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An Experiment on Synchronous TAGs
for the Construction of a Transfer Module

Alexandre Agustini & Vera Licia Strube de Lima

PUCRS - Instituto de Informatica
Av. Ipiranga, 6681 prédio 30 bloco 4
90619-900 Porto Alegre RS - BRASIL
{agustini,vera}@inf.pucrs.br

Abstract

This paper presents some considerations on
the use of Synchronous TAGs for the design
of a structural transfer module, which is the
main component of transfer-based systems for
Machine Translation. The transfer moduie
establishes the correspondences between the
structural representation of both the source
and target languages. A study of a corpus
from Economics was carried out in order to

define structural divergences for the
translation between the Portuguese and
English languages.

1 Introduction

Machine translation (MT) has been a
challenge for linguists and computer scientists
over the last decades. During this period,
plenty of progress was accomplished, though
the results are not yet the ones expected.

Transfer based approaches to MT involve
three main phases: analysis,. transfer and
generation. During analysis, the syntactic and
semantic structure of a sentence is made
explicit through a source language (SL)
grammar and semantic processing modules.
The result of the analysis is one or more
syntactic and semantic representations which
are used to construct a syntactic and/or
semantic representation in the target language
(TL) through a series of transfer rules and
“according to a bilingual lexicon. From this

representation a TL sentence is generated
based on some form of mapping procedure
[Hutchins & Sommers 92; Trujillo 95].

In this paper we describe a prototype
implementation of a transfer MT module
based on the Synchronous Tree-Adjoining
Grammars (STAGs) formalism. STAGs
[Shieber & Schabes 90] are a variant of Tree-
Adjoining Grammars (TAG) to express the
related representations of semantics and
syntax in natural-language description.

2 Corpus based development

Our basic approach is corpus-driven. We
started by collecting a source-language corpus
(Portuguese sentences) in a limited domain.
The corpus made up by 200 sentences was
created randomly from an economics
headlines database. About 50% of them were
discarded because they were ill-formed
senteces. The database had previously been
generated from a news broadcasting system.

An English version of the corpus was
produced by a native translator © with
experience in the domain terminology.
Finally, both corpuses were tagged and
aligned in order to achieve:

o virtual grammars' for both the source

' In this context, virtual grammar refers to a syntactic
structure subset necessary for parsing any input
sentence and generating target structures occuring in
the corpus.



and target corpuses: the subset of
lexicalized trees necessary for
syntactic/semantic anatysis of source
and target corpus was defined. These
grammars are based on [Kipper 94]
and [Becker et al. 94] technical
reports.

e lexicon coverage: source and target
lexical dictionaries were set, As we
are working on a lexicalized model
[Abeillé 90; Srinivas et al. 94], each
lexical item anchors one or more
syntactic structures.

o translation discrepancies: translation
problems to be solved during transfer
from source to target structures were
addressed.

We found it helpful to divide translation
problems into three different types: lexical,
syntactic and lexical-semantic. These terms
are used according to the following concept
(according to [Dorr 94]): Lexical problems
are concerned about finding correct choices
for expressions that occur in the source and
target languages. Synractic problems feature
syntactic properties associated with each
language (i.e., properties that are independent
of the actual lexical items that are used).
Finally, lexical-semantic problems which
feature properties that are lexically
determined.

Some examples of divergences observed in
the corpus are presented on Table 1. In case
(1), problems originated from lexical gaps in
the source and target languages are shown,
the translation has to deal with structural
problems and feature inheritance. Syntactic
problems (2) usually have to do with word
order, in the examples, adjectival phrase
order. In the last one, a lexical-semantic
problem, see (3), the Portuguese verb (fazer)
and its complement (/eildo) are transiated into
a verb (to auction) in English. '

Portuguese English
(1) {corretora firm of brokers
parlamentares | members of parliament
empreiteiras Contract construction companies

linhas aéreas airlines

(2) |peso Mexicano
bolsa de Nyork

Mexican peso
MNew York stock exchange

(3) | fazer leildo to auction

Table 1: Exampie of some discrepancies

3 A Model
Implementation

Proposed and

Figure 1 illustrates the proposed model in
which the structural divergence related
information is modeled in two different
dictionaries: a structural dictionary and a
bilingual dictionary.

s;u 1] Target
LTAG - LTAQ

" Structvrsl 1
' Ditonary

|
|
R ]
BEngyal
Oletionary - |
|
VAN R A

A ——= YarHcation ——=

[ N ——— N\
{Tress} (Tres)}

| {S0ures and Target} Z:"f;’ [ (Target)

npat | systeate
Sentence

Figure 1: Overview of i’roposed Model

The structural dictionary connects LTAGs
structures that define both the source and the
target languages. This structure maintains the
node-to-node links between the source and
the target grammars. All elementary trees in
the source language are associated with trees
in the target language. It has information
about the inheritance of semantic atiribuies
and also holds all the information for
syntactic divergence resolution Table 2
illustrates some entries of the structural
dictionary.




# format:
# (source_id : target_id) = { links ]

# transitive verbs (NP object complement)
# S(NVN) --> S(NPCV(VNP))
{ 2:302)={%0:30, $1:$1 , $2:93 , $3:34 ],

# adjectives

# N(N Adj) --= NP({ Adj NP )
(100:400) = { $0:30, $1:92 , $2:31 1,
# N(Adj N) --> NP(AdjNP)
(101:400) = [ $0:30, $1:31,$2:$2];

# adjectival phrase

# +NPROP = Proper Noun

# N(NPrepN) --> NP(AdjNP)

{20:400) = [ $0:30, $1:32 , $3[+NPROP]:$11];

Table 2: Selected Structural Dictionary Entries

The bilingual dictionary contains the rules for
the resolution of lexical and lexical-semantic
divergences. This dictionary manipulates the
pairs of lexicalized items and points out one
or more elementary structures of the structural
dictionary to which the item is anchor. In this
dictionary, derivation tree fragments can be
defined, with the purpose of resolvihg lexical
and lexical-semantic divergences.
Furthermore, the dictionary can extend the
ruies contained in the structural dictionary to
state the restrictions imposed by the
accomplished lexical insertion. A fragment of
the bilingual dictionary is presented in Table
3.

The transfer module receives a sequence of
lexical items, generated by a iexicon-
morphologic module. The output corresponds
to one or more derivation trees in the target
language with all structural modifications
accomplished and decorated with the
semantic features inherited from the source
language.

Virtual grammars for source and target
languages are described in an independent
way and the notation introduced by
{Kipper 94] for both grammars was used. The
Portuguese grammar is a subset of the

[Kipper 94] grammar and the English
description was extracted from [Becker et
al. 94].

# format:

# ( source_entry : transiation ) = [ anchor list I;
(hoje : today) =,

(fazer : make) =, (2]

% (fazer:##) // redefinition of verb fazer

% S(N V[#lex=fazer] N(N{#lex=leilao] Prep N)}
% >

% (S (NP CV(Vi{#lex=auction] NP }):

% {30:30, $1:81, $2:$2, $6:%4);

# default
Y%(#lex : #lex)

Table 3: Selected Bilingual Dictionary Entries

Due to the incremental characteristic of the
STAGs method, transfer functions were
incorporated to syntactic analysis. The
implementation involves two distinct steps:
syntactic analysis (parser) and verification.

The parser uses a top-down algorithm for
LTAG recognition. Each operation carried out
by the parser in the SL enables one or more
operations in the TL. The output is: for each
SL syntactic structure a set of structures in the
TL is generated.

During the process of analysis and transiation,
two types of attributes are manipulated:
structural and semantic attributes. The
structural attributes are inherent to each
language and do not need to be transferred,
On the other hand, semantic attributes are
inherited by each one of the accomplished
items of the pairs in lexicalized trees.

Finally, in the verification step, the
unification of semantic features and the
verification for structural consistency on the
generated target trees is carried out. This
process is based on the target LTAG grammar
and inconsistent trees are discarded.




4 Conclusion and Future Work

This work investigated the use of the STAGs
formalism for the treatment of lexical,
syntactic and lexical-semantic divergences
defined from a corpus in the field of
Economics. Due to the extended domain of
locality of LTAGs, it is possible to define
regular correspondences among complex
structures without the need of intermediary
representations.

Although it was possible to set the translation
rules for about 85% of the selected corpus
(composed of 90 sentences), the model cannot
yet be validated due to the short number of
sample sentences.

Nowadays, we are starting to work on tagging
and aligning toois for a bilingual corpus.
These tools will allow us to set a more
complex corpus of sentences to validate the
work we have developed.
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Transplanting Supertags from English to Spanish

Srinivas Bangalore
AT&T Labs-Research
180 Park Avenue
Florham Park, NJ09732
srini@research.att.com

Abstract

In this paper. we present an approach to quickly
develop supertags for a larget language given
supertags for another language (reflerence- lan-
guage), along with a sentence-aligned parallel
corpus between relerence language and target
language pairs. Qur method can be interpreted
as composing the alignment relation with de-
pendency relation of the relerence sentence to
obtain the dependency relation [or the target
sentence. This dependency relation is then used
10 induce the supertags [or the target words.

1 Introduction

supertags localize lexical and structural ambi-
suity by associating rich and complex descrip-
tions 1o words ol a language. This localization
allows us to compute lexical and contextual dis-
tributional properties of supertags. In earlier
work (JS594: Sri97a; Sri97h) we have shown that
this distributional information can be used in a
novel way to perform «lmost parsing. Trained
on a million words of correctly supertagged Wall
Street Journal Text. a simple trigram based su-
pertagger assigns the same supertags to 92%
of the words as thev would have been assigned
in the intended parse of a sentence. In sub-
sequent work we have demonstrated the util-
ity of supertags in a variety ol applications
including, Language Modeling (Sri96), Infor-
mation [iltering (CS597b: CS97¢). Information
Fxtraction (DNB*97) and Sentence Simplifica-
tion {(!8§97a).

2 An issue in Supertagging approach

However. constructing a rich repertoire ol su-
pertags for a language is a time consuming
and tedious task as exemplified by the history
ol development of the English XTAG Gram-
mar (XNTA95) at University ol Pennsylvania and

the French XTAG Grammar at University of
Paris.! In this paper, our attempt is to pro-
vide a solution to alleviate the task of building
a supertag collection for a language (target lan-
guage) based on the set of supertags of another
language ( reference language). In particular, we
present a method of transplanting the set of su-
pertags [rom the XTAG Grammar for English
to Spanish using a parallel corpus ol sentence-
aligned English-Spanish sentences.

3 Grammar Induction vs Grammmar
Transplantation

Previous proposals (Res92; Sch92) for learn-
ing LTAG grammars involved inducing elemen-
tary trees [rom unannotated corpora. However,
these proposals require training of a large num-
ber of parameters on even larger collections of
corpora and yet the resulting structures may
not be linguistically motivated. In contrast, our
approach is based on the premise that elemen-
tary trees of natural language grammars are re-
lated and that these structures can be inher-
ited almost as is, from the reference language to
the target language. We use the term grammar
transplantalion as opposed to grammuar induc-
tion in order to differentiate the amount effort
involved in the development of supertags for the
target language. However, a limitation of our
approach is that the target language is imposed
with structures that closely reseinble the source
language structure.

4 Methodology
Qur approach to transplanting supertags in-
volves applying the followine steps to each sen-

'But this should not be regarded as a limitation
exclusively of the supertag-based parsing paradigm.
Treebank-based statistical parsing methods are limited
by the effort involved in constructing a treebank.



tence pair in the reference-target parallel cor-
pus. We have applied this method to an
English-Spanish ATIS corpus.

¢ We first obtain a word alignment for each
sentence pair using the alignment algo-
ritbm described in (ABD98). The align-
ment algorithm is completely unsupervised
and only requires a sentence aligned corpus
in two languages, It uses a correlation met-
ric among reference-target word-pairs as a
cost of reference-target word pairing and
performs an alignment search that mini-
mizes the sum of the costs of a set of pair-
ings which map the reference sentence to
its target sentence. .

¢ The words of the English sentence are su-
pertagged using a supertagger. The su-
pertagger used for the ATIS domain was
trained on 2000 word-supertag pairs and
performs at 92% accuracy on a 500 word
test set,

o The supertagged English sentence is fur-
ther annotated with dependency links us-
ing the Lightweight Dependency Analyzer
described in (Sri97b).

¢ The dependency links are then migrated to
the target sentence as follows: if words w;
and wj; are linked in the reference sentence,
w; is aligned with v, and w; is aligned with
vy, then a dependency link is posited be-
tween v, and v,.

¢ Finally, the dependency structure migrated
on to the target sentence is used to recover
the correct ordering of arguments of each
word., This information is used to construct
the supertag for the word.

Our method can be interpreted as compos-
ing the alignment relation with dependency re-
lation of the reference sentence to obtain the de-
pendency relation for the target sentence. This
dependency relation is then used to induce the
supertags for the target words.

5 Example

Consider the following pair of sentences from
the sentence-aligned English-Spanish ATIS cor-
pus.

English: SHOW BUSINESS CLASS
FARES ON U S AIR FROM BOSTON
TO TORONTO

Spanish: MUESTRE LAS TARIFAS
EN CLASE DE NEGOCIOS EN U S
AIR DE BOSTON A TORONTO

The result of the alignment algorithm is
shown below. Notice that the result contains
alignments between one word in the source
string (FARES) to two words in the target
string (LAS:TARIFAS). Multi-word alignments
are shown separated by a “”, The alignment
algorithm allows mapping between at most two
words in the source string to two words in the
target string.

English: SHOW BUSINESS CLASS
FARES ON U S AIR FROM BOSTON
TO TORONTO

Spanish: MUESTRE LAS:TARIFAS
EN CLASE DE NEGOCIOS EN U §
AIR DE BOSTON A TORONTO

Target Position | Source Position
1 i
23 4
4

5 3
6

7 2
8 5
9 6
10 7
11 8
12 9
13 10
14 11
15 12

The output of the supertagger for the English
string is in Table 1. The supertagger assigns fo
each word the part-of-speech and supertag in-
formation. The supertag information is used
to assign dependency information among the
words of the sentence,

The POS, supertags and dependency links are
transplanted on to the target string using the



Supertag

Position | Words POS Dependency links
1 SHOW VB | AInx0Vnxl1 | 4.

2 BUSINESS | NN | BNn 3*

3 CLASS NN | BNn 4*

4 FARES NNS | ANXN

5 ON IN B_nxPnx 4% 8.
6 U NNP | B.Nn 7*

7 5 NNP | B.Nn 8*

8 AIR NNP | ANXN

9 FROM IN B nxPnx 8% 10.
10 BOSTON NNP | ANXN

11 TO IN B_nxPnx 8* 12,
12 TORONTO | NNP | ANXN

Table 1: Result of applying the supertagger and the LDA on the English string

Position | Words POS | Supertag Dependency links
1 MUESTRE NN | Alnx0Vnxi | 2:3.

2:3 LAS:TARIFAS | NNS | ANXN

4 EN

5 CLASE NN | BNn 2:3*

6 DE

7 NEGOCIOS NN | BNn 4*

8 EN . IN B nxPnx 2:3% 11.
9 U NNP | BNn 10*

10 5 NNP | B.Nn 11*

11 AIR NNP | ANXN

12 DE IN B.nxPnx 11* 13,
13 BOSTON NNP | ANXN

14 A TO | B.nxPnx 11* 15.
15 TORONTO NNP | ANXN

Table 2: Result of combining the alignment information with the dependency information

alignment information and the result is in Ta-
ble 2.

The target string dependency structure is ex-
amined for completeness and consistency. Com-
pleteness requires that each word is assigned a
supertag and its dependency requirements are
satisfied. Consistency requires that the direc-
tion of the head/dependent of a given word
matches the direction of its dependency require-
ment.

In our example, the words at positions 4 and
6 are not assigned any supertags and hence vi-
olate completeness constraint and the words at
positions 5 and 7 violate consistency constraints
since the supertag (B_Nn) requires the head to
appear to its right while the head appears on
the left.

We solve the consistency and completeness
problems by assigning to a word the most fre-
quent supertag it is associated with, given the
entire corpus, which can fit into the dependency
context of the target string and at the same time
respect the dependency constraints imposed by
the source language. The corrected PQOS, su-
pertag and dependency structure for the target
string is shown in Table 3.

6 IEvaluation

The system can be evaluated in a number of
ways: in the context of an application, in terms
of the supertags assigned, in terms of the depen-
dency links assigned or in terms of time reduced
in developing a full-fledged domain independent
grammar., We are in the process of evaluat-
ing the system on its performance in assigning



Position | Words POS | Supertag Dependency links
1 MUESTRE NN A_Inx0Vnxl | 2:3.

2:3 LAS:TARIFAS | NNS | ANXN

4 EN IN B.nxPnx 2:3* 5.
5 CLASE NN | ANXN

6 DE IN B.nxPnx 5% 7.

7 NEGOCIOS NN | ANXN

8 EN IN B_nxPnx 2:3% 11.
9 U NNP | B Nn 10*

10 S NNP | B.Nn 11*

11 AIR NNP | ANXN

12 DE IN B_nxPnx 11* 13.
13 BOSTON NNP | ALNXN

14 A 1 TO | BauxPnx 11* 15.
15 TORONTO NNP | ANXN

Table 3: Result of correcting the dependency structure based on completeness and consistency

constraints,

supertags and dependency links to 1000 words
of annotated test corpus from the ATIS do-
main. Preliminary results suggest that the per-
formance in assigning supertags is about 80%
accurate,

References

Hiyan Alshawi, Srinivas Bangalore, and Shona Dou-
glas., Automatic acquisition of hierarchical trans-
duction models for machine translation. In Pro-
ceedings of the 36" Annual Meeling of the Asso-
ctation for Compuiational Linguisiics, Montreal,
Canada, 1998.

R. Chandrasekar and B. Srinivas. Automatic indue-
tion of rules for text simplification. Knowledge-
based Sysiems, 10:183-190, 1997.

R. Chandrasekar and B. Srinivas. Gleaning informa-
tion from the web: Using syntax to filter out irrel-
evant information. In Proceedings of AAAT 1997
Spring Symposium on NLP on the World Wide
Web, 1997.

R. Chandrasekar and B. Srinivas. Using syntactic
information in document filtering: A comparaiive
study of part-of-speech tagging and supertagging.
In Proceedings of RIAO’97, Montreal, June 1997.

Christine Doran, Michael Niv, Breckenridge Bald-
win, Jefftey Reynar, and B. Srinivas. Mother
of Perl: A Multi-tier Pattern Description Lan-
guage. In Proceedings of the International Work-
shop on Lezically Driven Information Eriraction,
Frascati, Italy, July 1997.

Aravind K. Joshi and B. Srinivas. Disambiguation
of Super Parts of Speech {or Supertags): Almost
Parsing. In Proceedings of the 17*" International

Conference on Computational Linguistics (COL-
ING ’94), Kyoto, Japan, August 1994.

Philip Resnik. Probabilistic tree-adjoining grammar
as a framework for statistical natural language
processing. In Proceedings of the Fourteenth In-
ternational Conference on Computational Lin-
guistics (COLING '92), Nantes, France, July-
1992.

Yves Schabes. Stochastic lexicalized tree-adjoining
grammars. In Proceedings of the Fourteenth Inter-
national Conference on Compuiational Linguis-
tics (COLING ’92), Nantes, France, July 1992.

B. Srinivas. “Almost Parsing” Technique for Lan-
guage Modeling. In Proceedings of ICSLP36 Con-
ference, Philadelphia, USA, 1996.

B. Srinivas. Complezity of Lezical Descriptions and
ils Relevance to Partial Parsing. PhD thesis, Uni-
versity of Pennsylvania, Philadelphia, PA, August
1997,

B. Srinivas. Performance Evaluation of Supertag-
ging for Partial Parsing. In Proceedings of Fifth
Inlernational Workshop on Parsing Technology,
Boston, USA, September 1997.

The XTAG-Group. A Lexicalized Tree Adjoining
Grammar for
English. Technical Report IRCS 95-03, Univer-
sity of Pennsylvania, 1995. Updated version avail-
able at http://www.cis.upenn.edu/ xtag/tr/tech-

report hivnal
i PU]. VaillVibia,
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Introduction

We define Recursive Matrix Systems (RMS),
a highly parameterizable formalism that allows
for a clear separation of various kinds of recur-
sion. One instance of RMS, namely context—free
RMS with two rows and a specific reading inter-
pretation turns out to be weakly equivalent to
TAG. This allows for the transfer of results from
TAGs to this class of RMS. Furthermore, the
equivalence proof is constructive and exhibits a
very close relationship between the structures of
the two formalism, namely trees and matrices.
This allows to transfer interesting restrictions
which can easily be defined in RMS to TAG. In
particular, the obvious restriction of context—
free RMS to reguiar RMS results in a restricted
form of TAG which appears sufficient for natu-
ral language processing, albeit being less com-
plex than regular TAG.

Recursive Matrix Systems

A Recursive Mairiz is a finite matrix whose el-
ements are either terminal symbols or again re-
cursive matrices (see Figure 1). Recursive ma-
trices are created by grammars (in particular by
regular and context—free grammars) that have
vectors as their terminal symbols. Strings are
derived from a recursive matrix by a reading in-
terpretation which reads the terminal symbols
of a matrix line-by-line either from left-to-right
or right-tu-left and recursively descends for ele-
ments that are recursive matrices. In the follow-
ing, we consider only Recursive Matrices with a
constant number of rows in all (sub-} matrices.
This number n is an important parameter. We

Dominik Heckmann
Universitdt des Saarlandes
D-66123 Saarbriicken
dheck@studcs.uni-sb.de

denote the set of all recursive matrices as RM.

djefr
a b ¢ [dle]lr
dielf
d £ a c

In this example the element in the second row,

fourth column is the recursive (sub-) matrix

d f .
afeitl. The other elements are terminals.

dielf

Figure 1: A recursive matrix.

A regular (contert-free) Recursive Malriz
System (reg-RMS, cf-RMS) is a tuple {G,I)
where (7 is a grammar that generates recursive
matrices and [ is an interpretation to read a
string from each recursive matrix. L(G) is the
set of all recursive matrices derived by the gram-
mar G. L{G,I) is the set of all strings derived
from the recursive matrices in L{G) by the in-
terpretation I,

A regular (context—free) grammar G that
generates recursive matrices is a grammar with
terminal symbols Vec!, nonterminals N, a start
symbol S from N and a set P of regular
(context—free} rules. All vectors v € Vec have
constant size n; the elements of v are either
nal symbols of the RMS) or non-terminals from
N. T, V, N, P are finite but non-empty sets, N
NnT==0

The derivation relation = is defined over Ez-
tended Recursive Matrices, i.e., concatenations

"not to be confused with T, the terminal symbols of
the RMS.

9



a a E a a [
s # h 5 i b b 5 @ b b A
¢ < c : c € C
a 2 £ a a E a a £
] EIEL EJCI
b b fe] A @ b b [e]epAl # b b jelele
T [T1T] 4
4 (4 E C [+ £ c [ E

Figure 2: A derivation with RMS grammar G;.

of vectors and non-terminals, where the ele-
ments of a vector are either terminal-symbols of
the RMS, non-terminals of G or Extended Re-
cursive Matrices. Each derivation step rewrites
exactly one non-terminal according to a rule in
P. The language L(G) is defined as L{G@) :=
{r|S = r,7 € RM},

The following example grammar is used to show
the derivation process:

G, = ( T={abc,def},N={S,A},S,P={S —

o= -

All vectors have the size 3 and all rules are
regular. G is a reg-RMS. When applying the
first or third rule, a vector is added to the
matrix. When applying the second rule, a
descend into the next recursive "matrix-level”
takes place. Only the last rule is a terminating
one. A possible derivation with the grammar G;
is shown in figure 2. Note that the horizontal
dimension of the recursive matrices is unbound.

The reading interpretation of a recursive ma-

Aariva
[ Lo -3 Lwr

rtar ~f

fro & YCCLoT O1

triv i m Alvantinmag fre
Lri¥ is irom QITeCviONs 10T

each row of the matrix,.i.e., an n-dimensional

vector | =[ B ] of elements i; € {—, «}. Tt is
i

recursively defined as shown in figure 3.

[

_’
e

with T

For example,

], we get

alo]a
L
-

£

)

read(

djel
dle]f

abc o read(lZ=l0) 6 cha o dac =
abcodef o fedodef o chaodac =
abede f fedde fchadac.

The Equivalence of CF-RMS; and
TAG

Although a TAG can be directly transformed
into a weakly equivalent RMS, it is easier to
demonstrate if we assume a normal form for
TAG where no adjunction is possible into root
and foot nodes, the root node has only one
daughter, and there are no more than two in-
ner nodes dominating the foot node. Figure 4
shows how such an auxiliary tree g can be di-
rectly mapped into a rule P of a context-free
RMS . The details for mapping the subtrees
s, t,u, v to submatrices of the right-handside of
P are omitted here.

Note the cloge resemblance of the notation
of a TAG as an RMS to the notation of a
TAG as a Linear Context-Free Rewriting Sys-
tem (LCFRS, Weir 1988). Even though in gen-
eral, RMS can be captured as LCFRS, the par-
ticular structure of RMS which separates dif-
ferent dimensions of recursion has lead us to a
number of observations which are not obvious

10



read(recursive matriz, I) :
read(row(l..m], =)

i

read(rowy, i) o...o read(rowy, ;)
read(row(l], I) o read(row[2..m], =)

read(row(l..m], +) := read(rowfm|,I) o read{row[l..m—1],)
read(terminal symbol, I} := terminal symbol

Figure 3: Definition of the reading interpretation read for recursive matriz =[ o ] .

when looking at TAGs or even at LCFRS.

ANA
| u
B
o o1
s/ C\t
u ¥
ANA

Figure 4: Tranforming a TAG into a weakly
equivalent RMS.

Like contect—free grammars, context-free
RMS can be transformed into a normal form
resembling Chomsky normal form. In such a
transformed cf-RMS 2 | all rules are of the form

shown in figure 5.
B [ a |
A— A—

Figure 5: A normal form for cf-RMS2 .

A— BC

Figure 6 sketches how a TAG grammar is con-
structed from such a cf-RMS that derives the
same language.

Given this relation, the question arises
whether a TAG can be transformed into a reg-
ular RMS, i.e., whether the non-terminal B in
Figure 4 can be dropped. The answer is no, and
it can be seen, e.g., by the fact that the normal
form transformation cannot be tightend up to
only one inner node dominating the foot node.
This implies that regular RMS are a proper sub-
set of context—free RMS2.

2 Actually, we found this relation when failing to show

rowy

On the other hand, this emphasizes a pa-
rameter of TAGs that was not obvious before:
Even though the well known example gram-
mars for deriving L* = {a"b"c"d"} and L¢PY =
{ww|w € {a,b}*} already exhibit non context—
free properties and even cross—serial dependen-
cies, they are restricted in the sense that their
trees have only one node dominating the foot
node that is available for adjunction. While it
is not easy to give an example for the effects that
can be achieved with two or more such nodes,
when looking at RMS, this parameter becomes
obvious (i.e. as the difference between regular
or context-free RMS).

Looking at natural languages, it appears that
in fact the restriction to TAG with only one
adjunction node on the spine (an important re-
striction of regular RMS) are sufficient since re-
cursive, unbounded dependencies are restricted
to one type (e.g., either embedded or cross—
serial), but don’t occur intertwined with a sec-
ond type of recursive, unbounded dependencies.

It remains unclear though, whether the sec-
ond restriction of regular RMS, which in TAG
terms means that no path from the root to a
leal can have more than one available adjunc-
tion node is too strong.

Current Work

We are currently exploring the consequences of
the restrictions that reg-RMS have compared to
CF-RMS. Exploiting the equivalence of TAGs
and RMS allows us to adopt results for TAGs
for RMS. A point of special interest is pars-
ing and its time complexity. Taking any of the
various known parsing algorithms for TAGs im-
mediately gives us an O(n®) parsing algorithm

the equivalence of regular RMS and TAG, forcing us to
extend RMS to context—free RMS.

11



NA

A— BC

0
-

NA

00—

ANA R
|
A—
I\
T ANA (I: s ,NA &

£ E

Figure 6: Elementary trees constructed for each rule of a cf-RMS2 in normal form.

for CF-RMS . Moreover, given the tight cou-
pling between the grammar rules of an RMS and
the elementary trees of the equivalent TAG, we
can find stronger restrictions on the steps of the
TAG parser if the original RMS grammar is reg-
ular and not context—free. In particular, using
the algorithm by (Nederhof 1997), we conjec-
ture that reg-RMS can be parsed in at most
O(n5) time.

A further avenue of research is the fact that
the context-freeness of RMS is not necessary
to construct grammars that exhibit cross—serial
dependencies, one of the core arguments for
TAGs. While 2-dimensional reg-RMS with a
reading interpretation of = (  } are sufficent
to exhibit cross-serial dependencies (center-
embedded dependencies resp.), they can't ex-
hibit both. However, 3-dimensional reg-RMS
are sufficient and therefore a candidate for a
further restriction on TAGs for natural lan-
guage processing which might result in a fur-
ther reduction of the time complexity of parsing.
While such a restriction might not be obvious
when looking at TAG trees, the representation
as an RMS allows for a very succint formulation.
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1 Introduction

We show how the domain of locality in a TAG
elementary tree, (Frank 1992), can be extended
through adjunction to include optional argu-
ments for a class of motion verbs and how
the adjunctions can be restricted apprapriately
through the use of semantic features. Some ex-
amples of motion verbs we consider are shown
in Table 1, which categorizes the verbs accord-
ing to Levin classes {Levin 1993). Note that we
are using a broader definition of “motion” verbs
than Levin’s class 51.

VIDMs | Roll Run | Force | Carry

arrive | float | jump | press | carry

enter roll run | pull | lug

escape | slide | slide | push | pull

exit rotate | walk push
turn

Table 1: Levin Classes of Verbs Involving Mo-
tion

These verbs are classified according to their
syntactic behavior, which is taken to be a re-
flection of their underlying semantic proper-
ties. Motion verbs are able to occur with path
phrases, where the term “path” is used as a
cover term for source, goal, via and directional
modifiers (PPs and adverbs), along the lines of
Jackendoff (1976, 1990). Examples of these are
given in (1-4).

2 Manner of motion verbs: (Run
and Roll classes)

(1) I ran to the store. (goal)

* We would like to thank Hoa Trang Dang, Christy
Doran, Aravind Joshi, Tony Kroch, Jeff Lidz, Joseph
Rozenzweig, Matthew Stone, and two anonymous re-
viewers for helpful discussion and/or participation in this
research.

(2) I ran from the room. (source)
3) I slid the sleeve over the valve. (via)
4) Islid the coupling nut forward. (direction)

We analyze manner of motion verbs as hav-
ing the feature [eventType: motion:+]. Path
phrases are constrained to only adjoin onto
motion-compatible VPs.

S
NP VP [eveniType:molion:+]
‘i' NP

nn

VP [eventType:maotion:+, path:goal:+]
PP
P NP

[£:]

VP
feventType:motion;+
path:goal:0)

Figure 1: Elementary Tree for run and Auxil-
iary Tree for to PP

3 Explanation of Features

Within the feature structure that we propose
there are several features whose values are not
atomie, rather the teature contains another
complex feature structure. For example, the
feature [eventType] can be multi-valued. Pos-
sible features within [eventType] are [motion],
[force], and [contact]. Similarly, path is com-
posed of a complex feature structure which
has the features [via], [direction], [source], and
[goal]. The path features can take the values +,

13



0, or NONE. ! A “4” value means that the fea-
ture has been specified. A “0" value means that
it has not yet been specified, but that it is ap-
propriate for this feature to have a value. The
feature [path: goal:0] or [path: source:0] occurs
in the foot node of adjoining trees that repre-
sent source or goal, to ensure that an element
with that value has not already been adjoined.
An example is shown in Figure | above. The
value “NONE”, on the other hand, means that
it is not appropriate to specify this value.
EventType features are also atomically val-
ved, taking the values + or -. Having the
feature [eventType: motion:-] means that the
event is unable to be interpreted as a motion
event and entails that path phrases cannot ad-
join on. An example of a verb with this fea-
ture might be eat. On the other hand, non-
specification of the [eventType: motion] feature
entails that path phrases can adjoin. If a path
phrase does adjoin, the event becomes a motion
event. Sound emission verbs are of this sort.

4 Verbs of Inherently Directed
Motion

The class of verbs of inherently directed motion
(VIDMs) have a path component built into the
meaning of the verb. Usually the verb specifies
a source, as in leque and eif, or a goal, as in
enter, arrive,

One interesting property of VIDMs is that
they have a more limited ability to take path
PPs even though they are motion verbs. For ex-
ample, arrive does not take a prototypical goal
PP (with the preposition fo), but instead takes
a locative PP which represents the goal of mo-
tion.

(5) a.  Mary arrived at the station,
b. *Mary arrived to the station.
(6) arrive = (GO [TO X])
{where X=location)

Following Jackendoff 1990, we analyze the
goal function “T'O” as being incorporated in the
LCS of arrive, shown in (6 The PP slot in

'We use atomically valued features for source and
goal rather than putting in the actual value of the goal
{i.e. the referent of the goal) because the simple presence
or absence of these features is what affects the derivation.
That is, having a goal present means that another goal
cannot adjoin on (but see footnote 3). For this purpose,
the referent of the goal does not need to be represented.

the subcategorization frame is coindexed with
the location argument slot X. Therefore, the
PP that represents the goal must be a location.
In TAG terms, we assume that the part of the
path inherently specified in the verb semantics
constitutes an (optional) argument. In order to
constrain what kind of preposition can instan-
tiate the goal, we will need to define a class of
locative prepositions and impose a constraint on
the P node so that only this class is allowed to
occur there. For now, we show the feature {loca~
tive:+] on the P node of the elementary tree for
arrive in Figure 2.

{eventType:motion:+; path:goal:+,
/\ via:NONE, direction:NONE]

| /\
arive

[[ocaUVc.+]
Figure 2: Elementary Tree for arrive

In addition, many VIDMs (like arrive, enter,
erit} are achievement verbs; that is, they have
no durative aspect. Because of this, they can-
not take a path phrase that modifies durative
motion.

(7) John arrived (*around the lake) at Mary’s
house.

The [via:NONE] and [direction:NONE] fea-
tures in the VP node in Figure 2 represent a
non-durative path. While via and direction PPs
cannot occur with arrive, a source can be speci-
fied, as shown in (8), because this does not con-
flict with the lack of durativity of the event.

(8) John arrived in Chicago from Philadel-
phia.

5 Regular sense extensions
Path phrases can adjoin to a VP node which

wronmbhe dlnd oo
is unspecified for motion. Even verbs that are

not inherently motion verbs can be modified by
path phrases, augmenting their semantic rep-
resentation to include explicit motion. For in-
stance, verbs of sound emission such as whistle
and roar can convey directed motion when they
appear with path phrases, as in (9) and (10).

(9) The train whistled into the station.
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(10) The truck roared past the weigh station.

Additionally, we see other cases where the
syntactic frame in which a verb occurs deter-
mines the senses that a verb can have. For ex-
ample, push can have the senses shown in (11-
14). (See Dang et al. 1998 for discussion).

(11) Mary pushed the chair.

tact:+]

{force:+, con-

(12) Mary pushed the cart to the store. [mo-
tion:+, path:+]

(13) Mary pushed the branches apart. [mo-
tion:+, separation:+]

(14) Mary pushed at the boulder. {motion:-]

The transitive sentences (11), (12), and (13)
will all be generated from a transitive elemen-
tary tree where the VP node has the features
{force:+] and [contact:+], but is unspecified for
[motion|. Adjoining in the modifiers {o the store
and apart will introduce the additional features
listed in (12) and (13), respectively.

The conative construction (illustrated in
(14)) is represented by the elementary tree given
in Figure 3.

N
NP VP [evem(Typeimotion:-. firce:+. contact+]
v

PP
I /\
P NP

pugh
|
at

Figure 3: Elementary Tree for Conative Con-
struction

6 Tree Families and Optional
Arguments

Implicit in our discussion of VIDMs and reg-
ular sense extensions above is the assumption
that some PPs are arguments of the verbs they
occur with, and hence are present in the verb’s
elementary tree. The cases in question are (1)
the PP which represents the inhkerently speci-
fied path of a VIDM; and (2) the at PP of the
conative construction.

8.1 Optional arguments of Verbs of

Inherently Directed Motion

The first case is represented by the following ex-
ample, where at the station represents the goal
that is implicit in the meaning of arrive.

(15) The train arrived at the station.

Note that the meaning of (15) is not composi-
tional since at the station by itself or combined
with a motion verb like run can only mean a
location of the event.? It cannot represent the
goal of motion in these cases.

(16)
(17)

The athlete ran at the gym.
I saw Mary at the station.

It is only with a verb whose meaning includes
[goal:+], that an at-PP or any other locative PP
can represent a goal. Thus, in this example, it
is the head verb which determines the role that
the PP phrase has in the clause. This kind of
idiosyncracy is evidence that a constituent is
an argument rather than an adjunct (see e.g.,
Pollard and Sag 1987; Marantz 1984). By this
criterion, then, the PP representing an inher-
ent role of a VIDM should be considered an
argument, and thus, should be present in the
elementary tree.

It has been noted that all source and goal
PPs simultaneously show both argument and
adjunct properties. Larson (1988) discusses the
argument status of the source and goal phrases
in sentences like (18) and (19).

(18)
(19)

John walked to the store.
Mary ran from the house.

They act like adjuncts in being optional, but
like arguments in being non-iterable. (The fol-
lowing examples are Larson’s.)3

(20) * John flew to New York to Kennedy Int’l
Airport.
(21) * Max got a letter from Felix from his friend.

2It can also have the meaning of towards,
*Note that (20) isn’t that bad if the second PP is
interpreted as a further specification of the goal location.

(1) ?Iran to Philadelphia to IRCS.

‘We do not yet have an account of this phenomenon, but
we do not take it as counterevidence to the generalization
that only one goal may be given per event. This is unlike
true modifiers like PPs of location, of whicl: more than
one can be given without any restriction:

(2) I hid in the building on the third floor in a
classroom under a desk.
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Jackendoff (1976) takes motion verbs to con-
tain the abstract predicate GO which is a three-
place relation, taking the arguments (x,yz),
where x is an element that moves from y
(source) to z (goal).

For current purposes, however, we do not take
all sources and goals to be present in the elemen-
tary tree. Only PPs whose meaning is implicit
in the meaning of the verb itself are present in
the elementary tree, whereas all other PPs are
adjoined. This is in contrast with the analysis
provided by Levin and Rappaport Hovav (1995)
in which all sources and goals are treated as ar-
guments as a result of a lexical rule that applies
to verbs of motion.

6.2 The Conative Construction and
Elementary Trees

The other case to consider is the conative at
construction, shown in (22).

(22) The child hit at the ball.

We assume that the conative at PP is present
in the elementary tree. If we took the at PP to
be adjoined in, then an intranstive elementary
tree for hit is required. However, hit can only
occur transitively, and so we would need addi-
tional mechanisms for blocking the intransitive
tree from ever occurring outside of the conative
construction.

On the other hand, we could take the posi-
tion that the noun phrase (the ball in (22)) is an
argument of the verb, and at adjoins in. How-
ever, it is not possible for a PP to adjoin at this
point.*

The conative is properly analyzed as a lexical
process of object demotion - an operation that
applies to the lexical representation of the verb,
affecting its argument-structure. It demotes a
direct object to be an oblique element with the
effect that the object is interpreted as not af-
fected by the action of the verb. However, in
TAG, there is no level of representation inde-
pendent of the elementary trees in which de-
motion operations of this sort could take place.
Therefore, the best TAG analysis of the cona-
tive treats the PP as an argument, and hence,
present in the elementary tree.

