Tree-Grammar Lineaf Typing
for unified Super-Tagging/Probabilistic Parsing Models

Ariane Halber
halber@enst.fr
Al group, dept of Computer-Science, ENST-Paris*
Man-Machine Interaction lab, Corporate Research Laboratory, Thomson-CSF?t

Abstract

‘We integrate super-tagging, guided-parsing
and probabilistic parsing in the frame-
work of an item-based LTAG chart parser.
Items are based on a linear-typing of trees
that encodes their expanding path, starting
from their anchor.

1 Introduction

Practical implementations of LTAG parsing have to
face heavy lexical ambiguity and parsing combinato-
rial ambiguity. Main techniques to address these is-
sues are super-tagging (Joshi and Srinivas, 1994),
which consists in disambiguating elementary trees
before parsing; guided-parsing, like head-driven
parsing (van Noord, 1994) or anchor driven pars-
ing (Lavelli and Satta, 1991; Lopez, 1998); and
probabilistic parsing (Schabes, 1992; Caroll and
Weir, 1997).

All of these approaches exploit specific properties
of LTAG to improve parsing efficiency, but none is
totally satisfactory.

Guided-parsing is a very nsefull means to limit
overgeneration of spurious items in the chart, but it
does not provide a new ambiguity bound. Besides,
lexical ambiguity remains the main factor of com-
putational load and this problem is only undirectly
addressed by such techniques.

Super-tagging strength is to discard elementary
trees while avoiding to go through actual tree com-
binations. It exploits instead local models of Well-
Formedness (WF), as those used for tagging, where
parse depencies remain implicit or underspecified.
The problem though is that if a single tree is in-
correct the parse will fail. To be robust, parsing
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must thus take several hypothesis into account. This
leaves one with two regrets: first, parsing has still
to find some way to tackle combinatorial ambigu-
ity, and second, there is a lack of synergy between
super-tagging and parsing , while they seem to share
a kuowledge about tree potential-combinations.

Probabilistic parsing offers a way to tune the com-
promize between accuracy and speed, by thresh-
olding partial parsing paths according to their cur-
rent Inside probability. This incurs a well-known
bias (Goodman, 1998): At a given derivation step,
the Inside-probabilities of parse constituents esti-
mate the relevance of the derivation past, but do
not tell anything about its future. This can be cor-
rected by A* cost functions, or Qutside-probability
estimates.

To meet the weak points mentionned above, at
least partialy, we develop a unified framework for the
three techniques, and push their interactions further.

Sharing a parsing framework We propose an
item-based chart-parser, where the parsing scheme
is expressed as a deduction system (Shieber, Sch-
abes, and Pereira, 1994). This framework is
also amenable for expressing probabilistic pars-
ing (Goodman, 1998).

Sharing models for super-tagging and item-
pruning. Super-tagging can be seen as a tree-
sequence WF-model, and extended to score derived
item-sequences in the chart, wrt their likelihood of
completing a parse. This yields a sound threshold-
ing technique (Rayner and Carter, 1996; Goodman,
1998).

Sharing tree-types for item-pruning and
guided-parsing. To support the WF parametric
model, trees and items are abstracted by their lin-
ear type, which consists in a list of connectors that
represent combination properties. Guided-parsing
relies on a specific ordering of these connectors, so
that a single type drives the parsing deduction and
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Table 1: Deductive system for an LTAG bidirectional chart-parser, lexically guided and based majoritarily
on trees, thanks to a precompilation of their nodes into left and right walks.

The active connector 1s poped on extreme left (resp. right) of its stack [y (resp. [';). Each connector is associated with its node n,

though we do nat always mark 1t. The spine s the path from anchor to roat.wrap-1, wrap-2, wrap-3 identifie the three steps of a

wrapping adjunction on an internal node. ¢f Fgure 1.

estimates the pruning model. Types are described
in section 2, their use in the deduction system, in
section 3. their use for item-pruning in section 4,

2 Linear Typing

Guiding the Tree expansion We guide the pars-
ing by independent left and right connected-walks,
inspired from (Lavelii and Satta. 1991} bidirectional
parser and (Lopez, 1998) connected routes. Left and
right connected walks follow respectively left- and
right- monotonic expansion, cutward. [rom the an-
chor to the root, as displayed in figure 2. They list
node operations considered as connectors.

Link-Grammar expression To express linear
types, we exploit the Link-Grammar (ormalism (Laf-

ferty, Sleator. and ‘Temperley. 1492), which is close
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to Categorial Grammar. Leflt and right walks are ex-
pressed as stacks of connectors, so that the extreme
connector is the one to connect the closest to the
anchor! An illustration is given in table 2 for the
tree in figure 2.

Typing strategy, In its own walk, the oot bears
the adjunction, with type { or r inversly to the foot
side. In the opposit walk, the foot-node may be
reached as well, provided that there is a direct path
from root to foot. In the deduction system, in ta-
ble 1, the {oot-node of a left or right auxiliary tree
achieves adjunction, but the foot-node of a wrapping
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!'The derivation is represented as a fully connected
and oriented graph of trees whose edge labels are con-

nector names {pruvided that a sub-tree is extracted to
decompose wrapping adjunction, cf. figure 1.
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Figure 1: Illustration of the deduction rules in ta-
ble 1.
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Figure 2: Left and right tree walks.

capacities to the root-node, with an opposit type for
the opposit. sides.

