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Abstract 

vVe show how prefix probabilities can be computed for stochastic linear indexed 
grammars (SLIGs). Our results apply as weil to stochastic tree-adjoining grammars 
(STAGs), due to their equivalence to SLIGs. 

1 Introd uction 

Thc problcm of computing prefix probabilities for stochastic context-free languages is de­
fined as follows. Given a word sequence ai ···an over some alphabet E, which we call the 
input prefix, we must compute quantity LweE• Pr(a1 · · ·anw). This problem has been dis­
cussed in [1, 4] with the main motivation of applications in speech recognition, where we 
are given some word sequence a1 • • • an-li and must hypothesize the next word an. 

The main idea leading to the solution of this problem is that all parts of context-free 
derivations that are potentially of unbounded size are captured into a set of equations that 
can be solved "off-line", i.e., before a specific prefix is considered. This is possible because 
the involved deriva.tions do not depend on the given prefix. Once these equations have been 
solved, the results are stored. When computing the prefix probability for an actual input 
string, all possible derivations are then considered and a probability is computed, but for 
certain parts of these derivations the results that were computed off-line are used, in such 
a. way that the computation is guaranteed to terminate. 

Gases of derivations of potentially unbounded size might arise because of so called unit 
rules, i.e., rules of the form A - B. Such rules potentially cause the grammar tobe cyclic, 
which means that A -* A might hold for some nonterrninal A. This allows certain strings 
to have derivations of unbounded size. However, also a rule of e.g. the form A - Ba may 
effectively behave like a unit rule if a contributes to the unknown suffix following the actual 
inpu t that is considered as . prefix. 

For stochastic tree-adjoining grammars (STAGs) simila.r problems arise. STAGs that 
a.re well-behaved and allow a bounded number of derivations for each complete sentence may 
require an unbounded number of derivations to be considered, once the input is regarded 
as a prefix followed by a suffix of unbounded length. The key idea to solving this problem 
is again to break up derivations into parts that are of potentially unbounded size and are 
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independent on actual input, and parts that are always of bounded length and do depend 
on input symbols. The probabilities of the former subderivations can be computed off-line, 
and the results are combined with subderivations of the latter kind during computation of 
the prefix probability for a given string. 

The distinction between the two kinds of subderivations requires a certain notational 
system that is difficult to define for tree-adjoining grammars. We will therefore concentrate 
on stochastic linear indexed grammars instead, relying on their equivalence to STAGs [3]. 
The solution proposed in the present paper is an alternative to a different approach by 
the same authors in [2]. In that publication, a set of equations is transformed in order to 
distinguish off-line and on-line computations. 

2 Computation of prefix pro babilities 

We refer the reader to [2] for the definition ofLIG. In what follows, we use a,ß, ... to denote 
strings of nonterminals associated with empty stacks of indices, x,y,v,w,z, ... to denote 
strings of terminal symbols, and a to denote a terminal symbol. Without loss of generality 
we require that rules are of the form A[17 oo] - a B[17' oo] ß with 11111'1 = 1, or of the form 
A[] - z, where lzl :::; 1. 

As usual, - is extended to a binary relation between sentential forms, and its transitive 
and reflexive closure is denoted by -+*. When we write A[O"] -+* a B[r] ß, the indicated 
occurrence of H[r] is the symbol that inherits the stack content of A[O"] in the derivation, 
which we will call the distinguished descendant of A[O"]. We extend this notation to A[a} -· 
a aß, when a is generated in one step from the distinguished descendant of A[O"] in a previous 
sentential form. 

We first introduce a subrelation of -+* defined by A[O"] =?* E if A[O"] -+* E, and A[a] ::::>* 
B[r] if A[O"] -+* B[r] and this derivation does not end on a subderivation of the form 
C[r] _+ B[r], for any C, where no elements that belang to r are popped and pushed 
again. When we write A[cr] ::::>*X, then Xis of the form B[] or c. 

Based on this, two further subrelations of relation -+*, written -:er and -+i:or' are 
defined below by means of deduction steps. The distinction between -:er and -+hor is 
made in order to record how derivations were built up from subderivations. In the case 
of -+hor' the derivation was constructed from two subderivations A[] -+* v B[] w and 
B[} -+ * x C[] y. In all other cases, we use -+:er, This distinction is needed to avoid spurious 
ambiguity in applications of the deduction steps: the result from combining A[} -+ * v B[ ] w 
and B[] --.* x C[] y, viz. A[] -+hor v x C[} y w, is not allowed to combine with a third 
subderivation C[] -+* z D[] q. Note that the desired derivation A[] -+i:or v x z D [] q y w 
can be derived by combining B[] -+* x C[] y and C[] -* z D[] q, and then A[] -+* v B [] w 
with the result of this. 