‘It would only be possible for an NP to adjoin, re-
quiring an analysis of the at PP as an NP, which is lin-
guistically unmotivated.
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7 Conclusion

The goal of our work is to capture lexical se-
mantic properties that we hope will be helpful
in reducing the search space in parsing, as well
as aid in generation (SPUD; see Stone and Do-
ran 1997; Stone and Webber 1998) and machine
translation {in the transfer of lexical semantic
properties) (see Palmer, et al. (to appear)).

We have examined several subclasses of mo-
tion verbs, and posited features to capture their
semantic properties. These features not only
allow us to place restrictions on the verbs to
constrain possible derivations, but also allow us
to account for regular sense extensions through
the underspecification of certain features and by
having modifiers introduce these features in the
course of the derivation.
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1 Introduction

In (Boullier 98), we presented range concatena-
tion grammars (RCGs), a syntactic formalism
which is a variant of literal movement gram-
mars (LMGs), described in (Groenink 97), and
which is also related to the framework of LFP
developed by (Rounds 88). In fact it may be
considered to lie halfway between their respec-
tive siring and integer versions; RCGs retain
from the string version of LMGs or LFPs the
notion of concatenation, applying it to ranges
rather than strings, and from their integer ver-
sion the ability to handle only (part of) the
source text. The basis of RCGs is the notion of
range, a couple of integers (i .. ) which denotes
the occurrence of some substring a;;,...a; in
an input string a; ...a,. Of course, only con-
secutive ranges can be concatenated into a new
range!. This formalism, which extends CFGs,
aims at being a convincing challenger as a syn-
tactic base for various tasks, especially in nat-
ural language processing. We have shown that
the positive version of RCGs, as simple LMGs
or integer indexing LFPs, exactly covers the
class PTIME of languages recognizable in de-
terministic polynomial time. Since the compo-
sition operations of RCGs are not restricted to
be linear and non-erasing, its languages (RCLs)
are not semi-linear. Therefore, RCGs are not
mildly context-sensitive (Joshi, Vijay-Shanker,
and Weir §1) and are more powerful than linear
context-free rewriting systems (LCFRS) (Vijay-

'Ranges can be generalized to denote couples of states
in some FSA representing ill-formed, incomplete or am-

biguous {multi tagged/multi part of speech or word lat-
tice) input.
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Shanker, Weir, and Joshi 87), while staying
computationally tractable: its sentences can be
parsed in polynomial time. However, our for-
malism shares with LCFRS the fact that deriva-
tions are context-free (i.e. the choice of the op-
eration performed at each step only depends on
the object to be derived from). As in the CF
case, its derived trees can be packed into parse
forests (Lang 94). Let p be a range. The nodes
of a CFG parse forest are couples (A, p) while
for an RCG they have the form (4, 7) where 7'is
a vector (list) of ranges. Besides its power and
efficiency, this formalism possesses many other
attractive properties. RCLs are closed under
intersection and complementation?. Since this
closure property can be reached without chang-
ing the structure (grammar) of the constituents
(i.e. we can get the intersection of two gram-
mars G and Gy without changing neither Gy
nor Gz), it allows for a form of modularity which
may lead to the design of libraries of reusable
generic grammatical components. Moreover,
like CFGs, this formalism can act as a syn-
tactic backbone upon which decorations from
other domains (probabilities, logical terms, fea-
ture structures) can be grafted, and last, in our
opinion, it is very elegant and understandable.

2 RCGs

The rewrite rules 45 — 1 ...%m of an RCG
are called clauses. Each component %; =
Aoy, ..., ap) is a predicate. Each argument o;
of a predicate is a string of terminal symbols

2The set T* — L, complementary of L, is defined on
the basis of “negation by failure” rules. )



and variables. Variables and arguments in a
clause are supposed to be bound to ranges by a
substitution mechanism. An instantiated clause
is a clause in which arguments and variables
are consistently replaced by ranges; its compo-
nents are instantiated predicates. For example,
A((g - h) (1 wihlk D) — B{{g+1 .. h)!(i'H .
Ja), (k .. 11)) is an instantiation of the clause
A(aX,bY ¢, Z2d) — B(X,Y, Z) if the source text
ai...an is such that agy, = a,a; =b,a; =¢
and a; = d. A derive relation is defined on
strings of instantiated predicates. If an instanti-
ated predicate is the LHS of some instantiated
clause, it can be replaced by the RHS of that
instantiated clause. An input string a;...a,
is a sentence iff the empty string (of instanti-
ated predicates) can be derived from S{(0 .. n))
where S is the start symbol. The arguments
of predicates may denote discontinuous or even
overlapping ranges. Fundamentally, a predicate
A defines a notion (property, structure, depen-
dency, ...) between its arguments whose ranges
may be scattered over the source text. What
is “between” its arguments is not the respon-
sibility of A, and is described (if at all) some-
where else. RCGs are therefore well suited to
describe long distance dependencies. Overlap-
ping ranges are due to the non-linearity of the
formalism. For example, the same variable may
occur in different arguments in the RHS of some
clause, expressing different views (properties) of
the same portion of the source text.

As an example of an RCG, the following
set of clauses describes the three-copy language
{www | w € {a,b}*} which is known to be be-
yond the formal power of TAGs.

S(XYZ) - AX,Y,Z)
I AlaX,aY,aZ) — A(X\Y,Z)

A(BX, WY, bZ) — A(X,)Y,Z)

Ale,e,€) — €

3 RCGs & TAGs

Within the TAG formalism, if we consider an
auxiliary tree 7 and the way it evolves until no
more adjunction/substitution is possible, we re-
alize that some properties of the final tree are al-
ready known on 7. The yield derived by the part
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of 7 to the left (resp. to the right) of its spine
are contiguous and, the left yield (produced by
the left part) lies to the left of the right yield in
the input string. Thus, for any tree r (initial or
auxiliary) consider its m internal nodes where
adjunction is allowed®. We decorate each such
node with two variables L; and R; (1 <1< m)
which are supposed to capture respectively the
left and right yield of this i*" node. The root
and foot of auxiliary trees have no decoration.
Each terminal leaf has a single decoration which
is its terminal symbol or €. Afterwards, we col-
lect into a string d, the decorations gathered
during a top-down left-to-right walk in 7, If 7
is an auxiliary tree, let d. and d7 be the part of
d, gathered before and after the foot of r has
been hit. With each tree, we associate an RCG
clause constructed as follows:

o Its LHS is the predicate S(d,) if T is an
initial tree (S is the start predicate).

o Its LHS is the predicate A(d%,d})if r isan
auxiliary A-tree.

o Its RHS is 91 ...9%m with ¥; = Ai(Li, R:)
if A; is the label of the " inside node.

For example, the following TAG

B B2 B3

A A A

/| /1 I

a /’4 b T \ A
At\a Ax b

where o is the initial tree and B, B2 and f3
are the auxiliary trees?, defines the language
{ww | w € {a,b}*}, which is translated into
the strongly equivalent RCG

5
|
A X
l

S(L1Ry) —  A(Ly, Ry)
AaLy,aRy) — A(Ly, Ry)
A(bLy,bR1) —  A(Ly, Ry)
Ale,e) — €

3In TAGs, we assumed that initial trees are all labeled
by a unique start symbol, say S, which is not used some-
where else, that adjunction is not allowed at the root or
at the foot of any auxiliary tree but is mandatory on
inside nodes.

*Each foot is marked by an =



As an example, the arguments of the LHS
predicate of the second clause have been gath-
ered during the following walk in £,

| |
a ﬁ 1 Ry
SN
N "1@
a

We know (Vijay-Shanker and Weir 94) that
TAGs, LIGs and HGs are three weakly equiv-
alent formalisms though they appear to have
quite different external forms. Groenink has
shown that HGs can be translated into equiva-
lent LM Gs. ¥e have shown that transformation
from TAGs to RCGs also exists. In (Boullier 98)
we have proposed a transformation from LIGs
into equivalent RCGs. While the process in-
volved to get an equivalent RCG for a TAG or
an HG is rather straightforward, the equivalence
proof for LIG is much more complex and relies
upon our work described in (Boullier 96). This
is due to the fact that an RCG is a purely syn-
tactic formalism in the sense that it only han-
dles (part of) the source text, exclusive of any
other symbol. Therefore the stack symbols of
LIGs have no direct equivalent in RCGs and the
translation process needs to understand what
the structural properties induced by these stack
symbols are. An interesting property of all these
translations is that the power of RCGs comes for
free. In particular, if the input TAG or LIG isin
some normal form®, the corresponding RCG can
be parsed in O(n®) time at worst, Moreover,
in RCGs, the incidence of each clause on the
total parsing time can be isolated. Of course,
complicated clauses induce high polynomial ex-
ponents. If we look at the clauses generated
by the translation, some are simple, and few (if
any) are complicated {and therefore induce an
exponent of 6). In fact these translations bring

A

3Auxiliary trees in TAGS are such that there are at
most two internal nodes where the adjunct operation can
take place or the number of objects in the right-hand side
of LIG rules is at most two.
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new insight and help to understand why and at
which point the maximum complexity is intro-
duced.

4 RCGs & RNRGs

Ranked node rewriting grammars (RNRGs)
(Abe and Mamitsuka 97) are an extension of
TAGs. They are used to predict the protein
secondary structure from their amino acid se-
quence patterns. These secondary structures,
the so-called f-sheet regions in particular, form
a kind of long distance dependency which can
be captured by RNRGs. More precisely, it is
a stochastic version of RNRGs which is used
in this application®. The probability of each
rewrite rule is set by training over a protein
whose structure is known (corpus) and then
used to analyze other proteins. RNRGs form a
strictly growing hierarchy of grammars and lan-
guages (RNRLs) which is characterized by an
integer called its rank. Forany k > 1, RNRL(k)
properly contains RNRL(k-1). RNRL(0) are
the CFLs and RNRL(1) are the TALs.

An RNRG is a labeled tree rewriting system
that consists of a starting tree and a finite set
of rewriting rules, A — ¢, where A is a nonter-
minal symbol and « is a tree structure, which
specifies how a node v, labeled A, can be rewrit-
ten. Some leaves in «, called emply leaves, are
labeled by a §f sign. Empty leaves are place-
holders which indicate where the children of »
must be grafted. The number of children of v
and the number of empty leaves in o must be
equal. This number is the rank. After rewrit-
ing, the children of a node are attached to these
empty leaves in the same order as before rewrit-
ing. A tree whose nodes are only labeled by ter-
minal symbols is a terminal tree. The tree lan-
guage of an RNRG is the set of terminal trees
which can be derived from the starting tree after
a finite number of applications of its rewriting
rules. Its string language is the set of yields of its
tree language. Note that if an internal node is
labeled by a terminal symbol, this node cannot
be rewritten and its label does not contribute

5In fact, for computational considerations, only a sub-
class of RNRGs is processed.



to the string language.

It is not difficult to transform an RNRG of
any rank into an equivalent RCG. In fact the
algorithm is a generalization of the one used for
TAGs. Once again, no complexity penalty is
induced by this transformation.

The previous three-copy language can be de-
scribed by an RNRG of rank 2 whose initial tree

is
A
E/ \E
and the set of rewrite rules for the node A is
t { ‘
/| /| /\
a A b A [
/ \ /' \
ANAA N
1 \ 1 a 1 b f b

i a
where ¢t stands for an anonymous terminal sym-
bol which labels non leaf nodes.

Our algorithm exactly yields the RCG la-
beled (I). As an example, the arguments of the
LHS predicate of the second clause have been
gathered during the following walk on the tree
structure of the first rewrite rule for A. The
variables X, Y and Z denote the left, bottom’
and right environment of A.

"
A

The corresponding parser has a cubic time
complexity. This global parsing time can he re-

{

=]

"For a node with ! + 1 sons, there will be' 1;,... ¥
“bottom" variables.
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duced to linear if we remark that the ranges sub-
stituted to the variables X,Y and Z in the first
clause are of equal sizes. Such a property can be
automatically discovered or explicitly specified.

References

Naoki Abe, Hiroshi Mamitsuka. 1997. Predict-
ing Protein Secondary Structure Using Stochastic
Tree Grammars. In Machine Learning, 29, Dec.
1997, pages 275-301.

Pierre Boullier. 1996. Another Facet of LIG
Parsing In Proceedings of the 34th An-
nual Meeting of the Association for Computa-
tional Linguistics (ACL$6), University of Cal-
ifornia Santa Cruz, California, USA, pages.
87-94.  See also Research Report No 2858
at http://www.inria.fr/RRRT/RR-2858.html,
INRIA-Rocquencourt, France, Apr. 1996, 22
pages.

Pierre Boullier. 1998. Proposal for a Nat-
ural Language Processing Syntactic Back-
bone., In Research Report No 3342 at
http://wuw.inria.fxr/RRRAT/RR-3342.htnml,
INRIA-Rocquencourt, France, Jan. 1998, 41
pages.

Annius V. Groenink. 1997, Surface without Struc-
ture, word order and tractability in natural lan-
guage analysis. PhD thesis, Utrecht University,
The Nederlands, Nov. 1977, 250 pages.

Aravind K. Joshi, K, Vijay-Shanker, David Weir.
1991. The convergence of mildly context-sensitive
grammatical formalisms. In Foundational Is-
sues in Natural Languege Processing, P. Selis, S.
Shieber, and T. Wasow editors, MIT Press, Cam-
bridge, Mass.

Bernard Lang. 1994. Recognition can be harder
than parsing. In Computational Intelligence, Vol.
10, No. 4, pages 486-494.

William C. Rounds, 1988. LFP: A Logic for Lin-
guistic Descriptions and an Analysis of its Com-
plexity. In ACL Computational Linguistics, Vol.
14, No. 4, pages 1-9.

K. Vijay-Shanker, David J. Weir, Aravind K. Joshi.
1987. Characterizing Structural Descriptions Pro-
duced by Various Grammatical Formalisms. In
Proceedings of the 85th Meeting of the Association
for Computational Linguistics (ACL’87), Stan-
ford University, CA, pages 104-111.

K. Vijay-Shanker, David J. Weir. 1994. The equiva-
lence of four extensions of context-free grammars,
In Math. Systems Theory, Vol. 27, pages 511-546.



Can the TAG derivation tree represent a semantic graph ?

An answer in the light of Meaning-Text Theory.
Marie-Hélene Candito & Sylvain Kahane

TALANA, Université Paris 7

2, place Jussieu, case 7003, 75251 Paris cedex 03

marie-helene.candito@linguist.jussieu.fr sk @ccr.jussieu.fr

Introduction

From the parsing point of view, the derivation tree in
TAG [hereafter DT] is seen as the "history" of the
derivation but also as a linguistic representation,
closer to semantics, that can be the basis of a further
analysis.

Because in TAG the elementary trees are lexicalized
and localize “the predicate-arguments relations,
several works have compared the DT to a structure
involving dependencies between lexical items (RJ92;
RVYW95).! We agree with these authors that there are
divergences between the DT and syntactic
dependencies, but we show here that the DT — in the
sense of (SS$94) — can be viewed as a semantic
dependency graph, namely a SemS for Meaning-Text
Theory [MTT] (ZM67. MB88). This requires the
predicate-argument cooccurrence principle and also
constraints on the adjunction of predicative auxiliary
rees. We briefly introduce the representation levels
in MTT before studying the dependencies shown by
the DT.2

1. Representation levels in MTT

MTT distinguishes between linguistic representations
and correspondance rules to go from a representation
to another, at an adjacent level. For a wirilten
sentence, there are S representations, each with a
central structure : semantic [SemS), deep and surface
syntactic [DSyntS and SSyntS)], deep and surface
morphological [DMorphS and SMorphS]. At each
level, additional structures may supplement the
central structure.

A key feature of MTT is that it distinguishes between
semantic and syntactic dependencies. The SemS is a
graph showing semantic dependencies between
semantemes {= semantic units). The dependencies
are numbered to distinguish between the different

' (RI92) reiate the DT to the deep syntactic structure
(DSyntS) of MTT, namely a syntactic dependency
tree, but they note that this Pnrracnnndencg DT f
DSyntS is not direct, because the interpretation of
adjunction arcs in terms of dependencies is not
constant. (RVYW95) take this divergence between DT
and dependency tree as one of the motivations for
defining D-Tree Grammars.

! We are thankful to Anne Abeillé, Laurence Danlos
and Owen Rambow for valuable comments on earlier
versions of this work.
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arguments of a predicative semanteme. An additional
structure (the Sem-CommS) indicates
communicative features (theme-rheme. focus ...}
Figure | shows an example of SemS for :

(1) The new library owns the book that Peter thinks
Mary needs

. - “think’
eme ere AN
‘new’ ‘own’ ‘need‘,/{ l\‘
N N N "Peter]
ONXOR N
hlz:a.c;,’ ‘boo-k\ ‘.\iarv'
/ N
‘definite’ ‘definite’

Figure 1 : SemS + Sem-CommS for

The DSyntS (Figure 2) is a dependency wee whose
nodes are generalized lexemes (= lemma or set of
lemmas corresponding to a semantic unit). Its arcs
are deep syntactic dependencies, that are language
independent (6 actancy relations [, II. ..VIL plus
ATTR, COORD and APPEND). The SSyntS is a
dependency tree showing grammatical relations —
language dependent — between lexemes. that may
be semanticaily void. Word order is defined at the
deep morphological level.

OWN
o ﬂC(lVe pres
LIBRARY
sg.def./ \ 209,
ATT A'I'I'R N
1 'THINK\
NEW /I II\ ach\ve pres
pcuvc pres
PETER /1 11\'.
MARY 30615" del

Figure 2 : DSyntS

The dictionary encodes for each generalized lexeme
the associated semanteme along with the
correspondence between Sem arguments and DSvnt
arguments,

Notation : the word library is a form ol the lcxeme
LIBRARY whose semanteme is 'library".

2. The DT nodes as semantemes

We assume the following linguistic propertics for



elementary trees. The elementary trees comespond to
exactly one semantic unit (A91), and respect the
predicate-argument co-coccurrence principle
(PACP), though with a semantic interpretation
semantic predicates anchor trees with positions for
the syntactic expression of all and only their semantic
arguments.® These positions are typed as substitution
nodes and foot nodes. For instance in the tree for an
auributive adjective, the adjective semantically
governs the semanteme represented by the foot node.’
Traditionally auxiliary trees are used for recursive
structures. If syntactic structure is considered though,
another dichotomy cuts across the distinction
initial/auxiliary: the syntactic head is either the main
anchor (for predicative irees) or the foot node (for
modifier trees) ((K89), (5594)).% Al initial trees are
predicative. Typical predicative auxiliary trees are
the trees for bridge verbs.’

Let us now compare DT nodes with SemS nodes. The
DT refer to lexicalized elementary (rees, which
correspond to a semantic unit (cf supra). Thercfore, a
DT node can be conceived as a semanteme, plus
information for a particular lexicalization of that
semanteme and for a particular syntactic
construction. Yet with respect to Sem$S nodes, two
differences appear. First, in the DT, there can be
several nodes in coreference (though this coreference
is not handled by the TAG formalism), that would be
represented by a single node in the SemS. And
second, semantic units realized in the language as

> Thus clementary trees can have several lexical
anchors, either because some are semantically empty
(empty prepositions, complementizers ...), or because
the several anchors form an idiom, whose semantic is
not compositional.

* This counts for expressed semantic arguments only,
so not for the agent in agentless passive constructions
for instance.

* The notion of semantic governor must not be
confused with the notion of semantic head. In « white
car » white semantically govems car, yet car is the
semantic head (a white car is a car). Following (P90)
we define the semantic head as the semanteme that
summarizes a semantic sub-graph. Not all sub-graphs
can be summarized. In general a semantic graph for a
whole sentence does not have a single semantic
head, but one for its theme and one for its rheme.
& We follow the terminology of (5S94).
predicative is used with its syntactic meaning.

7 Another example is the tree for glass of in a glass of
wine. The anchor glass is the syntactic head of the
whole tree (A93). Yel the semantic interpretation of
the trees for a bridge verb and for glass-of differ
crucially: from the semantic point of view glass of
behaves as a modifier and is not the semantic head of
glass of wine. In want to stay, which expresses a will,
the syntactic head is want.

Here
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inflections (eg. number, tense ...) are represented as
features in TAG and, thus do not appear as nodes of
the DT. So provided inflectional semantemes are not
taken into account and coreferent nodes in the DT ave
considered a single node, there is a one-to-one
relation between the SemS nodes and the DT nodes.

3. The DT
dependencies

arcs as semantic

As we said previously, several works have noted
divergences between syntactic dependencies and DT
arcs. Our claim is that a constant interpretation of the
DT arcs can be found, though in terms of semantic
and not syntactic dependencies : substitution and
adjunction arcs  both represent  semantic
dependencies, though in the opposite direction (Fig.
3).? For illustration see Fig. 4 the DT and SemS for
sentence (1)

substitution semantic adjunction semantic
site tree govemor site free dependent

|

I = -

|

1
substituted semantic adjoined semantic
tree dependent iree govemaor

Figure 3 : Interpretation of DT arcs in terms of
semantic dependencies

This result is a direct consequence of the linguistic
properties we have assumed for the elementary trees.
It can be noted that it is true for any type of
adjunction arc (cither predicative or modifier). with
the definition of TAG derivation of (SS594), where
multiple modifier adjunctions are allowed at the
same address.'

¥ The fact that the DT should represent semantics is
not new. Sec for example (A93) who distinguishes
between glass in a wine glass and in a glass of wine on
purely semantic grounds; (K89) who mentions that
TAG should "preserve a straightforward compositional
semantics”; (D98) who descitbes G-TAG. a
generation system based on TAG where a derivation
tree is built by lexicalizing a conceptual structure.

’ The TAG analysis is from (X95). except that
determiners are not considered as nominal
complements and are thus adjoined.

' In case of adjunciion, the interpreiation in terms of
semantic dependency is valid only it adjunction
occurs on the spine of the tree receiving adjunction,
This is the case most of the time. Yet we thank
Martine Smets for pointing to us a problematic case:
in Paul gives flowers only to Mary. to is semantically
empty and appears as co-head in the give tree. The
adverb only adjoins on the PP node of the give tree
though it semantically governs Meary.



orown ‘own’
N 7\
. AN . ot
o libravy *., o book hbrarx/ ™ 'book’
/ \ VAN LAY
1 1 2 1
B new B th need ' °/"d fi S fhneed”
new c/e/ ‘{ B the new' ‘definite ‘l\z\‘deﬁnite‘
S 2 ap think g think
o]
o that o Mary, ‘Mary'll
J i
o Peter ‘Peter’

Figure 4 : DT (left) and SemS (right), with a different lay out to facilitate comparison

But obviously, the predicative adjunction arcs and
the modifier adjunction arcs do not behave in the
same way with respect to syntactic dependencies.
Typically modifiers show a semantic and syntactic
dependency in the opposite direction, while
complement auxiliary tree preserve the direction of
dependency in the semantic-syntax interface. The
interaction of the various links can cause differences
between the DT and the DSyntS.

Another example of mismatch is shown Fig. 4. The
DT for sentence (1) shows the right chain of semantic
dependencies for the sequence think-need-book, as
the SemS shows. The only difference is the extra
node for that in the DT, which does not count as a
semantic unit. On the contrary in the DSyntS (Fig. 2),
a syntactic dependency appears between BOOK and
THINK, without a corresponding semantic dependency.

So, we have seen that in the general case, a DT
induces a SemS. Further, the DT contains an
additional information since it defines a partial order
on its nodes, so that it form a tree. Thus the DT
defines a path to cover all nodes once. The TAG
procedure, from a generation point of view, is
equivalent to fixing a starting node, the DT root.
From that root, semantic dependencies gone through
from the governor to the dependent (= positively)
give substitution arcs, and semantic dependencies
gone through in the opposite direction (= negatively)
give adjunction arcs. It can be noted that it types the
elementary trees involved as initialfauxiliary. For
example, in Fig. 1, if we want to represent ‘own’ as a
verb with two nominal arguments extended by
substitution, the structure for ‘think’ will necessarily
be an auxiliary tree, since one of its leaving arc has
to be gone through negatively. Thus this gives another
proof that bridge verbs have to be represented by
auxiliary trees in relative clauses (or embedded
interrogative clauses).

For the same reasons, to derive (4) /ohn knows the
city in which Mary met Peter and read the DT as a
semantic graph {see the corresponding SemS Fig. 5),
if the arguments of know are to be substituted, then in
has to adjoin on city and mer 10 substitute in in,
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though met is the syntactic governor of in.

‘know’ ‘in’
] a
N
PNV N
‘John' ‘city’ 7 \2
N
o o
‘Mary’ ‘Peter’

Figure 5 ; SemS of (4)
4. Problematic derivations

It remains to study cases where therc exists a Sem$
but no satisfactory DT. First TAG imposes a formal
constraint that the DT be a tree. This implies in the
case of cycles in the SemS, either to discard some
dependency, or to cut the cycle at some node and to
split that node into several coreferent ones (cf
Section 2). And second, even provided a tree-like
path exists for a given SemS, there are well-known
cases where pure TAG fails to derive the correct word
order {eg. clitic climbing in Romance (B98), or
Kashmiri wh-extraction (cf RVW95)). To get the
right word order a less restrictive formalism must be
used.

More problematic are cases of TAG derivations
showing the wrong dependencies. While adjunction of
bridge verbs gives the right semantic dependencies in
case of extraction, these adjunctions may be
problematic when the bridge verb serves as argument
for another predicate. Consider the following
sentences, where a clause containing an embedded
clause serves as argument for the main verb:

(5a) Paul claims Mary said Peter left.

(5b) Paul claims Mary seems 1o adore hotdogs
(RVW95)

(5c) That Paul wanted to stay surprised Mary.

For (5a), in the classic TAG analysis (X95), the two
bridge verbs adjoin recursively, and the DT is perfect
{with the interpretation of adjunction arcs defincd in
Fig. 3). Yet for (5b) Mary seems to adare hotdoys
serves as argument for claims, but here seems adjoins



on VP, and thus claims has to adjoin on adore.! Thus
the DT does not show the right dependencies (either
semantic or syntactic, cf (RVW9S)). For (5¢), the
verb surprised waditionnally receives its subject via
substitution (to block extraction), thus if the bridge
verb wanted is still adjoined, the DT is different from
the SemS (Fig. 6) (apart from the splitting of the
‘Paul’ node into 2 coreferent nodes; we show the
coreference with a curved dashed line). The problem
arises because the tree astay substitutes in osurprise,
but when the predicative tree Pwant adjoins on astay,
it becomes the semantic head of the whole subtree."

‘surprise’ o surprise
« a
N 7N
f ' 2 s N
wanr./ N asay / N
° a © . Q
N *Mary’ L7 \ o Mary
/ N ae s
04_'_1 Q . a /,D
‘Paul ‘stay \ + Bwant
\\ V'
~ ®oa Paul

Figure 6 : Problematic derivation
{(SemS and DT) for
That Paul wanred to stay surprised Mary

So to read a DT as a SemS, we need not only the
PACP, but also a controf over the combination of the
elementary trees : it must be checked that the
argumental positions in a tree are actually filled by
the right arguments.”

It can be noted that for sentence (5b) and (5c), ruling
out adjunctions of complement trees (as in DTG
(RVW95)) solves the problem. Yet it might be
problematic for sentence (1), for which we have seen
that the TAG DT shows the right semantic
dependencies. And it also rules out the adjunction of
an athematic complement tree (such as the one for
glass-of). This is investigated in (CK98).

Conclusion

We have shown that in the general case the DT can
be viewed as a semantic representation, in the sense
of MTT, provided coreference is not taken into

11 (§594) already noted that muitiple adjunctions of
bridge verbs at one node should be ruled out, here we
find that this holds for a whole tree.

12 (K89) already noted that « derivations under which
thematic roles, once established, are altered by
further adjunctions » should be ruled out.

¥ Another case where positions « are not filled by the
right arguments » is for instance pied-piping. The
XTAG derivation for the woman whose daughter Peter
lalks fo does not show the right semantic
dependencies, since a link appears between talks-ro
and woman.
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account. We have given a characterization of
problematic derivations. This result is of crucial
importance for any further processing based on the
TAG derivation tree.

We have also provided a new characterization ol
adjunction and substitution arcs depending on the
direction of the semantic dependency they represent.
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Introduction

The aim of this paper is to find a formaiism of the
TAG family, where the derivation controiler can be
interpreted as a semantic dependency graph, in the
sense of Meaning-Text Theory (ZMG7; M88).

In a previous paper (CK98), we study this
interpretation of the derivation tree (DT) in the case
of standard TAG. We prove that, in the general case,
if the predicate-argument cooccurence principle! [=
PACP] holds and if elementary trees correspond to a

semantic unit (A91), substitution arcs can be read as -

semantic dependencies where the dependent is the
anchor of the substituted tree, and adjunction arcs —
of any type— can be read as semantic dependencies
in the opposite direction.

Yet we also characterized cases where the DT shows
wrong (semantic) dependencies (cf also (RVWY5)).
A problem may occur when, in the same sentence,
clausal complementation is handied both with
substitution of an embedded clause and with
adjunction of a main verb.?

Further, there are well-known cases that TAG cannot
handle if the PACP holds (e.g. clitic climbing in

Romance (B98), Kashmiri wh-extraction (RVW95),

extraction out of NP in French (A98). Finally, in
some cases, the argumental positions in a tree are not
fitled by the right arguments, and thus the derivation
tree does not show the right semantic dependencies
(pied-piping (CK98)).

(RVW95) have defined D-tree Grammars (DTG) by
ruling out predicative adjunction (e.g. adjunction of
bridge verbs). Thus, DTG seems a good candidate for
our goal.? In Section 1, we recatl DTG operations and

'"A tree anchored by a predicate must contain
positions for all and only its arguments.

1 For a sentence such as That Paul wanted to stay
surprised Mary, the DT shows the wrong
dependencies if the tree for surprise has a
substitution node for its subject, and the one for want
has a foot node for its embedded clause (CK98).
Another problem occurs with a raising verb that
serves as semantic argument to a bridge verb as in
Paui claims Mary seems to adore hotdogs (adapted
from (RVW95)). To get the correct semantic
dependencies, the trees for claims and seems should
combine together (either via substitution of seems or
adjunction of claims) but this is impossible in TAG
since seems is represented by a VP-rooted tree.

* In (RVW95), one motivation was to get (deep)
" syntactic dependencies. Though in most cases
semantic and deep syntactic dependency structures
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study the case of relative clause interacting with a
bridge verb, which has proved to be correctly handicd
by TAG, as far as semantic dependencies arc
concerned (CK98). This leads us to propose an
extension of DTG, called GAG for Graph-driven
Adjunction Grammar, whose derivation controliers
are graphs (Section 2). Finally, in Section 3. we
develop an original analysis of wh-words in GAG.*

1. Generalized  substitution and

generalized adjunction

DTG (RVW95) handies both clausal and nominal
complementation with the same operation. a
generalized substitution, called subsertion. and thus
avoids the use of predicative adjunction. In order io
cover the long-distance dependency data (including
cases not handled in TAG), this operation allows
picces of the substituted element to eome in between
¢elements of the tree receiving substitution

/S\
Nl S
Nt S N/$ !
‘s | Sl = s
. lhmk NJ- S
N v Y i
|_ think §
write /\
o write o think NL Y
(with extraposilion |
of the object) _writ

Figure 1 : Subsertion (= generalized substitution)

A DTG elementary structure is essentially a TAG
elementary tree, but it can contain d-edges, namely
underspecified paths between two nodes (representcd
by dotted lines). An elementary structure in DTG is
called a d-tree and is made of onéd or several
components which are ordinary trees. related by
d-edges. When a d-tree o is subseried at a
substitution node of another d-tree y, a component of
o is substituted at a substitution node of v,
components of & that are above thc subslituled
component are inserted into d-edges of ¥, above the

and all

induce the same non-oriented graph. we will study
case of mismatch in Section 1 and 3.

* We are thankful 1o Owen Rambow and David Weir
for valuable discussions about this work.



substituted node or placed above the root node. Fig. 1
shows an example of subsertion.

Now, ruling out predicative adjunctions implies to
reconsider cases that were correctly handled by TAG
as far as semantic dependencies are concerned.

For example, in order to handle extraction out of a
modifier (e.g. preposition stranding) and « extraction
of a modifier », we define a paraliel generalization of
the adjunction operation.® We will thus refer to
generalized substitution and generalized adjunction.
Fig. 2 shows the gencralized adjunction of in [this
bed] for the sentence:’

(1) In this bed, 1 think I have slept wice,

To get the semantic dependency between in and
slept, we want Pin to adjoin in aslept, still allowing a
piece of the modifier (here the whole modifier) to be
inserted higher.

S S
/\ /\
PP S s PP v
N N
IP Nl §* Nl ?, => I') Nd S
in Bi sleep in P{\I’
(exua;)%sed) Osleep sleep

Figure 2; Generalized adjunction
Now consider the sentence:
{(2) I bought the books which Peter thinks Mary wrote,

In TAG, the relation between a verb and a relativized
complement is localized. So for instance to handle
(2), wrote anchors an NP modifier tree (thus an
auxiliary tree) in which the bridge verb thinks adjoins
(K87). In DTG, bridge verbs receive their clausal
complement via substitution. Thus in order to keep
the semantic dependency between a verb and a
relativized complement, we propose to allow a d-tree
to substitute in a d-tree and adjoin in another one.?
We will call this extension GAG.

’ Figure 1 shows d-trees that are inspired from the
d-trees proposed by (RYW95) to handle a sentence
such as Children’s books Peter thinks Mary wrote. For
sake of simplicity VP nodes are omitted,

¢ In (RVW95), modifiers are handled by sister-
adjunction, an operation that is equivalent to adding
at a given node a left-most or right-most daughter
node. We prefer to maintain adjunction (as in TAG),
notably because we want to be able to adjoin the tree
for glass-of for instance (CK98).

7 In this example, the bottom component of Bin is
reduced to the foot node, which is also the rope (see
definition in Section 2).

? As a referee pointed out to us, there is an alternate
derivation of (3} in DTG in which thinks is adjoined
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2. GAG: a multi-rope DTG

GAG is an extension of DTG that uses the same
elementary structures, namely d-trees. But in GAG.
some nodes of an elementary d-tree must be marked
as being ropes (underiined in the figures). Only roots
of components can be ropes. Any component
containing a foot node has a root which is a rope. A
component without foot node is subsitutabie if and
only if its root is a rope. In (RVW95), all the
components of an elementary d-tree are considered
substitutable, namely each component’s root is a
rope, but a d-tree can be subserted only once, namely
all ropes are mutually exclusive. In our extension.
d-trees with n mutually exclusive ropes are expanded
in n d-trees with a single rope. Further, a d-tree may
have several ropes which are not mutually exclusive.
that is, that can each be combined with a separute
d-tree. To sum up, GAG is a multi-rope DTG.

From the linguistic point of view, we foresee the use
of one-rope and two-rope d-trees only. Examples ol
two-tope d-trees will be given in Section 3.

Let us now define the derivation graph (DG). which
is a structure that partially encodes a GAG derivation
{and that we will interpret as a semantic graph).’

If a two-rope d-tree substitutes in a one-rope d-tree.
we obtain a two rope derived d-tree and nothing in
the DG tells us from which elementary d-tree each
rope comes from. Thus in GAG, the original
elementary d-tree for each node of a derived d-tree is
memorized.

- We thus have to specify what happens in the case of

node unification during substitution or adjunction. In
case of substitution, a rope unifies with a substitution
site. We then consider that the resulting node comes
from the elementary d-tree that is substituted. In case
of generalized adjunction, the node receiving
adjunction is replaced by a component of the
adjoined tree. In the derived tree, we consider that
the root of that adjoined component belongs 1o the
tree receiving adjunction,

The DG can now be defined as follows: let ¥ be an
elementary d-tree. Let @ be a derived tree. and y the
comresponding derivation graph (DG). If ¢ substitutes
(resp. adjoins) in ¥, one of its ropes is used up. Let o
be the name of the d-tree from which this rope
originates. The resulting DG ' is the DG w plus o

to book (creating the syntactic attachment) and
wrote subserted into thinks with the relative pronoun
being inserted into the right place and recciving co-
reference with books through features (thus creating
the semantic attachment).

* The equivalent in DTG is called a SA-tree. In GAG.
itis a graph due to multi-rope d-trees.



substitution (resp. adjunction) arc between o and ¥
(Y being the mother node).’ Consequently to this
definition, a d-tree has as many mother nodes in the
final DG as it has used ropes.

As in DTG, the derivation succeeds if the d-edges of
the derived tree can be coliapsed (forgetting the fact
that some nodes can be rope nodes). From the
computational point of view it can be noted that the
ropes of a multi-rope d-tree can combine in whatever
order with other d-trees,

3. Taking advantage of GAG to
analyse extraction

As we said, the main motivation for GAG is to have a
formalism inspired by TAG whose derivation

controllers induces semantic dependency graphs. In

order to achieve that, we have relaxed the constraint
that these controliers be trees.

As linguistic constraints for elementary structures, in
addition to the PACP, we type the argumental
positions as foot nodes and substitution nodes on
purely linguistic grounds.!! Generalized substitution is
used for elements that are subcategorized and to
which a thematic role is assigned, while generalized
adjunction is used for modifiers.

In the following, we concentrate on examples of GAG
analysis involving wh-words. Coensider:

(3a) Children books Peter thinks Mary wrote.

(3b) I bought the books which Peter thinks Mary wrote.
(3c¢) I wonder which books Peter thinks Mary wrote.
(3d) Which books does Peter think Mary wrote ?

In these four examples we have a clause of the form
Peter thinks Mary wrote [book]. The distribution of
this clause depends on the extracted element: for
example, in (3b) that clause is an NP modifier
because of the relative wh-word which and in (3c¢)
that clause can be the syntactic argument of wonder
because of the intemogative wh-word which, The
(T59) anatysis of relative and (indirect) interrogative
clauses is that the wh-word plays two roles: on one
hand, it fills a position in the clause as pronoun and
on the other hand it controls the distribution of the
clause and is thus its syntactic head.

We claim that it is possible {though not mandatory)

to have an analysis where the particular distribution
of wh-clauses is completely assumed by the wh-word,
To do this, we represent wh-words with two-rope
elementary d-trees: the first rope will be linked to the

' It can be noted that because we remember the
origin of each node of a derived tree, a derivation
need not be bottom-up.

" This is possible because we allow the derivation
controlier to be a graph and use the generalized
substitution.
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main clause and the second one will be linked to the
phrase showing extracticn. Se for a relative wh-word.
the first rope is a foot node which adjoins on the
antecedent and the second rope substitutes or adjoins
in the phrase showing extraction, depending on the
compiement/modifier nature of the extracted element.
For an interrogative wh-word, the first rope substitutes
in the verb which subcategorizes for the interrogativce
clause. We give example of relative clauses only:

(4a) I know the books which Mary wrote.

(4b) I know the bed in which Peter slept.

(4c) I know the books whose authors are famous.
(4d) I know the man whose car Peter borrowed.
(4e) I know the place where Peter was born.

Fig. 3 shows the two-rope d-trees for the wh-words
involved (the ropes are underlined).

NN N

N
N\

N+ § N« 8§ Nx § Nx §
N D fq §
wLich wlhose mt N* ppY™ S
whose where
Bo which  Bor whose BB whose B where

Figure 3: some two-rope elementary trees
(for relative wh-words)

The analysis for (3b), (4a) and (4b) use the same

d-tree  for which, Pawhich, which substitutes
respectively in the d-trees for wrote and in (Fig. 4).
N 7] N
N\ A
N* S /\ _ N*
o 1ol :
N—7 ] = s
L s N
which N N
Ny ! '
NS
Ba which write l /\
0. write which NIV
{with extraposition l
of the object) write

Figure 4: Substitution of a two-rope d-tree
Fig. 5§ shows the DG for (3b), To interpret a DG as &
semantic graph, one needs to:

e (ranslate d-trees names into semantemes

¢ read substitution arcs as semantic dependencies
from the site of substitution to the substiuted trec:

s read adjunction arcs as semantic dependcncies
from the adjoined tree to the trce receiving
adjunction:

» collapse some arcs that link coreferent nodes.



