relevant dependency for that pro­
duction multiplied by the probabilities of the 
chart items that production required. Finally, 
the probability of each parse must be multiplied 
by the probability of each elementary tree given 
a lexical item in the input. 

The probability model is adapted from 
(Resnik, 1992), which assigns a probability to 
any arc (a, 7], ß} (where tree ß is attached to 
tree a at node address 77) being in the set of 
substitutions S or adjunctions A in a derivation. 
The root of the derivation tree is represented as 
(MAIN, O, a} in S, and null adjunctions (which 
terminate the adjunction of modifiers at a node) 
are represented as (a, 7], t} in A. Finally, the 
probability of a tree a is represented as the 
probability of the double {anchor(a), tree(a)) 
being in the set r of elementary trees used in a 
parse. 

Probabilities for the dependencies in a parser 
production are estimated from observed fre­
quencies that a child predicate c (the base-form 
anchor of a tree) occurs in argument position 
a of a parent predicate p (the base-form an­
chor of another tree), within some training set 
'D of dependency structures: F( (a, p, c) E 'D). 
The top-level dependency is represented in 'D 
as (MAIN, O, c), and null adjunctions are rep­
resented as (NULL, 0, c).3 Note that we use the 
same dependencies as Resnik (the syntactic de­
pendency sets Sand A) in describing the proba­
bility model, and use the semantic dependencies 
('D) only in the estimation of those probabilities. 

Probabilities are estimated as follows: 

• For any topmost item in a derivation tree: 
(a,O, T,0,-,-,n} 
the initial probability would be: 
'P({MAIN,O,a) ES 1 (MAIN,O, _)ES) 
which we estimate as: 
F((M AI N,O,anchor(o:))E'D) 

F( (MAI N,0,-)ED) 

• For any chart production for the substitu­
tion of initiai tree a into / at node address 
17, where i and j are indices, and 17 is a sub­
stitution site in 'Y with the same label as 
the root of a: 

3 Although since the null-adjunction probability only 
conditions on the parent tree, it will be a constant in ev­
ery case, and can be ignored in estimating the maximum 
probability. 

(a,O, T,i,-,-,j) 
('y, 17, T, i, -, -, j) 

the probability would be: 

'P( ('y, 7]1 a} E S 1 ('y, 7], -} E S) 
which we estimate as: 
F(( a'!chor( 'Y) ,a rgnum( 'Y ,ry) ,anchor ( o: )}E'D) 

F( (anchor('Y) ,argnum( -y,77) 1-}E'D) 

• For any chart production for adjunction of 
auxiliary tree ß into 'Y at node address 77, 
where i,j,i1,j1,p and q are indices, and 17 is 
an adjunction site in/' with the same label 
as the root of ß; 

('Y,7J,1-,i1,p,q,j1} (ß,O, T,i,i',j',j) 
(!', 77, 1-, i, p, q, j) 

the probability would be: 

'P(("f, 17,ß) E A 1 {'Y, 7J, -) E A) 
which we estimate as: 
F({anchor(ß),~rgnum(ß,foot(ß)),anchor(-y))E1>) 

F( (_,_,anchor( -y))E'D) 

• For any chart production for closing ad­
junction at a node address 17 in tree 'Y: 

('Y,7], T,i,j,k,l) 
()„ 17, 1-, i, j, k, l) 

the probability would be: 

'P(('Y,7J,€) E A j ('Y,77,_) E A) 
which we estimate as: 
F{(NU LL,O,anchor('Y))E'D) 

Fe (- ,- ,anchor('Y ))ED) 

• For any other chart production, the proba­
bility would be l. 

• Finally, the probability that each elemen­
tary tree a is in the set of trees r used in 
the parse, given a lexical item is: 
P((anchor(a), tree(a)) E Tl(anchor(a), _)ET) 

which we estimate as: 
F((anchor( o) ,tree( o))ET) 

F((anchor(o:},-)ET) 

3 Practical Issues 
The extended goal of this project was to provide 
a natural language interface for "Jack" (Badler 
et al., 1993), a human-like agent that answers 
questions and carries out instructions in a vir­
tual 3-D environment. The system's restricted 
domain makes unknown words and unknown 
syntactic structures unlikely, and th~ goal of 
translating inputs into a formal language for 
the agent avoids the <langer of modifier scoping 
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ambiguity (which our model does not evaluate), 
since the scoping of modifier adjuncts can usu­
ally be ignored in transfer. lt is for this reason 
that we concentrate our attention on parsing 
attachment ambiguity at the expense of other 
problems which might seem more relevant in 
free text applications. 

We consider our approach orthogonal to sta­
tistical smoothing techniques such as ( Char­
niak, 1997) for addressing the sparse data prob­
lem, and for this reason do not discuss them. 
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