A[] -+* a 
A[ J _,;er a 

{ 1) 

(3) 

A[J -:er V a -.:er W er 'f; E 

A[] er -+;er VW 

A(J ---.;.* B[cr] O'. -+;er Va 

B[ 00] - a C(poo} ß ß -+:er Vß 

C[] --+* D[ J "}' -:er V'Y 

D[poo]-+ "}' E(oo] 0 0 -+:er VS 

E[cr} ::::>*X VaVßV"tV.5 f E 

A[J - :er Va V"t X V0 Vß 
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A[] _ ... B[u] lab E {ver-,hor} 
B[ 00 l -t a C[p 00 l ß a: -t :er Va 

C[] -tjab V D[] W ß -t7,er Vß 

D[] -t* E[] '/-~er V-y 

E[poo] -t "f F[oo] 8 8 -:er Vs 
F[a] =>* X VaVßV-yVS :/= € 

A[] -~er Va V V-y X VS W Vß 

A(]-t~er VB[] W 

B[J -:er X 

A(J -~er V X W 
(7) 

A{J -:er VB[] W 

B[]-tiab x C(] y lab E {ver,hor} 
A[]-thorvxC[ ] yw 

(5) 

A[] =>* B(o-] 
B[] -thor V C[] W 

C[a] =>*X o- :/= c 
A[J -~er V X W 

(6) 

(8) 

We now discuss how LIG deriva.tions a.re uniquely partitioned into subderivations by the 
above steps. We will explain later how the above steps can be used in the computation of 
pre:fix probabilities. We call spine any path in the parse tree that leads from a node that 
is not a distinguished child of its father ( or that does not have a father, in the case of the 
root), down to a leaf following distinguished children. This means that for an instance of 
a rule A[7100] -t a: B[17' oo] ß in the parse tree, the nodes corresponding to symbols in a 
and ß are each the first node of a distinct spine. Also, the spine belonging to the node 
which corresponds to A[7700] Ieads down along the node corresponding to B[171 oo ]. At both 
ends of a spine, the stack of indices associated with the nonterminals is empty. In between, 
the height of the stack may alternately grow and shrink. This is shown in Figure 1. The 
horizontal axis represents nodes along the spine, and the vertical axis represents the height 
of the stack. 

At some instances of rules, non-empty input is found at some child of a node on the 
spine that does itself not belang to the spine. We always investigate such rules in pairs: if 
one rule pushes p on the stack, we locate the unique rule that pops that p; only one of the 
two rules needs to be associated with non-empty input. Three instances of such pairs of 
rules are indicated in the figure. 

In Figure 1, the parts of the spine labelled by a and bare accounted for by step ( 4 ). From 
these two parts, the part labelled c is obtained through step (6). This step combines paths 

e 
d 

c 
b 

1 . , 

Figure 1: Development of the stack along a spine, and partitioning according to deduction 
sieps. 
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in a «horizontal" way, hence the label h01· in the consequent. The path is then extended 
to the path d in a vertical way by applying step (8). Again vertically, step (5) extends the 
path to path e by identifying one more pair of rules where non-empty input is found. 

Each stack development along a spine, exemplified by Figure 1, can be partitioned in 
exactly one way according to the deduction steps. The proof of this fact is rather involved 
and is not reported in this long abstract. 

We can now discuss how to compute prefix probabilities using steps (1) to (8). We can 
compute the inside probability of a given string w by applying the deduction steps in reverse 
for the relation S[J -7.er w. This gives rise to a unique partitioning into subderivations for 
each possible derivation of w in the grammar. We multiply the probabilities attached to 
the rules that are used in the derivations, and we add probabilities where more than one 
derivation exists due to ambiguity. 

We see that statements of the form C[] --+'" D[] in e.g. step (4) and A[] --+* a in step (3) 
cannot themselves be derived by the deduction steps. lt is assumed the probabilities of 
such derivations are computed off-line, which is possible since they do not depend on actual 
input. Also, the joint probability of the pair of derivations A[] --+* B(u] and E{a] ::::}*X 
in step ( 4) can be precomputed for a given combination of A, B, E, and X, even though 
there may be an infinite number of stacks a. These off-line computations can be carried 
out by solving systems of equations that express recursive relations among probabilities of 
derivations. Again, due to space limitations these systems will not be introduced in this 
lang abstract. 

lt is easy to see tha.t the backward application of the deduction steps must necessarily 
terrninate. This is independent of whether a LIG allows infinite ambiguity. 

If prefix probabilities are to be computed instead of inside probabilities, the deduction 
steps need tobe slightly altered. For example, the condition VaVß V-yVS =/:- t in step (4) needs 
to be reformulated to the effect that at least one symbol from VaVßV-yVS should belang to 
the input, i.e. the prefix. Furth er, probabilities of derivations of the form A[] -t * B[] w 
should be computed off-line, where w belongs to the unknown suffix. (Cf. unit rules and 
rules of the form A--+ Ba in the case of context-free grammars.) 

lt is easy to see that the deduction steps are consistent, in the sense that a -~er ß or 
a -hor ß irnplies a· --+* ß. That the deduction steps are also complete, i.e., that A[] -~er w 
can be derived if A[] -+* w, is more difficult to show and cannot be explained here due to 
length restrictions. The proof relies on the already mentioned uniqueness of the proposed 
partitioning of spines, on which steps (1) to (8) are based. 
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