This last operation arises typically for some relative
pronouns. In the Po d-trees of Fig. 3, the foot- node
does not represent a semantic argument of the
anchor, but a duplication of the anchor itseif (the
antecedent in syntax). Thus tne comespondant
adjunction arc in the derivation controller (eg. the
adjunction arc in Fig. 5) has to be collapsed in order
to get the semantic graph (Fig. 6).

o know o thinks
N .
’ AN
. N o wrote, N
. /N .
ol o books /7N o Peter
; N

fowhose o Mary

Figure 5: GAG derivation graph .
I know the books which Peter thinks Mary wrote

‘think'
‘ ' . 2/\x
know ‘wnte‘/ N\
e N “Peter
VARV AN

lIt tbookl 'Mal‘y'

Figure 6: MTT semantic graph
I know the books which Peter thinks Mary wrote

In (4¢), whose is an argument of authors, thus
Boawhose substitutes in the authors tree. In (4d), we
consider that whose is a lexicalization of the two-
place semanteme 'own'. Its d-tree BPwhose!? adjoins
twice, on the trees for both its arguments (here
lexicalized by man and car). Fig 7 shows the DG for
(4d).

o know o borrowed
N P
N AN
/ AN Q. car o N
. L) L]
¢l ¢ man « Peter
L)
BP whose

Figure 7: GAG derivation graph
I know the man whose car Peter borrowed

To get the semantic graph, the two adjunction arcs of
fBwhose are interpreted as semantic dependencies
from the adjoined tree to the tree receiving
adjunction (Fig. 8). Similarly, PBwhere corresponds to
a semanteme ‘location’ (= ‘is located in") with two
arguments.

In the anaysis we have shown, features must be
added to control which components can be inserted in
a d-edge (cf. the subsertion insertion constraints in

 We advocate that a determiner which is not an
argument is adjoined. It is the case for the possessive
when it refers to a possessor.,
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DTG). They are needed for instance to block
extraction in the case of non-bridge verbs or to
express constraints on double extractions and
lopicalization.

‘know’ ‘borrow’

/N A\
! 2\ ‘car' 42 ]\
‘T 'man:\ N 2/ ‘Peter’

< L}

own

Figure 8: MTT semantic graph
I know the man whose car Petér borrowed

Conclusion

Building on DTG and TAG, we have defined a
formalism, GAG, where the derivation controller can
be seen as a semantic dependency graph, with the
reading defined in (CK98). This allows us to propose
an analysis in which the distribution of clauses
containing wh-words is totally controlled by the
d-trees associated with the wh-words themselves.
Thus topicalization, relativization, (direct or indirect)
interrogation and cleft clauses can be bandled with
the same elementary d-trees for verbs. Computational
properties of GAG need a further study.
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1 Introduction

We present an overview of the ongoing LEXSYS
project!. The aim is to bring together, and
evaluate, a variety of current NLP techniques,
including the orgamisation of grammars into
inheritance hierarchies for compact represen-
tation, exploitation of diverse precompilation
techniques for efficient parsing, and use of sta-
tistical analysis to disambiguate parse results.
In conjunction with this we are using several
existing tools and resources, such as the lexicon
developed in the Alvey Natural Language Tools
project (Briscoe et al., 1987), lexical frequency
information from the SPARKLE project?, and
an established lexical knowledge representation
language DATR (Evans and Gazdar, 1996a) to
represent the grammar, The overall architec-
ture of LEXSYS is shown in Figure 1 and the
following sections discuss each of.the system’s
main components.

2 The morphological analyser

The text is first tokenised and then a sentence-
splitter is applied to it to determine likely sen-
tence boundaries. The resulting sentences are
tagged with extended part-of-speech {PoS) la-
bels using a first-order EMM tagger (Elworthy,
1994) trained on the SUSANNE corpus (Samp-
son, 1995). The SUSANNE lexicon is augmented
with open-class words from tlie LOB corpus and
the tagger incorporates a part-of-speech guesser
that empirically achieves around 85% label as-
signment accuracy for unknown words. For each

This work is supported by UK EPSRC project

GR/X97400 and by an EPSRC Advanced Fellowship to
Carroll. Thanks to Roger Evans, Gerald Gazdar & K.
Vijay-Shanker for helpful discussions.

2CEC Telematics Applications Programme project
LE1-2111 “SPARKLE: Shallow PARsing and Knowledge

extraction for Language Engineering”.

word the tagger returns multiple-label hypothe-
ses, but filters out any whose probabilities are
below a preset factor of the most probable. The
thresholding technique allows us to fine-tune the
trade-off between the costs of incorrect tagging
and processing complexity due to lexical ambi-
guity.

After tagging, a lemmatiser finds the lemma,
or base form, corresponding to each word-label
pair, using an enhanced version of the GATE
project stemmer (Cunningham et al., 1995). Fi-
nally, the lemma and PoS label are combined
with syntactic information associated with the
word’s morphological form (e.g. number for
nouns).

3 The grammar

Lexicalized D-Tree Grammar (LDTG) (Ram-
bow et al., 1995) is a variant of LTAG. The
primitive elements of LDTG are called elemen-
tary d-trees and are combined together to form
larger structures during a derivation. Although,
for convenience, we present d-trees graphically
as though they were conventional trees, they
are more correctly thought of as expressions
in a tree description logic (Rogers and Vijay-
Shanker, 1992). These expressions partially de-
scribe trees by asserting various relationships
between nodes: parenthood, domination, prece-
dence (indicating that one node is to the left of
another), equality and inequality.

There are two substitution-like operations for
composing d-trees, both of which involve com-
bining two descriptions while equating exactly
one node from each description. One of the op-
erations is always used to add complements and
involves equating a frontier node (in the d-tree
that is getting the complement) with the root of
some component (in the d-tree that is provid-
ing the complement), such that the two nodes
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Figure 1: System architecture

being equated are compatible. Two schematic
examples of this operation are shown at the top
of Figure 2. These are the two cases that ap-
pear in our grammar for English3: at the top
left is the case in which the entire complement
d-tree appears below the point of substitution;
the top right gives the case in which the com-
plement involves extraction where the extracted
component is placed at the top of the d-tree.

A second operation is used to add modi-
fiers. In terms of tree descriptions, this oper-
ation is similar to the complement-adding op-
eration since it also involves combining two d-
trees while equating a pair of nodes. In this
case, however, it involves equating an internal
node (in the d-tree that is getting the modifier)
with the root of some component (in the d-tree
that is providing the modifier), such that the
two nodes being equated are compatible. Two
schematic examples are shown at the bottom of
Figure 2. As in the case of the complement-
adding operation. these are the two cases that
appear in our grammar for English: at the bot-
tom left is the case in which the entire modify-
ing d-tree appears below the point of modifica-
tion; the bottom right gives the case in which
the modifier involves extraction, where the ex-
tracted component is placed at the top of the
d-treet.

We are in the process of developing a wide-

3The gemeral case is explained in Rambow et al.
(1995).

*In the examples shown at the bottom of Fignre 2
the modifier d-tree is placed to the lelt of the subtree
it modifies. [t is also possible for modification to take
place on the right.

coverage LDTG based on the XTAG grammar.
There are a number of differences between the
formalisms and the analyses they allow. One of
the main differences is that the LoTG formalism
allows the existence of VPcomplements for main
verbs, and this has a number of consequences:
e.g. the grammar does not assume the exis-
tence of PRO, auxiliary and main verbs anchor
the same type of tree, there are no predicative
trees, passive participles anchor VPtrees 3, See
Smets {1998) for more details.

As in the XTAG system, ES’S are grouped into
families. Currently we have 44 families with
around 60 families expected in total. The to-
tal number of {unanchored) ES’s in the cur-
rent grammar is 650 with approximately 1000
Es’s expected. The grammar is encoded using
the lexical knowledge representation language
DATR (Evans and Gazdar, 1996b), based on
the scheme proposed for LTAG by Evans, Gaz-
dar and Weir (1995). Encoding is compacted
through the use of 36 lexical rules and non-
monotonic inheritance. Details are presented in
Smets and Evans (1998).

4 ‘The lexicon

The lexicon is a reworked version of the Alvey
Natural Language Tools (ANLT') lexicon {Car-
roll and Grover, 1989) where category and fea-
ture assignments are expressed in DATR nota-
tion to conform to the encoding used for the
grammar and the results of morphological anal-

3The analyses that we are able to implemnent are also
adopted in a nuinber of theories; GPSG, HPSG, LFG,
CG.
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Figure 2: Composition operations

ysis, Although not currently exploited, this uni-
form notation would permit the lexicon to form
the leaf nodes in the grammar hierarchy and
so inherit automatically any of the syntactic in-
formation {such as default feature assignment)
contained there. The lexicon contains only lem-
mas, with wordform information supplied by
the morphological analyser. It should be noted
that the morphological form of a linguistic da-
tum affects how much of a family is selected: so
the ing form of the verb will not inherit all of
the Es’s associated with the verb, but only the
forms stipulated as ing or non-finite.

in separate but related work (Briscoe and
Carroll, 1997), we are acquiring the comple-
mentation possibilities for predicates from large
amounts of text information about. In that
work we distinguish 160 verbal subcategori-
sation classes—a superset of those found in
the ANLT and COMLEX Syntax dictionaries—
and we acquire relative frequencies for each
class found for each verb. The approach uses
a previously-existing phrase-structure parser
which yields ‘shallow’ parses, a subcategorisa-
tion class classifier, and a priori estimates of the
probability of membership of these classes. Car-
roll et al. (1998a) demonstrate that adding this
frequency information to a (non-lexicalised ) sta-
tistical parser significantly increases its disam-
biguation accuracy. We intend also to incorpo-
rate this information into the system described

in this paper, at the point where lemmas are as-
sociated with tree families: each lemma / family
combination would have a separate probability.
Carroll and Weir (1997) outline other alterna-
tive probabilistic models, some of which we also
intend to investigate.

The same shallow phrase-structure parser is
also providing data for the acquisition of se-
lectional preferences, at present again just for
verbs, and only for NP and PP subject, direct
and indirect verbal complements (McCarthy,
1997). The technique uses the WordNet hyper-
nym hierarchy (Fellbaum, 1998) in tandem with
Minimum Description Length learning (Rissa-
nen, 1978) to induce semantic classes of nom-
inal heads at an appropriate level of abstrac-
tion, We have results of acquisition from a 10
million word extract from the British National
Corpus, and will augment the lexicon with the
acquired selectional frequencies and use them
during parsing as a {urther source of disam-
biguation information.

5 The parser

We have implemented a simple bottom-up pars-
ing algorithm which is being used for grammar
development. The parser simulates anchor-up
traversal of Es’s. This traversal begins at the
anchor node with the parser working outwards
as it moves upwards towards the root of the
ES. When visiting nodes during this traversal,
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the parser must perform various actions. Which
particular action is required at each node is de-
termined by the type of node {e.g. whether it
is a frontier or internal node) and its position
relative to the anchor (whether it is to the right
or left of the anchor). We refer to each step
in this sequence as a parser action and to a se-
quence of parser actions associated with a Es,
as an elementary computation {(£Ec) of that s,

Prior to parsing, each word of the input is
associated with a set of £S's that it can anchor.
Each s in the grammar can be pre-compiled
into a (flat) sequence of parser actions. These
sequences, rather than the gs’s themselves, are
the objects that the parser manipulates during
parsing.

The parser fills a 2-dimensional table {where
each cell corresponds to a substring of the in-
put) by advancing through these parser action
sequences as actions are executed. ln addition
to action sequences, the items in cells contain
multisets that hold suspended action sequences,
In LTAG, adjunction has the effect of embedding
one tree within another, where a stack can be
used by a parser to control the unbounded nest-
ing of Es’s that can occur in derivations. LDTG
also allows embedding of Es’s; however, multi-
sets rather than stacks are used to control this
embedding. This difference is due to the lim-
ited control provided by LDTG over the relative
positioning of the components of two composed
ES’S. Fach entry in the parse table contains a
list of pointers to the entries that caused it to
be added. Once the table is complete, top-down
pruning is performed to remove entries that do
not form part of a complete parse. This pro-
duces a parse forest from which phrase structure
trees are derived.

Building an efficient parser for a wide-
coverage LDTG Or LTAG grammar represents a
challenge. Fach word in the input string in-
troduces a large number of £S's into the parse
table: one for each of its possible alternative
readings. In the current grammar the words
come, break and give anchor around 130, 180
and 340 ES's, respectively. In fact. if we include
Es’s for all alternative feature values, these fig-
ures rise by an order of magnitude. There can
be substantial overlap in structure among the
ES’s associated with a given input word. Exist-
ing LTAG parsing algorithms treat each ES as in-

dependent, which results in considerable dupli-
cation of processing of common structure dur-
ing parsing. Evans and Weir (1997; 1998) pro-
pose that a significant amount of overlapping
among EC’S can be pre-compiled out by per-
forming the following steps: (1) compile each Es
into a finite state automaton; (2) for each set of
Es’s that a single word can anchor, merge the
corresponding automata into a single automa-
ton; (3) minimise the number of states in the
merged automaton (using standard techniques);
and (4) rather than associating each input word
with a set of d-trees, associate it with a mini-
mized automaton and parse as usual. A prelimi-
nary indication of how the Evans- Weir proposal
will work in practise on the LEXSyYs grammar
is discussed in (Carroll et al., 1998b) where we
show that using minimized automata leads to
a several-hundred-fold reduction in the number
of automata states. Even greater savings are
achieved when all feature information from the
lexicon is included. In fact, the use of mini-
mized automata appears to provide an efficient
solution to processing Es’s whose node labels
involve feature structures that might normally
be encoded with disjunctive feature values (but
which we encode with multiple instances of the
ES). We are in the process of implementing a
parser that exploits this technique in order to
more fully evaluate its practical value.

6 Summary

LEXSys is being developed as a wide-coverage
parsing system using a lexicalized grammar for-
malism. We are employing two techniques to
keep the scope of the task under control: (1) en-
coding grammar nsing DATR to achieve compact
representation, and (2) parsing with minimized
automata to achieve computation sharing. We
feel that this approach allows us to maintain
a separation between the issues of linguistic
adequacy and processing pragmatics (grammar
storage, parsing efficiency, etc.). The future
work will also incorporate a stochastic compo-
nent for parse disambiguation,
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1. Introduction

One of the main conditions for the development of successful NLP applications is the usability of the syntactic
formalisms adopted and the degree to which they facilitate syntax-semantics integration, TAG+ formalisms show a real
potential for NLP applications, due to their linguistic descriptive capabilities. However, both the standard formalisms
and parsing strategics are often quite complex and cannot easily be used as such for the development of NLP systems.
We have thus investigated a simplified TAG+ formalism, which sacrifices some of TAG’s descriptive and formal
properties for the sake of usability, This is especialty relevant considering the recent success of empirical approaches to
NLP which tend to be based on very simple techniques and/or discard linguistically-maotivated formalisms [Basiti et al.,
1996} [Appelt et al., 1993), We report the implementation of a parser for a simplified TAG+ formalism, Tree Furcating
Grammars (TFG), which integrates semantic processing, performing both syntactic disambiguation and the
construction of a semantic representation for the sentence parsed, The parser has been developed for the purpose of
real-time speech understanding of sublanguages (i.e., application-dependent vocabularies of 500-1000 words with
specific, sometimes quite simplified, syntactic constructs). TAG+ formalisms were initially investigated because of
their potential for syntax-semantics intcgration (see e.g., Abeille {1994]). We will successively describe the rationale
for the TFG formalism, the principles underlying the algorithm used and a first assessment of its performance.,

2. The Tree Furcating Grammars (TFG) Formalism

Tree Furcating Grammars are a lexicalised TAG+ formalism, in which adjunction is replaced by the furcation
operation that essentiaily adds an additional branch to the target node in the initial tree, instead of copying the auxiliary
tree under it. The furcation operation was originally introduced in segment grammars [De Smedt & Kempen, 1990]. A
detailed comparison of furcation and adjunction has been given by Abeille [1991}. Though some syntactic phenomena
are not properly handled by furcation, the fact that it introduces modifiers without embedding them into the tree
structure is a definite advantage for syntax-semantics integration, and was the rationale for choosing it'. Successive
furcations do not increase tree depth and complexity, producing derived trees that retain some properties of dependency
trees. These can support the integrated construction of a semantic structure, based on the appropriate association of
semantic functions to the tree structures (see below).

We have adapted our tree representations accordingly, by distinguishing between left auxiliary trees (which have a
*X root node)? and right auxiliary trees (X* root node). The auxiliary symbol is on the root node, as these trees do not
have a foot node. Also, in our implementation trees are explicitly typed as left or right auxiliary (I-aux, r-aux), initial
and left or right substituable (l-subst, r-subst). Trees can have multiple types, for instance being both right and left
substituable or, in the case of some PP trees, both left auxiliary and right substituable (e.g., fig 2, *V-with-NO).

Left (resp. right) auxiliary trees are combined through right (resp. left) furcation. Left and right furcations, as
described by De Smedt & Kempen [1990] produce “flat™ siructures and in that sense differ from left and right
adjunction in Tree Insertion Grammars [Schabes & Waters, 1994]. They tend to be closer to the operations described
by Nasr [1995]) for his dependency-based TAG variant. Also, furcations are not aliowed to take place at substituable
nodes prior to their substitution, but are allowed on auxiliary nodes (as compared with Schabes & Waters {1994]).

Another goal, which was the result of early experimentation, was to minimise tree traversal operations that can prove
computationally expensive, These are minimised due to the representation itself and to the explicit recording of
substituable leaves within tree representations. Only the determination of target nodes for furcation still requires tree

! We do not make a direct use of the properties of the derived tree, like dominance relations.
> With Xin {P, N, V, A}.
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traversal, but is made easier by the relatively flat structure of the derived trees.

Finally, a set of atomic semantic features, corresponding to the semantic description of the anchor is associated to the
root node as well. These semantic features are used for semantic representations as well as selectional restrictions, in
the spirit of preference semantics [Wilks, 1975]. Substituabie nodes in initial and some auxiliary trees are associated
semantic relations, which also constitute an explicit typing. The definition of these semantic relations can be quite
specific, as it derives from the specific distributions of the lexicalised trees themselves [Cavazza, 1997).

3. The Integrated Parsing Algorithm

Several parsing algorithms have been described for TAG+, including CKY [Vijay-Shanker & Joshi, 1985] and
Earley-type parsers (Schabes & Joshi, 1988] [Schabes et al.,, 1988] and a deterministic parser {Schabes & Vijay-
Shanker, 1990], which was developed for reasons of efficiency (Schabes & Joshi, 1990). The latter has been recently
revisited by Kinyon [1997], who proposed an improved LR(0) algorithm. Recently, Nederhof [1998] has described a
new LR parsing method and a new recogniser based on Linear Indexed Automata. Specific approaches have also been
developed for partial parsing of potentially ungrammatical sentences [Issac, 1994]. Another major source of innovation
in parsing has been the many TAG+ variants developed in recent years, such as the “supertagging” approach [Joshi &
Srinivas, 1994}, dependency formalisms inspired by TAG [Nasr, 1995} and Tree Insertion Grammars [Schabes &
Waters, 1994].

Due to the interleaving of syntactic and semantic processing in our system, we have opted for an ad hoc strategy,
which eventually resulted quite similar to the one described by Nasr [1995]. The main idea is to make the syntactic part
of the algorithm as simple as possible and to avoid “hidden” integration of syntax and semantics through contextual
constraints on syntactic operations. Rather, keeping the parsing algorithm elementary would offer more space for
experimentation and the integration of semantic processing.

The first step, which corresponds to a lexical filtering of the grammar, consists in generating all the possible set of
trees (often termed forests) compatible with the input string, This step is very similar to the construction of a pushdown
stack for trees as described in [Nasr, 1995). The parsing algorithm consists in scanning the forest left-to-right and
determining possible tree fusions from the explicit typing of the trees considered. The process is iterated until the forest
is reduced to a single tree or no further operations are possible [Cavazza & Constant, 1996). All the forests not reduced
to a single tree are discarded as unsuccessful parses. Adjacent trees in a forest are considered for a possible fusion on a
pairwise basis. From their explicit categories, the corresponding operation is given by a compatibility table, This table
specifies the nature of the operation (substitution, furcation, or nil) as a function of the types of the adjacent trees.
However, successful operations also depend on the existence of an appropriate target node as well as semantic
compatibility (when applicable). In that sense, tree operations are not fully determined by the compatibility table. The
target node for substitution is directly recorded in the representation for substituabie trees, while target node for
furcation is dynamically computed as being the rightmost/leftmost compatible node, including nodes intemnal to the
tree, The forest is scanned left to right without look-ahead and the “cursor” backtracks one position after a successful
fusion has been completed. The forest may have to be scanned severdl times, due to the conjunction of a strict left-to-
right scanning with the restrictions imposed on tree operations. For instance, in the parsing of the forest on fig. 2, the
first pass essentially assembles the nominal descriptions through furcation, and substitution at the N1 node takes place
at the second pass only.

Additional heuristics arc used as a declarative control strategy. For instance, whenever a PP tree is both of type l-aux
and r-subst (like e.g., *V-with-N0), substitution has to be performed first, thus enabling correct semantic feature
propagation, which will be subsequently needed for selectional restriction at (right) furcation time, This can be
achieved by attributing precedence to some types; as a result some operations are postponed until proper conditions are
met, It should be noted that PP attachments are a major requirement for the processing of definite descriptions, spatial
expressions and instrumental actions, which constitute a significant fraction of the requirements for speech-based
multimedia applications.

Throughout parsing, there is a full integration of semantic processing’, which consists both in semantic features
propagation and establishment of semantic/functional links for actants and various modifiers. Semantic features for a
lexical entry are associated to the tree root and are transferred through furcation operations to the root node of the target
tree (fig. 1 and 2). This ensures proper propagation of semantic features to constitute complete semantic frames.

3 In that sense, our implementation would fall under the “Parallel” + “Generate-and-Test” paradigm for
Syntax-Semantics integration [Dahl! et al., 1992].

35



Furcation is responsible for semantic aggregation, while substitution establishes semantic relations between meaning
units, essentially through the structure of initial trees of root S. However, furcation can also result in the establishment
of semantic relations, for instance instrumental cases, as with *V-with-NO trees. Figures 1 and 2 illustrate two different
cases of selectional restriction, implementing the PP-attachment rules described above®.

4. Results

The system is implemented in Common LISP and runs on a SGI O2 workstation with an R10000 processor at 150
MHz. Processing of a single forest corresponding to a 10-15 word sentence is regularly carried in 10-20 ms CPU time,
The important point is that, even when parsing several forests for a sentence, the user time remains below 200 ms.
Though this was measured with small vocabularies (typically less than 300 words), it is expected to remain roughly
unchanged with the target application vocabulary being approx. S00 words in size. The reason is that global response
times depend on the number of forests to parse, which is a function of the trees/word ratio. This ratio tends to remain
stable within small sublanguages and is certainly much smaller than the generic ratio of 7 mentioned in [Schabes &
Waters, 1994). It is interesting to compare these resuits to the requirements proposed by Goerz and Kessler [1994] for
anytime algorithms to be used in speech understanding. They give Result Production Granularity (RPG) values in the
range of 10-100 ms, which means that in most cases our parser, developed for similar applications, could fit into that
range. )
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Fig. 1, Semantic propagation through substitution (“NO” node of the PP group) enables selection of right furcation on
“N”, because of compatibility between :artifact and :ornament features,
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Fig. 2. Semantic propagation through substitution ("N0” node of the PP group) enables selection of right furcation on
“V™, because of compatibility between “telic” features and feature precedence rules.

“ These refer to situations encountered in the popular “DOOM” video game (trademark of ID Software).
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1. Introduction: Synchronous TAG+ for Machine Translation

The use of synchronous TAG for Machine Translation has been described by Abeille et al. [1990] and has
resulted in several implementations [Prigent, 1994] [Egedi et al., 1994], mainly developed using the XTAG
system [Paroubek et al., 1992). While we subscribe to the general arguments in favour of the use of TAG+
for Machine Translation, it appears that speech translation could constitute an ideal application of these
ideas [Harbusch & Poller, 1994). It is actually easier to select specific areas where speech translation is
both feasible and of practical impact (see e.g. the CSTAR, VERBMOBIL and SRI Speech Translation
projects). In this paper, we report the implementation of a minimal speech translation prototype based on
synchronous TAG+ (more exactly, synchronous Tree Furcating Grammars or STFG), which has been
developed as a direct extension of our TFG parser [Cavazza, 1998].

Sheiber & Schabes [1990] originally coined the term “synchronous TAG”. They described synchronous
derivation of semantic structures from tree operations carried on lexicalised trees, A synchronous TAG is
thus a pair of two elementary trees, one representing the source language and the other a logical formula,
which is also represented as a variant of TAG (and is lexicalised as well). However, the term of
synchronous TAG, when used for machine translation, actually subsumes different approaches and
deserves some clarification. The initial presentation of TAG for Machine Translation by Abeille et al.
{1990] referred to synchronous TAG, though in fact it directly mapped lexicalised trees to one another,
without making recourse to the “semantic” trees described by Shieber & Schabes [1990). In that sense, it
could be considered as a transfer formalism or a structural correspondence system [Kaplan et al,, 1989].
Further implementations by Prigent {1994] within the XTAG system [Paroubek et al., 1992] have been
based on an extended transfer paradigm, mapping between derivation trees in the source and target
languages, thus introducing an intermediate representation.

On the other hand, direct mapping between lexicalised trees has also been adopted in the STAG project
{Egedi et al., 1994] [Egedi & Palmer, 1994]. We would like to suggest, adopting a terminology from
Prigent [1994], that approaches based on the direct mapping between lexicalised trees should be renamed
iso-synchronous. This would clearly indicate that the synchronous trees on which adjunction (resp.
substitution) operations are carried are of the same kind. Our own implementation follows the iso-
synchronous approach, and is based on paired elementary trees in the TFG formalism [Cavazza, 1998].

2. Synchronous Processing of Source and Target Forests

The overall prototype aims at demonstrating real-time speech translation of average 10-15 word sentences
in spoken sublanguage areas. It relies on off-the-sheif software both for speech recognition and text-to-
speech synthesis. The speech recognition system used in our experiments is the Nuance system (from
Nuance Communications), with a British English database. Speech synthesis is based on a Text-To-Speech
system, in our case TTS-SDK for French (from Learnout & Hauspie). Our system takes as input an ASCII
string in the source language (English), as produced by the speech recognition system, and outputs an
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ASCII string in the target language (French), which is passed to the TTS system. This is not to say that our
system could be equally applied to the translation of written sub]anguages, as the size and syntactic
complexity of spoken and written sublanguages differ significantly'.

The first step consists in selecting the relevant trees from the source language input. This corresponds to
the lexical filtering step of the source grammar, and is equivalent to the construction of a set of tree stacks
[Cavazza, 1998]. Each tree in the source language is associated a tree in the target language with
appropriate mappings from source to target trees at roots, anchors and leaves (see below). The result is a set
of candidate forests in the source language to be parsed, For each source forest, there exists an associated
forest in the target language. However, it is the processing of the source language forest that fully
determines the operations to be carried on the target forest. Parsing a forest involves tree fusion on the basis
of adjacent categories, as described in [Cavazza, 1998]. Whenever a pair of adjacent trees (t1, t2) in the
source forest undergoes a fusion operation (substitution or furcation), a synchronous operation is carried
between the target pair (t1', t2'). In this way, the construction of the target sentence directly proceeds from
the analysis of the source sentence. We do not resort to incremental generation of the target sentence, but
delay output until the source forest has been entirely and successfully parsed.

Simple difference in constructs between French and English, like those described in Abeille et al. [1990]
are handled by linking arguments in the source and target node. Processing arguments in the source forest
will then lead to the correct attribution of arguments in the target forest (even though their order might
differ, as the parsing algorithm only relies on the source forest order). This also applies to the translation of
idioms or when a simple word in the source (resp. target) language does correspond to an idiomatic
construction in the target (resp. source) language. Differences in word order for adjectives, like in la clef
bleue vs. the blue key, are directly reflected in the tree representations, where “blene” is a left auxiliary tree
*N and “blue” a right auxiliary tree. As a result the (N, *N) pair in the source language is matched to a (N,
N*} pair for which there would be no fusion. But, because the tree operation is determined by the source
forest pair, it is sufficient to adapt the fusion procedure to detect this and perform the correct operation.
There are several differences in our formalisation and our implementation with respect to the original
description of Abeille et al. [1990]. We establish links only between root nodes and between leaves, hence
not relating nodes which are internal to the source and target trees (e.g., “VP” nodes in [Abeille et al.
1990]). This is partly due to the fact that we do not make use of internal categories such as VP and NP,
following in that sense both the description given by Abeille (1994) for French and the TFG philosophy,
which aims at limiting tree depths. Another difference is that we restrict links between the source and target
trees to nodes bearing the same syntactic category. This currently limits our ability to process some
structural discrepancies, as in the example John gave a weak cough | John toussa faiblement, where an N*-
based (left) furcation in the English tree (N*-weak) would correspond to a *V-based (right) furcation in the
French tree (*V-faiblement) [Abeille et al., 1990]. However, the system is currently able to process a subset
of structural discrepancies. This is illustrated by figure 1., where parsing the source forest for the sentence
the right door lacks a handie produces as an output il manque une poignée a la porte de droite. Adopting
the terminology of Dorr [1994] for translation divergences, we should be able to take into account mainly
thematic, structural (e.g. “shoot-NO” vs. “tirer-sur-NO") and some lexical divergences. However, these
points would necessitate further investigation due to the small size of our experiments.

Though the synchronous TAG approach to machine translation is essentially a kind of transfer formalism,
we have augmented it with the inclusion of semantic features in order to perform some form of syntactic
disambiguation, mainly dealing with PP-attachments. These ambiguities are amenable to selectional
restrictions, based on semantic features matching. It could be argued that syntactic disambiguation is not
strictly needed for French-to-English translation, as even incorrect attachments might generate correct
translations (with similar ambiguities in the source and target languages). However, this would not be fully
satisfactory and furthermore, accepting incorrect attachments would result in several forests being fully
parsed before a result is produced.

!.c., both in the average length of sentences and in the complexity of syntactic constructs.
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Fig. 1. Source and Target Forests with Synchronous Trees Aligned

3. Preliminary Evaluation

A first version of the system has been developed and tested with a small vocabulary of less than 200
lexical entries. Constructs dealt with include idiomatic expressions, transitive/intransitive constructs,
differences in word order, and a subset of translation divergences. The system is written in Common LISP
and runs on a SGI O2 with a R10000 processor at 150 MHz. The translation of a 10-15 word sentence is
carried in 10-100 ms CPU time, depending on sentence complexity, essentially the number of PP-
attachments. Performance of the system is not related to the size of the lexicon but rather to the tree/word
ratio, which determines the number of forests to be parsed during the analysis of a given sentence (see
[Cavazza, 1998]). This would make possible speech translation in user real-time (i.e., total time < 1 s),
considering the time required by the speech recognition and speech synthesis components.This approach
has been mainly developed for the translation of constrained languages or application-related sublanguages,

We do not claim it to be appropriate for written language translation, which requires the ability to process
much longer sentences and a larger range of syntactic constructs. Further work would explore the usability
of such a system in collaborative multimedia applications.
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Abstract

We present a tabular interpretation for a class of
2-Stack Automata that may be used to describe
bottom-up parsing strategies for TAGs. The results
are also useful for' tabulating other existing bottom-
up automata models for this kind of languages.

1 Introduction

Several extensions of push-down automata has been
proposed as operational devices for describing pars-
ing strategies for TAGs. Embedded Push-Down Au-
tomata [EPDA] (Vijay-Shanker, 1988) and 2~Stack
Automata [2-SA] (Becker, 1994) are suitable opera-
tional devices for top-down strategies. For bottom-
up strategies, Bottom-up EPDA [BEPDA] (Schabes
and Vijay-Shanker, 1990; Rambow, 1994) and Lin-
ear Indexed Automata [LIA] (Nederhof, 1998) have
been proposed.

We classify parsing strategies for TAGs w.r.t. the
way adjoining is recognized and regardless of how
elementary trees are traversed. In Top-Down strate-
gies, the auxiliary tree to be adjoined is predicted
once the adjoining node has been reached. Examples
are the Earley-like parsing algorithms which pre-
gerve the correct prefix property (Nederhof, 1997).
Conversely, in Bottom-Up strategies, adjoining is
considered only when a candidate auxiliary tree has
been completely traversed. Examples are the pop-
ular CYK-like (Vijay-Shanker and Joshi, 1985) and
Earley-like parsing algorithms without the valid pre-
fix property (Schabes, 1991).

A TAG parser must handle elementary tree
traversing as well as adjoining processing and keep
some information about these two kinds of task.
Then, a 2-stack automata is adequate to implement
parsing algorithms for TAG.

Polynomial time complexity can be lost for a non
deterministic grammar if redundant comnputations
are not discarded using some kind of dynamic pro-
gramming (tabular) techniques. For the above men-
tioned automata models, systematic tabulation is
only available for LIA.

The automata model proposed in this paper for
bottom-up parsing strategies presents the following
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characteristics: separation of the tree traversal and
adjunction information by using two stacks; system-
atic tabulation, achieving O(n®) time complexity
and O(n?) space complexity; and results comparable
with existing tabular algorithms for TAGs.

2 (Strongly-driven) bottom-up
2-Stack Automata

Strongly Driven 2-Stack Automata {SD 2-SA) has
been introduced in (de la Clergerie and Alonso
Pardo, 1998) to describe arbitrary parsing strate-
gies for TAGs. They work on 2 stacks with some
restrictions added to make them equivalent, w.r.t.
the recognized languages, to the class of tree adjoin-
ing languages.

A SD 2-5SA uses the Master Stack MS to drive
the evaluation and the Auxiliary Stack AS for re-
stricted bookkeeping. Actually, AS should be con-
sidered as a stack of stacks, each of them represent-
ing a session. Typically, in TAG parsing, a session
contains a sequence of adjunctions done along the
spines of auxiliary trees. A session starts in mode
w (write) where pop action are forbidden on MS
and switches at some point to mode e-(erase) where
push actions are forbidden on MS. The actions on
AS in mode e should faithfully retrace the actions
done in mode w. Exiting a session is only possible
when reaching back (in e mode) the MS element

_that initiated the session and when the session stack

on AS is empty.

The bottom-up “projection” of SD 2--SA, hence-
forth BU 2-SA, imposes an additional restriction:
AS nmust remain empty in mode w. That means
that adjunction can be only recognized when a com-
plete auxiliary tree has been constructed. The differ-
ent behaviors of SD 2~8A and BU 2-SA are obvious
when comparing the shape of derivations as illus-
trated in Fig. 1, where the axis display the stack
sizes.

More formally, a BU 2-SA A is specified by a 6-
tuple (£, M, X, 85,8, ©) where T denotes the finite
set of terminals, A the finite set of master stack
elements and X the finite set of auxiliary stack el-
ements. The init symbol §; and final symbol $;
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Figure 4: Application of Rule 1

Space complexity of the tabular technique for
BU 2-SA is obviously O(n*) as at most 4 indices
are stored in buXCF items.

5 Related work

Our tabular interpretation may be used to re-
interpret other existing tabular algorithms for
TAGs, based on some automata model or not,

Linear Indexed Automata {LIA] (Nederhof, 1998)
is the only other automata model we are aware of
that has an associated tabular algorithm, This al-
gorithm considers items ((B,C, 1,3}, (¢,0,0,0,0))
corresponding to buCF items BdCm, as well as
items ((B: Csi:j)) (C, DlEip! Q)) corresponding to
buXCF items Br>[DE]Ce. Because LIAs work on a
stack of stacks, the empty stack markers we use are
useless, the = mark being implicit when the second
part of an item is equal to (¢,0,0,0,0).

If we now consider the tabular algorithm of (Vijay-
Shanker and Weir, 1994), which is not based on an
automata model, we find that, using their terminol-
ogy, our buXCF items Br>[DE]Ce correspond to a
head BC with a terminator pointer [DE) and buCF
items to a head, without terminator pointer.

In both cases, marks and modes (w and e) are
absent from the proposed items, but one may show
that they are actually implicitly present. They may
be also be discarded from our items when consider-
ing specific parsing strategies, but are needed if one
wishes to exploit the full potentiality of BU-25A, for
instance for more complex parsing strategies.

6 Conclusion

" Bottom-up 2-SA may be seen as the projection of a
subclass of strongly-driven 2-5A, specialized to de-
scribe parsing strategies for TAG where adjunction
is recognized in a bottom-up way (i.e. when being
in mode erase). A tabular interpretation of BU 2-
SA is straightforwardly derived by “projecting” the
tabular interpretation for SD 2-SA. So, a buXCF
item Br[DFE]Ce is the projection of a XCF item
AB§[DE)Ce and a buCF item B§Cm is the pro-
jection of a CF item AB§Cm. For SD 2-SA, A is
needed to handle popping on AS in w mode, but
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it may be safely removed for BU 2-SA because of
the extra condition on the emptiness of AS in w
mode. While the worst case time complexity re-
mains O(n®), the worst case space complexity de-
creases from O(n®) for 2-SA to O(nt) for BU 2-SA.
Of course, the drawback is the violation of the valid-
prefix property and it remains to investigate whether
or not this is a good thing for TAG grammars used
in Natural Language Processing.
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Figure 1: Derivation shapes for SD and BU 2-SA

are distinguished elements of M. © is a finite set of
transitions.

MS is a word in (DAM)* where D denotes the set
{t, =} of action marks, projection of the larger ac-
tion mark set { ', =, >, =} used for SD-2SA. Push-
ing an element on MS is either marked with |= if a
“new session” starts at the same time, or by & oth-
erwise.

AS is a word of (KA*)* where symbols in K =
{=%, =%} are used to delimit session stacks and
remember the mode of the previous session.

Given some input string z1...2, € T*, a con-
figuration of A is a tuple (m,i,Z,£) where m €
{w, e} denotes the current mode, i the current string
position in [0,n], £ the master stack and £ the
auxiliary stack. The initial configuration of A is
(w,0, =S80, =" ) and the final one (e,n, =Sy, =" ).

A transition 7 is represented by a pair
(m,E,€) — (m',0,0) where mym' € {w,e}, 2
in Z*, 2 and © are suffixes of master stacks in
M(DM)*, and &,0 suffixes of auxiliary stacks in
{XUK)*. We denote (m,1, TZ,Y&) (m', j, ¥O,40)
a valid derivation step using 7 with z = z;4, ...z,
and by |* the reflexive and transitive closure
of . A stnng ai... %, is accepted by A if
(w,0, =80, " )P (e,m, 85, =7 ).

For BU 2-SA, we consider the following kinds of
transitions (whmh enforce that the A S topmost ses-
sion remains empty in w mode), namely SWAP
to change the top element of the MS; }=—WRITE
and F-ERASE to start and end sessions; and

>-WRITE and §~-ERASE (6 € {/,—,\}) to
push to and pop from MS whiie acting on AS:

SWAP1 (p,A,¢) — (p, B,¢)

SWAP2 (w,A4,E°) — (e,B,E°)
E-WRITE (m,A,¢) = (w, AEB, ™)
E-ERASE (e, AEB,E™) = (m,C,¢)
>-WRITE (w, A, €) = (w, AbB,¢€)

§-ERASE (e, AbB,c) v (e,C,c') with
=—andc=cd=¢or(d=Tandc=¢
or (6 =y and ¢ =¢).
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_ FCALL:

3 TAG parsing with BU 2-SA

We present a BU 2-SA that simulates a Earley-
like parsing algorithm without the valid-prefix prop-
erty (Schabes, 1991). The automata performs full
prediction on the context-free backbone but no pre-
diction on the adjunctions during the descent phase.