[t can be noted that each node that can receive ad-
junction yields two linked connectors, which bound
the sub-list of connectors of their sub-tree.

3 Deductive Chart Parser

We wish to get elementary-like types on derived
structure, so as to use a super-tagging-like model to
prune derived paths. We try thus to keep as close as
possible to trees when driving thé parsing. But we
are not aiming at top-down parsing, since we wish
to evaluate derived paths that span the input. This
leads to isolating wrapping adjunction {rom left- and
right-. adjunctions, since it is the only case where
sub-tree extracting is unavoidable (cf. figure 1). Ac-
tually this emphasis on wrapping auxiliary trees is
not surprising, since they account for LTAG context-
sensitiveness (Schabes and Shieber. 1994).

The full deductive parsing system is defined in

table 1. for the LTAG bidirectional-chart parser.
Our

AV H

approach advantage is threefoid: first, ii con-
siders only operations that are lexically sound, ac-
cording to the input string sequence; second, it keeps
the number ol spurious items very low, by creating

very few sub-tree- (or node-) items: third, it isolates
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left walk meta-rule:

right walk meta-rule:
know e~ %V that]l Bf . (NA*TVP) %S

left and right connector stacks:
<N*...B* 'Srooti S V>

type:  abstraction on connector stacks,
removes specialized substitutions:
co-Anchor:  wl— LEX] sub-tree:

Bioor B* VP* ldid 'VP* NP{ NP* N*csknow

Al X1

Table 2: Typing the tree in figure 2.

In a right walk, IX* expresses an auxiliary root-node and “iX, a
node expecting adjunction, X} expresses a substitution site and
X, the root of an initial tree. In a left walk they work the other

way around.

clearly the CF-component, so that the parsing be-
haves very nicely when faced with near-CF deriva-
tions, which are a majority in practice,

Now, regarding complexity, first three “near-CF”
rules yield a worst-case complexity of O(n?%), wrap-
ping adjunction on a lexical spine yields O{n¢), but
the sub-tree rule yields {n”). We could change that
rule into a “systematic” snb-tree extraction with ar-
bitrary gap frontiers, in order to go down to G(r%),
bnt this would generate a lot of sparious items.
Therefore we prefer a lexical check with a wrapping
auxtliary tree, since their occurrence is marginal.

4 Probabilistic Thresholding

Probabilistic parsing is expressed through the de-
ductive system as lollows:

[iitem;] = Pr(sitem;) = P(itein = w; ...
Rule = P(rule)

wj)

Rule, [;item;][jitemy]

[iitemi] = Rule  [iitem;] * [jitern;]

Probabilities of itetns are inside probabilities i.e gen-
erative probability that an item dominates its cur-
rent span of input. Now the usefulness of an item
in reaching full derivations is mainly in the outside
probability Po of that item, defined for LTAG in
(1), following (Schabes, 1992}

for pos = (i, 4, f1, f+]
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For an ilem-path, outside probability accounts for
parsing-deductions to come, i.e the connectors of
the item stacks. \Whereas consuned connectors are
responsible for the inside probability. There is no
way to compute the outside probability without the
knowledge of the actual “connection™ of connec-
tors. but this decomposition gives us a very precious
means to normalize inside probabilities, which put
very low probabilities on large items.

U=y, U
< I >
<y s

item-path
remaining stacks:
consumined stacks:

Py = (JI1, 13T prod, Py
Po{lf) = VLT

{Goodman, 1998) proposes two useful approxima-
tion of the outside score of item{s]. in order to cor-
rect the inside probability bias. \We express them
iy the context of LTAG in (2) and (3). The first
one simply corresponds to the prior probability of
the item category. The second one is the cumulated
probability of all item-paths {* = ({",...,{,) that
include [s]. This value can be computed in several
passes (Goodman, 1998; Rayner and Carter, 1996).

Computing path probabilities entails estimating
the probability that sequences of items. which span
the input. can build a complete derivation. This is
the aim of Super-tagging, which can be viewed as a
model for the first step of the chart. We generalize
it to model steps n. i.c a step where edges have max-
imal length n. Here are some approximations which
have been proposed:

Py = PWULLUR Real
2 , Py FFully independent
2z N (AR SRy Markovian
~ Minomin(P{U L), Fully dependent

Ppnor(l-:ljn P“’"v“’l{-l “

ltem sequences ressemble eletnentary tree sequences,
as they share types, and connect through the same
connectors (provided the type abstraction explained
in table 2 for specialized substitutions}. llence the
possible re-use, in a first approximation. of super-
tagging training for the generalized item-model.

Smoothing: types decompose into a very small
set of connectors, with straigtforward interpretation,
‘They can serve as a usefui basis for compnting back-
off probabilities. For instance by distributing the
probability mass of each connection antong all types
that allow this connection, in the same wav as (Laf-
ferty. Sleator, and Temperley, 1992).
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5 Discussion

We have presented a general {ramework for deduc-
tive parsing, probabilistic parsing and super-tagging.
This unified approach opens a lot of perspective in
the design of efficient and robust LTAG parsing.
However. it remains to be fully validated.

As far as supper-tagging is concerned, supertags
should perform better than linear types as their def-
mition integrates a large amount of linguistic knowl-
edge. Types nonetheless provide for that task a very
simple, and vet relevant, smoothing scheme. As for
further steps of parsing, types turn out very ade-
quate, as they allow to express in a simple manner
the essential computations involved,
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