Each elementary tree is represented by a set
of context free productions of the form wvzo —
Yk .. Vkn,, Where vg o denotes some non-leaf node
k and v ; the i* son of k, and a set of terminal pro-
ductions vx,0 —+ ax, where v o denotes some leaf
node k with terminal label a.

The 6-tuple (Vr, M, X,v00,v00°,0) defines the
automata A, with M = (Vg U {v§;} U {15}
and & = {V§}, where symbols Vy; denote dotted
productions and v ; (resp. v§ ;") denote the predic-
tion (resp. successful recognition) of a node. The
transitions are given by the following rules:

e Call / Return for a node not on a spine. The
call starts a new session, exited at return.
CALL: (m, Vi, €) — (W, ViiFEvk i, E™
RET : (e, Vk,“}=l’k_{+ll, }= ) —) (m, Vk';+1,€)

¢ Call / Return for an adjunction on node vz g.
The computation is diverted to parse some ac-
ceptable auxiliary tree § with root node rg. At
return we check if the subtree attached to the
foot node of 8 corresponds to the subtree rooted
by VE.0-

ACALL: (w,vg0,€) — (w,vkobrg,€)
ARET: (E, Vk.ﬂbrﬂ') Vk.nu) — (e: Vk,Oll C)
¢ Call / Return for a node v ¢+1 on a spine. The

adjunction stack is propagated bottom-up along
the spine,

SCALL: (w, Vi i,€) ¥ (W, Vi iDVki41,€)
SRET : (e,Viibukit1’,€) — (€, Vi,it1,€)
¢ Call / Return for a foot node fg. A candidate
adjunction node for 3 is predicted. At return
we remember what node was considered.
(W,fﬂ,e) — (W»fﬁbvkoie)
FRET : (e, fagbVin,, € — (e, f6': Vin,)
e Production Selection
SEL : (w,vk,0,€) ¥— (W, Vi o,€)
¢ Production Publishing
PUB: (m,Vin, €) — (e,vro,€)

¢ Scanning
SCAN: (W, Vk,0, }zm)hﬂ_h-}(e! Vk,0'3 }zm)

4 Tabulation

In a tabular framework, items store essential in-
formation about characteristics “points” of elemen-
tary derivations. Tabulation of SD 2-SA (de la
Clergerie and Alonso Pardo, 1998), that achieves



O(n®) time and O(n®) space complexity, needs two
kinds of items, namely 3-point Context-Free [CF)
items and 5-point escaped Context-free {XCF] items.
Each point is either a mini configuration (i, A,a) or
a micro configuration (i, A) that stores some rel-
evant information about a configuration, namely
the position i in the input string, the top MS
element A, and optionally the top AS element
a. The uppermost curve of Fig. 2 illustrates a 3-
point CF item [(&,4,-), (i, B,-),6,{j,C,c)], also
denoted B6C'w where A and B are micro config-
urations and C is a mini configuration. The upper-
most curve of Fig. 3 illustrates a 5-point XCF item
[(h:A: _)r (i:B: —’)16_1 (px P:d). (Q! E: "')r (j: C,C)],
also denoted ABS[DE]Ce where A, B, E (resp.
D, C) are micro (resp. mini) configurations.

BU 2-SA restrictions imply that AS remains
empty in w mode, so the points A, B and C of
a CF item and the points A, B and D of a XCF
item are “projected” w.r.t. the top element of the
AS. Furthermore, it may be shown that point A is
actually redundant and can be discarded. The bot-
tom curve of Fig. 2 illustrates a BU 2-SA CF item
[, B,=),>, {4, C,¢)), also denoted as B>Cw The
bottom curve of Fig. 3 illustrates a BU 2-5A XCF
item [(ia B: _): >, (px 'Q: }=o)’ (Q) E; —)s (j: c: c)]s also
denoted as B[DE}Ce. In both figures, the pro-
jection is materialized by the dashed arrows.

Formally, we identify two kinds of items for BU 2-
SA, associated to two different kinds of derivations:

Bottom-up CF [buCF)}
items correspond to context-free derivations that
depend only on the topmost element of MS

. (4B, R (m, ], EBRC, )
{0,4,ZB,£)P* (w,5,EBEC, §}=0)
and are denoted by B6Cm, where B = (i, B), C =
(4,C,E°),and 6 € D. -

Bottom-up Escaped CF [buXCF] items corre-
spond to escaped context-free derivations of the
form:

(w,i,EB,EE") = (w,p,EED,¢E")
P (e,q,E3DbE,EE%9)
P (e,4,EB>C,¢E"¢c)

and are denoted by B-{D E]Ce, where B = (i, B),
D= (p,D), E = (g, E), C = {j,C,0).

A set of rules combines items and transitions in
order to retrieve all possible derivations. Due to
space limitations, we only describe the most com-
plex rule (see Fig. 4), used to apply a transition
r = (e, BbC, ¢) ¥ (e, F,¢), omitting the scanning
constraint z on the input string:
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NéBw

Dv[OP)Ee
where C = (4,C,¢), B = {, B,E°), F = (k,F,b},
and B® = (i, B) the projection of B to a micro
configuration.

The time complexity of this rule is @(n”) but may
be reduced to ((n®) by partially applying the rule on
the first two items to build an intermediary structure
where B is discarded.

}='.» N{[OP)Fe (1)
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The TAG adjunction operation operates by split-
ting a tree at one node, which we will call the ad-
junction site. In the resulting structure, the sub-
trees above and below the adjunction site are sepa-
rated by, and connected with, the auxiliary tree used
in the composition. As the adjunction site is thus
split into two nodes, with a copy in each subtree,
a natural way of formalizing the adjunction opera-
tion posits that each potential adjunction site is in
fact represented by two distinct nodes. In the FTAG
formalism (Vijay-Shanker, 1988) each potential ad-
junction site is associated with two feature struc-
tures, one for each copy. As an alternative to this
operationally defined rewriting view of adjunction,
Vijay-Shanker (1992) suggests that TAG derivations
instead be viewed as a monotonic growth of struc-
tural assertions that characterize the structures be-
ing composed. This proposal rests crucially on the
assumption that the elementary trees are character-
ized in terms of a domination relation among nodes,
and that each potential adjunction.site is repre-
sented by two nodes standing in a domination re-
lation. Under this proposal, the structures a and
B in Figure 1 would be used to derive long-distance
wh-movement. To adjoin § into a, the root and
foot nodes of § are identified with the two C' nodes
gtanding in a domination relation in o (represented
by the dotted line). This domination relation still
holds after adjunction, as do alt the other domina-
tion relations stated in defining « and . (In sen-
tences in which there is no adjoining at the C' node,
e.g., ‘I wonder what Mary saw,’ these C' nodes could
collapse, preserving domination under the assump-
tion that it is a reflexive relation.) Domination has
also been argued to play a role in multi-component
structures, where there is assumed to be a domi-
nation relationship between a frontier node of one
component and the root of the other.

While the use of domination relationships is at-
tractive in allowing us to view TAG derivations as

*Thanks to Tony Kroch, Seth Kulick, and two anony-
mous reviewers for helpful comments and discussion.
We gratefully acknowledge the financial support of NSF
grants SBR-97-10247 and SBR-97-10411.
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University of Delaware
vijay@cis.udel.edu

monotonic additions to a set of domination relations,
the linguistic motivation for such domination state-
ments among duplicated nodes is not very clear. In-
stead, from the point of view of the grammar, what
seems to be crucial in defining the relevant portion
of the structure of a is not that there should be
two C' nodes standing in a domination relation, but
rather that the moved element ‘what’ inust stand in
a certain structural relation with its trace, namely
c-command, both in the the elementary tree and
throughout the derivation, Given the way in which
adjunction is defined and the manner in which dom-
ination statements have been utilized, it turns out
that this c-command relation is always preserved by
the application of adjunction. In this work, we take
this preservation of c-command under adjunction to
be the central property of the operation, and not a
residual effect of some specific use of dominance re-
lations and their interaction with adjunction. Thus,
what was previously seen as the central preserva-
tion of dominance relations will turn out to arise
as a side effect of the preservation of c-command
relations on our proposal. This leads us to postu-
late that TAG elementary structures are defined in
terms of their c-command relations, and that TAG
derivations constitute monotonic additions to a set
of c-command relations. That is, instead of viewing
TAG structures being defined in terms of domination
relations, we consider any domination relations that
will be. preserved to arise or be inferred from the c-
command relations used in defining TAG structures.

In characterizing TAG elementary trees, we make
use of independently motivated assumptions con-
cerning the c-command relations that exist among
structural elements. Thus, we assume that the c-
command relations within elementary trees will be
determined by (at least) the foliowing principles (cf.
the definitions in Kayne (1994)):!

(I)a. A moved element c-commands its trace.
b. A head and its complement ¢-command one an-

1We leave for the moment the question of the rela-
tionship between specifiers and the X' projections they
‘specify.
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Baw
Figure 2: Defining elementary trees with c-command

other.
¢. A modifier c-commands the phrase it modifies.

Following these principles leads us to the structure
in Figure 2 for the elementary tree a from Fig-
ure 1 {where arrows indicate c-command relations).?
There are two crucial c-command relations to ob-
serve in this structure: the first between the fronted
wh-phrase and its trace, and the second between the
wh-phrase and the C' node, which serves as the tar-
get of movement within the elementary tree. Let us
suppose that derivations proceed as monotonic com-

2The linkages of direct domination in Figure 2 are
not intended as part of the representation, but rather
as aid to the reader in comparing our proposed struc-
ture to that standardly assumed. Note that certain
implicit c-command relations, such as that between C
and the subconstituents of IP are suppressed in this
figure, hut we assume that they are present. See
Frank and Vijay-Shanker (1998) for extensive discussion
of the properties of structures defined in terms of ¢-
command and the refationship between such structures
and those defined in terms of dominance.

binations of structures like this one defined in terms
of c-command. This means that we can perform
an operation analogous to adjunction, inserting a
structure like 8 in Figure 1 between the fronted wh-
element and the C’, by identifying this C’ with the
foot node of the auxiliary structure. In the structure
that resuilts, all of the c-command relations stated
in the elementary trees are preserved, most notably
those between the fronted wh-element and both the
C’ and its trace. From this perspective, we can now
understand why it was necessary in the framework
of Vijay-Shanker (1992) to posit a domination rela-
tion between the two C’ nodes in « in Figure 1: as
an indirect representation of (at least) the princi-
ple requiring that inoved elements c-command their
traces.

This proposal allows us to explain many previ-
ously stipulated properties of TAG elementary trees
and constraints on the adjunction operation. Con-
sider, first of all, the structural differences between
two classes of auxiliary trees noted by Kroch {1989)
and Schabes and Shieber (1994): complement auxil-
iary trees on the one hand and modifier or athematic
auxiliaries on the other. Recall that modifier aux-
iliaries have the distinctive property that their foot
node is the sister of a modifying phrase and is the
daughter of the root node. Following the principles
in (1), it follows that the foot of a modifier auxiliary
will c-command its XP sister, i.e., the adjunction
site, though not vice versa. In contrast, the foot
node of a complement auxiliary muat be the sister
of some head of which it is a complement. Thus, this
foot node will both c-command and be c-commanded
by its sister node. From this structural difference,
we can derive certain contrasts in the use of these
classes of auxiliaries during TAG derivations. Since
modifier auxiliary trees introduce an asymmetrical
c-command relation with their foot node, it fol-
lows that their adjunction wili not disrupt any c-
command relations that the modified phrase already
enters into. Thus, it follows the adjunction of mod-
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ifier auxiliaries should be quite free and indeed may
occur at any node in an elementary tree. In fact, if
the root and foot of the auxiliary tree are considered
segments of the same category (which explains the
asymmetrical c-command relation hetween the mod-
ifier and modifiee), ii.is would explain the possibility
of multiple adjunction by modifier auxiliary trees at
a single node considered by Shieber and Schabes.
On the other hand, it has sometime been stipuilated
that adjunction of predicative auxiliaries is blocked
at the foot node of predicative auxiliary trees. As
just noted, since the foot of a predicative auxiliary
is a complement, this node c-commands the lexical
head of the auxiliary. Adjoining to this foot node by
another predicative auxiliary tree will have the effect
of lowering it, so that it no longer c-commands the
head. This would violate the monotonicity require-
ment on c-command relations during the derivation,
and we could therefore reduce the stipulation often
used in TAG to a more general condition on mono-
tonicity. In contrast, adjunction at the foot node of a
modifier auxiliary will not be ruled out, as the mod-
ification relation does not entail mutual c-command,
and such lowering of the foot does not force the re-
traction of any c-command relations.

Now that we have seen that complement auxiliary
trees may not adjoin at a complement node, the ob-
vious question is where they may adjoin. Clearly,
adjoining at the root of a structure would not re-
quire any statements of c-command relations to be
retracted, and thus is permissible. But this is not
an interesting situation as it can also be considered
to be substitution. Saying that this derivation step
is a case of adjunction is merely an artifact of the
TAG formalism which, quite possibly, has no signif-
icant implications. The interesting cases correspond
to adjoining comnplement auxiliary trees to internal
nodes (i.e., non-root nodes}). Suppose that we fol-
low Kayne's (1994) suggestion that specifier posi-
tions should be assimilated to adjuncts, specifically
with respect to their c-command relations (i.e., they
c-command but are not c-commanded by their X'
sister}.? This will mean that we must add the follow-
ing additional principle of elementary tree formation
to those in (1):

(2) A specifier c-commands the phrase to which it
attaches.

{From this, we are able to derive the result that
the only internal (non-root) nodes where predica-
tive auxifiary irees can adjoin are X’ nodes that are
sister to a specifier. The reason for this is exactly as

3This raises the interesting possibility that specifiers

could be adjoined in the TAG sense as well. Although

this would have certain benefits with respect to the
treatment of subject islands, we believe at present that
it is not immediately compatible with our proposal to
derive the possible loci of adjunction from c-command
mongotonicity.

DP;

| T

Which problems

Mary I —& VP
| /\
to V e— 1
|
solve

Figure 3: Extraction from IP

in our discussion of the tree in Figure 2, namely that
it is only in the context of unidirectional c-command
from the specifier to the X’ node that it is possible
to insert a complement auxiliary that will have the
effect of lowering the X' node. Interestingly, this
view matches quite well what has been assumed in
previous TAG analyses, where successive cyclic A'-
movement is accomplished by adjunction at C' as
discussed earlier, and successive cyclic A-movement
by adjunction at I'. Indeed, we believe that this pro-
posal provides a means of explaining why unbounded
movement uniformly proceeds through specifier po-
sitions.

One potentially problematic case of complement
adjunction at an internal XP node involves wh-
extraction from an ECM verb as in an example like
‘Which problems (do} you expect Mary to solve?’
The most straightforward TAG analysis of such a
case would adjoin an IP auxiliary tree representing
the matrix clause, i.e., you ezpect IP into a CP initial
tree representing the embedded clause from which
extraction has taken place, i.e., which problems Mary
to solve. 1t i3 possible, however, that this extraction
involves a more complex multi-component deriva-
tion. Thus, the representation of the embedded
clause may not include a CP projection at all, but
rather could perhaps simply represent the fronted
wh-element as c-commanding the IP node, as in Fig-
ure 3. This c-command relation would be preserved
if the embedded IP substituted into the complement
position of a CP-rooted matrix tree and the wh-
phrase substituted into the specifier of CP position
of the same tree.4® This kind of multi-component
tree set, in which there is no dominance link between

does not remove tbe restrictive character of adjoining
that is crucial in deriving island effects. It is in fact
fairly straigbtforward to provide a simple view of possi-
ble elementary tree domains, analogous to the CETM of
Frauk (1992), so that the standard effects are derived.
®Other analyses of this case are, of course, possible,
some reminiscent of ideas presented in a TAG framework
by Rambow and Kroch (1994), in which ECM is taken to
involve raising to a specifier position of a higher clause.
Space presents us from exploring this alternative here.
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£
Figure 4: Extractiog from NP

the two components, but instead a c-command link,
has in fact been exploited in previous TAG analy-
ges of wh-movement (Frank, 1992). Under our pro-
posal, dominance links as they have been exploited
in multi-component, sets can effectively be replaced
by c-command links, as these more effectively con-
vey the grammatically relevant structural relations.
Moreover, our proposal allows us to understand why
no dominance links were previously posited between
certain components of a multi-component set: there
is no relevant structural relation linking them, so
their hierarchical order is free,

It is a well-known that extraction from NP must
be handled in a different fashion in TAG from ex-
traction from clausal complements, as the adjoin-
ing operation allows only the insertion of recursive
structure. However, using c-command to define the
elementary structures allows us to generalize the ad-
joining operation so as to capture both cases. Specif-
ically, a derivation of a sentence like “Which picture
did you buy a copy of?’, could proceed by inserting
a non-recursive structure, with root C' and foot D'
between the two components of the set in Figure 4.8
What would previously have been assumed to be a
domination relation between the C' node and the D/
node now can be seen to follow from the c-command
relation between the moved element and the trace.
In the derived structure, this c-command relation,
and therefore as a side effect the domination rela-
tlon, cont}nueu to hn]ﬁ anp fhaf onur hvnnfhqus
that c-command relations should be preserved duz-
ing derivation would rule out a possible TAG analy-
sis where the structure for a copy of is considered to
be an auxiliary tree. Adjunction of such an auxiliary
tree would violate the requirement of preservation of

®The derivation shares a good deal in common with
the proposal of Kulick (this volume). Detailed compan-
son of these two analyses awaits future work.

c-command as it would have to be adjoined at the
complement NP node of the verb buy.

Finally, we suggest that our recasting of TAG
derivations as manipulations of c-command relations
leads to a resolution of thorny issues for the TAG
framework posed by examples such as ‘Does Gabriel
appear to like gnocchi?’. The relevant property of
this example and others like it (e.g., involving clitic
climbing) is that the lexical material associated with
the matrix clause (i.e., does and appear) is intermin-
gled with that of the embedded clause in such a way
that there is no natural way of localizing it in a single
auxiliary tree. Consequently, this example seems to
require a derivation that is considerably more com-
plex than a simple instances of raising. Supposing
instead that the elementary tree headed by appear
consists of the usual I' raising auxiliary (stated in c-
command terms) together with the verb does which
is stated to c-command the root ¥, as a result of
its having raised, in a spirit similar to the structure
in 3, but applied to head movement. When this
auxiliary combines with the subordinate clause ele-
mentary tree, does is free to float above the subject,
as this will preserve the c-command relation.”
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Descriptions.  In recent years, both formal and
computational linguistics have been exploiting de-
scriptions of structures where previously the struc-
tures themselves were used.

The practice started with (Marcus et al., 1983),
who demonstrated the value of (syntactic) tree de-
scriptions for near-deterministic incremental pars-
ing. Vijay-Shankar (Vijay-Shankar and Joshi, 1988;
Vijay-Shankar, 1992) used descriptions to main-
tain the monotonicity of syntactic derivations in the
framework of Feature-Based Tree Adjoining Gram-
mar. In semantics, both (Muskens, 1997) and (Egg
et al., 1997) have shown the value of descriptions as
an underspecified representation of scope ambigui-
ties.

The current paper further extends the use of
descriptions, from individual sentences to dis-
course, showing their benefit for incremental,
near-deterministic discourse processing. In partic-
ular, we show that using descriptions to describe
the semantic representation of discourse permits:
(1) a monotone treatment of local ambiguity; (2)
a deterministic treatment of giobal ambiguity; and
(3) a distinction to be made between “simple” local
ambiguity and “garden-path” local ambiguity.

Discourse descriptions. Suppose we have the dis-
course:

(1

a. Jon and Mary only go to the cinema
b. when an Islandic film is playing

On hearing the second sentence, the hearer infers a
CONDITIONAL relation (CDN) to hold between the
event partially specified in (1a) and the event par-
tially specified in (1b). We associate this with the
following description of structure and semantics:

University of Pennsylvania

Philadelphia PA 19104-6389 USA
bonnie@ central.cis.upenn.edu

(2) cdn(A,B)

B ——->
- -

The dashed lines indicate domination, the plain
lines immediate domination. Labels on the nodes
are first-order terms abbreviating their associated
semantic information. Capilal letters indicate vari-
ables, lower letters indicate constants, and shared
variables indicate re-entrancy. Whenever two node
descriptions are identified and taken to refer to the
same node, their labels must unify.

The description licenses a local tree whose root
semantics is CDN(A,B), where A and B are the
semantics of nodes dominating the nodes whose
semantics is a and b, respectively. Intuitively, A
and B represent the final arguments of the CON-
DITIONAL relation, whereas a and b stand for its
current arguments.' Formally, A/a and B/b nodes
are quasi-nodes in the sense of Vijay-Shankar; they
are related by dominance and therefore can (but
need not) be identicat.

Local ambiguity. As (Marcus et al., 1983) has
noted, descriptions facilitate a near-deterministic
treatment of local attachment ambiguities in incre-
mental parsing. This is also true at the discourse
level. For instance (1) can be continued in two
ways: additional discourse material can “close off™
the scope of the relation

3) a
b. Semantics: cause(cdn(a,b},.c)

so they rarely go.

IDescriptions can be formulated more precisely, using tree
logic (Vijay-Shankar, 1992). For this paper however, we will
use a graphic presentation, as in (2) above, which is easier to
read than conjunctions of logical formulae.
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or it can extend it:

(4) a. or the film got a good review in The
Nation,

b. Semantics: cdn(a,or(b,c))

By using descriptions of trees rather than the trees
themselves, we have a representation which is com-
patible with both continuations: In the first case
(continuation 3), addition of the third clause will
lead the hearer to infer a CAUSE relation to hold be-
tween (1) and (3). This extends the description in
(2} to:

(5) cause(C,D)p

Ce Dg

P I

.7 )

cdn{A,B); c
Aq By
| i
' 1
ag hs

By contrast, if (1) is continued with (4}, the initial
description is expanded to:

cdn({A,B)y or(C,Dp

Ed
I P

H 1~

Az Bsa G Dla
1
a bs ¢’y

where OR stands for disjunction. Both descriptions
are compatible with the initial description (2) and
both descriptions can be further constrained to yield
the appropriate discourse semantics.

Suppose that no further material is added: now
the scope of the discourse relation becomes known.
This in turn licenses node identifications which con-
flate final and current arguments. So if the discourse
ends in (4), then node 6 is identified with node 5,
fixing to b the left-hand argument of the OR rela-
tion. Similarly, nodes 8 and 9 can be identified,
thereby fixing the right-hand argument to ¢’. Given
these additionai constraints, the minimai tree striuc-
ture which satisfies the resulting description is;

cdn(a,on(b,c))s

a2 or(b,cle7

/\

bss c’gy

In surnmary, dominance permits underspecifying
the syntactic link between nodes, while seman-
tically, quasi-nodes permits underspecifying the
arguments of discourse relations, In both cases,
monotonicity is preserved by manipulating descrip-
tions of trees rather than the trees themselves.

Global ambiguity Discourse exhibits global scope
ambiguities in much the same way sentences do:

(6) a. Itrytoread anovel
b, if I feel bored
c. or I am unhappy.

This discourse means either that the speaker tries to
read a novel under one of two conditions (boredom
or unhappiness), or that the speaker is unhappy if
sfhe can't read a novel when bored. Discourse-level
scope ambiguities can be captured as in (Muskens,
1997) by leaving the structural relations holding be-
tween scope bearing elements underspecified. For
example, the (ambiguous) structure and semantics
of (6} can be captured in the description:

Al Bs CorDy
A2 By Ce Ds
1 ~ L ]
| ~ - ]
a bs [

In the absence of additional information (i.e. when
the respective scope of the discourse relations
remains unspecified), no additional constraints
come into play, so that not one but two trees satisfy
the description: one with root semantics a if (b or
¢) and the other with root semantics (a ifb) or c.

Defaults, underspecification and preferences. We
assume that a cognitive model of incremental dis-
course processing should distinguish between those
cases of “simple” Jocal ambiguity which do not trig-
ger repair when they are resoived by information
later in the discourse and those cases of “garden
path” ambiguity that do.

Now there is a continuum of ways to deal “eco-
nomically” with jocal ambiguity, without generat-
ing all the possible readings. At one end is a pure
default approach, commiting to one reading and dis-
carding the others. At the other end is a pure under-
specification approach, with a single compact repre-
sentation of all possible readings but no indication
of the reading of the text so far.
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Neither of these “pure” approaches suffices to
distinguish simple local ambiguity from garden path
ambiguity in either sentence-level processing or dis-
course. While defaults can be subsequently overrid-
den, there is no difference between overriding a sim-
ple local ambiguity and overriding a garden path.
On the other hand, underspecification, which does
not “commit” to any specific choice, provides no
indication of the reading of the text so far and thus
again, no way of distinguishing simple local ambi-
guity from cases where the reader garden-paths.

However, in between these polls are approaches
" that combine features of both. One that seems
able to meet the cognitive criteria given above
is an approach that combines underspecification
with a preference system that highlights a specific
reading corresponding to the hearer’s currently
preferred interpretation.  Such a proposal was
suggested in (Marcus et al., 1983), and is the one
we are currently exploring for discourse. The two
aspects of the approach we want to discuss here
are: (1) partial underspecification, and (2) biases in
choosing a preferred reading.

Partial Underspecification. The degree of under-
specification in a description is usually only par-
tial: there is always something that it commits to.
For example, while underspecifying domination,
the structural descriptions used above still rigidly
distinguish each branch of a tree from its sisters.
Similarly, while allowing underspecification in each
individual argument to a predicate, the descriptions
used here still rigidly distinguish one argument from
another. We take this to be a “feature” with respect
to making a cognitive distinction between simple lo-
cal ambiguity and local ambiguity that leads to gar-
den paths.

In particular, we associate simple local ambiguity
with domination underspecification, whether it be at
the sentence-level or in discourse: the local ambi-
guity associated with “my aunt” after processing “I
saw my aunt ...” — whether it continues

(7) a. Isaw my aunt.

2 §
I saw my aunt’s cat.

o

c. Isaw my aunt’s cat’s litter box.,

— is purely a matter of how the domination relation
eventually resolves itself.

On the other hand, the ambiguity associated with
“raced” after processing “The horse raced ...”
whether it continues

(8) a. The horse raced past the barn.
b. The horse raced past the barn fell

— is a matter of choosing whether “raced” takes
“the horse” as its argument or whether it acts as
a modifier of “the horse” (in distinguisling this
horse from other ones, cf. (Crain and Steedman,
1985)). This ambiguity cannot be captured by
domination underspecification. As such, it can
only be represented as a (disjuctive) alternative, a
matter of non-deterministic or preferential choice.
If the choice is incorrect, revision is required, thus
providing a way of making the desired distinction
between simple and garden-path local ambiguity.

Biases in choosing a preferred reading. In any
abductive process, there are many ways of explain-
ing the given data, and biases are used to identify
one that is preferred. For example, in plan recog-
nition (identifying the structure of goals and sub-
goals that give rise to what is usually taken to be a
sequence of observed actions), Kautz (Kautz, 1990)
suggested a “goal minimization” bias that preferred
a tree with the fewest goals (non-terminal nodes)
able to “explain” the sequence of actions. Where
goal minimization is known to produce the wrong
explanation, some other bias is needed to yield the
one that is preferred (Gertner and Webber, 1996).

Similarly, in associating a preferred reading with
acomgpact underspecified representation, (Marcus et
al., 1983) proposed a bias towards a tree that min-
imised the dominance relation. That is, if two node
names stand in a dominance relation, they are taken
to refer to one and the same node, provided nothing
rules it out. Of course, such a “min.dom” bias might
yield several trees, each of which are equally mini-
mal. Typically, this is true of global ambiguities as
in (6) above, where dominance can be minimised by
identifying node 5 either with node 4 or with node
6, each move resulting in an equally minimal tree.

An alternative bias combines “min.dom” with
“right-association” (Frazier, 1995; Chen and Vijay-
Shankar, 1997), yielding a preference for a structure
in which the incoming unit attaches “low in the tree”
and can be obtained by minimising the most recent
dominance link. In example 6, this means identify-
ing node 6 with node 5 first so that the default read-
ing in this case is the reading where if scopes over
or.

Other biases are possible: Crain and Steedman
(Crain and Steedman, 1985) argue for a pref-
erence for referring forms that distinguish one
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aiready-cvoked (discourse) entity from possible
alternatives. We believe it is worth exploring what
bias best models the preferences people have in
discourse interpretation, and how it resembles their
preference at the sentence level,

Comparison with related work. A related
approach to discourse structure and semantics is
presented in (Webber and Joshi, 1998), where
Lexicalised Tree Adjoining Grammar (LTAG) is
used to construct the compositional semantics of
discourse. Although the basic structures used here
are different, we foresee no difficulty in modifiying
them in order to integrate the additional information
inciuded in the LTAG discourse trees. Essentially,
the atomic labels representing the relations should
be mapped into the feature structures used in
(Webber and Joshi, 1998) and this information used
to label not the root node of a local tree but its
anchor. Second, the LTAG approach has focussed
on describing the compositional semantics of
discourse — that is, the semantics explicitely given
by the text (as opposed to what can be inferred). In
contrast, the present approach does not differentiate
between compositional and inferred semantics,
though again, the difference does not seem essential
as the description based approach could be either
extended to explicitely distinguish (e.g. by means
of features) between compositional and inferential
information, or restricted to describe those aspects
of discourse semantics that are compositional.
Third, the LTAG proposal does not address the
focus of the current approach — incrementality and
underspecification. On the whole then, the two sys-
tems are complementary rather than antagonistic.

Conclusion.  We have argued that a technique
developed to handle well-known problems in
sentence processing can also benefit the processing
of monologic discourse. First, it provides a well-
defined framework for monotonicaily describing
the incremental construction of discourse seman-
tics. This departs from approaches in the discourse
literature which give up either monotonicity (Asher,
1993) or incrementality (Hob90; MT87). Second,
it has a well-understood formal basis in tree logic.
Third, it permits a clear-cut distinction between
local ambiguities that lead the hearer down the
garden path and those that don’t.
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Abstract

‘We integrate super-tagging, guided-parsing
and probabilistic parsing in the frame-
work of an item-based LTAG chart parser.
Items are based on a linear-typing of trees
that encodes their expanding path, starting
from their anchor.

1 Introduction

Practical implementations of LTAG parsing have to
face heavy lexical ambiguity and parsing combinato-
rial ambiguity. Main techniques to address these is-
sues are super-tagging (Joshi and Srinivas, 1994),
which consists in disambiguating elementary trees
before parsing; guided-parsing, like head-driven
parsing (van Noord, 1994) or anchor driven pars-
ing (Lavelli and Satta, 1991; Lopez, 1998); and
probabilistic parsing (Schabes, 1992; Caroll and
Weir, 1997).

All of these approaches exploit specific properties
of LTAG to improve parsing efficiency, but none is
totally satisfactory.

Guided-parsing is a very nsefull means to limit
overgeneration of spurious items in the chart, but it
does not provide a new ambiguity bound. Besides,
lexical ambiguity remains the main factor of com-
putational load and this problem is only undirectly
addressed by such techniques.

Super-tagging strength is to discard elementary
trees while avoiding to go through actual tree com-
binations. It exploits instead local models of Well-
Formedness (WF), as those used for tagging, where
parse depencies remain implicit or underspecified.
The problem though is that if a single tree is in-
correct the parse will fail. To be robust, parsing

*ENST Paris, 46 rue Barrault, 75634 Paris Cedex 13
tThomson-CSF, LLCR, Domaine de Corbeville, 91404
Orsay Cedex, FRANCE
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must thus take several hypothesis into account. This
leaves one with two regrets: first, parsing has still
to find some way to tackle combinatorial ambigu-
ity, and second, there is a lack of synergy between
super-tagging and parsing , while they seem to share
a kuowledge about tree potential-combinations.

Probabilistic parsing offers a way to tune the com-
promize between accuracy and speed, by thresh-
olding partial parsing paths according to their cur-
rent Inside probability. This incurs a well-known
bias (Goodman, 1998): At a given derivation step,
the Inside-probabilities of parse constituents esti-
mate the relevance of the derivation past, but do
not tell anything about its future. This can be cor-
rected by A* cost functions, or Qutside-probability
estimates.

To meet the weak points mentionned above, at
least partialy, we develop a unified framework for the
three techniques, and push their interactions further.

Sharing a parsing framework We propose an
item-based chart-parser, where the parsing scheme
is expressed as a deduction system (Shieber, Sch-
abes, and Pereira, 1994). This framework is
also amenable for expressing probabilistic pars-
ing (Goodman, 1998).

Sharing models for super-tagging and item-
pruning. Super-tagging can be seen as a tree-
sequence WF-model, and extended to score derived
item-sequences in the chart, wrt their likelihood of
completing a parse. This yields a sound threshold-
ing technique (Rayner and Carter, 1996; Goodman,
1998).

Sharing tree-types for item-pruning and
guided-parsing. To support the WF parametric
model, trees and items are abstracted by their lin-
ear type, which consists in a list of connectors that
represent combination properties. Guided-parsing
relies on a specific ordering of these connectors, so
that a single type drives the parsing deduction and
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Table 1: Deductive system for an LTAG bidirectional chart-parser, lexically guided and based majoritarily
on trees, thanks to a precompilation of their nodes into left and right walks.

The active connector 1s poped on extreme left (resp. right) of its stack [y (resp. [';). Each connector is associated with its node n,

though we do nat always mark 1t. The spine s the path from anchor to roat.wrap-1, wrap-2, wrap-3 identifie the three steps of a

wrapping adjunction on an internal node. ¢f Fgure 1.

estimates the pruning model. Types are described
in section 2, their use in the deduction system, in
section 3. their use for item-pruning in section 4,

2 Linear Typing

Guiding the Tree expansion We guide the pars-
ing by independent left and right connected-walks,
inspired from (Lavelii and Satta. 1991} bidirectional
parser and (Lopez, 1998) connected routes. Left and
right connected walks follow respectively left- and
right- monotonic expansion, cutward. [rom the an-
chor to the root, as displayed in figure 2. They list
node operations considered as connectors.

Link-Grammar expression To express linear
types, we exploit the Link-Grammar (ormalism (Laf-

ferty, Sleator. and ‘Temperley. 1492), which is close
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to Categorial Grammar. Leflt and right walks are ex-
pressed as stacks of connectors, so that the extreme
connector is the one to connect the closest to the
anchor! An illustration is given in table 2 for the
tree in figure 2.

Typing strategy, In its own walk, the oot bears
the adjunction, with type { or r inversly to the foot
side. In the opposit walk, the foot-node may be
reached as well, provided that there is a direct path
from root to foot. In the deduction system, in ta-
ble 1, the {oot-node of a left or right auxiliary tree
achieves adjunction, but the foot-node of a wrapping

s am come 16o o

At liawe, ¢ mntbtac o pon oot e Aleaam b
uuﬂ..ll.iﬂl.y LICT Lleailts A 561.1 alua Pmcb 1w GUJ aireuivit

!'The derivation is represented as a fully connected
and oriented graph of trees whose edge labels are con-

nector names {pruvided that a sub-tree is extracted to
decompose wrapping adjunction, cf. figure 1.
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Figure 1: Illustration of the deduction rules in ta-
ble 1.
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Figure 2: Left and right tree walks.

capacities to the root-node, with an opposit type for
the opposit. sides.

[t can be noted that each node that can receive ad-
junction yields two linked connectors, which bound
the sub-list of connectors of their sub-tree.

3 Deductive Chart Parser

We wish to get elementary-like types on derived
structure, so as to use a super-tagging-like model to
prune derived paths. We try thus to keep as close as
possible to trees when driving thé parsing. But we
are not aiming at top-down parsing, since we wish
to evaluate derived paths that span the input. This
leads to isolating wrapping adjunction {rom left- and
right-. adjunctions, since it is the only case where
sub-tree extracting is unavoidable (cf. figure 1). Ac-
tually this emphasis on wrapping auxiliary trees is
not surprising, since they account for LTAG context-
sensitiveness (Schabes and Shieber. 1994).

The full deductive parsing system is defined in

table 1. for the LTAG bidirectional-chart parser.
Our

AV H

approach advantage is threefoid: first, ii con-
siders only operations that are lexically sound, ac-
cording to the input string sequence; second, it keeps
the number ol spurious items very low, by creating

very few sub-tree- (or node-) items: third, it isolates

56

left walk meta-rule:

right walk meta-rule:
know e~ %V that]l Bf . (NA*TVP) %S

left and right connector stacks:
<N*...B* 'Srooti S V>

type:  abstraction on connector stacks,
removes specialized substitutions:
co-Anchor:  wl— LEX] sub-tree:

Bioor B* VP* ldid 'VP* NP{ NP* N*csknow

Al X1

Table 2: Typing the tree in figure 2.

In a right walk, IX* expresses an auxiliary root-node and “iX, a
node expecting adjunction, X} expresses a substitution site and
X, the root of an initial tree. In a left walk they work the other

way around.

clearly the CF-component, so that the parsing be-
haves very nicely when faced with near-CF deriva-
tions, which are a majority in practice,

Now, regarding complexity, first three “near-CF”
rules yield a worst-case complexity of O(n?%), wrap-
ping adjunction on a lexical spine yields O{n¢), but
the sub-tree rule yields {n”). We could change that
rule into a “systematic” snb-tree extraction with ar-
bitrary gap frontiers, in order to go down to G(r%),
bnt this would generate a lot of sparious items.
Therefore we prefer a lexical check with a wrapping
auxtliary tree, since their occurrence is marginal.

4 Probabilistic Thresholding

Probabilistic parsing is expressed through the de-
ductive system as lollows:

[iitem;] = Pr(sitem;) = P(itein = w; ...
Rule = P(rule)

wj)

Rule, [;item;][jitemy]

[iitemi] = Rule  [iitem;] * [jitern;]

Probabilities of itetns are inside probabilities i.e gen-
erative probability that an item dominates its cur-
rent span of input. Now the usefulness of an item
in reaching full derivations is mainly in the outside
probability Po of that item, defined for LTAG in
(1), following (Schabes, 1992}

for pos = (i, 4, f1, f+]

PC([S]FDJ\ = EU,V.T P(isj :.? LJ{.S]PDSV’T) (1)
s.t.U 2.3' Wo..V =.> WJJHT :5 )'vh.fr
Poror(ls) = Luwirw PIS 2 UBIVT) o)

sUV[SIT & W



P([s]pes) = Zu,,,,v,:n, PSS Ul plshposThie)
$tUs Vi p[slpm Ty o > W

{3
For an ilem-path, outside probability accounts for
parsing-deductions to come, i.e the connectors of
the item stacks. \Whereas consuned connectors are
responsible for the inside probability. There is no
way to compute the outside probability without the
knowledge of the actual “connection™ of connec-
tors. but this decomposition gives us a very precious
means to normalize inside probabilities, which put
very low probabilities on large items.

U=y, U
< I >
<y s

item-path
remaining stacks:
consumined stacks:

Py = (JI1, 13T prod, Py
Po{lf) = VLT

{Goodman, 1998) proposes two useful approxima-
tion of the outside score of item{s]. in order to cor-
rect the inside probability bias. \We express them
iy the context of LTAG in (2) and (3). The first
one simply corresponds to the prior probability of
the item category. The second one is the cumulated
probability of all item-paths {* = ({",...,{,) that
include [s]. This value can be computed in several
passes (Goodman, 1998; Rayner and Carter, 1996).

Computing path probabilities entails estimating
the probability that sequences of items. which span
the input. can build a complete derivation. This is
the aim of Super-tagging, which can be viewed as a
model for the first step of the chart. We generalize
it to model steps n. i.c a step where edges have max-
imal length n. Here are some approximations which
have been proposed:

Py = PWULLUR Real
2 , Py FFully independent
2z N (AR SRy Markovian
~ Minomin(P{U L), Fully dependent

Ppnor(l-:ljn P“’"v“’l{-l “

ltem sequences ressemble eletnentary tree sequences,
as they share types, and connect through the same
connectors (provided the type abstraction explained
in table 2 for specialized substitutions}. llence the
possible re-use, in a first approximation. of super-
tagging training for the generalized item-model.

Smoothing: types decompose into a very small
set of connectors, with straigtforward interpretation,
‘They can serve as a usefui basis for compnting back-
off probabilities. For instance by distributing the
probability mass of each connection antong all types
that allow this connection, in the same wav as (Laf-
ferty. Sleator, and Temperley, 1992).
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5 Discussion

We have presented a general {ramework for deduc-
tive parsing, probabilistic parsing and super-tagging.
This unified approach opens a lot of perspective in
the design of efficient and robust LTAG parsing.
However. it remains to be fully validated.

As far as supper-tagging is concerned, supertags
should perform better than linear types as their def-
mition integrates a large amount of linguistic knowl-
edge. Types nonetheless provide for that task a very
simple, and vet relevant, smoothing scheme. As for
further steps of parsing, types turn out very ade-
quate, as they allow to express in a simple manner
the essential computations involved,
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Abstract

In the following the components of a workbench for the
grammar formalism of Schema-Tree Adjoining Gram-
mars (S-TAGs) are outlined. This workbench con also
serve as a workbench for pure TAGs because it provides
o component which transforms en arbitrary TAG into
an S-TAG in a non-trivial manner. Another inter-
esting property of the workbench is thet it provides a
parser, which is realized as a reversible component to
generate s well.

Introduction

The formalism of augmenting Tree Adjoining Gram-
mars with schemata was introduced in [Weir 87) in or-
der to compress syntactic descriptions. For that pur-
pose, a TAG (see, e.g., [Joshi 86]) is extended in order

to provide the facility to specify a regular expression -

(RE). A RE is of type a.b, a+b, a*, a* and al®™,
where a, b can uniquely refer to child nodes (via Gorn
numbers) or a tree-modifying reference of the form g;-
g2, where g1, g2 are Gorn numbers and gz denotes a
subtree of g;. This expression means that the subtree
g2 in gy is ignored and replaced with e. Finally, a,b
can be regular expressions themselves. Regular expres-
sions are annotated at each inner node of an elementary
tree. The resulting tree is called a schematic elemen-
tary tree. Such a tree denotes an elementary tree set
just as a regular expression denotes some regular set.
Thus, an individua! scheme corresponds to a — possi-
bly infinite — set of elementary trees, but itself is not
the structural element to build derivation trees of.

In order to stress the power of compressing a gram-
mar let us reconsider the coordination construction pro-
posed in {Weir 87]. In Fig. 1, the root node NP of the
substitution tree t; {which is element in the set of initial
trees I) is annotated with a regular expression. In this
regular expression, the Gorn number |n| refers to the

*This work is partially funded by the DFG — German
Research Foundation — under grant HA 2716/1-1.
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n-th daughter of the node. For an illustration of this
reference in the figure the numbers are explicitely anno-
tated to the individual nodes. For instance, the regular

ti: NP 2f +j1Li2) + (2] + fhi20* 430.02) + fu2)

DET N CONJ
1 2 3

el-t;: NP

MN

N N N N CONJ DET N
Bob  Bill Mary Sue and the dog

Figure 1: Coordination of NPs
expression |2| at the node NP in t; represents the tree
with the root NP and the unique daughter N — e.g,,
producing “John”. The operation “.» concatenates sib-
lings in the same currently evaluated elementary tree.
Accordingly, ]1].]2] produces an elementary tree where
DET and N are the two daughters of NP ( “2 man”).
The operation “+” enumerates alternative elementary
trees. For instance, the regular expression |2] + |1].]2|
enumerates the two trees mentioned above. The expo-
nents “+" and “#” produce infinite sets of elementary

.trees where the construction marked with such an expo-

nent can be repeated arbitrarily often (“+” represents
the infinite repetition exclusing zero occurrences and
“+ inclusing zero). For instance, t, can produce “Bob
Bill Mary Sue and the dog” (see tree el-t, in Fig. 1) but
not “and the dog” because (|2| + |1].]2])* prevents the
zero repetition so that at least N occurs. Furthermore
a single “and” cannot be produced because no alterna-
tive in the regular expression at the root node starts
with [3|. A finite number of repetitions can be written
with the exponent {x|(1*), where the component with
the Gorn number x occurs at least I and up to k times.

Note, that the example is not lexicalized because
Weir’s dissertation proposal was earlier published than
the definition of lexicalization (cf. {Schabes 90]). The
coordination with Schema-TAGs works similarly with



lexicalization. Accordingly, the root node has two chil-
dren {Simple NP} and CONJ) and the RE is “|1} +
(J11]7.[2}.11])". The substitution tree Simple_NP has two
children (DET and N) and its root node is annotated
with “|1] + {1].]2]".

Description of the S-TAG Workbench

In the following, the components of an §-TAG work-
bench (STAGWB) are outlined. In the first subsec-
tion a facility to transform arbitrary TAG grammars
(in our case the UPENN tree bench [Doran et al. 94])
into schematic trees. Then the reversible compo-
nent for parsing and generation is outlined (for details
5. [Woch et al. 98]).

Writing Grammar and Lexicon Rules

With respect to lexicalized TAGs [Schabes 90]) where
each tree in the set of initial and auxiliary trees has
at least one lexical leaf {called anchor) no lexicon com-
ponent is required (cf. XTAG {Doran et al. 94]). But
since the workbench should not determine the gram-
mar formalism it is possible to specify a non-lexicalized
TAG as well.

A main emphasis lies on the facility to transform an
arbitrary TAG into an STAG. Obviously, an arbitrary
TAG G can trivially be transformed into an S-TAG
G’ by annotating the concatenation of ali daughters
from left to right at each inner node of each elemen-
tary tree. Obviously, this transformation involves no
compression. Therefore, the transformation component
of the STAGWB produces an S—TAG which guarantees
that each label at the root node occurs only once in the
set of initial and auxiliary trees.

The component performs the following steps. Firstly,
in all elementary trees all subtrees which do not contain
the foot node are rewritten by substitution in order to
find shared structures!. Since new non-terminals must
be introduced to prevent the grammar from overgen-
eration, the adjoinable auxiliary trees are duplicated
and root and foot nodes are renamed by the new non-
terminals. Now, all alternatives for the same root node
are collected. For each elementary tree where the root
node is labelled with X (by, ..., ba), a new schematic
tree sy is introduced to the S-TAG G’ where its root
node is labelled with X and the children result from enu-
merating all occurring children in all elementary trees
by, .., by without repeating the same label. In the

1Here, one can decide whether the structures are col-
japsed, although their features may differ. In the first case
the disjunction of both feature descriptions is stored to-
gether with the history where they originalty helonged to.
Accordingly, more condensed structures are produced but
the interpretation of the feature structures becomes more
complicated.

39

(((("NP” . ™)) (({({*DetP” . ™)) :substp T))
(((("N> . ™)) :headp T)))
(((CNP™ ™33} (((("N” . *")} :headp T)))
({(("NP” . "r"})) ({((("N” . ™)) :headp T))
{’S" . ™)) :substp T)))
((("'NP” . ")) (((("DetP” . ")) :substp T))
{(({"N” . "1")):constraints "NA”"
:constraint-type :NA)
(((("N= . ")) :headp T))
((("S” . ")) substp T))))
(NP . "7 1)  (((("G” . ™)) :headp T)))
(((C"NP" . 7g"))) (((("NP™ . ™)) :substp T))
(((("G” . ")) :headp T)))

4

(((CNP™ ™)) 11102] +12] + 12).|3) + [1].{4] + (6] + |8].]5])
{({{(("DetP"” . ™)) :substp T)
({{{"N" . ")) :headp T))
{({("5" . ™)) :substp T))
((("N° ., »"}) :substp T))
{{((("G" . ")) :headp T))
{({(("NP™ . ™)) :substp T)))
{((N® ")) 142
:constraints "NA” :constraint-type :NA)
{((((°N" . ™)) :headp T))
(((("S” . ")) substp T)))

Figure 2: Grammar transformation

next step the annotation of the root node of sx is con-
structed by summing up all alternatives according to
by, ..., by where all labels are rewritten as numerical
references pointing at the respective child.

An instance of a grammar transformation is shown
in Fig. 22. Note, that here the first step of introducing
substitutions does not have to do much, because most
lexicalized TAGs already use substitution. The only
new substitution node is N°,

The resulting REs can be reformulated applying the
following transformation rules: '

1. a'y(”k)_;yﬂ e a'y(”k"‘l)ﬂ,
2. a(1.61)8+ ... + a(7.6m)B = a1.(8) + ... + 6m)B
3. a1f + af = ay®g

where a, 8,7, 1,...,d;, are arbitrary complex REs.
Note, that different compressing strategies result in

different REs. For analysis grammars the rule of fac-

toring out common prefixes is convenient, whereas the

factorization according to common heads is more ad-

equate in generation. E.g. in the example in Fig. 2
for analysis the two alternatives [1].|2| and |1}.|4] re-
sult in |1].(|2] + [4]). For generation the alternatives
[1[.12]+ 2] +12].|3| result in |1]Y) |2]+|2].|3|. Addition-
ally, this example illustrates that an LD/LP-Schema-

2This transformation does not show the unification struc-
tures (c.[. footnote 1).



TAG can be advantageous especially for generation be-
cause there the alternative |2/.}3] can easily be incorpo-
rated in the compact expression.

Now, the automatically introduced substitution trees
can be replaced with their original substructures and
furthermore all added auxiliary trees can be eliminated
again if desired. So the grammar becomes as lexical-
ized as it was before. Finally, in order to introduce “-*
to the annotations the following process is carried out.
According to the annotation of each substitution node
r, substitution trees s, and s, are identified which only
differ in one leaf ! in 5,. For these candidates the struc-
ture must match beside the path to {. If so, the substi-
tution of tree s; is explicitely realized and r is modified
to refer to s; — <path-to-I> instead of referring to ss.

S—-TAG Parser

To be able to deal with REs and substitutions the parser
extends the Earley-based TAG-parser by {Schabes 90
as follows:

Instead of computing the set of trees described
by schemata (which is impossible due to its infin-
ity) explicitely, the REs are interpreted as follows
(cf. [Harbusch 94]): To indicate a certain position, ® is
used to point into the current RE, i.e. « ® 3 indicates,
that a already has been computed. Then, two func-
tions are introduced, namely SHIFT(¢$), which shifts
® to the right, and NEXT(#), which returns a set of
nodes to be computed next. SHIFT is performed in
each parsing step, in which the computation of a cer-
tain node is completed (indicated by raising the dot
position to “ra”): scanning of terminals (scanner), the
prediction of the right part® of auxiliary trees (right
prediction)in which no prediction took place, and the
completion of a root node of an auxiliary tree (right
completion).

The output of NEXT is responsible for the computa-
tion of all alternatives given in the currently considered
RE. Thus, each alternative g in 8 of NEXT(a @ )
has to be taken into account for the prediction of new
items. This is done in move dot dewn. Whenever an
elimination |a — b] occurs, it is deferred until node b is
actually computed. Instead of processing b an e-scan
is simulated. This usually is done in scan obviously,
but also may take place in left prediction, if b is
non-terminal.

In order io refiect substitutions, two new operations
are introduced. The formerly forbidden case of non-
terminal leafs now triggers the prediction of all possible

3Due to the possibility of arbitrary mix-ups of prece-
dences of children by REs, the expressions “left/right to”
are to be understood in a more temporal than local man-
ner, i.e. “left of the foot node” encloses all those items that
have been computed before computing the foot.
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substitution trees. On the other hand, the formerly
end-test-only state of being at position “ra” for non-
auxiliary roots now serves for the completion of pre-
dicted substitution trees.

S—TAG Generator

As modern workbenches {cf., e.g., the workbench
PAGE for Head-driven Phrase Structure Grammar
[Netter, Qepen 97)) usually provide a generator, our
parser is parametrised to work for generation accord-
ing to the idea of bidirectional processing (cf., e.g.,
[Neumann 94}).

As outlined by {Shieber et al. 90] a naive structure-
driven top-down generator may not terminate (e.g. for
genitive phrases in English and German). Furthermore
the approach is inefficient because the input does not
guide the generation process. Instead of that, possible
syntactic structures are realized and their correspond-
ing logical forms are compared to tlie semantic input
structure.

A more natural way of guiding the generation pro-
cess is to make it driven by the semantic input struc-
ture (indexing on meaning instead of indexing on string
position). Generally speaking such generator predicts
semantic heads. Two different procedures continue
searching for a connection to sub- and the super—
deriviation tree.

In the terminology of {Shieber et al. 90] the gener-
ator predicts pivots. A pivot is defined as the lowest
node in the tree such that it and all higher nodes up
to the root node or a higher pivot node have the same
semantics. According to the definition of a pivot node
the set of grammar rules consists of two subsets. The
set of chain rules consists of all rules in which the se-
mantics of some right-hand side element is identical to
the semantics of the left-hand side. The right-hand
side element is called the semantic head. The set of
non-chain rules contains all rules which do not satisfy

‘this condition. The traversal will work top~down from

the pivot node only using non—chain rules whereas the
bottom-~up steps which connect the pivot node with the
root node only use chain rules,

Adapting this mechanism to the generation of lex-
icalized TAGs means that the chain rules are com-
pletely determined by the elementary tree under
consideration®. Adjoining and substitutivn represent
the application of non-chain rules. In order to illus-
trate this kind of processing let us assume that the
input structure is (frequently(see(John,friends))). Fur-
thermore, we assume that the grammar allows to pre-

4Since empty semantic heads can be associated with their
syntactic realization they can be processed in the same
manner.



dict the trees described in Fig. 3. Since here is not the
space to outline the specification lists of the individual
nodes, the semantics of the trees is informally anno-
tated at the nodes where x and y are variables to be
filled during the unification at that node.

a;: S mod(x) azz VP mod(x) iz: NP John
ADV S x ADV VP x N
frequenily frequently John
i1z S see(x,y) iz: NP friends
NPl x VP N
friends
\% NPy y
see

Figure 3: Predictible pivots

In a first step all predictible pivots according to the
input structure can be written to the one and only item
set during processing. This construction represents the
unordered processing of the semantic structure. The
bracketing structure of the logical form is achieved by
evaluating the semantic expression associated with each
elementary tree (e.g. for tree a; mod(x) where x is a
value filled by the subtree of the foot node. The pro-
cessing is successful only if a derivation tree can be con-
structed where all elements of the logical form occur
only once®.

Concerning the example two realizations for the in-
put specification can be produced. The processing of
the one with the sentential adverb {adjoing of a,) is ob-
vious whereas the adjoining of a; is not so clear. It also
works because the variable x at the foot node is unified
with the VP node of iy wlere according to the pivot
definition the semantics on the spine from the root to
the V node is identical. So, x contains the whole ex-
pression (see(John,friends}) and the check whether the
bracketing structure is correct (i.e. the dependencies,
specified in the logical form), is successful as well,

Final Remarks

All modules are implemented in
JAVA [Gosling et al. 98]. Currently we run our trans-
formation module to build a Schema-TAG equivalent
to the English TAG by [Doran et al. 94). Furthermore,
we test how the average runtime varies for TAGs and
Schema-TAGs. The differing size and depth of elemen-

tary trees is of special interest in incremental generation

5Since the bracketing structure is tested explicitely dur-
ing the combination of elementary trees the accepting con-
dition can be weaker so that the logical form equivalence
problem (cf. [Shieber 93]) does not occur here.
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(cf. [Harbusch 94)) where the size of structures influ-
ence the time in which the processing can be finished
and results can be handed over to other components.

Another topic of current considerations is how to de-
fine LD/LP-Schema~TAG which are especially inter-
esting for generation. We assume that it suffices to
rewrite the NEXT function to adapt our parser to run
LD/LP-Schema-TAGs on the structural level. Our
suggestion is that the separation of structural combi-
nation and linear ordering saves processing time, espe-
cially for generation.
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The derivation of unbounded Subject-to-Subject
Raising in languages like English is a problem par-
ticularly elegantly treated by Tree Adjoining Gram-
mar, The adjoining operation inserts auxiliary trees
headed by raising verbs between the subject in Spec-
IP and the root verb, distancing the subject from
its original local relationship with the root verb and
producing a final multi-clausal structure with the
subject in the final subject position in the matrix
clause.

Verb-initial languages could pose a challenge to
unadorned TAG in this central paradigm if it can
be shown that they exhibit true raising structures.
Consider the possible structures of the pseudo-
English VSO finite and non-finite clauses in (1) and
(2). In (1), the tensed verb appears to the left of its
subject, and in (2) a structure with a non-finite verb
to the right of the subject is shown. (This reflects
the fact that in general, VSO clauses are only VSO
in the finite case).

(1) P

I VP

! N
prefers NP v
I
Mary \i//.hip

]

T
] unix

*We would like to thank Randall Hendrick, Aravind
Joshi, Tony Kroch, Maggie Tallerman, and two anony-
mous reviewers for valuable comments. This work is sup-
ported by grant NSFSTC89-20230.

prefer Unix

If an auxiliary seems tree like (8) were to adjoin
to (2) above, the result would be (4) below, not a
true Raising structure at all, as the subject remains
in its original position in the embedded clause. In
the formal system of basic TAG, it is generally true
that no VSO language is predicted to exhibit a true
raising structure, since the finite raising verb must
appear in initial position.

I!
3) 7 vp
seelms \'A
&Y
P
b
) - x/\p
seelms \}’

™~
VP
-fg_n y /\ )
ary Vv
/\
Vv NP

prefer Unix

The linguistic question, then, is whether it can
be shown that a VSO language does exhibit a true
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raising structure in which the subject is in the ma-
trix clause. This is a non-trivial question for two
reasons, First, the string will exhibit identical word
order whether or not the subject is in the matrix or
embedded clause, since subjects in finite clauses fol-
low the verb. Secondly, even if it is possible to show
that the subject is in the matrix clause, it must be
shown that the verb in question is a true Raising
verb, and not a Control verb, controlling an in situ
null argument in the embedded clause. Only when
both these conditions are met can we show that basic
TAG is insufficient to treat VSO raising,.

In Welsh, a Celtic VSO language, there are two
verbs which are potential raising verbs, digwydd
(*happen’), and dechrau (‘begin’). We can immedi-
ately test whether or not the subject of these verbs
appears in the matrix clause by using a participial
form of the verb, with a finite auxiliary in initial po-
sition. If the subject is in the embedded clause, as in
(4), it should make no difference whether or not the
raising verb is finite or participial; it should continue
to precede the embedded subject; the counterpart to
Mary has seemed to prefer Uniz in the past should be
has seemed Mary to prefer Uniz in the past. On the
other hand, if the subject is in the matrix clause, the
raising participle should appear to the right of the
subject, since it is non- finite. We can immediately
see the latter is the case:

(5) Mae Sién yn digwydd bod yn gweld
Is John prt.happen be.inf prt.see
Mair :
Mary
‘John happens to be seeing Mary’ {Hen-
drick 1988)

We must then show that digwydd is a raising verb,
not a control verb. Following Hendrick (1988}, we
make this argument from the behavior of expletives.
Expletives are possible as the subject of raising
verbs, but not of control verbs: There seems/*tries
to be a spider on the wall,

Welsh has an expletive subject yna that behaves
essentially identically to English there , appearing in
locative, existential and possessive constructions, as
in (6) below.

(6) Mae yna oriad gyda John
Is there a key with John

“There is a key with John/ John has a key.’

Crucially, then, this expletive may appear as the
subject of digwydd, but not of control verbs like
mynd (‘go’ in future sense). The latter also differ
from the former in that they require an overt com-
plementizer i to appear between the matrix and em-
bedded clauses:
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(7) a  Maeyna yn digwydd bod oriad
Is  there prt.happen be.inf a key
gyda Si6n
with John
“There happens to be a key with
John/ John happens to have a key.’

*Mae yna yn mynd i bod
Is there prt.go  Comp be.inf
oriad gyda Sidn
a key with John
‘There is going to be a key with
John/John is going to have a key.’

b.

Welsh, then, is a VSO language with a true rais-
ing structure. The word order in finite clauses en-
tails that the basic TAG adjoining mechanism will
not be able to generate the structures necessary, and
recowrse to a multicomponent derivation must be
made. Consider the non-finite tree in (2) above, re-
peated as (8) to represent the structure of the em-
bedded Weish non-finite clause in (5)*

IP

]
N
TN
N

Sion

®

[ I
bod yn gweld Mair
‘be seeing’

In order to get Sidn into subject position of the
matrix clause, in a sentence like (5) above given this
structure, two auxiliary trees must adjoin into the el-
ementary tree, as shown in (9ab). One tree, headed
by Mae, the finite copula, must substitute/adjoin in
to the elementary tree in front of Sidn, and another,
headed by the participle form of the raising verb,
yn digwydd, must adjoin in below Sidn, creating the
raising.structure. Let us consider what such auxil-
iary trees must look like:

® @ r o v
f =
i A" v
|
Mae yn digwydd
15 ‘happening’

I we adjoin these trees into the elementary tree
in (8), we arrive at the final structure in (10):

1We represent here bod yn gweld as a complex NP for
convenience. The use of a VP-shell might be more desir-
able, although that issue is irrelevant for this discussion.



(10) P

/\

\[ae /\
i
] /\
-fn

NP
I

Sién

While this provides us with the correct final word
order, it is linguistically unsatisfactory for two rea-
sons. Firstly, we have destroyed the relationship be-
tween the [-fin] I head and the non-finite form of the
verb bod by interpolating the participle yn digwydd
(which itsell needs to be related to the finite form
Mae, now separated [rom it by the [-fin] head). Sec-
ondly, in a purely theory-internal problem, if Spec-
VP is universally a theta-position, which is widely
assumed, the subject Sién is in a theta position in
what is now the matrix clause. That is, "raising” has

!
yo digwydd

N

TN

; ) \% NP
happen-prt |
bod yn gweld Mair
‘be seeing’
cp
C’
& w
a1) NP ¢
Sion
1
|
-fin

been to a theta-position, a theoretically incoherent
result. Both these problems are avoided if we assume
a different final clause structure for Welsh VSO sen-
tences than that presented in the finite VSO struc-
ture in (1). The problem here is that the finite verb
in (1) has raised only as far as I. This creates the
dual problem above: if finite verbs are in the I head,
the multicomponent auxiliary tree will always inter-
fere with non-finite I head of the elementary tree in
a raising structure, and the subject must appear in
the specifier of VP, as there is no higher non-theta
position available.

Consider, on the other hand, the possibilities
which arise if finite verbs in \Welsh raise as far as
C. In this case the subject appears in [Spec, IP], a
non-theta position, and as we shall see, no problem
for the insertion of the topmost auxiliary tree will
arise for the MC-adjunction necessary to derive the
raising structure.
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v’
V/\NP

[ |
bod yn gweld Mair
‘be seeing’

In an infinitive clause, the subject will still appear
in Spec-IP, rather than Spec-VP, giving the correct
SVO order for the infinitive. (Note that since in
TAG there is no “movement” of the subject, it is
not impossible to place the subject in [Spec, VP] in
the lower clause, while ending up in [Spec, IP] in the
higher clause.) Our revised elementary tree for the
nonfinite clause is shown in (11), and the auxiliary
trees which will adjoin into this structure are shown
in (12):

(12) (a C (b) r
mbe T
1 VP
+%in \l'"
/\,
v i
yn digl'wydd

‘happen-prt’



CP
l
C’

&
N /\
Sxon /\

I

(13)

|
Mae
(isi

+ﬁn

/\
/\

yn dlg'wydd
‘happen-prt’

This adjunction gives us the final structure for the
raising construction, (13), which makes much more
linguistic sense than the IP tree above:

The result seems to suggest that in a TAG frame-
work, the only VSO languages which are predicted
to exhibit raising structures will feature positioning
the finite verb in C. 2

The derivation we end up with is essentially iden-
tical to that proposed by Frank {1992) for an analo-
gous problem in English: the formation of the ques-
tion »Does John seem to like Mary?”. This supports
the view that the problem raised by that particular
derivation (the requirement of a multi-component
set) was not just a weird quirk, but rather just one
example of the widespread need for such a deriva-
tion.
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1 Introduction

This paper discusses some similarities between D-
Tree Grammars and type-logical grammars that are
suggested in the context of a parsing approach for
the latter that involves compiling higher-order for-
mulae to first-order formulae.! This comparison sug-
gests an approach to providing a functional seman-
tics for D-Tree derivations, which is outlined.

2 D-Tree Grammars

The D-Tree Grammar (DTG) [ormalism is intro-
duced in (Rambow et al., 1995). The basic deriva-
tional unit of this formalism is the d-tree, which
(loosely) consists of a collection of tree fragments
with domination links between nodes in different
fragments (that link them into a single graph).

(1) A

NPy

Nacain

HPg V'P[ﬁnr-{-]
VP [fin:-]

v

I

to adore e

NP

The above example d-tree, drawn from (Rambow ei
al., 1995), allows topicalisation of the verb’s object,
asin (e.g.) Hotdogs;, he claims Mary seems to adore
t;, where NP, is the fronted object, and NP, the
verb’s subject.? The main operation® for composing
d-trees is subsertion, which, loosely, combines two
d-trees to produce another, by substituting a frag-
ment of one at a suitable node in the other, with
other (dominating) fragments of the first being in-
tercalated into domination links of the second. The
approach is motivated by problems of related for-
malisms (such as TAG and MCTAG-DL?) involving

'See (Joshi et al., 1997; Henderson, 1992) for other
work connecting categorial formalisms {Lambek calculus
and CCQG, respectively) to tree-oriented formalisms.

2The indexation is my own, for expositional purposes,

JA second operation, sister-adjunction, used in han-
dling modification, is discussed later in the paper.

Multi-Component TAG with Domination Links
(Becker et al., 1991).
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linguistic coverage and the semantic interpretation
of derivations.

3 Type-logical Grammar

The associative Lambek calculus (Lambek, 1958) is
the most familiar representative of the ‘type-logical’
tradition within categorial grammar, but a range of
such systems have been proposed, which differ in
their resource sensitivity (and hence, implicitly, their
underlying notion of ‘linguistic structure’). Some of
these proposals are forminlated nsing a ‘labelled de-
duction’ methodology (Gabbay, 1996), whereby the
types in a proof are associated with labels, nnder a
specified discipline, which record proof information
used in ensuring correct inferencing. Such a labelling
system must be overlaid upon a ‘backbone logic’,
commonly the implicational or multiplicative® frag-
ment of tinear logic. For this paper, we can ignore
labellings, and instead focus on the ‘core functional
structure’ projected by linear formulae.$

4 Implicational Linear Logic &
First-order Compilation
In linear logic proofs, each assumption is used pre-

cisely once. Natural dednction rnles of eliminetion
and introduction for linear implication (o) are:”

(2) (B:v}
Ata

—_—
Ao—B:Ava

Ao—-B:a
A (ab)

B:b
o—E
I

The proof in (3) illustrates ‘hypothetical reason-
ing’, where an additional assumption, or ‘hypothet-
ical’, is used that is latter discharged. The involve-
ment of hypotheticals is driven by the presence of
higher-order formnlae (i.e. functors seeking an ar-
gument that bears a functional type): each corre-
sponds to a subformula of a higher-order formula,

5The multiplicative fragment extends the implica-
tional one with ® {(*tensor’}, akin to the Lambek product.

SThis means, most notably, that the representations
discussed lack any encoding of linear order requirements,
which would be handled within the labelling system.

"Eliminations and introductions correspond to steps
of functional application and abstraction, respectively,
as the lambda-term labelling reveals. In the oI rule,
[B] indicates a discharged or withdrawn assumption.



e.g. Z in (3) is a subformula of Xo—(Yo-2).8

(3) Xo—(Yo=Z):z Yo-W:y Wo-Z:w [Z:2]

Wi (wz)
V. (y(w2))
Yo7 : Az.y(wz)
X:iz(Az.y(wz))

Hepple (1996) shows how deductions in implica-
tional linear logic can be recast as deductions in-
volving only first-order formulae (i.e. where any ar-
guments sought by functors bear atomic types) and
using only a single inference rule (a variant of o—E).
The compilation reduces higher-order formulae to
first-order formulae by ezcising subformulae corre-
sponding to hypotheticals, e.g. s0 Xo—(Yo—7) gives
Xo-Y plus Z. A system of indexing is used to ensure
correct use of excised subformulae, to prevent invalid
reasoning, e.g. the excised Z must be used to derive
the argument of Xo—Y. Each compiled formula has
an index set with one member (e.g. {j}:Z), which
serves as its unique identifier. The index set of a de-
rived formula identifies the assumptions used to de-
rive it. The single inference rule (4) ensures correct
propagation of indices (where 4 is disjeini union).
Each argument slot of a compiled functor also has
an index set, which identifies any assumptions that
musi be used in deriving its argument, as enforced
by the rule condition a C .

{i}: Xo=(Y:{j}) {k}:
i)

f.z(Az.

RN Av.wvu z

Yo-(W:8) {I}:Wo—(Z:8) {5):2

{51} W w2
{ja k, I} :Y:y(wz)
{s,7,k,1}: X z(Az.y(w2))

In proving Xo—(Yo-Z), Yo-W, Wo-Z = X, for
example, compilation yields the assumption formu-
lae of the proof above. The leftmost (F1) and right-
most (F2) assumptions both come from Xo—(Yo-Z),
and F1 requires its argument to include F2. Compi-
lation has removed the need for an explicit introduc-
tion step in the proof, c.f. proof (3), but the effects
of this step have been compiled into the semantics of
the formulae. Thus, the term of F1 includes an ap-
parently vacuous abstraction over variable z, which
is the term assigned to F2. The semantics of rule
FAY fo Lo A1 cimd Lar aipmanla avmliandian huat mothan
(1) I8 Naned nse oy simpie appaidavitn, Suv Tawner
direct substitution for the variable of a lambda ex-
pression, employing a version of substitution which
specifically does not act to avoid accidental binding.
Hence, in the final step of the proof, the variable

®The relevant subformulae can be precisely char-
acterised in terms of a notion polarity: hypotheticals
correspond to maximal positive-polarity subformulae of
higher-order formulae. See (Hepple, 1996) for details. -
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z falls within the scope of the abstraction, and so
becomes bound.
(4 é:Ao—(B:a): Av.a

w:Azalbfv)

Y:B:b T = Wy
aC

5 Relating The Two Systems

The above compilation produces results that bear
more immediate similarities to the D-Tree approach
than the original type-logical system. First-order
formulae are easily viewed as tree fragments (in a
way that higher-order formulae are not), e.g. a word
w with formula so—npo—pp might be viewed as akin
to (5a) below (modulo the order of daughters which
is not encoded). For a higher-order formula, the
inclusion requirement between its first-order deriva-
tives is analogous to a domination link within a d-
tree, e.g. a relative pronoun rel/(s/np) would yield
rel o—s plus np, which we can view as akin to (5b).

(5) (a) s (b) rel
N N
¢o—np op Tl o—s s
' °_“'i‘ PP PP which n:p
v rel €
6 @@ x (b)
rel o{\
XY Y N ¢
I E rel o—4 o—pp PP H
M 7 l E PP
I € np I
w I e
which

By default, it is natural to associate the string
of the initial formula with its main residue un-
der compilation, as in (5b). Following proposals
in (Moortgat, 1988; 1996), some categorial systems
have used connectives 1 (‘extraction’) and | (‘infixa-
tion’), where Y1Z is a “Y missing Z somewhere” and
a type X](Y1Z) infixes its string to tbe position of
the missing Z. Thus, a word w with type X|(Y1Z),
compiling to Xo-Y and Z, is akin to (6a). For
example, the PP pied-piping relative pronoun type
rel/(sTpp)l(ppTnp), from (Morrill, 1992), which in-
fixes to an NP site within a PP, is akin to {6b).

6 A Functional Approach to
Interpreting DTG Derivations

The rest of this paper explores the idea of providing a
functional semantics for DTG derivations, or rather
of some DTG-like formalism, in a manner akin to
that of categorial grammar. The approach envisaged
is one in which each tree fragment (i.e. maximal
unit containing no dominance links) of an initial d-
tree is associated with a lambda term. At the end
of a derivation, the meaning of the resulting tree
would be computed by working bottom up, applying



the meaning term of each basic tree fragment to the
meanings computed for each complete subtree added
in at the fragment’s frontier nodes, in some fixed
fashion (e.g. such as in their right-to-left order).
Strictly, terms would be combined using the special
suostitution operation of rule {4) (allowing variable
capture in the manner discussed). Suitable terms to
associate with tree fragments will be arrived at by
exploiting the analogy between d-trees and higher-
order formulae under compilation.

(7)) s NP NP |
N Azhy.(saw z y) } +m | i
NP YP Mary John
/\
\4 NP Rel
[ ¢ Av.which(lz.v)
saw “Pi.vh ?
[
which NP
| 2
e
8 (2 s (b) R
/\
NP VP NFyh §
MIry V/\NP which NP vF
IIIW Jollm Mary v NIP
AW e

For example, consider a simple grammar consist-
ing of the four d-trees in (7), of which only that for
whick has more than one fragment. Each tree frag-
ment is associated with a meaning term, shown to
the right of “”, The two fragments in the d-tree
for which each have their own term, which are pre-
cisely those that would be assigned for the two com-
piled formulae in (5b) (assuming the meaning term
for the precompilation formula rel/(s/up) to be just
which). This grammar allows the phrase-structure
(8a) for Mary saw John, whose interpretation is pro-
duced by ‘applying’ the term for saw to that for the
NP John (i.e. the subtree added in at the right-
most frontier node of saw’s single tree fragment),
and then to that of the NP Mary, giving (saw j m).
The grammar allows the tree (8b) for the relative
clause which Mary saw.® Here, the object position
of saw is filled by the lower fragment of which’s d-
tree, so that the subtree rooted at S has interpre-
tation (saw z m). Combining this with the term
of the upper fragment of which gives interpretation
which()z.saw z m).

The tree composition sieps required to derive the

®The treatment of wh-movement here exemplified is
useful for expositional purposes, but clearly differs from
the standard TAG/DTG approach, where a moved wh-
item originates with a structure that includes the gov-
ernor of the extraction site (typically a verb that sub-
_categorises for the moved item). Such structures present
no problem for this approach, i.e. we could simply pre-
combine the d-trees of which and saw given in (7).

trees in (8) would be handled in DTG by the sub-
sertion operation. As noted earlier, DTG has a sec-
ond composition operation sister-adjunction, used in
handling modification, which adds in a modifier sub-
tree as an additional daughter to an already exist-
ing local tree. A key motivation for this operation is
so that DTG derivation trees distinguish argument
vs. modifier dependencies, so as to provide an ap-
propriate basis for interpretation. Categorial gram-
mars typically make no such distinction in syntac-
tic derivation, where all combinations are simply of
functions and arguments. Rather, the distinction is
implicit as a property of the lexical meanings of the
functions that participate.'® Accordingly, we recom-
mend elimination of the sister-adjunction operation,
with all composition being handled instead by sub-
sertion. Thus, a VP modifying adverbial might have
d-tree {9a), and give structures such as (9b).}!

® @ (b) s
/\
VP NP VP
Pt Az.(clearly ) | P
YP Adv Mary YP Adv
clearly Y NP clearly
! |
134 John
(10) (a) (b) 5
/\ E 5
up/>—np NP vp
so—npo=vp  ¥p vp .
| i /\ ' p
€ vp v NP
N |
vp o—np np saw

|
e gy = AzAy.((Af.f saw)(Ap.7)y)

Such an analysis requires a different lexical d-tree
for saw to that in (7), one where the VP node is
‘stretched’ as in (10b) to allow possible inclusion
of modifiers. As a basis for arriving at suitable
functional semantics for (10b), consider the follow-
ing. A categorial approach might make saw a func-
tor (np\s)/np with semantics saw. This functor
could be type-raised to (np\s)l((np\s){((np\s)/np))
with semantics (Af.f saw). By substituting ‘the
two embedded occurrences of (np\s) with the atom
vp we get (np\s)l(vpi(vp/np)), which compiles to
first-order formulae as in (10a}, which are analo-
gous to the desired d-trec {10b), so providing the
meaning terms there assigned. Using (10b) to de-
rive the structure (8a) involves identifying the two

1°This is not to say that the distinction has no ob-
servable reflex: modifiers are in general recognisable as
endocentric categorial functors (i.e. having the same ar-
gument and resul{ type).

11guch an analysis is more in line with the standard
TAG treatment than that of DTG.
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VP nodes. Such a derivation gives the interpre-
tation ((Af.f saw)(Ap.p jim) which simplifies to
(saw jm). A derivation of (9b} gives interpretation
((Af.f saw)(Ap.clearly(p j)ym) which simplifies to
(clearly (saw j) m).

For a ditransitive verb, we might want a structure
providing more than one locus for inclusion of mod-
ifiers, such as (11). The semantics provided for this
d-tree is arrived at by a similar process of reasoning
to that for the previous case, except that it involves
type-raising the initial categorial type of the verb
twice (hence the subterm (Ag.g(Af.f sent)) of the
upper fragment’s term).

(11) 5
N A3 ((Ag.9(Af.S sent))(Ap.z)y)

NP ve
ve P Avdw.(p(Ag.v)w)
N
v PP
9
' q
v NP

aont

The interpretation approach outlined appears
quite promising so far. We next consider a case
it does not handle, which reveals something of its
limitations: quantification, Following a suggestion
of (Moortgat, 1996), the connectives 1 (‘extraction’)
and | (‘infixation’) have been used in a categorial
treatment of gquantification. The lexical quantified
NP everyone, for example, might be assigned type
s|(stnp), so that it has scope at the level of some
sentence node but its string will appear in some NP
position. First-order compilation yields the results
(12a). The corresponding d-tree (12b} is unusual
from a phrase-structure point of view in that it’s
upper fragment is a purely interpretive projection,
but this d-tree would serve to produce appropriate
interpretations. So far so good.

A simple quantifier every has type s)(sfup)/n,
to combine firstly with a noun, with the combined
string of every+noun then infixing to a NP position,
First-order compilation, however, produces the re-
sult (13a}, comparable to the d-tree (13b), which is
clearly an inappropriate structure, What we would
hope for is a structure more like that in (13c), but
although it is perfectly possible to specify an ini-
tial higher-order formula that produces first-order
formulae comparable to this d-tree, the results do
not provide a suitable basis for interpretation. More
generally, the highly restrictive approach to seman-
tic composition that is characteristic of the approach
outlined is such that a fragment cannot have scope
above its position in structure (although a d-tree
having multiple fragments has access to multiple
possible scopes). This means, for example, that no

semantics for (13c) will be able to get hold of and
manipulate the noun’s meaning as something sepa-
rate from that of the sentence predicate (c.f. stnp)},
rather the former must fall within the latter,!?

(12} (2) (b) s
P | :Az.everyone(Az.z)
s 0=t s S
[ : i
np NP
I I 2
averyone everyone
(13} (@) (b)) s (c) s
N |
508 I N s s
8 0=8 0~ n n:p sz N:P
| | I
e every every Des N
I
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Abstract

We present in this paper a markup lan-
guage suitable for representing a tree ad-
Jjoining grammar. Using a uniform way to
represent TAG, the development of tools,
e.g. parser/recognizer, editor, ..., could
be done to the benefit of the entire TAG
community.

Key words: SGMI, linguistic tagging,
data exchange.

Qur work consists of proposing a framework ded-
icated to designing an XTAG-like standard environ-
ment, We present in this paper a markup language
suitable for representing a tree adjoining grammar.
The TAG formalism is used in plenty of works all
around the world. However it is difficult to exchange
syntactic data (i.e. a grammar or a piece of gram-
mar written in the TAG formalism) as well as com-
puter tools based on these syntactic data. Using
a uniform way to represent TAG, the development
of tools, e.g. parser/recognizer, editor, ..., could
be done to the benefit of the entire TAG commu-
nity. Note that all kinds of TAG (LTAG, MCTAG,
...) can be represented in our language. We choose
SGML as descriptive language, as seen as briefly in
the first section. in the second section, we provide
an overview of the structure of a TAG document,
followed in the third section by an example.

1 SGML

We describe our language in SGML{Goldfarb90;
Herwijnen95) (Standard Generalized Markup Lan-
guage). SGML is itself a metalangnage. SGML is
an eflicient tool to describe classes of documents be-
cause {i) it is an ISO specification!, thus, a standard

11O 8879:1986.

70

(ii) a lot of tools can be used to edit, verify or exploit
SGMLI based documents?.

SGML is a meta-language which allows specifica-
tion through a Document Type Definition (DTD) :

» a set of markups;
o how these markups can be combined.

In our case, the class of documents is the set of
TAG grammars. The most popular DTD is HTML
which is used as a norm for data representation
on the Web but there are other projects, notably
the TEI project. The Text Encoding Initiative
(TEI) (SMB94} is an international project to de-
velop guidelines for the preparation and interchange
of electronic texts.

The TEI proposes recommendations for feature
structure markup (I.595) which can be used to rep-
resent any feature structure, including TAG. How-
ever, we think the markup set defined is not specific
enough to be easily treated.

2 Structure of a TAG document

First a good TAG document is preceded by a pro-
logue which indicates the TAG DTD version:
<IDOCTYPE DTD PUBLIC "DTD TAG 0.2">

The whole document is enclosed by the <tag> and
</tag> markup. It is composed of a header and a
body®: The header, enclosed by the <tagheader>
and </tagheader> markup, contains information
about the document itself: title, date of creation,
name of the creator, origin of the data, type of data.

The body, enclosed by the <ts> (Tree Set) and
</t8> markup, forms the usable part of the docu-
ment. A tree set is a list of tree families (<t£>}),
elementary trees (<et>) or parsed trees (<pt>).

For instance the sgmlql tool can extract part of doc-
ument in relation to a query on the tags.

3As HTML, in fact it is a classical way to describe a
SGML document.



<tf> (tree family) encloses a tree family. The at-
tribute (name) indicates the name of the fam-
ily. A tree family is composed of a list of trees
{markup <t>).

<et> (elementary trees) encloses elementary trees.
The attribute (name) indicates the name of the
tree. As afamily tree, elementary trees are com-
posed of a list of trees (possibly one).

<pt> (parsed tree) encloses a parsed tree (i.e. a de-
rived tree). Three markups are used to describe
(i) the string recognized by the tree {<string>)
(ii) the tree itself (<t>) and a set of derivation
trees (DT).

A tree contains only one node (a node is indicate
by <n>): the root node. The node markup can then
be used recursively {a <n> can contain a <n>) to
define the tree. A node contains some markups:

<val> (value) is the tag of the node (i.e. category
for elementary and derived trees or tree name
for a derived tree);

<fs> (feature structure) for FB-TAG.

The tree of the figure 1 indicates the relationships
between markups?.

3 An example

We give below a simple example. Let us suppose
we have a tree with the features associated to the
nodes :

A

NPl VP

Vanchor
NP_0.t :<num>=VP.t :<num>
NP_0:<pers>=VP,t:<pers>
S.b:<mode>=VYP.t:<mode>
VP.b:<mode>=V.b:<mode>
VP .b:<num>=V,b:<num>
VP.b:<pers>=V,b:<pers>
NP_O.t:<wh>=-
S.b;i;<iny>==

The SGML result is the following :

<{DOCTYPE DTD PUBLIC "DTD TAG 0.2>
<tag lang=french>

4Note that this tree is automaticaly generated with a
SGML tool: dtdtree.

- (taghoeader,
I_(title &
1 |_(#PCOATA)}

~date &
1_(aPCDATA)

| (8PCDATA)

origs &

1

1.

)|

|

{..crenter &
{

|

l.

i |_ (BPCDATA)
|

|..type?)
5. (8PCDATA)

1.(n)
l.(val,
| |_(#RCOATA}

[ 1-(BNPTY}
|

|
|
1
| |..8RCDATA)
1
1

| |.(BPCDATA}

) JER 1 TR
|..de?)
i.(m) ...

Figure 1: DTD tree

<tagheader>

<title>TAG for an intransitive
structure</title>

<date>april 1998</date>
<creator>Fabrice Isgac</creator>
<orig>Anne Abeillé</orig>
</tagheader> <tf namew=s.np{v)>
<t name=s.np(v)>

<n id=nl>

<val>&S:</val>

<fs type=b>

<f name=mode><l id=f£1></f>

<f name=inv>-</f>

</fs>

<n id=n2 type=substitute>
<val>&NP;</val>

<fs type=t>

<f name=num><l id=f2></£>

<f name=pers><l id=£3></f>

<f name=gh>-</f>

</fs>

</n>



<n id = n3>
<val>&VP;</val>

<fs type=t>

<f name=num><1 id=f2></f>
<f name=pers><l id=£3></f>
<f namezmode><1l id=f4></f>
</fes>

<fs type=b>

<f name=mode><l id=fb></f>
<f name=num><l id=f6></f>
<f name=pers><l id=f7></f>
</f8>

<n id=n4 type=anchor>
<wal>&V;</val>

<fs type=b>

<f name=mode><l id=£5></f>
<f name=num><l ide=f6></f>
<f name=pers><l id=f7></f>
</fs>

</n>

</n>

</n>

<ft>

</tf>

</tag>

4 conclusion

Finally we will mention the way we can use such a
description. It is obvious that an SGML document,
as this one, is not supposed to be directly under-
standable/readable to humans. It is, in fact, used
as input/output to computer tools. For instance,
if developers follow these guidelines, the three steps
of a parser — grammar generation, tree elimination,
parsing - could be built by three different people.
The final environment will contain ;

¢ a graphical TAG editor, in order to create or to
modify TAG grammars;

e tools for parsing (generation, disambiguation,
parsing);

¢ miscellaneous tools (for instance a IKTEX or
HTML transduction of TAG trees).

The aim of this paper is not to give a final (nor
complete) version of a language providing descrip-
tions of TAG, but rather act as a starting point.
Actually, I think a data interchange norm can’t be
established by only one person. That’s why I wish
the community take a part in the development of
this norm.
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Appendix: The DTD

Cloch0Rd et st et P oe e et ettt deettentieetttrteesssessnisgy
file : tag.dtd
author: Fabrice lasac
date : April 1998
Bmail

LA LAAA L R AL AL R LA I RIS RERELERITITREL S EED S

1 fabrice.isaacOlipn,univ-parisi13.fr

<1ENTITY Y TAQ.Yersion
“DID TAG 0.2"
-~ Typical usage:
<!DOCTYPE DTD PUBLIC “DTD TAG 0.2
{tagy

<ftegd

¢!--msasz== Character mneronic entities for french =sss=--

CIERTITY ¥ Categories PUBLIC “TAG entities YERSIOK 1.0 FRENGH">
ICatagories;

(lus=cugafc EESIROLSSSEESERODSSRERCSESSOSSSA0USISS ESRIe-)

<!BNTITY ¥ TAG.Simple
C!EHTITY ¥ TAG.Recommended

"IGRORE"™>
*1KCLUDE'">

<1{YTAG.Racomaended [
<IELEMENT TAQ = = (TAGHEADER,TS+}>

1>

QYTA0.Simple [
<IELENENT TAG - - (TAGHEADER?,TS5+)>
AR

<!ELBHENT TAG ~ = (TAGHEADER,TS+)>



¢!BLENENT TAGHEADER - - (TITLE & DATE & CREATOR k ORIG#
& TYPE?))

<!ELEMENT TITLE = = (8PCDATA)>

<!ELEMENT DATE « - (EPCDATA)»

<!BLENENT CREATOR = = (3PCDATA)>

<!BLEKENT DRIG = ~ (SPCDATA)>

CIELENENT TYPE = = (EPCDATA)>

<!ELEXBHT 15 - - (TR{ETIPT)}+>

CIATTLIST TS LANG COATA 2IMPLIED
{1} CDATA 2IMPLIEDY

<!BLENEHT (TFIET) - - (14D

CIATTLIST TF NAME CDATA #REQUIRED
1D CDATA SIMPLIED

CEATTLIST ET 10 CDATA 2INPLIBDY

<YELEMENT PT - = (STRIKG,T+,DT?)>

<IATTLIST PT 10 CDATA 2IMPLIED)

<1ELEHENT STRING - = (EPCDATA)>

CYATILIST STRING 10 CDATA $INPLIEDY

C!BLEMBNT DT - = (N}

<!ELEMENT T - - (M)?

<IELENERT N = = (VAL,FS7,H¢)>

CIELENENT VAL = = (8RCDATA)

¢!ELENENT FS - = {Fe)>

<!ELENENT F = = (LIBRCDATA)>

CtELEMBHT L - 0 (BHPTY)>

CUATTLIST L Ul CDATA SINPLIED>

¢l szazssceem=n -3
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Partial Proof Trees and Structural Modalities*
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An important theme in current categorial research
is the shift of emphasis from individual category log-
ics to communicating families of such systems. The
reason for this shift is that the individual logics are
not expressive enough for realistic grammar devel-
opment; the grammar writer needs access to the
combined inferential capacities of family of logics.
Categorial systems with structural modalities (see
Moortgat 1997, Kurtonina and Moortgat 1997, Mor-
rill 1994 for details) can incorporate not only lim-
ited relaxation of the rigid structure to provide more
generative capacity, but also impose additional con-
straints to block undesired derivations!. Although
they provide a powerful extension of capacities of
categorial inference, their use can be linked to over-
generation in some cases. In this paper we will show
how this problem can be handled if categorial sys-
tems based on partial proof trees are used as building
blocks of the system. The key idea is that the use
of PPTs allow us to ‘localize’ the management of re-
sources, thereby freeing us from this management as
the PPTs are combined.

Here we provide a very brief overview of the PPT
system. See Joshi and Kulick (1997) for details. The
basic idea is to associate with each lexical item one
or more PPTs, obtained by unfolding the arguments
of the type that would be associated with that lex-
ical item in a simple categorial grammar, such as
the Ajdukiewicz and Bar-Hillel grammar. The ba-
sic PPTs then serve as the building blocks of the
grammar, and complex proof trees are obtained by
‘combining’ these PPTs by various inference rules,
that basically allow the linking of conclusion nodes

*We would like to thank Gerhard Jaeger, Alain
Lecomte, Owen Rambow, Mark Steedman, K. Vijay-
Shanker, and two anonymous reviewers for their vaiuable
comments. This work was partially supported by NSF
Grant SBR96-20230.

'In this paper we focus on categorial systems that
use structural modalities. Another branch of categorial
grammar is that represented by Combinatory Categorial
Grammar (CCG) (Steedman 1996). Work is currently
in progress to investigate the relationship between CCG
and the partial proof tree system described here.

to assumption nodes, and the stretching of a node in
a proof. The main motivation of this approach is to
incorporate into the categorial framework the key in-
sights from LTAG, namely the notion of an extended
domain of locality and the consequent factoring of
recursion from the domain of dependencies.

In CG the engine of grammatical inference is, of
course, a multiplicative fragment of intuitionistic lin-
ear logic (Lambek Calculus) and logical derivability
of some distinguished types from a sequence of types
is crucial for determination of grammaticality of lin-
guistic expressions. On a deductive level the log-
ical architecture of categorial inference is reflected
in the rules of a calculus (for instance, sequent cal-
culus). In contrast to CG, the PPTs system is a
tree rewriting system. However, we can make ex-
plicit the underlining logic of the system to provide
a logical explanation of the resource management.
In fact, two kinds of logics are involved in PPTs sys-
tem. Construction of basic trees is guided by the
logic of a CG, while operations of combining trees
are monitored by a single rule — Cut.

We now consider the use of two kinds of struc-
tural modalities, following Moortgat (1997), Kur-
tonina and Moortgat (1997), Morrill (1994).

Structural Relaxation: Consider the relative
clauses in (1a) and (2a):

(1) a.  (the book) that John read
“b. r/(s/np),np, (np\s)/np=>r
(2) a. (the book) that John read yesterday
b.  r/(s/np),np, (np\s)/np,s\a =>r

The two sentences correspond to the sequent
derivations in (1b) and (2b). The former is a valid
derivation, but the latter is not derivable. The prob-
lem is that the hypothetical np assumption is not in
the required position adjacent to the verb. Here the
so-called Permutation modality comes into the pic-
ture. We refine the assignment to the relative pro-
noun to the type r/(s/np'), where the decoration
with ¥ indicates an access to restricted Permutation.

Structural Constraints: Interaction of the rel-
ative clause formation with coordination leads to
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(3) a.  (the book) that John wrote and Bob read
b.  r/(s/np),np, (np\s)/np, (X\X)/X,np, (np\s)/np=>r
(4) a.  (the book) that John wrote Moby Dick and Bob read
b.  r/(s/np),np, (np\s)/np,np, (X\X)/X,np, (np\s)/np=>r

(5)  r/(s/np), (np,(np\s){np, (X\O*+X)/X,np, (np\s)/np)® = r
(6)  np,(np\s)/np,(X\D*X)/X,np, (np\s)/np = O*(s/np)

(7 a.

(the book) that John wrote yesterday and Bob read today

b r/(s/np),np, (np\s)/np, s\s, (X\X)/ X, np, (np\s)/np,s\s = r

overgeneration. Sentence (3a), with the correspond-
ing sequent (3b), is derivable with X instantiated
to a/np. However, the ungrammatical (4a), corre-
sponding to the sequent (4b), can be derived with
X instantiated to s,

This problem can be fixed by refining the type as-
signment to ‘and’ to be (X\O+X)/X and by closing
off the coordinate structure with the dual structural
modality ¢. The resulting sequent corresponding to
(3) is now (5), with its validity proved by (6):

The island violation (4) fails, because the hypo-
thetical np assumption finds itself in the scope of
modal operator. Thus, the idea of the approach is
to freeze complete coordination into an island config-
uration. The introduction of this other type of struc-
tural modality imposes structural constraints rather
than structural relazation, as with the permutation
modality.

Conflict: However, if the two types of modali-
ties appear in the same sentence, then they require
a simultaneous relaxation and constraining of the in-
teraction between the types. Consider the derivation
of (7a), with the corresponding sequent (7b).

To derive this sequent, X must be instanti-
ated as (s/np'), due to the presence of yesterday
and today. And, as we just saw, the type for
and should have the type assignment (X\O*X)/X,
and so the type for and in this example becomes
((s/np')\D*(s/np%))/(s/np). It is unfortunate that
such a complex type for end is required simply be-
cause of the way that adverbs interact with extrac-
tion in the inference system. Using PPTs offers an
interesting way to resolve the conflict, because of the
way that it employs two different logics.

‘We cannot show the relevant PPTs here for space
reasons. However, the basic idea is that, as dis-
cussed in Joshi and Kulick (1997}, permutation is
not needed for an adverb with a relative clause as in
(2a) since the adverb is simple inserted via “stretch-
ing” a node in the object relative clause tree. Re-
finement of the system to account for coordination
allows the derivation of (3a), while (4a) is ruled be-
cause, of course, the two conjuncts need to be of the
same type, and they cannot coordinate if one is s
while the other is &/np. Crucially, allowing (7a) is
not a problem, since the adverbs simply come in via

“gtretching”, and have no effect whatsoever on the
type constraints for coordination. Therefore, there
is no need for any modification of the basic type for
coordination.

We conclude that by using PPTs, the linguis-
tic phenomena motivating the introduction of strue-
tural modalities in categorial grammar can be han-
dled by either eliminating them (such as for an
adverb in a relative clause) or by retaining them
but localizing them within basic PPTs (e.g., topical-
ization by permutation, as described in Joshi and
Kulick 1997), thus avoiding the problem of over-
generation which requires constraints on modalities.
This is due to the existence of of two types of logic in
the PPTs, a consequence of combining trees rather
than just strings, and is a very desirable consequence
of localizing the management of resources in the
PPT system,
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1 Introduction

Many recent variants of Tree Adjoining Gremmars
{TAG) allow an underspecilication of the parent re-
lation between nodes in a tree, i.e. they do not deal
with fully specified trees as it is the case with TAGs.
Such TAG variants are for example Description Tree
Grammurs (DTG) (Rambow. Vijay-Shanker and
Weir 1995), Unordered Vector Grammars urth Dom-
tnance Links (U'VG-DL) (Rambow 1994a, 1994b), a
definition of TAGs via so-called quas:-trees {Vijay-
Shanker 1992}, {Rogers and Vijay-Shanker 1594),
{Rogers 1994) and (Local] Tree Description Gram-
mars (TDG) (Kallmever 1997, 1998a). The last
TAG variant, local TDG, is an extension of TAG
generating tree descriptions. Local TDGs even al-
low an underspecification of the dominance relation
between node names and thereby provide the possi-
bility to generate underspecified representations for
structural ambiguities such as quantifier scope am-
biguities.

This abstract deals with formal properties of local
TDGs. A hierarchy of local TDGs is established
together with a pumping lemma for local TDGs of
a certain rank. With this pumping lemma one can
prove that the class of local TDGs of a certain rank
n contains the language L, := {af---af [k > 0} iff
i< 2n.

2 Local TDGs

Local TDGs, proposed in (Kallmeyer 1997), consist
of tree descriptions, so-called elementary descrip-
tions, and a specific start descripiion. These tree
descriptions are negation and disjunction free formu-
las in a quantifier-free first order logic. This logic al-
lows the description of relations between node names
ki, k» such as parent rejation (i.e. immediate domi-
nance) k, < k;, dominance (reflexive transitive clo-
sure of the parent relation} k) <* &,, linear prece-
dence k, = ko and equality k|, == ky. Furthermore,
nodes are supposed to be labelled by terminals or by
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atomic feature structures, The labeling function is
denoted by ¢, and for a node name k, 8(k) = t sig-
nifies that & has & terminal label ¢, and ald(k)) m v
signifies that k is labelled by a feature structure con-
taining the attribute value pair (g, v).

Tree descriptions in a local TDG are of a certain
form, roughly speaking they consist of fully specified
(sub)tree descriptions that are connected by domi-
nance relations.’

In an elementary description 1, some of the node
names are marked (those in the set K); this is im-
portant for the derivation of descriptions. A sample
local TDG is shown in Fig. 1 (in the graphical repre-
sentations, some of the node names are omitted for
reasons of readability). Conjuncts such as k; «* k;
in ¢g that are not entailed by the other conjuncts,
are called strong dominance,

Starting from the start description ¢s, local TDGs
generate tree descriptions. In each derivation step,
a derived ¢; and an elementary description 1 are
combined to ohtain & new description ¢. Roughly
said, ¢ can be viewed as & conjunction of ¢y, 4 and
new formulas k = &' or k <* k' where k is a name
from ¢, and &' & name from 4. This derivation step
must be such that

1. for a node name &y, in v, there is a new equiv-
alence iff either ky is marked or ky is minimal
{dominated by no other name, e.g. kg in vy and
kyy in 2 in Flg- 1].

2. a marked or minimal name k' in 3 that is not,
a leaf name {i.e. dominates other names) but
does not dominate any other marked name must
became equivalent to a leaf name in ¢,

3. the names k from ¢; that are used for the new
equivalenc.c must be part of one single elemen-

'Some of the conditions holding fo iptions i

g for dexcriptions
local TDG are left aside here. For a formal dgﬁ.nitio::;
local TD}YGs see (Kallmeyer 1998a).



tary or start description, the so-called derivo-
tion description of this derivation step {first lo-
cality rondition},

4. for each marked name %, in « with a parent,
there must be a strong dominance k; <1k, in ¢
such that k» & ky is added and the subdescrip-
tion between ky and the next marked or min-
imal name dominating ky must be dominated
by k; (second locality condition},

5. and the result @3 must be maximally underspec-
ified.

As the first condition shows, marked names are
comparable to foot nodes in an auxiliary tree in a
TAQG since they specify those parcs of an elementary
description ¥ that must be connected to a derived
description ¢ when adding ¥ to ¢ in a derivatiou
step.

The second condition describes a kind of substi-
tution. Only leaf names in the old description can
become equivalent to names that do not dominate
other marked names.

Conditions 3. and 4. express the locality of the
derivations. All names in the old description that
are chosen for new equivalences must be part of
the derivation description, and furthermore a sub-
description between two minimal or marked names
must be “inserted” inte a strong dominance where
the dominated name iz part of the derivation de-
scription. These conditions can be compared to the
locality restriction of the derivation in a set-local
multicomponent TAG (MC-TAG) (Weir 1088}, In
fact, for each set-local MC-TAG, an equivalent local
TDG can be constructed (Kallmeyer 1998a). How-
ever, local TDGs are more powerful than set-local
MC-TAGs because the locality condition restricts
only the derivation of descriptions but not the way
a minimal structure for a derived description is ob-
tained. This locality constitutes a crucial difference
between local TDGs and DTGs since derivations in
DTGs are non-local. Each subtree of a d-tree that
is added in a derivation step to a derived d-tree
can be inserted into any of the d-edges in ~.

If 2 marked name has no parent, then an under-
specification of the dominance relation can oeccur
in the result of a derivation step (see (Kallmeyer
1998b, Kallmeyer 1998a)). In this paper, such cases
are not considered, and for the examples mentioned
here, the fifth condition is of no consequence.

In Fig. 1 for example, a derivation step ¢s % &
is possible with ¢1 = ¢s A Ak = Ep Ak =
kit A h -4 k23 I ka Q" le-
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4 local TDG generates a set of descriptions. Each
of these descriptions denotes infinitely many trees.
The trees in the iree larnguage of a local TDG are
those trees that are “minimal” for one of the derived
descriptions. A minimal tree of a description ¢ is a
tree v satisfying ¢ in such a way that

1. all parent relations in -y are described in ¢, and

2. if two different node names in ¢ denote the same
node in v, then these two names neither have
both a parent in ¢ nor have both a daughter in

@

The first condition makes sure that everything in
7 is deseribed in ¢, and with the second condition
no parent relation in the tree is described more than
once in ¢.

For the local TDG in Fig. 1 for example, only
those descriptions have a minimal tree that are de-
rived by adding ¥ in the last derivation step.

The string longuage of a local TDG G is the set of
all strings yielded by the trees in the tree language
of G.

TDGs allow “multicomponent” derivations and a
vniform complementation operation similar to sub-
sertion in DTGs. Furthermore, they provide un-
derspecified representations for scope ambiguities
{Kallmeyver 1998b) since they allow the generation
of descriptions with underspecified dominance rela-
tions.

3 Rank of a local TDG

For a given TAG, an equivalent local TDG with
at most one marked name per elementary descrip-
tion can be easily constructed. Obviously, the extra
power of local TDGs iz contrast to TAGs arises from
the possibility of marking more than one node name
in an elementary description. In Fig. 1 for example,
1f, and ¥ both contain two marked names. The lan-
guage generated by this local TDG is no TAL. This
suggests the definition of a hierarchy of local TDGs
depending on the maximal number of marked node
names in an elemneutary description.

Two kinds of marked names can be distinguished:
marked names where the part of the description
dominating this name can be put somewhere “in be-
tween” on the one hand (e.g. k17 and ky; in 42 in Fig.
1), and on the other hand marked node names that
must be identified with a leaf name (e.g. k3 and k4 in
¥ in Fig. 2). Since there is a similarity between foot
nodes of auxiliary trees in TAGs and the first kind
of marked node names, these are called adjunction-
marked (a-marked). For similar reasons, the second



Start description:
o5 =k; Q" ks A k2 qk:;/\ks‘d'k.‘l\kq 'Cks
Acat(d(k;)) = 5 A cat(dlke}) = T,
Acat(d(ka)) = T Acatld(ke)) = T3 A dlks) =«

Elementary descriptions:
W = kg " hkrAak; akg ks Q" ka aks dkie
ncat(d(ke}) = SA---
Yo =k A kin Ak kg Ak akis Ak 9k
Akiy < kg Akpg <kar AkiaQ ks AL
o Acat(dtkn)) = SAcat{dkiz)) = SA ...
oo A d(kag) = ar A b{kar) = as

Koy = {ks, kio}, Ky, = {k17. 23}

Graphical representations:

S
{marked names with asterisk} h

'5 kiz
N

' 5k 98

Y2
a

¢Ss . W S ” 'I.|1 ks
'é['l k2 5 % az T; ks a7
| |
e o /le\
’5113 ky "]"2 iy 23 T; kay 36
| | |
¢ T3 k10 T3 ko
ae T3 k2 as

Figure 1: Local TDG for {a}afajajafogatag |0 <
n} with two a-marked names in each elementary de-
scription

Ps f\ ¥ S

Sl 82 &1 SI S; ka
Y2 S € ¢
ks 37 53 k.
a; 5 a2 a3 Sz a4

Figure 2: Local TDG for {afafafel |0 < n} with
two s-marked names in each elementary description
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kind of marked names are called substitution-marked
{s-marked).?

Roughly speaking, in a derivation step, for each
s-marked name in the new elementary description,
there is one substring added to the yield of the de-
scription, and for each a-marked name, two sub-
strings are added {e.g. a1az for k3 in Fig. 2, g1a.
and arag for k7 in Fig. 1 and aza, and esas for ko
in Fig. 1). Therefore, a-marked names count twice as
much as s-marked names for the rank of a local TDG:
aloca]l TDG G isof rank n iff n = maz {i| thereis an
elementary ¥ in G such that ¢ is twice the number of
a-marked names in © plus the number of s-marked
names in ¥}.

For a given local TDG it is always possible to
find a weakly equivalent }ocal TDG with one more
s-marked name per elementary description. There-
fore, the class of languages generated by local TDGs
of rank i forms a subset of the class of languages
generated by local TDGs of rank i + 1 for é 2 0.

As shown in {Kallmeyer 1998a), the classes of local
TDLs of rank Q and 1 are equal, they are exactly the
context-free languages. The class of local TDLs of
rank 2 contaijus all TALs.

4 A pumping lemma

The idea of the pumping lemma for local TDGs of
a certain rank n is similar to the one leading to the
pumping lemma for TALs in (Vijay-Shanker 1987).
As shown in (Kallmeyer 1997), the derivation pro-
cess in a local TDG ean be deseribed by a context-
free grammar Ggg. For Gor, the pumping lemma
for context-free languages holds, This means that
in a derivation tree {of G¢cF) from a certain tree
height on, there is a subtree 7 that can be iter-
ated. For the corresponding local TDG, this sig-
nifies that an elementary 4 ¢an be added twice such
that: before adding % again we have the following
situation for a string w yielded by the old descrip-
tion; W = Tipl1+ - Zim_1YmT1m where T1; € T,
y) -+ - Um 15 the string yielded by the subdescription
derived from ¢ (ordered by linear precedence). As a
next derivatiou step, ¢ is added again. If the gram-
mer is of rank ., then by adding 1), the string w can
be split by inserting at most r new strings. Before
the next adding of ¥ (corresponding to another iter-
ation) takes place, these substrings will be expanded
to substrings wy, -+ -, tw, with wy -~ Wy = ¥y -+ V.
These w; may be split into several words (with other
words in between) but the order of the letters is as

*These two characterizations are not exclusive, for
examples of node names that are hoth a-marked and s-
marked see {Kallmeyer 1998a).



in v - Um. If this is repeated k times, k£ > 1, then
one ends up with a word contaning the letters of
Z, ;= Z1p- - T1m and k occurrences of all symbols of
w) - - - Wn that are for each of these oceurrences (from
left to right) ordered as in w) - - - wy. In the last steps
(after the iterations of the derivation subtree 7}, the
symbols of some string z; € 7~ are added.

Therefore the pumping lemma is as ollows: for
each word w in the string language of a loca! TDG
of rank n with |w| greater than some constant eg:
after removing the letters of some words z, and o
from w, the resulting word has the form wy - -wn.
Then for each k there is a word w(*} in the language
containing also the letters of z; and z», sueh that: if
these letters are removed from w*), the result w* ig
a word that can be obtained by taking k accurrences
of wy - 1wy, and then, starting with ¢, taking (in
arbitrary order) always the left letter of one of these
k words a5 the next letter in @'*!. Furthermore, 1w{*)
still contains as substrings one occurrence of each of
the words wy,- -+, u, (in this order).

For the language Lsn, := {a] ---af, |0 < m} for
example the lemma for rank n holds with ¢z =
2n-1, o =19 = & if w= " -2}, then
w; = agl_,a5;.

With the pumping lemma, it can be easily shown
that for i > 2n, L, = {a]"++-e™|m > 0} does not
satisfy the pumping lemma for TDGs of rank n and
therefore cannot be generated by a local TDG of
rank n.

Consequently, for all n > 1, the string languages
of TDGs of rank n form a proper subset of the string
languages generated by TDGs of rank n + 1.

5 Conclusion

In this paper, the rank of a local TDG was defined
based on the number of marked names in the ele-
mentary descriptions of the grammar. Two kinds of
marked names are distinguished, namely s-marked
and a-marked names. Since derivations in local
TDGs can be described by a context-free grammar,
the pumping lemma for context-free grammars can
be applied to the derivation trees of a local TDG.
This leads to the proof of a pumping lemma for lo-
cal TDGs of a certain rank n. Roughly said, accord-
ing to this pumping lemma, in a derivation step, for
each s-marked name in the new elementary descrip-
tion, one substring is added, and for each a.marked
name, two substrings are added. With this pumping
lemma one can show that for n > 1 the languages
generated by local TDGs of rank n form a proper
subset of languages generated by local TDGs of rank
n+ 1.
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A 'Tree Adjoining' Grammar without Adjoining
The case of scrambling in German

Gerard Kempen
Department of Psychology
Leiden University
PO Box 9555
NL-2300 RB Leiden
The Netherlands
kempen@rulfsw.fsw.leidenuniv.nl

The psycholinguistically motivated grammar
formalism of Performance Grammar (PG,
[Kempen 97]) is similar to recent versions of
Tree Adjoining Grammar (TAG:; cf. [Joshi ez
al. 91]) in several important respects. It uses
lexicalized initial trees; it generates derived
trees synchronously linked to conceptual struc-
tures described in the same formalism (as in
Synchronous TAGs [Shieber, Schabes 90));
and it factors dominance relationships and lin-
ear precedence in surface structure trees
([Joshi B7]).

PG differs from recent TAG versions in that
the adjoining operation and auxiliary trees are
absent. Adjunction is replaced by a combina-
tion of substitution—the only composition op-
eration—and a special linearization compo-
nent that takes care of ordering the branches of
derived trees in a global manner without re-ar-
ranging the derived structures. PG has been
worked out for substantial fragments of Dutch,
including the well-known cross-serial depen-
dencies in self-embedded clauses. Here we
will outline how PG deals with scrambling
phenomena in German without invoking ad-
junction. For TAG treatments of these phe-
nomena we refer to [Becker er al. 91] and
[Rambow 94].

PG's lexicalized initial trees, called lexical
frames, are 3-tiered mobiles. The top layer of a
frame consists of a single phrasal node (called
the 'root’; e.g. S, NP, ADJP, PP), which is con-
nected to one or more functional nodes in the
second layer (e.g., SUBJect, HeaD, Direct OB-
Ject, CoMPlement, MODifier). At most one
exemplar of a functional node is allowed in the
same frame, except for MOD nodes, which
may occur several times (indicated by the
Kleene star;: MOD*). Every functional node
dominates exactly one phrasal node in the
third (‘foot") layer, except for HD which im-
mediately dominates a lexical (part-of-speech)
node. Each lexical frame is 'anchored' to a lex-
ical item—a 'lemma’ printed below the lexical
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node serving as the frame's HeaD (Fig. 1).
S

CMPR  SUBJ HD

P v NP ADVP/PP/S

|
reparieren \\

DOB] MOD~

NP NP
MOD* DET Q HD MOD*
PRO ADJP/PP/S DL CNP l:l AD]}P/PP/S
i
niemand /J Fahrrad
DP

Fig. 1. Simplified examples of lexical frames. CP =
Complementizer Phrase; CMPR = Complementizer; DP
= Determiner Phrase. Left-to-right order of branches is
arbimrary. The unifications (filled circles) correspond to
German sentences such as Repariert niemand das Fahr-
rad? or Niemand repariert das Fahrrad (‘Does nobody
repair the bicycle?' or 'Nobody repairs the bicycle').

Associated with nodes in the top and bottom
layers are feature matrices (not discussed
here), which can be unified with other matrices
as part of the substitution process. Unification
always involves one root and one foot node of
two different lexical frames (see the filled cir-
cles in Fig. 1). Only non-recursive unification
is used.

Left-to-right order of the branches of a lexi-
cal frame is determined by the 'linearizer' as-
sociated with a lexical frame. We assume that
every lexical frame has a one-dimensional ar-
ray specifying a fixed number of positions for
foot nodes. For instance, verb frames (i.e.,
frames anchored to a verb) have an array
whose positions can be occupied by a Subject
NP, a Direct Object NP, the Head verb, etc.
Fig. 2 shows 13 out of 14 slots where foot
nodes of German verb frames can go. The
positions numbered M1 through M11 belong
to the Midfield (Ger. Mirtelfeld); B1 and B2
make up the Backfield (Nachfeld). Not shown



is the single Forefield (Vorfeld) slot F1,
located to the left of M1. The annotations at
the arcs denote possible fillers of the slots. For
example, in a main clause the Head verb is as-
signed the first Midfield slot (M1); in a subor-
dinate clause it goes to the last Midfield posi-
tion (M11). Subject NPs that could not enter
the Forefield (e.g. in subordinate clauses) are
placed in M2 if its head is a personal pronoun,
in M3 otherwise. (Note that frames anchored
to other parts of speech than verbs (NP, PP)
have their own specialized linearization array.)

MainCl: HD .
@ ain 2 SUBJ/ pers.pro >
SubordCl: CMPR/ con)
@ SUBJ >@DDOBI/;)ers. ! refl.pro >
. refl,
@Oﬁ]/ pers. [ refl PL}@ 10BJ

>
DOB, -fini .
@ ] OME non-finite CMP-5 >
PRT R
© e
( ) SubordCl: HD
Extraposed non-finite Other extraposed >
SUBJ-S | CMP-5 constituents

Fig. 2. Positions licensed to various types of constit-
uents in the Midfield and Backfield of German clauses.

The fillers listed in slots M2 through M7

represent the unmarked order of verbal argu- -

ments (cf. [Uszkoreit 87]). They may be ac-
companied by additional constituents, in par-
ticular by modifiers and by arguments that,
because of being in emphatic or contrastive
focus, have been moved to the left (e.g. in weil
er ein Fahrrad den Kindern verspricht, be-
cause-he-a-bike-the-children-promises). These
companions are positioned after the 'standard'
fillers (if any).

A key property of linearization in PG is that
certain constituents may move out of their
‘own' array and receive a position in an array
located at a higher level. This is because, due
to subcategorization features, a linearization
array may be instantiated incompletely. For in-
stance, if a verb takes a non-finite complement
clause, then slots M1 through M3 are missing
from the complement's array. If, in addition,
the complement is subjected to ‘clause union',
slots Md through M7 are absent as well. In
such cases, verb arguments and adjuncts that
need to be expressed overtly, look for a slot
higher up in the hierarchy of verb frames and
get hold of the first (i.e. lowest) slot that is
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within scope. E.g., in daf} sie den Lehrer das
Fahrrad nicht reparieren sah (that she didn't
see the teacher repair the bike), den Lehrer and
das Fahrrad occupy the same M7 slot, in
order of increasing depth (Fig. 3).

5

CMPR SUB) DOBJ Mod CMP l-iD
L& NP NP NP~ Ad‘vP 5 v}
daR sie den Lehrer das Fahrrad nich B H!D s'llh

reparieren

Fig. 3. The embedded DOBJ-NP has been lifted into the
linearization array (rectangle) of the next higher verb
frame. Due to a subcategorization feature of the lexical
entry sehen (10 see), only slots M8-M10 of the comple-
ment clause have been instantiated. This causes das
Fahrrad (o land in the M7 slot of the matrix, joining den
Lehrer.

ABC ABC AP CP
Fnl HD Fn3 Fllll HD Fz}z F|n3 HiD HID
| | | |
AP B CP AP B ABC CP AIA Cx

{ I
b b a c
ABC
Fnl HD Fn2 Fn3
i | B |
[aP ~ AP~ AR B ABC CP |
[ | N ——=—7 |
HD HD HD 1HD Fnl Fn3 HD
b L !
B ABC cp|
h&@ HD Fn3 HD
HD
|
A A A cC Cc ¢
i 1 ! 1 1 }
a a a b b b c c c

Fig. 4. Derivation of string a3b3c3. (a) Initial lexical
Jrames. (b) Derived tree. Notice that only the mairix lin-
earization array is instantiated completely; the embed-
ded ones are truncated, causing the A-phrases to be
fronted.

The mechanism that controls the distribution
of constituents over the slots of a linearization
array, is modeled as a Finite-State Automaton
(FSA). The FSA associated with a lexical
frame traverses its array from left to right. At
each slot, it inspects the set of constituents that
are waiting for placement in the array, and in-
serts there any constituents meeting the place-



ment conditions on that slot (see the labels on
the edges of Fig. 2).

PG is capable of generating the mildly
context-sensitive language a"b"c". Fig. 4b il-
lustrates a possible derivation of a*b3c3 based
on the lexical frames in Fig. 4a. The lineariza-
tion array associated with ABC frames con-
tains four slots S/...54 to be filled, respec-
tively, by constituents of type AP (any num-
ber, in arbitrary order), B, ABC, and CP. Fur-
thermore, a subcategorization feature in the
ABC foot node of the recursive ABC frame
causes deletion of slot S1 of the embedded
ABC linearization arrays.

Certain scrambling phenomena in German
are interpretable as a consequence of PG's lin-
earization scheme. Consider sentence (1), from
[Rambow 94], with two non-finite clauses em-
bedded in one another:

[S[S das Fahrrad zu reparieren) zu versuchen)]

Rambow presents acceptability ratings for 30
scrambled versions of this sentence, viz. for all
permutations in which the NPs precede the
verbs they belong to. (Only five constituents
are permutable: two NPs and three verbs.) See
Table 1 for a selection from these data.

Table 1. Accepiabiliry ratings for some scrambled ver-
sion of sentence (1), based on judgmenis by several na-
tive speakers of German. Data from [Rambow 94].

6| weil das Fahrrad zu reparieren niemand { ok

zu versuchen verspricht

20| weil niemand das Fahrrad zu reparieren | 7
verspricht zu versuchen
23] weil niemand zu versuchen verspricht, |?

das Fahrrad zu reparieren

25| weil niemand das Fahrrad zu versuchen | *?
verspricht zu reparieren
weil das Fahrrad zu versuchen niemand | *?
verspricht zu reparieren

30

10| weil das Fahrrad zu versuchen niemand | *
zZu reparieren verspricht
weil niemand zu versuchen das Fahrrad | *
verspricht zu reparieren

24

(1) weil niemand das Fahrrad zu reparieren
because nobody the bike to repair
zu versuchen verspricht
to try  promises
‘because nobody promises to try to repair
the bike'
(2) weil niemand verspricht das Fahrrad zu
reparieren zu versuchen
(3) weil niemand das Fahrrad verspricht zu
reparieren zu versuchen
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The verbs versprechen and versuchen can
take several types of complement in addition
to the one exemplified in (1). The non-finite
complement clause may be extraposed, i.e. put
behind the finite verb in subordinate clauses
(as in (2)). Moreover, it allows the so-called
"Third Construction" where only part of the
non-finite complement clause, including the
infinitival verb, is extraposed.

S

CMPR  SUBJ D CMP

||

|
L S ]

wver)l niemand das Fahrray verspricht CMP HD
f 4
N
Bj/\HD zu versuchen
PN

Iu reparieren

Fig 5. PG analysis of sentence (3).

In the PG treatment of these constructions
(iliustrated in Fig. 5), the linearization arrays
play a crucial role. We assume that, in sen-
tence (2), reparieren's linearization array has
been instantiated from slot M4 onward, and in
sentence (3) only from slot M8 onward. More-
over, versuchen's array has been truncated as
well and only contains slots M8 through B2.
This implies that, in (2), the direct object das
Fahrrad could find a place in reparieren's ar-
ray, whereas it was moved upward into the
finite clause in (3). As stated above, it is a sub-
categorization feature of a complement-taking
verb that controls how the complement's lin-
earization array will be instantiated.

Emphatic or contrastive focus is another
factor causing a constituent to move upward.
A focused constituent is assigned to early posi-
tions in a clause, e.g. M3 or M4, If that posi-
tion is not available at the clause level it be-
longs to, it moves into the array of a higher
clause.

The position of the two infinitives with re-
spect to one another turns out to be the major
source of variation in acceptability. In all fully
or marginally acceptable versions ("ok" or
”?ll):

(A) the non-finite clauses are adjacent, or

(B) they are discontinuous, with the comple-
ment-taking infinitive (zu versuchen) fol-
lowing its complement (zu reparieren).

These properties are illustrated by the PG rep-

resentations of Rambow's sentences (2) and



HD verspricht

Y

HD zu versuchen

I

zZu reparieren

5
e
l | | l
[ B NP v ]
we1l DOB| HD"%\QAP HD  verspricnt
|3 v

das Fahrrad 2u reparieren zu versuchen

Fig. 6. PG analyses of two acceprable utterances in
conformity with linearization rules. Top panel: both
non-finite clauses occupy the standard position M8 in
their respective arrays. NP das Fahrrad is focused (slot
M3 or M4). Boitom panel: CMP-S versuchen is in un-

marked position M8; CMP-S reparieren is focused.

On the other hand, in all unacceptable or bad
versions (""*" or "*?"");
(A") the non-finite clauses are discontinuous,
(B") with the complement-taker preceding its
complement.
Examples are Rambow's sentences (10) and
(30), quasi-reconstructed here as Fig. 7.
S

CMPR SJ H

rc‘ q \11

v-n. das Fahrrad B HD vonpncn:

2

:u versucheo

/’C.Z\

l\l reparieren

CMFR SUBJ PT)
—
L~ Y]
Zu versuchen ém m_"ﬁ%

Fig. 7. Quasi-analyses of two unacceptable sentences.

The structures depicted in Fig. 7 violate
PG's linearization scheme because of an illegal
attempt of zu reparieren to move into the fi-

83

nite clause: this CMP-S is not moving into a
focus slot and therefore will be assigned a
place at its own level, i.e. in slot M8 or Bl of
versuchen's array. All bad or unacceptable
sentences in Table 1 suffer from this problem,
while those rated good or marginal all adhere
to PG's linearization scheme. Version (23),
whose rating is relatively good although it
manifests an illegal extraposition attempt, is
the only exception.

We conclude that PG is capable of account-
ing for a considerable portion of the variance
in the acceptability judgments reported by
[Rambow 94]. This suggests that the combina-
tion of 'substitution + linearization FSA’ in PG
could serve as an alternative to 'adjunction +
substitution' in TAG.
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1 Introduction

This paper presents an adaptation of the Ear-
ley algorithm (EARLEY, 1968) for parsing with
lexicalized tree-adjoining grammars {LTAGs).

This algorithm constructs the derivation tree
following a top-down strategy and verifies the
valid prefix property. Many earlier algorithm
do not have both of this properties (SCHABES,
1994). The Earley-like algorithm described in
(ScHABES and JosHI, 1988) verifies the valid
prefix property, but the algorithm presented
here is thought to be easier to improve using
some properties of LTAGs.

2 Representation of a LTAG with a
set of rules

A LTAG is a context-free grammar (CFG) on
trees, the elementary operations of which are
the adjunction and the substitution. The Earley
algorithm can be used for parsing with any CFG
insofar as the elementary operation is the con-
catenation. Hence, the Earley algorithm cannot
simply be used for LTAGSs, but the meaning of
an edge in the derivation tree needs to be spec-
ified in terms of words strings and concatena-
tions.

Substitution and terminal nodes can be han-
dled using ordinary context-free rules. Such a
rule represents a node in the derivation tree and

I'd like to thank A. Abeillé, M.-H. Candito, F. Issac
and P. Paroubek flor their valuable help and advices
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captures the linear word order of the derived
string.

An adjunction can be seen as two correlated
substitutions: the derived string of the part of
the adjoined tree on the left of the foot nodoe i~
inserted in some location while the other pari
of the string is inserted in some other focation
fartherin the string. The string located between
the two substitution points is the derived string
of the subtree under the adjoined node. The
correlation between these two substitutions is
that either none or both of them should occur.
thus a synchronization must be transmitted up
to the second location in order to preserve this
canstraint,

The locations of these pairs of places follows
a stack order: there is an equal number of
“first places” and “second places” between two
matching places. Therefore, a unique symbul
(7 hereafter) can be used to represent any “ser-
ond place”, while a X notation can he used 10
represent a “first place” for an adjunction of &
tree with root X

The figure 1 shows a few rules representinn
some elementary trees. A star denotes a [oul
node in an auxiliary tree. The drawun links im-
plements the correlation information hetween
the two substitution points representing an al-
junction. Because of the stack structure of t1i~
information, the links need not to be explicitls
stored. Also note that these trees ave flat [no
VP). See (ABEILLE, 1991). This is not manda-
tory and the trees usually used for Englisli can
be encoded the same way.

As each node in the derivation tree represent-
an elementary tree, and as every elementar



Rule for the transitive verb {o love (an0Vnl), without adjunctions:

asS = alN love aN

Rule for the transitive verb to love (an0Vnl), with pessible adjunctions on S and on ¥:

4 —

~

aS— S aN BV love # aoN #

Rule for the determiner the (8DetN), with a possible adjunction on the root A':
(]

BN — BN the x #

Figure 1: Examples of rules

tree can be represented by a rule which cap-
ture the linear word order of the derived string,
this is a way to capture the linear word order
in the derivation tree. The usual derivation tree
(as defined in (V1JAY-SHANKER, 1987)) can be
obtained by linking the subtree of every “first
place” to the left of the subtree of the match-
ing “second place” and by storing the resulting
structure under the “second place”.

3 Earley-like parsing driven by the
derivation tree

In this section, we show how the stacked rela-
tionships between the “first places” and “second
places” can be represented in a structure which
is suitable for the Earley algorithm.

Following Earley, a partial parsing can be rep-

resented by an item, which consists in a rule, a

position in the rule (all the symbols located on

its left have been recognized), and two lists of
pairs of references to items. The first list keeps
track of the requesters of the rule, that is to

say the items which are waiting for the rule to -

be recognized in order to be shifted. The sec-
ond element of each pair is used as a relay stor-
age during the recognition of the second part of
an auxiliary tree. The second list implements
the previously mentioned stack of “first places”.
The first element of each paiz it contains is the
data part of the stack item. It is a reference to
an item waiting on a foot symbol. The second
element in each pair is used to implement the
stack. It is a reference to an item waiting for an
adjunction.

A number of primitive operations will be ap-
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plied on this data structure. They are summed
up in the table 2. When a primitive is applied
on a given set, the second column indicates how
many actions are to be taken. The rule and
mark columns indicate which item is to be in-
troduced. If no item with this rule and this
position mark is present in the set, it is intro-
duced with the indicated lists for the requesters
list and the stack list, Otherwise, the indicated
lists are merged with the ones of the existing
item in the set. This merging step ensures that
the spatial complexity has a polvnomial upper
bound.

The algorithm consists in working on each set
in turn, following the word order. The initial
set is initialized using init. Then an evolution
stage applies a predict or reduce primitive on
every newly introduced item, the type of which
is chosen from the symbol in the rule which is
right after the mark. For instance. if it is an
aX (a substitution is expected), then predict
a(item, X) is used. If there is no such symbol.
them a reduce primitive is used, depending on
the type (o or ) of the left part of the rule.

-.This process is then run on each set in turn.

replacing inits with a shift on every item ex-
pecting (i.e. with the mark right on the ieft of)
the word associated with the current set.

The sentence is accepted if there is an item in
the last set with a rule deriving the axiom {8},
with the mark at the end of the rule. with an
empty requesters list. It should bhe noted that
this algorithm does not give an analysis of the
sentence. An additional structure is required

in each item to keep the analvsis information.



primitive applied for each rule mark req stack
init() rule r with root a8 r 0 {} {}
shift(item) once item.rule | item.mark 4+ 1 | item.req item.stack
predict a(item, X) | rule r with root aX r 0 {{item. -)} {}
predict S{item, X) | rule r with root 8 X r 0 {{item. -)} {}
and once item.rule | item.mark 4+ 1| item.req | {(-. item)}
predict *(item) (%, ¥) in item.req x.rule x.mark + 1 x.req {(item. x)}
reduce #(item) (x, y) in item.stack, | x.rule x.mark + 1 | {(item. ¥)} x.stack

where x is not -

(-, y) in item.stack { item.rule | item.mark + 1 | item.req v.stack
reduce afitem) (%, ¥) in item.req X.rule x.mark + 1 X.Teq x.stack
reduce S{item) (%, ¥) in item.req x.rule x.mark + 1 X.req v.stack

Figure 2: Primitives of the algorithm

However, every edge in the derivation tree is de-
tected through the fact that a reduce primitive
is run, This additional structure should cope
with the ambiguities and permit a polynomial

representation of ambiguities from other level of.

analysis (features unification, semantic analysis
and so on). This is a quite general matter: the
number of solutions to the problem of parsing
being (potentially) exponential, a simple list of
analyses would require an exponential time to
be output. The usual assumption that the num-
ber of analyses is “small” iz not acceptable in
the context of parsing oral utterances’ (because
of potential auto-repairing constructs). There-
fore, the representation of the outputs.should
grow polynomially (and not exponentially) with
the number of ambiguities. '

4 Benefits in using this strategy

The top-down strategy of this algorithm has a
trivial, but very useful property: this algorithm
do not require the utterance to be cut into sen-
tences in order to parse it. Instead, one can
perform an init primitive in every set where
a rule with the axiom as its left part and an
empty requesters list is found. It has the effect
of concurrently trying to parse a new sentence
from this point. This property is very impor-
tant when parsing oral utterances: there is no
practical other way to find out where sentences
begin and end. -
Moreover, the combination of both the top-
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- partial analysis, after every reduction.

down strategy and the valid prefix property
enables valuable performance improvements.
Many of the LTAGs properties (SRINIvAS, 1997)
can be used to avoid the introduction of unrei-
evant elementary trees, thus allowing the use of
a richer grammar.

The data structures construct a derivation
tree. Therefore, a rough semantic analysis can
be performed to check whether some newly dis-
covered potential edge in the derivation tree
makes sense or not. If not, it can be invalidated -
as soon as it is discovered.

When features are used, they can be checked
following only the derivation tree {the derived
tree is not needed). This is due to the fact
that the nodes in the derivation tree are more
than simple atoms: they are the rules that have
been used for parsing. Like with setnantic anal-
ysis, the features unification can he done on
How-
ever, it is not clear whether this would result in

- .an improvement or not: the cost of the unifica-

tion might overcome the benefits of invalidating
some partial analysis as soon as possible.

Due to the lexicalization, terminals (words)
are put in the trees during lexicon access. When
a rule is invocated in a set S, it always contains
at least one terminal {lexicalization), All the
symbols on the left of the first terminal have 10
be recognized before the set where this termi-
nal is to be found. This is a way to filter the
candidate rules for recognizing these symbols.



Former parsers already used the span of trees
to eliminate trees that are too large to parse
the sentence (XTAG, for instance), but this al-
gorithm permits considering the span properties
locally, at every prediction stage.

Last but not least, the data structures used
for this algorithm can be enriched in successive
analysis stages. That is to say, when no analy-
gis is found, it is possible to enrich the sets with
new rules. This property is useful to construct a
fault tolerant parser, accepting unknown words,
using weighted syntactic rules (the weights indi-
cating whether a given rule is linguistically per-
fect or somewhat deviant), and accounting for
auto-repairing sequences in an oral utterance.

5 Prospects

Using these properties enables the design of
an efficient oral-specific robust parser using a
grammar of the written language (ABEILLE,
1991). We plan to incorporate a syntactic
LTAG-based component in a working real-time
speech understanding system (GAUVAIN et al,,

1997, ) to improve its recognition performances.
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1 Introduction

“Restructuring” in Romance refers to construc-
tions which appear to violate standard locality con-
straints, thereby presenting a challenge for syntac-
tic theory. One of the most well-studied cases of
restructuring® is that of clitic climbing. This is il-
lustrated in the Italian example (1a), in which the
clitic lo, the apparent object of leggere, appears on
the higher verb vuole. As shown in (1b), it can even
move past more than one verb,

(1) a. Mario lo vuole leggere
‘Mario wants to read it’
b.  Mario lo vuole poter leggere

Mario it wants to be able to read
‘Mario wants to be able to read it’

Such clitic climbing is possible only with cer-
tain verbs, such as voler and poter in (1), which I
will refer to as the “trigger” verbs, following Ais-
sen and Perlmutter (1983). Bleam (1994) argued
in detail that clitic climbing causes problems for
TAG, and that set-local multi-component TAG is
required. In previous work (Kulick 1997), I have
proposed that due to the limited nature of the trig-
ger verbs (aspectuals, motion verbs, modals} they
can be treated as “adjunct predicates” that adjoin
into a TAG tree, as if they were raising verbs, tak-
ing advantage of their semantic “weakness”. An ad-
vantage of this approach is that the apparent un-
boundedness of clitic climbing, as in (1b), can be

*1 would like to thank Tonia Bleam, Robin Clark,
Robert Frank, Heidi Harley, Aravind Joshi, Alexandra
Kinyon, Tony Kroch, Miriam Meyerhoff, Paolo Monach-

esi, Beatrice Santorini, two anonymous reviewers, and
" the members of the Xtag project for comments on var-
ious aspects of this work. I would also like to thank
"Filippo Beghelli, Claudia Brovetto, Alexandra Kinyon,
Marisel, Zoe Lacroix, Paola Merlo, and Carmen Rio-Rey
for native speaker judgements. This work is supported
by grant NSFSTC89-20230.

1T am using “restructuring” as a descriptive term
only, and not to refer to the particular analysis proposed
in Rizzi (1982).

handled in TAG by repeated adjoinings of these trig-
ger verbs. There are also several aspects of “re-
structuring” other than clitic-climbing (e.g., long re-
flexive passive, long tough-movement, Italian auxil-
iary change, etc.} which I cannot comment on here.
The case of the long reflexive passive is discussed in
Kulick (1997)%.

However, this “adjunct” predicate” approach to
clitic climbing in TAG is clearly insufficient for two
other major cases of clitic climbing: the Romance
causatives, and object-control verbs in Spanish such
as permitir (Strozer 1977, Moore 1991). In this work
I extend the analysis to handle these two cases. The
relation of these cases to the “restructuring” trigger
verbs has long been a matter of debate, and I ar-
gue that it is desirable that TAG enforces a sharp
distinction between them. Still, an analysis must be
given in TAG for these cases, and I propose a tree-
local multi-component TAG analysis for both cases.
This raises again the issue of the unboundedness of
clitic climbing with these verbs.

2 Causatives

The Romance causative, as illustrated by the French
exampie (2), of course has a number of unusual fea-
tures which have been the focus of much research?.
As illustrated in (2), the word order and Case mark-
ing of the causee in the lower clause is strikingly
different than the usual. Of particular interest here
is that when the lower object is cliticized, as in (3),

*Cinque has proposed that clitic climbing and other
transparency effects can he handled by treating the trig-
ger verhs as being “directly inserted in the extended pro-
jection of a lexical verb”, according to the abstract for
a talk, This depends on the trigger verbs being Hm-
ited to modal, aspectual, and motion verhs, which for
Cinque correspond to functional heads, and so can be
so inserted into the extended projection. Clearly, this
proposal seems to have much in common with that in
Kulick (1997). However, I have not seen Cinque’s full
analysis, and so I cannot currently comment further on
the connection.

3] am putting aside here the faire-par causative
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it appears on a fait rather than with the verb that
it is semantically associated with, manger.

(2) Jean a fait
Jean has made eat
Pierre

Pierre

‘Jean made Pierre eat the cake
Jeanl'a  fait manger & Pierre
Jean it has made eat to Pierre
‘Jean made Pierre it’

manger ce gateau &
the cake to

(3)

Clearly, the approach taken for the “adjunct pred-
icates” is insufficient here. Adjoining fait or a fait
into a tree which has both Jean and Pierreis absurd,
since the latter tree would be a radical violation of
the most basic principles of what constitutes an ele-
mentary tree,

There have been two basic approaches taken in
TAG to handling the problem of non-local movement
in the French causative. (Abeillé 1991, Abeillé 1003)
treated faire as a co-anchor of an elementary tree
headed by the infinitival verb. Then the clitic move-
ment is local to an elementary tree, and there is no
problem. Santorini and Heycock (1988) argue, how-
ever, that the French causative must be considered
bi-clausal, and therefore two separate TAG trees,
since the complement object is not able to passivize
(unlike the case with the Italian causative). How-
ever, they did not discuss how to handle the clitic
movement.

There are arguments for both approaches, but in
this work I follow Santorini and Heycock (1988), and
adopt a bi-clausal analysis. I extend Santorini and
Heycock (1988)’s analysis to handle the clitic move-
ment by using a tree-local multi-component TAG,
which allows a tree set for Jean and a fait to wrap
around e in {e manger ¢ Pierre. This depends on
the clitic moving to the top of the manger tree!

One way to work this out is to use the tree set in
(4ab) for the matrix clause, and the tree in (5) for
the embedded clause. The derivation proceeds by
(4b) adjoining at the TP node, while (4a) adjoins at
the root of (5) to produce the tree (6) (this requires
that the AgrSP node be treated as a TP node for
purposes of adjoining).

(4)  (2) AgSP {b) TP
Jean AgrS /\T’
P
A/\\ T Vp
gS TP L~
L i
a v’
NN
v TP
|
fait

“In work-in-progress, I propose using this same ap-
proach to handle long-distance-scrambling in German
{Rambow 1994), thus hopefully unifying the machinery
needed for these two cases of non-local movement.
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manger ce gateau

There are obviously some issues here concerning
the Case marking and word-order which require fur-
ther discussion. For now, I am assuming that the
dative Case on d Pierre is assigned by the causative
verb, and that if the lower verb was intransitive, it
would get accusative Case®.

However, just as with the restructuring Case, it
becomes a crucial question as to how unbounded
such clitic movement is. For the causatives, this re-
lates to the issue of how recursive causative forma-

5T am also assuming that the causee is a structural
subject, as opposed to being generated as an indirect
object. As a reviewer notes, Abeillé et al. (1996) argue
that the causee is a true indirect object or direct object,
depending on the transitivity of the lower verb. They
note that when the lower verb takes a dative argument,
it is possible for the accusative causee to appear between
the lower verb and its dative argument:

(1) Maire fera parler Jean & Paul
Marie will make Jean speak to Paul

Thus, the arguments of the causative and embedded
verbs follow the unmarked ordering of clausal arguments
in French. This is not expected given the type of analysis
as in (6). However, these facts are not new, and were
discussed in Santorini and Heycock (1988), in which they
suggested, following Burzio (1986) that there are “late
reordering rules” to fix up the order. I follow Santorini
and Heycock (1988) in this regard, although such rules
of course are somewhat undesirable.

Most of the arguments in Abeillé et al. (1996) point
out that the causative construction acts differently from
a control construction, in terms of how the arguments of
the two verbs can be reordered. While this is correct, I
don’t see how it’s an argument against a structure as in
(6) (again, assuming the existence of reordering rules),
which is clearly not a control structure.

They also note that since guantitative en can be ex-
tracted out of an accusative causee, as in (2}, this shows
that it must be a structural object. However, since such
extraction can also take place out what might be ana-
lyzed as a small-clause subject (3), it's not clear to me
how strong this argument is.

(2) 1l en fera courir trois
He will make three of them run
(3) a. Paul entend 3 femmes chanter
h,  Paul en entend 3 chanter

Their strongest argument, I think, concerns the ahility
of “tough movement” to take place across the causative
in French. Clearly, for the approach taken here, this
deserves further study.



tion is. There has been very little discussion of this
issue in the literature®, and the data is somewhat
murky, but it seems to be the case that sentences
with lower unaccusative verbs are acceptable’. For
example, (7b) has an additional causative verb on
top of the causative construction in (7a). In such a
case, it is possible to place a clitic for the causee (Jui
for a son fils) and for the object (le, for le pont), on
a fait, as shown in (7c).

(7) a.  Sonfils a fait sauter le pont
His son made blow up the bridge
His son made the bridge blow up
b.  Elle a fait faire sauter le pont
She made make blow up the bridge
4 son fils
to her son
She had her son make the bridge blow
, up
¢. ' Elle le lui a fait faire sauter
‘She made him make it blow up’ or
‘She had it blown up by him’
d.  Elle me 'a fait faire sauter
She me it made make blow up
‘She made me make it blow up’ or
‘She had it blown up by me’

I discuss the consequences for TAG of the pos-
sibility of sentences such as (7c), which appear to

®Kayne (1975) is an exception.
TFor sentences with lower intransitive verbs, I have
gotten mixed reactions from native speakers.

T 4 Pierre
N
T VP
V)

manger ce gateaw

require the use of set-local MCTAG. However, there
is a “trick” that can be done to allow a tree-local
derivation for (7c), although space prohibits here
any explanation of what I'm talking about. This ap-
proach, however, will not work for the case in which
the clitics are in a different order, as in (7d), and I
discuss the consequences of that.

3 Spanish object-control verbs

An example of clitic climbing with permitiris shown
in (8ab), in which (b) shows that la can optionally
move from arreglar to permitid®.

(8) a. Juanle permiti6 arreglarla a
Juan him permitted to repair it
Pedro
Pedro

Juan permitted Pedro to rephir it
b. Juanse Ila permitié arreglar a
Juan him it permitted to repair

Pedro
Padro

4 vl

Juan permitted Pedro to repair it

Similar issues arise here as with the causatives.
Again, the “adjunct predicate” analysis is inade-
quate, and a tree-local TAG analysis seems appro-
priate. Following the approach of Bleam (1994) and

8i¢ in (8a} is a clitic double of a Pedro, and a mor-
phological rule changes le la to se la in (8b).
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others {e.g., Moore 1991), I adopt a “reduced com-
plement” analysis.

The question of unboundedness is quite interest-
ing, since it seems to be the case that clitic climbing
over these verbs is much more constrained than with
the “adjunct predicate” trigger verbs, and speakers
are very reluctant to accept even a highly simplified
sentence such as (9b). This is true even for speakers
who can accept clitic climbing over two or even three
“adjunct predicates” without any hesitation.

9} a Juan ordené permitir comprarla
Juan ordered to permit to buy it
Juan ordered someone to permit
someone to buy it
b. *Juan la ordené permitir comprar

Since tree-local TAG can clearly handle such cases
as (8b), it might be appropriate to say that the in-
creased difficulty of clitic climbing in cases such as
(9} is a reflection of the need to move to set-local
TAG. However, the force of this argument is weak-
ened if the same approach for clitic climbing out
of two embedded clauses with the causatives (as in
(7c)) can be applied in this case.

More interesting is the question of why the object-
control verbs that allow clitic climbing in Spanish
are limited to those that take dative, not accusative,
controllers. I offer the tentative suggestion that the
complements of accusative controllers such as forzar
are not “defective” enough, since they take a prepo-
sition which takes a sentential complement, as in
(10): {example from Bordelois {1988))

(10} *Se lo forzé a hablar
her-DAT him-ACC he forced to speak
‘He forced him to speak to her

For this argument to go though, of course, the a in
(10} must be fundamentally from the a that follows
some of the “adjunct predicate” trigger verbs which
do allow clitic climbing. It also depends on a correla-
tion between the accusative controller taking prepo-
sitional complements, while the dative controliers do
not. I am currently unsure whether this correlation
holds fully, and of course it leaves open the question
of why such a correlation might exist.

However, it is very interesting to note that the
same facts concerning which object-control verbs al-
low long movement appear to hold for long-distance
scrambling in German. Bayer and Kornfilt (1989)
suggest that this is because all German verbs with
accusative controllers can take “prepositional ad-
verbs”, while those with dative controllers do not.
Thus, if the Romance data cooperates, it appears
promising that there can be a unified explanation
for the similar behavior of the object-control verbs
in Spanish and German.
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Introduction

The aim of this paper is to analyse the wh -
movement for Romanian in TAG formalism.
Romanian shares free extractibility from tensed
clauses with its Romance sister languages and it
has borrowed multiple wh-fronting from the
slavic languages. These features of Romanian
are quoted by Kroch (1989) from Comorovsky
(1986) , where he justifies the analysis of
extractions in TAG. This formalism allows a
correlation between the absence of wh-islands
and the possibility of multiple wh - movement.
But the facts of the Romanian language are more
complex .We consider here several phenomena
like simple questions, unbounded dependencies,
wh-islands, multiple wh — movement . Because
of order between the free wh-words for the
multiple wh-movement , a complete analysis is
not possible with TAG .

TAG derivation trees do not provide a good
representation of the dependencies between the
words of the sentence, i.e., of the predicate -
argument and modification structure.

Also, the derivation structures of MCTAG
(Joshi,1987) cannot be given a linguistically
meaningful interpretation (Section 3). We show
here that an analysis is possible with DTG
formalism (Vijay-Shanker, D. Weir, O.
Rambow,1995) that resolve these problems with
the use of a single operation -that we calf
subsertion -for handling all complementation.'

Simple Questions
(1) Pe cine; vedelon g 7

Who, sees loneg?
This sentence in the TAG formalism is
represented as a transitive tree with object
extraction and the initial place of the extraction

is marked by a trace . A characteristic feature
for questions is the inversion of the subject.

YWe are grateful to Anne Abeille
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Unbounded dependencies
The following sentences illustrate  some
examples of unbounded dependencies :
(2) Ce; regreti caa citit Maria ¢ 7

What ;do you regret that Mary has read ¢, ?
The wh -pronoun in the initial tree is in the same
verb with which it is construed and its
interpretation as the object of the verb ™ to read ™
is thus  guaranteed . Following  standard
conventions we represent the relationship
between the fronted constituent and  the
position in which phrases with its grammatical
role normally appear by coindexing the fronted
wh with an empty category. The relationship
between an indexed empty category and the
categorially identical, ¢- commanding node with
which it is in coindexed , we call * linking "
The adjunction of the auxiliary tree in the initial
tree produces the final tree in which the wh-word
is now initial in the matrix sentence.
Strikingly, there is no bound on the depth of the
embedding :
(3)Pe cine ;
placut g;?

Who ;do you think that Paul said that Ion
liked e;?
In (3), the wh-word is an argument of the most
deeply embedded verb * like ” , thus causing the
non-projectivity . A TAG can capture the long-

crezi ca Paul a zis ca Ion a

distance dependency naturally, since the
recursive  adjunction operation allows an
unbounded number of clauses to intervenue

between directly dependent lexemes. We first
substitute all nominal arguments into their
respective verbal trees , and then adjoin the
intermediate say —clause into the most deeply
embedded [like-clause at the S node immediately
dominated by the root. This has the effect of
separating the wh-word from its verb. even
though they originated in the same structure .
We than subsequently adjoin the matrix think -
clause into the intermediate say-clause .



Wh- isiands

Islands phenomena can be found in
Romanian for relative clauses and adjuncts.
(4)* Pecine; cunosti femeia ;
aintalnit ¢;?
Who j
€ met e;?
(5) * Pecine; ai plecat
examineze ¢ lonescu ?
Who ; did you
examine e ; Ionescu ?
These violate for locality reasons : there is no
way to localize the wh-element and its co-
indexed base position in the same tree set
{MCTAGSs) which can then be adjoined into a
single elementary tree.
But in the case of interrogative clauses are
not istands for extraction:

care ;
do you know the woman ; which

inainte sa

leave before that

{6) Pecine ; crezi ca Paul detesta e’
Who; do you think that Paul detests ¢, ?
{(7) Pentru care clauza ; vrei sa afli

cine je;nu a decis inca
e;? (Comorovsky 1986)
For which paragraph ; do you want to
leamm whog;  has not decided yet whaty he
will vote e, g ?
For this Kroch suggests an interesting account
that reduces the constraint on movement out of
an island to a local well-formedness condition
on elementary trees.

ce va vota ¢

Multiple Wh - Movement

In Romanian language multiple wh movement
are rare but grammatical Wh pronouns are
strictly ordered:

(8a) Cine cui; promite o masinae;?

Who to whom;promises a car e;?

(8b) *Cui cine promite © masinag; ?

To whom ; who promises a car ¢;?

(9a) Cui; ce; zice e; ca vezig?
To whom jwhat ; he says e; yousee ¢;?

(9b) *Cecui;zice ejca vezi e;?

{10a) Cui, pe cing; Paul zice e

vezig?

To whom; whom; Paul sayse; yousee ¢ ?
(10b) * Pe cine; cui; Paul zice ejca vezi e ?
(11a) Cine; pecine;j a zis ¢;ca avazut ¢

Who; whomy said e; he has seen e;?
(1b)*Pe cine; cine;a zis e; ca a vazut e;?
(12a) Cine; ce; ziceaicae; isi inchipuie
ca at descoperit e ; ?

a
<1
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Who jwhat jyou were saying that ¢, to0
himself imagines that you have discovered ¢;?
(12b) *Ce; cine; ziceai ca e jsi inchipuie ca ai
descoperit e;?

(13) Cine;  cui cey
ij- a promis €jCix ?

Who; to whom jwhat, you were saying
that ¢; to him jhas promised eje; ?
Examples 8(b)-12(b) .are not correct because
they don’t respect the ordering on the wh-
pronouns , which is the following:

cine(who)<cui  (

cine(whom)<ce(what)

Nome<Dat<Ace
The ordering constraint is kept even if the Wh
extractions are not dependent on the same
verb(9-12(a)).

When a non pronominal NP is also extracted .
several word orders are possible :
(14a) Ce masina ; cui ; Paul promite ¢
sa repare ¢;7

What carjto whom ; Paul promises ¢ jto
repair ¢; ?
(14b)Cui jce masina j; Paul promite e; sa repare
e,-?
To derive the sentence in (14a) ,for example.
we adjoin the tree " to whomn Paul promises ™
into the elementary tree ** which car to repair ”
and this example can be analysed in TAG
formalism.(Figure1)

ziceal ca g

to whom)<pe

CPextracted :+)

P
DPi CP

l /\p DPp CP
cui C I
DA ce masina

D T
|
| PRO /\
Paul /\ I VP
| P |
sa\/\
ve N\ cpr VP DPj

! {

VfP/\DPi repare
| I
promite t

CPlextracted :+]

Figure 1 : trees for (14a)

In examples 9-12(a) and l4(b} because of the
ordering constraint, the TAG formalism is not
able to analyse these cases , given the predicate -
argument coocurrence constraint on elemen-



tary trees.

The problem in describing this phenomena with
TAG arises from the fact observed by Vijay-
Shanker 1992 | that adjoining is an overly
restricted way of combining structures.

In Multi-Component TAG (MCTAG) (Joshi,
1987), trees are grouped into sets which must be
adjoined together ( multicomponent adjunction).
The elementary tree is split up into parts, which
are grouped together into sets. All trees from one
set must be adjoined at the same time, at
different nodes into the single tree representing
the embedded clause. However, MCTAG lack
expressive power since, while syntactic relations
are invariably subject to c¢- command or
dominance constraints , there is no way to state
that two trees from a set must be in a dominance
relation in the derived tree.(Figure 2)

{ S e S }
T S
DPil_ S DP VP
I
cui promite S t;
S
|4
DPj

|
ce masina DP VP

! /\
PRO saTepare

Figure :MC-trees for (14b)

DTG is designed to overcome this limitation .
Subsertion can be viewed as a generalization of
adjunction in which components of the clausat
complement (the subserted structure) can be

interspersed within the structure that is the site
of the subsertion

Voo Livisy

involving the use of domination links(d-edges)
that ensure that parts of the subserted structure
that are not substituted dominate those parts that
are . Furthermore,there is a need to constrain the
way in which the non - substituted components
can be interspersed.

The derivation proceeds as follows: we first
subsert the embedded clause tree into the matrix
clause tree. After we subsert the wh-pronoun of

DTG nrnvidp a mechanism

PO LW | PUVILG & e nnniisdll

94

the first clause and the wh-pronoun of the second

clause (The extraction of the first clause
precedes the extraction of the second
clause)(Figure 3)
top :+
wh :+
cp ﬁn +
op: D/l ‘CP wh -
wh i+ fin:+
dat ;+ Jm
acce :-
- - C 1P
DP T
[
Paul
! /P\
VP Ccpd
top:- 1
wh ;- !
VP DPi |[fini+ |
J i - -
promite t A

top :

wh +
CP|{ fin:+
ace i+

14 top
h + L/\F wh :-

fin o+
masina

D/\ r
]
PRO /\
p

l
sa VP/\DPj
| ]

repare 1

Figure 3 :quasi-trees for (14h)

In DTG formalism,the ordering constraint on
the extractions is marked by the feature
“topic ".The  final tree is the desired

semantically motivated , dependency structure :



the embedded clause depends on the matrix
clause), with respect to the ordering constraint
on the wh-pronouns.

Conclusion

DTG are designed to share some of the
advantages like other formalisms in the TAG
family, while overcoming some of their
limitations . The most distinctive feature of DTG
is that there is complete uniformity in the way
that the subsertion relate lexical items.
Furthermore , DTG can provide a uniform
analysis for wh-movement in Romanian, despite
the fact that the wh-elements in Romanian can
appear in sentence —initial position and in
sentence —second position.
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Which rules for the robust parsing of spoken utterances with
Lexicalized Tree Adjoining Grammars ?
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Abstract

In the context of spoken dialogue systems,
we investigated a bottom-up robust pars-
ing for LTAG (Lexicalized Tree Adjoining
Grammars) that interleaves a syntactic and
a semantic structure. When the regular
syntactic composition rules fail, the syn-
tactic islands and the corresponding partial
semantic structures are combined thanks to
additional local rules. We supply some de-
scriptive limits of the grammar with these
rules which depend on the immediate syn-
tactic context of the islands. In this paper,
we focus on their application to few spoken
phenomena.

Introduction

Robust parsing is needed to cope with spontaneous
uses of language. In particular, it is needed to deal
with out-of-grammar utterances occurring in spoken
man-machine interfaces. Because of the restricted
application domain of such interfaces, it is expected
that a robust architecture can interpret an unex-
pected utterance. This is illustrated with examples
in French like :

(1) Je voudrais un euh un billet pour Paris
I would like a hum a ticket for Paris.

(2) Départ G vers 20h.
Depart at well at about 8 p.m.

(8) Départ a huit enfin vingt heures.
Depart at 8§ I mean 8 p.m.

(4) Je voudrais le premier qui part.
I would like the first (one) which leaves.

(5) Je voudrais un billet maintenant pour Paris.
I would like a ticket now for Paris.

Those utterances represent a typical variety of
spoken phenomenon namely a repetition (with hes-
itation) in (1), a self repair in (2), a correction in
(3), a noun ellipsis in (4) and the insertion of an ad-
verbe within a noun phrase (5). Parsing failures are
respectively due to the impossible mapping of the
parasite determiner into the derived tree (1), to the
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presence of a self repair (2) and (3), to a non canon-
ical constituent (4) and finally to the prepositional
attachment across the adverb barrier (5).

In the LTAG framework, we propose to repre-
sent the syntactic (partial) trees as connected routes
(section 1.2). Adjunction, substitution but also ad-
ditional local operation are applied to connected
routes to make up the descriptive limits of the TAG
formalism. Iu section 2, we expose a small set of
rules which handle those routes -instead of the trees-
and force operations between the trees. Assuming
that local disruptions can be resolved by semautic
mechanisms, some robust analyses receive a seman-
tic counterpart in a synchronous TAG framework
(section 3). Overgeneration remains a major chal-
lenge that we discuss in section 4. We will begin
briefly explain the Connection driven parsing prin-
ciples.

1 Connection driven parsing for
lexicalized TAG

1.1 Connected routes

We define a connected route as a list of internal and
root nodes crossed successively according to a left
to right tree transversal (Schabes, 1994) until reach-
ing a substitution or a foot node (included barriers)
or an anchor (excluded barrier). Each elementary
or derived tree can be represented as a list of con-
nected routes. As the list of connected routes is or-
dered from left to right, we define the function next
which gives from a given connected route the next
connected route.

In (Lopez, 1998b) we explain how to lead a
bottom-up bidirectional parsing focused on con-
nected routes instead of focused on nodes as for other
algorithms for TAG. Two data structures are used :
the table of connected routes which gathers all the
connected routes and a chart of parsing states which
stores the sequences of well recognized anchors and
their left and right connected routes.

1.2 Island representation with connected
route

When no connected parse can span the whole sen-
tence, the result of the parsing consists in representa-
tions of islands and its both right and left connected
routes. An interesting point of this representation



(a) Raule for hesitations :
(ijer‘G'sI‘D;idf) (j,k,FlGr,Fb,idf')

(k, 1, T, % idf")

- (i, k,Tq,Tp,idf)

(b) Rule for head ellipsis on the left :
(:,7, T, I'p,idf) (§, &, T, Iy, idf)
(il kl FG: I‘b) de”)

(c) Rule for argument ellipsis on the right :
(ilj) FG: I‘D:ldf)
(ilj7 FG: I"DyzdﬁT

(d) Rule 1 for self repair :

(i)le‘GJFDaidfP) (j)k)rl(z)rfl)’igq)
(i)k)rG)ﬁgl 1dfl‘)

(e) Rule 2 for self repair :

(i:j9 FGxI‘D:{dfp) (j)ka ’G:

(B, L, T, T, adf™)

(3(v, w, T, T idf) € A, idf =>* idf,

poidfg) (k4,16 Tp, idfr)

(TG =T'p = (root, H))

(3(foot,X) € TpA

(F(subs, X) €TV 3(foot, X) € TG))

(I(subs,X) €Tp A T'p =next(l'p))

A
A Hfool,X) e T,V
A 3I(root, X) € TL))

(3(root|internal, X) € T
(3(subs, X) e T

((3(foot, Y)Y €T, A

(A(root|internal, XY €Tp A

(i,,Tg, I'p, 1df,)

I(foot,X)elY) Vv
(I(subs, X} eTp A
J(root, X) € TE))

Figure 1: Example of repairing

is that these connected routes correspond to the left
and right context of the well recognized islands. A
parsing state e is defined as the following 5-tuple :

state : ( left index, right index, left connected
route, right connected route, idf )

The two indices are the bounds of the input string
covered by the island (anchors or the consecutive
anchors) corresponding to the parsing state. During
the initialization, we build a state for each anchor
present in the input string. As each elementary and
derived tree is identified, the anchor or the connected
anchors belong to the tree idf. Those representation
allows efficient partial parsing. This is the starting
point of our robust strategy.

2 Robust Parsing with rules
2.1 Connected routes as flexible categories

A classical bidirectional TAG parsing (Lavelli and
Satta, 1991) (van Noord, 1994) can not directly com-
bine incomplete islands but it is possible to adapt the
parser behaviour to the remaining syntactic mate-
rial. Adaptations can be easily simulated by consid-
ering a connected route as a flexible category. The
has already suggested that elementary trees can be
considered as flexible structured categories (Doran
and Srinivas, 1994). According to the linguistic con-
text, local rules can proceed to local adaptation of

rules for connection driven parsing

the routes. Then, the parser can try again to expand
islands in both directions.

2.2 Inference rules system

The new derivation processes can be viewed as in-
ference rules (Shieber et al., 1995) which use the
parsing states described in section 1. The inference
rules (Schabes, 1994) have the following meaning, if
(ftemy); are present in the chart A and if the condi-
tions are verified then add (item;); in A :

__(ﬂem_;)i_ (conditions)
(item;);

We note = the reflexive transitive closure of the
derivation relation between two elementary or de-
rived trees : if idf =* idf’ then the tree identified
with #df’ can be obtained from idf after applying to
it a set of derivations.

The full system (including adjunction and substi-
tution) increases the worst case complexity to O(n®)
and deals with the following phenomena among oth-
ers.

2.3 Ellipsis

The TAG formalism presents difficulties to describe
these very common spoken productions. Tor in-
stance, the parsing of utterance (4) does not succeed
to find any complete derivation if premier does not
exist in the lexicon as a noun or without the use of
a sophisticated non lexicalized structure.
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Two rules and their two symetrical configurations
try to detect and recover respectively an empty head
(b) and an empty argument {c). For instance, rule
(b) attempts to make available an adjunction on a
node marked for substitution if adjacent and cate-
gorial constrainls are respected. When the rule (b)
applies during the parsing of the example (4), the N1
node of the structure NO-vouloir-N1 becomes candi-
date for an adjunction of the nominal auxiliary trees
associated with sequences le premier and qui part.

2.4 Self repairs

The (Cori et al., 1997) definition of self repairs stip-
ulates that the right side of the interrupted struc-
ture (the partial derived tree on the left of the inter-
ruption point) and the reparandum (the adjacent
syntactic island) must match. Instead of modif-
ing the parsing algorithm as (Cori et al., 1997) do,
we consider a connected route matching condition.
Rule (d) deals with self repair where the repaired
structure has been connected on the target node.
Rule (e) applies when the repaired structure has not
been connected. In example (2), rule (d) detects the
structural matching between the two prepositions a
and vers. Then the rule reintroduces the target node
on which the prepositional phrase vers Paris must be
adjoined. The corresponding semantic tree of the a
preposition is deleted.

Rule (e) remains relevant even if islands are sepa-
rated by an hesitation (1) or a modification marker
(3). Indeed the rule for hesitation (a) absords adja-
cent elementary trees whose head is a H node. Such
a tree may correspond to different kind of hesitation
forms. Rule (a) deletes an hesitation which can play
the role of a barrier and a trace is kept in the chart.

3 Robust parsing with a
Synchronous Semantic Tree
Grammar

In combinatorial Grammars and lexicalized syn-
chronous Semantic Tree Grammars (Shieber and
Schabes, 1990) (Kallmeyer, 1997), predicate argu-
ment relations are directly encoded in the lexicon.
This provide a syntax/semantic correspondence and
additional well-formed criterion to validate an anal-
ysis (Abeill¢, 1992). Robust parsing can take advan-
tage of this property to only combine the syntactic
islands in respect to the combination that the corre-
sponding semantic fragments accept. In the case of
robust parsing of an elliptic construction, the mech-
anism which allows such syntactic and semantic con-
trol consists in lambda abstractions.

For instance, the parsing of sentence (4) gives rise
in the semantic tree shown Fig 2. Rules (b) and
(c) combine islands without considering the empty
argument. To control that the missing argument is
present at the leftmost side of the partial derivation
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F
1
’request T \ T
- [ |
‘speaker T \
T R
VAN |
T 3 F
/N 7N
Tx; R T F
! [ !
first pron; ’leave

Figure 2: Logical form associated to the robust anal-
yse of sentence (5) by synchronous adjunctions and
substitutions

(3) or in the discourse structure (4), the semantic
tree (see Fig 2) is translated in a denotational se-
mantic by the introduction of lambda operators. We
obtain the following formula for example (3) :

Az :term (request(speaker(z), Ay : term

Jy(first(y) A leave(y})))

To check if a well- formed formula is obtained, one
can test the application of lambda abstraction on the
missing predicates and curryfication on independent
variables. The resulting semantic tree is correct for
the previous example but if we consider a sequence
like (6) :

(6) Je voudrais le.
1 would like the.

the following formula obtained is not correct because
the predicate w needs to be instanciated :

Az : term (request(speaker(z}, Aw : form
Xy : term 3y(w(y)))

4 Discussion
4.1 Rules vs specific lexical descriptions

Another way to deal with a sentence like (4) is to
adopt a specific elementary tree for the adjective pre-
mier as explained in (Lopez, 1998a). In that case,
the ellipsis resolution is not triggered directly by the
parsing failure and a sentence like (7) is rejected.

(7) Je voudrais le qui part.
I would like the which leaves.

The same approach could be applied to the de-
scription of word order variation. In a Tree Gram-
mar, word order must be determined by dependency
relations. While substitution often corresponds to
an ordered relation between argument in a syntac-
tic structure, this is not the case for adjoined con-
stituents, especially for adverbs. For instance, the



parsing of utterance (5) needs to consider the adverb
maintenant as an unusual nominal modifier. The
compositionality principle restricts the combination
of this syntactic unit to trigger a synchronous combi-
nation on the same semantic node that the sentencial
adverb does. It is expressed in synchronous TAG by
a semantic tree which is synchronously combined at
a different node than the syntactic tree.

In this paper, we argue for a rule based approach
because we suppose that ambiguous analyses are
taken into account at a upper level in a given ap-
plication domain. By this way, we have to consider
more analyses but we avoid inherent restrictions of
the “augmented representation”.

Indeed, the latter is limited because the seman-
tic derivation can not always be built synchronously
with the syntactic derivation. That is the case with
the following sentence (8) :

(8) Un train maintenant pour Paris doit-il partir?
Does a train now for Paris have to leave?

Moreover, a sentence like (9) triggers redundant
analysis because the both elementary trees for the
adverb maintenant (sentencial and nominal modi-
fier) are valid concurents.

(9) Je voudrats un frain pour Paris maintenant,
I would like a train for Paris now.

4.2 Constraints vs preferential mechanisms

A previous experiment {Roussel and Halber, 1997)
has shown that a robust parsing strategy based on
a lexicalized grammar and a set of additional rules
can improve the performances of a spoken dialogue
system. However, in this experiment, a lot of spu-
rious concurent hypothesis were still hard to elimi-
nate whereas the lexicalized tree grammar was en-
riched with specific semantic constraints. This re-
sult adresses the need of a scoring method to cross-
check more knowledge sources. In this framework,
the use of semantic control could be use indepen-
dently among other criteria (hesitation cues, con-
ditions on speech acts, dialogue history, focus, ...}
(Roussel and Modave, 1998).

Conclusion

We have shown that connected routes and catego-
rial abstractions gives robustness capacities in a lex-
icalized tree grammar framework. Many questions
are always investigated as the scoring method. A
complementary perspective is to extend the rules
to more complex discourse representations (Webber
and Joshi, 1998).
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Abstract

Categorial  Grammars (CGs; Wood 1993),
grounded in algebra (Lambek 1958) and math-
ematical logic (Ajdukiewicz 1935), have rightly
pushed to the limit the use of logically and al-
gebraically justifiable rules for the combination
and alternation of types in describing natural lan-
guage. However, when TAG trees are mapped to
CG categories, tree-families - linguistically well-
motivated objects - can only be mapped to arbi-
trary category sets.

To capture predictable category alternations,
such as noun / adjective alternations, or valency
alternations for verbs, this paper proposes ex-
tending a CG with non-algebra-preserving rules,
comparable to the “lexical redundancy rules” of
early lexicalist theory. The theoretical argument is
backed by an analysis of the degree of compaction
which could be achieved by applying such rules
to the CG “Large Lexicon” developed at IRCS,
UPenn. The reduction which could be achieved
both in the number of lexical entries and, more
significantly, in the number of categories needed is
considerable.

Redundancy rules in theory

CGs have always included both binary rules (such
as function application and function composition)
and unary (type-shifting) rules, and indeed the in-
teractions between these two rule types have been
involved in many debates within CG. The unary
rules have been restricted to those which preserved
algebraic identity: type-raising NP to S/(S\NP),
for example, does not in itself affect the descrip-
tive power of the grammar. However, it is no-
torious that words can be highly ambiguous as
to category, even in a phrase structure grammar
with categories of a fairly coarse grain size (such
as “verb”), but far more so in a CG. One of the
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central advances of the lexicalist movement in lin-
guistic description (eg Bresnan (ed) 1982, Gazdar
et.al 1985) was the recognition and formalization
of patterns in the lexicon such as active / passive
alternation. Indeed it is ironic that the most ex-
treme of lexicalist grammars has not adopted such
lexical rules.

CGs could and, I believe, should have such
type alternation rules. For example:

Nominals:

a lexical noun can also serve as a noun phrase, or
a noun modifier or noun phrase modifier

N =5 {NP, N/N, NP/NP}

Passives:

a lexical verb will also have a passive form taking
one fewer nominal complement

(S\NP) /NP => S\NP

((S\NP) /NP) /NP => (S\NP) /NP

etc.

Gerundives:

a verb (function into S) will also have a gerundive
form (function into NP)

(S\NP) /NP =% (NP\NP)/NP

((S\NP) /NP) /NP => ((NP\NP)/NP) /NP

ete.

The exact semantics of the rewrite arrow is not
at issue here. It is perhaps best taken as a well-
formedness constraint or licensing statement along
the lines of GPSG meta-rules: “if ithat is iegal, so is
this”. Nor are we concerned with implementation
details such as whether the rules cause expansion
at run-time or compile-time. The claim is that
these alternations are facts of natural language,
and a linguistic theory must have rules to describe
them, as indeed most linguistic theories do.



Redundancy rules in practice

The UPenn Combinatory CG “Large Lexicon”
{Doran and Srinivas, forthcoming) was created by
automatic translation from the large TAG lexicon
developed by the TAG Group at the UPenn In-
stitute for Research in Cognitive Science (XTAG
Group 1995). TAG trees were mapped to CG
categories, and the result modified by hand, prin-
cipally by Christy Doran, B. Srinivas, and Mark
Steedman. Some debugging remains to be done,
so these figures are approximate:

36,950 entries

17,960 words

11 POS values

86 CG categories

120 CG category “families”

effectively about 110,000 entries (word / cat-
egory pairs)

Cutegory families are sets of categories which
typically and predictably are assigned together to
a word, causing the expansion from 37,000 word
entries to 110,000 word / category pairs. In the
original TAG lexicon, words are assigned tree fam-
ilies, which are linguistically well-motivated ob-
jects (Xia et al, in preparation). In the translation
from TAG trees to CG categories, the motivation
is lost, and we are left with seemingly arbitrary
category sets. It is these which can be both moti-
vated and compressed using redundancy rules.

Here are some example entries from the lex-
icon. (The index numbers serve to distinguish
atoms within each complex category, and have no
other significance. 1 give the corresponding TAG
trees for the first entry only.)

Verbs: each verb stem has one or two block entries,
with some redundancy in passive and gerundive
categories:

INDEX: crease/l1

ENTRY: creass

POS: v

CAT: S_O\NP_O
HP_O\{NP_1/N_0)
NP_O\NP_1

;3 Intransitives

Gnx0OV NP_O\NP_1 RINTRANSger
InxQVY S_O\NP_O #INTRANS
WonxOV  S_O\NP_O BINTRANS
nxovV S_O\NP_O BINTRANS
NOnxOV  S_C\NP_O #INTRANS

DnxOV NP_O\(NP_.1/H_0) H#INTRANSger
#LagrpassiiP_0

INDEX: crease/2

ENTRY: crease

P0OS: b

CAT: (S_O\NP_0) /NP_1
(S_.O\NP_0)/PP_O
{NP_O\NP_1)/NP_2
NP_O/NP_1
N_O/H_1

FS: #TRANS+

Nouns: each noun stem has four block entries,
containing 12 categories (singular / plural x head
noun / modifier, plus predicatives) which could be
reduced to one:

INDEX: Afghan/1

ENTRY: Afghan

P0S: N

CAT: (S_O\NP_O)\(RP_1/N_0)
(S_O\S_1)\(NP_O/N_0)

FS: #N_refl- #N_wh-

INDEX: Afghan/2
ENTRY: Afghan

POS: N

CAT: NP_O
N_O
H_O/N_1
NP_O/NP_1

Fs: #N_refl- #N_.wh-

INDEX: Afghans/1

ENTRY: Afghans

PDS: H

CAT: (S.0\NP_O)\(NP_1/H_0)
(5_0\S_1\(NP_O/N_0)

FS: #N_refl- #H_vh~

INDEX: Afghans/2
ENTRY: Afghans

POS: N

CAT: NP_O
K O
H.O/N_1
HP_O/NP_1i

FS: #N_refl~ #N_wh-

Adjectives: each adjective has two block entries,
containing four categories (singular / plural mod-
ifier, plus predicatives) which could be reduced to
one;

INDEY: Canadian/i

ENTRY: Canadian

POS: A

CAT: NP_O/NP_1
N_O/N_1

FS: HA_WH-

INDEX: Canadian/2
ENTRY: Canadian
POS: A
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CAT: S_0\NP_O
(HP_O\NP_1)\ ({(S_O\NP_2)/{(S_1\NP_3))
FS: #A_WH-

Since the exact figures for this sort of simple
numerical compression are entirely dependent on
incidental details of the composition of the original
lexicon, it is more significant to look at the size of
the set of categories used in the lexicon.

It is well known that CG categories are more
detailed, and therefore more numerous, than the
traditional categories of phrase structure gram-
mars (“verb” becomes the set S\NP, (S\NP)/NP,
((S\NP)/NP) /NP, ..., etc.). Itis less commonly ob-
served that a single CG category can correspond
to more than one PSG category, where different
parts of speech have the same syntactic behaviour.
For example,

S_O\NP_O

Intransitive active

The scuffling and miaowing abated.
Transitive bare passive

The food was accepted.
Predicative adjective

That proposal is absurd.
Predicative nominal

Pepper is a tabby cat.

Predicative pp

The president is abroad.

I refer to these as the senses of a category, and to a
category with more than one sense as ambiguous.
A primary sense is basic or irreducible, like the
first sense (intransitive active) above. A secondary
sense is a derived usage which could be predicted
or derived by rule from some other category. Thus
S_O\NP_0 (transitive bare passive) is derived from
{S_O\NP_) /NP (transitive active) by a passive rule
which systematically reduces the number of argu-
ment NPs to a verb by one, The three predicative
senses are derived from basic adjectival, nominal,
and prepositional categories by rules which are less
neat schematically, but do make the appropriate
predictions.

(Bear in mind that only the structural syn-
tactic category itself is being considered here.
Since TAG trees include part-of-speech informa-
tion, “similar” looking trees are distinguished by
the part-of-speech that anchors them. In CG cat-
egories, since part-of-speech information is not ex-
plicitly encoded, it appears that there are redun-
dancies. However, as we saw above, lexical entries
in the CCG Large Lexicon contain a POS field, so
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during lexical access, given a part-of-speech, there
will not be any confusion of this nature.) Further,
structurally identical categories will often be dis-
tinguished at a finer grain-size by having different
features. The detailed form of any redundancy
rules will have to include these.)

Although the proposed redundancy rules do
give a worthwhile reduction in the number of cat-
egories needed, the number of senses which can be
omitted, and the number of ambiguous categories,
are more dramatically reduced.

The present CCG Large Lexicon category set
includes:

86 categories, with
113 senses

of these, there are:

19 ambiguous categories, with
46 senses

By using redundancy ruies to predict gerunds, pas-
sives, predicatives, and secondary nominal uses,
we reduce this to

86 — 65 categories, with
113 — 73 senses
including:
19 — 6 ambiguous categories, with
46 — 14 senses.

The 40 senses eliminated (over one-third of the to-
tal) are made up of

12 gerunds

13 passives

13 predicatives

2 nominals

The 20 categories eliminated entirely include, for
example:

((NP_O\NP_1)/NP_2)/NP_3
Gerund of ditransitive

John giving the cats an unusually large break-
fast kept them happy for a few hours.
S_0/NP_Q

Predicative

Pepper is a tabby cat - What is Pepper?

The thirteen ambiguous categories which
become unambiguous include the example of
S_O\NP_0 given above, which keeps only its pri-
mary sense of intransitive verb, losing four sec-



ondary senses, one passive and three predicative.
When one considers that at present the first 15
words in the lexicon with this category are: abate,
abdicate, aberrant, abhorrent, abide, abject, able,
abnormal, ebominabie, aboriginal, abort, abortive,
above, abrasive, abroad one advantage of the sim-
plification is ovbvious. Similarly:

NP_O\NP_1

ahate, abdicate, abide, abort, above, abroad, ab-
scond, abstain, abut, accede, accelerate, accept, ac-
climatize, accord, accrue

Gerund of intransitive
the noise abating
Independent preposition
the stars above, an Englishman abroad

keeps only its prepositional sense and loses the
gerundive,

The remaining ambiguities are entirely rea-
sonable: for example,

(S_O\NP_0)/(S_1\NP_1)

Adverbs

Pepper already was demanding breakfast.
Auxiliary verbs

She had prodded John's face several times.

(S_O\NP_O)\(S_1\NP_1)

Adverbs

Pepper was demanding breakfast already.
Negation on auxiliaries

John did not want to get up that early.
Exhaustive PPs

He moved her away.

Redundancy rules will not only compress the
explicitly given category set, but expand the set
implicitly available. Crossing seven of the basic
verb categories (intransitive, intrans + particle,
intrans + adjective, transitive, trans + PP comp,
trans 4+ VP comp, trans + V comp) with five of
the derived forms (active, bare passive, by-passive,
gerund, gerund + determiner} should give 29 cate-
gories (as intransitives have no passive forms). Of
these, only 18 are actually given in the current

lexicon, presnmably due to accidental gaps in the

corpus data from which its parent TAG lexicon
was originally derived.

Conclusion

This proposal will not be popular with the log-
ical purists in the CG community. In language
engineering terms, it will be necessary to control

the appplicability of redundancy rules and to ex-
plore their effect on parsing. What I offer here
is some quantified evidence, derived from a re-
alistically large large lexicon intended for serious
linguistic description, for the nature and scope of
the benefits that a categorial grammar could gain
from a systematic formalization of predictable lex-
ical relations through lexical redundancy rules or
category families.

Acknowledgements

This work rides on the shoulders of the people who
developed the CCG Large Lexicon: I am deeply
grateful to Christy Doran and B. Srinivas, in par-
ticular, for their generosity and support. Thanks
also to David Brée, Jong C. Park, and Mark Steed-
man. Much of the credit is theirs; any errors or
idiocies are mine.

References

Ajdukiewicz, K. 1935, “Die syntaktische Kon-
nexitit”. Studia Philosophica 1:1-27; translated
as “Syntactic connexion” in McCall (ed) Polish
Logic. Oxford.

Bresnan, J. ed. 1982. The Mental Representa-
tion of Grammatical Relalions, MIT Press, Cam-
bridge, Mass.

Doran, Christy and B. Srinivas. Forthcoming.
“Developing a Wide-Coverage CCG System” To
appear in a CSLI Volume of the Proceedings of
TAG+38, ed. Anne Abeille and Owen Rambow.

Gazdar, G., E. Klein, G. Pullum and I. Sag.
1985, Generalized Phrase Structure Grammar.
Blackwell, Oxford.

Lambek, J. 1958, “The Mathematics of
Sentence Structure”.  American Mathematical
Monthly 65:154-70; reprinted in Buszkowski, Mar-
ciszewski and van Benthem (eds) Categorial
Grammar. John Benjamins, Amsterdam.

Wood, M.M. 1993. Categorial Grammars.
Routledge, London.

Xia, Fei, Martha Palmer, K. Vijay-Shanker,
Joseph Rosenzweig. In preparation. “Consis-
tent Grammar quclopmeﬁh Umus Partial-Tree
Descriptions for Lexicalized Tree-Adjoining Gram-

mar”.

The XTAG Group. 1995. “A  Lexi-
calized Tree Adjoining Grammar for English”.
Technical Report IRCS 95-03, University of
Pennsylvania.  Updated version available at

http://www.cis.upenn,edu/ xtag/tr/tech-report.h

103



Packing of Feature Structures for
Optimizing the HPSG-style Grammar translated from TAG

Yusuke Miyaot, Kentaro Torisawat, Yuka Tateisit, Jun’ichi Tsujiitt
tDepartment of Information Science, Graduate School of Science, University of Tokyo*
Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
1CCL, UMIST, Manchester, U. K.

E-mail: {yusuke, torisawa, yucca, tsujii}@is.s.u-tokyo.ac.jp

1 Introduction

This paper describes a method for packing fea-
ture structures, which is used for reducing the
number of constituents generated during pars-
ing, and for improving the parsing speed. The
method was developed for optimizing a pars-
ing system for XHPSG (Tateisi et al., 1998)
translated from XTAG (The XTAG Research
Group, 1995). The XHPSG system is a wide-
coverage parsing system for English based on
HPSG framework (Pollard and Sag, 1994). This
system is also intended to be used for processing
large amounts of texts, for the purposes such as
information extraction. Current parsing speed
of our system is not sufficient encugh to achieve
this goal.

Our method improves the parsing speed by
solving the problem which the XHPSG and the
XTAG system have. That is, many lexical en-
tries are assigned to a word, and many con-
stituents are produced during parsing. The ex-
perimental results show that our method leads
to a significant speed-up. The results also sug-
gest the possibility of optimizing the XTAG sys-
tem by introducing packing of feature structures
and packing of tree structures, although these
operations are not currently so apparent.

2 The XHPSG System

This section describes the current status of the
XHPSG system and the efficiency problem in
the system. Both of the grammar and the parser
in the XHPSG system are implemented with
feature structure description language, LiLFeS
(Makino et al., 1998). The grammar consists
of lexical entries for about 317,000 words, and
10 schemata, which follows schemata of the

This work is partially founded by Japan Society for
the Promotion of Science (JSPS-RFTF96P00502).
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Daughters

Syitem with the Packing Module

Original XHPSG Spatem

Figure 1: Data flow in the parsers for the XH-
PSG system.

HPSG framework in (Pollard and Sag, 1994)
with slight modifications. The parser is a simple
CKY-based parser.

Currently, the parsing speed of this system is
not satisfactory, and we need further improve-
ment of the parsing speed. One of the ma-
jor reasons of inefficiency is that the XHPSG
system assigns many lexical entries to a single
word. For example, a noun is assigned 11 lexical
entries, a verb is assigned 20-30 lexical entries,
and some words are even assigned more than
100 entries. .

This characteristic is inherited from the
XTAG grammar. The XTAG grammar assigns
many elementary trees to a single word, and
there is a one-to-one correspondence between a
lexical entry in XHPSG and an elementary tree
in the XTAG grammar. The XTAG system ap-
plies a POS tagger before parsing in order to
overcome this inefficiency by reducing the num-
ber of lexical entries assigned to a word. How-
ever, this method sacrifices the soundness of the



word
PHON ( “walked" )

verd
VMODE smodeind
HEAD [MAINV Yoolean ]
SYNSEM|LOC|CAT PAS? boolean
SUBJ { nosn }
VAL [COMPS )
SPR ()

word
FHON { “walked” )

HEAD | MAINV phay

verd
VMODE smodeppart
PASS plas

SYNSEM|LOC|CAT

SUBJ { mouxn )
VAL [COMPS {} ]
SPR ()

Figure 2: Two of the lexical entries for an En-
glish verb “walked”. Underlined values are dif-
ferent. Most of the features are omitted for sim-
plicity.

word
PHON { “walked” }
verd

VMODE [1]
Manv (2|

PASS
SUBJ ( mown )
VAL {COMPS O ]
SPR {)

Sol
a: {{wmadeind, boolean, boolcon), (smode.ppart, plss, plus)}

Figure 3: A packed feature siructure for the lex-
ical entries shown in Figure 2.

HEAD
SYNSEM|LOC|CAT

parsing process. In the case that the tagger fails
to assign the correct POS to a word, correct syn-
tactic structures may not be created even when
the grammar potentially covers such structures.

To solve the same problem, we propose a
new method described in the next section. The
method can gain a similar effect, but does not
sacrifice the soundness of parsing.

3 Packing of Feature Structures

The left hand side of Figure 1 illustrates the
data flow of the original parser of the XHPSG
systern. There are two major operations, unifi-
cation and factoring. When we apply a schema
to daughters, a unification operation is per-
A set of moth-

F SO | \
formed, and a mother is created.

ers are reduced to a smaller set of feature struc-
tures by factoring operation!, and these con-

YA factoring operation in a CKY parser for CFG
reduces the number of constituents by identifying con-
stituents described by the identical non-terminals. The
operation plays a crucial role for avoiding an exponential
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create PFS(F)
Ci=L, v:=(), 6:=()
for each f € features(f)
if f € DisjFeatures then
v = (follow(C, f))ev
§ 1= (follow(F, f))eé
else
F':=follow(F, f)
(C',v', {#'}) =create PFS(F')

~

C:=CUff
vi=rav', §:= 608
end_if
end _for

return (C, v, {§})

Figure 4: Algorithm for creating new packed
feature structure from a feature structure. ‘@
denotes the concatenation operation of se-
quences.

stituents are put into CKY table.

The right hand side of Tigure 1 illustrates
the parser with the packing module. The
unification and the factoring operation in the
original parser was replaced by unification of
packed feature structures and dynamic packing.
These operations are more efficient than the cor-
responding one, because multiple applications
of schemata are reduced to one unification of
packed feature structures, and multiple opera-
tions of factoring are reduced to one dynamic
packing. In addition, dynamic packing reduces
the constituents further than the factoring op-
eration.

With a simple example, now we see how fea-
ture structures are packed into one. Figure 2
shows two of the lexical entries that the XHPSG
system assigns to an English verb “walked”.
These lexical entries correspond to distinct ele-
mentary trees of XTAG. They are different in
only a few features, while each feature structure
has over 100 features. That is, most of them
have equivalent values, so that it is redundant
to have each of them as two independent featurc
structures.

For these feature structures, a packed feature
structure is described as in Figure 3. C speci-
fies the common part of the original two feature

explosion of the time complexity of the parsing of CFG.

In the case of HPSG, the similar effect can be accotn-
plished by the factoring operation, which identifies the
constituents with equivalent feature structures in this
case. We have observed that parsing time with syntac-
tic grammars can be reduced significantly, though this
operation does not lead to a reduction of computational
time complexity i¢ polynomial.



pack_feature structures(PFXS)
PFS = ¢
for each P=(C,v,A)€ PFS
if P'={C"v',A') € PFS' such that
C' is equivalent to C and,
for each {0 <i< k)
paths(C, n;) = paths(C', nl}
where v = {ng, -+, ni) and v’ = (ng,---,nk)
then
Ah’ = A UAI
PFS = (PFS\{P'V)U{(C,v,A")}
else
PFS' :=PFS'U{P)
end_if
end for
return PFS’

Figure 5: Algorithm for packing a set of packed
feature structures,

unify_packed _feature structures(P;, /)
P] = (Cl, lll,Al)
Py = (Ca,1n,A2)
A=¢
if success C:=C; U, then
yi=m Ql/z
for each 61 € Ay and 62 € A,
6 := copyl{{vy Ué1)0(r2 U &)). .U,
A= AU{S
Cancel the side-effect of L]
occuring during computation of Uj.
end_for
end.if
return (C,v, A}

Figure 6: Algorithm for unifying two packed
feature structures.

structures. v expresses the nodes? in the fea-
ture structure, to which disjunctive structures
are incorporated. The nodes are expressed as
tags for structure sharings such as . A ex-
presses a set of different values, that come to
the position specified by the nodes in v. Hence,
the original feature structures are obtained by
unifying one of the elements of A to the nodes
in v. A packed feature structure holds exactly
the equivalent information of the original fea-
ture structures with a smaller data size,

4 Algorithms

This section describes three algorithms, (1)con-
version of a feature structure to a packed feature
structure, (2)packing of packed feature struc-

2Though feature structures are expressed in a conven-
tional matrix-like notation, they can be seen as directed
graph with a root whose nodes and arcs are labeled. Fea-
tures are [abels for arcs and the labels for nodes are called

types.
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tures and (3)unification of packed feature struc-
tures, :

The last two algorithm requires packed fea-
ture structures as their inputs and the first al-
gorithm js used for convert non-disjunctive fea-
ture structures to such inputs to the two algo-
rithms. Figure 4 shows the first algorithm for
converting a feature structure to a new packed
feature structure. We assume that a packed fea.
ture structure is given as a triple (C,v,A) as
described in Section 3. The input to this al-
gorithm is a (non-disjunctive) feature structure
and a set of features, to which the disjunction is
introduced. In the figure, F' is a feature struc-
ture and DisjFeatures is a set of features. The
function follow(F', f) returns the node in ¥
reached by the feature f from a root of F'. What
the algorithm does is to split F' into two parts,
the first part is C' and the other part is a set of
nodes and a set of substructures represented by
v and A respectively.

Figure 5 shows the algorithm for packing al-
ready packed feature structures. In the fig-
ure, PFS denotes a given set of packed feature
structures, and PFS’ denotes a newly created
set of packed feature structures. The function
paths(F,n) returns a set of all the paths to the
node n in F. The algorithm for packing lexical
entries is straightforwardly obtained from this
algorithm and the previous algorithm,

Figure 6 shows the algorithm for unifying two
packed feature structures. The overall algo-
rithm is similar to the one in (Kasper, 1987),
although data structures for disjunctive feature
structures are different. Intuitively, we first
unify common parts (C; and C;), and next
check consistency of each combination of dis-
juncts in Aq and Aj. The operator U de-
notes the unification of non-disjunctive feature
structures®. The unification is regarded as an
destructive procedure in the figure. It has a
side effect to the input feature structures. For
instance, suppose that feature structures stored
in the variables F' and F” have the nodes stored
in the variable n and »’ as their substructure
and that for some path = follow(F,r) = =,
follow(F',x) = n’ and n # n’. After perform-
ing the unification F L F”, the values of F, F',n
and »’ are automatically updated and, as a re-
sult of the update, FF = F’ and n = »’ hold.
In the algorithm in the figure, this type of side-

¥ Unification of tuples is a tuple of the results of the
unification of corresponding elements of the tuples.



Features incorporated from NTAG
PRD, CASE, PRON, REFL, YMODE, MAINV, EXTRACT,
TRANS, PASS, PERF, PROG, ASSIGN.CASE, INV

Other features
HEADPHON, MARKING, CONT, TRF

Table 1: Specified features for the experiments.

Parsing time in avg. (sec.)
Test set A Test set B
Old System({O} 2.31 14.45
New System({N) 1.29 5.88
Improvement Ratio(O/N} 1.79 2.46

The experiments are performed on Alpha Station 500
{500MHz CPU, 256MB Memory), and the times are
measured in User Time,

Table 2: Results of the experiments.

effects is assumed to occur for the values stored
in the variables such as Cy,Ca, 1,19, 6; and 4,.
The mechanisms for the side-effect and its can-
celing are similar to the execution mechansims
of Prolog, including backtracking. They are also
implemented in LiL¥eS. The copy is a procedure
to create a distinet feature structure equivalent
to the input feature structure and the newly cre-
ated feature structure is free from the side-effect
of the unification against the original input fea-
ture structure.

5 Experiments

This section shows the experimental results
of the current implementation of our packing
method. Experiments are performed by spec-
ifying features originated in XTAG and a few
other features as in Table 1.

The packing module is implemented with
LiLFeS, and is incorporated into the XH-
PSG system.  We compared the parsing
times of (1)Test set A (337 sentences, 8.37
words/sentence)! and (2)Test set B (16 sen-
tences, 11.88 words/sentence)®, between the
(1)New System (with the packing module) and
the (2)Old System (without the packing mod-
ule). The parsers of both systems are simple
CKY-based parsers. As Table 2 shows, the pars-

O ) NN 1
lg Lilli€s3 il TESt set 4’—‘1,

Ithos Ty

Ilig bpt:t:u uupzuvca 0y 1
and 2.46 times in Test set B, which consists of

4Test set A is bundled in the XTAG system for check-
ing the grammar.

5Test set B is a subset of Test set A. The subset
consists of 16 sentences, each of which costs more than
10 seconds to parse.
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sentences costing much time to parse. In Test
set A, the number of lexical entries is reduced
by 35.3%, and that of constituents in the CKY
table by 46.7% on average.

6 Conclusion and Future Work

We proposed a method for packing feature
structures by introducing disjunctions into fea-
ture structures. This method reduces the num-
ber of lexical entries in HPSG grammars and
constituents created during parsing. As a result,
we achieved 1.74 times improvement in parsing
time for the test corpus bundled in the XTAG
system. We expect to gain the similar effect
with the XTAG system by applying our packing
method, though it is currently not so apparent.

For realizing a practical parsing system, we
are currently integrating our packing method
with other two optimization techniques: (1)im-
plementation with a native compiler version of
LiLFeS (Makino et al., 1998), and (2)compila-
tion of HPSG to CFG (Torisawa and Tsujii,
1996). As a result of the latter optimization,
current XHPSG system can parse sentences in
the ATIS corpus in 1.12 seconds on average
without any POS taggers. Further speed-up is
expected by integrating our method to this sys-
tem.
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Abstract

This paper puts TAGs into an algebraic
perspective. The operation of tree adjunc-
tion is shown to be a special case of fune-
tion substitution within a derived theory.
The underlying process of theory deriva-
tion is illustrated with the concrete exam-
ple of free continuous tree algebras,

1 Introduction

The aim of this paper is to relate two notions. The
first one is that of tree adjunction. The operation of
tree adjunction serves to seperate dependency and
recursion within a mild extension of the context-free
grammar formalism. The second notion is that of
a polyadic procedure. It generalizes the operation
of making several identical copies of a string and
was introduced in formal language theory by Fischer
(1968).

The two notions are related in the following way.
The operation of tree adjunction builds a new tree t
from two input trees ty and t; by replacing a subtree
of ty displaying a root label identical to t2's root
label with the tree t2 and appending the replaced
subtree of t; to an especially marked leaf node of
t2. The name of a polyadic procedure in a tree can
similary be replaced by a tree with dummy symbols
at some of its leaves into which the arguments of the
replaced procedure are to be inserted.

It has long been realized that the introduction
of higher order auxiliairy symbols into a grammar
formalism is an iterable process that leads to an al-
gebraic refinement of the Chomsky hierarchy. The
most general characterization of this iterable pro-
cess is due to the ADJ group and presented by them
within the category theoretic framework of finitary
algebraic theories (Bloom et al. 1983). Based on
their presentation, we propose an abstract formu-
lation of tree-adjoining grammars in which its rule
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systems correspond to morphisms of an algebraic
theory that is constructed from the algebraic theory
of context-free grammars along the lines indicated
by the ADJ group.

The notion of an algebraic refinement of the
Chomsky hierarchy was first formulated by Wand
(1975). He shows that solving regular equations in
function spaces over languages leads to a hierarchy
of language families beginning with the regular lan-
guages, the contex-free languages and the indexed
language. His conjecture that these language fam-
ilies are but the first steps in an infinite hierarchy
was later confirmed by Damm (1082).

The original motivation for our interest is an al-
gebraic formulation of tree adjoining grammars has
come from a long term project on denotational se-
mantics for grammar formalisms. Algebraic seman-
tics seems to provide a uniform framework for such
an attempt. In the present connection the algebraic
perspective not only adds another characterization
of the tree adjoining languages to the already long
list of equivalences with restricted production sys-
tems, but it also makes available the whole gamut
of techniques that have been developed in the tra-
dition of algebraic language theory (Maibaum 1978,
Mehlhorn 1979, Schimpf and Gallier 1985).

In the interest of a more concrete presentation we
restrict ourselves to the special case of tree algebras.
The basic notions from universal algebra which we
need in the sequel are introduced in the next sec-
tion. For reasons of space we have refrained from
supplying the details of the general M-functor.

2 Basic Definitions

Let S be a set of sorts. A many-sorted signature L
is an indexed family (Lw,slw € 5%, 5 € 5} of disjoint
sets. A symbol in L, s is called an operator of type
{w, s}, arity w, sort s and rank {(w), where £(w) de-
notes the length of w. In the case of a single-sorted
signature we write Len s as Ly, The set of n-ary



trees over such a single-sorted signature L is built

up from a finite set X, = {x1,... ,%Xq} of variables
using the operators in the expected way: If c € L,
and ty,...,tn are n-ary trees, then o{ty,... ,tn) is

an n-ary tree,

The operator symbols induce operations on an al-
gebra of the appropiate structure. A L-algebra A
consists of an S-indexed family of sets A = {A)ses
and for each operator o € Ly ¢, a function o: A% =
A% where AW = Al x-- - xAY and w=w; - wy,
The set of n-ary trees T(Z,X,) can be made into
a Z-algebra by specifiying the operations as follows.
For every 0 € I, and every t1,...,tn € T(Z, Xn)
we identify UT(E,X“)(h yeeostn) with oy, ... tn).

3 Lawvere Theories

Our main notion is that of an algebraic (Lawvere)
theory. Given a set of sorts §, an algebraic theory,
as an algebra, is an §” x 5*-sorted algebra T, whose
carriers {T{u, v}ju,v € $*} consist of the morphisms
of the theory and whose operations are of the fol-
lowing types:

¢ projection: x}* € T{u,ug) {u=1uy...un €5*}

e composition: wws € T(u,v) x T{v,w) =
Tluw,w) (u,v,we S*)

o target tupling: ( ,..., Juw € T(u,v) x
e x T{u,va) = T{w,v) (W, v="v1...vy €5*)

The projections and the operations of target tu-
pling are required to satisfy the obvious identities
for products and the composition operations are re-
quired to be associative:

o XY (o1,...,8ndu,y = o for all ez € T(u,v)

o (x¥B,... XY Bluy =P for all B € T(u,v),
where v=vy vy

e (y-B)ra=vy-ip-x)forall @ € T{u,v),p €
T(v,w),y € T(w,z)

o - (x¥,. . Xy = v for all @ € T(u,v),
where u =1y Uy,

By rearranging the ingredients of the prededing
definition algebraic theories can be looked upen as
categories. Under this conceptualization an alge-
braic theory T has as objects |T] the set of sort-
strings $*, the ‘elements of the carrier sets be-
come morphisms in the category theoretic sense and
the following tuples of the projection morphisms
(x},..+ ,X¥)u,u function as identities. The axioms
for the composition operation ensure that it behaves
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as is required by the basic category theoretic pos-
tulates for the operation of the same name and the
axioms for target tupling ensure its status as a cat-
egory theoretic product.

With S being a singleton, the powerset p(T(Z))
of n-ary trees constitutes the central example of
interest for formal language theory. The carriers
{9T{n, m)[n, m € w) consist of sets of m-tuples of
n-ary trees {(t1,...,tm)}}. The operation of com-
position is defined as substitution for the projection
constants and target tupling is just tupling.

The M-construction can be characterized as a
functorial generalization of the device of signature
extension. For lack of space we abstain from giving
the general definition and restrict ourselves to out-
lining the relevant features for the case of free con-
tinuous theories. Suppose that £ is an one-sorted
signature. Elements of $*x $* can then be identified
with elements of wxw. Given a finite set of function
veriables F, we obtain the extended signature Z+F,
where (L + Flp = I, U{flif € F & arity(f) = n}
Based on this signature we are able to define the
notion of a finite tree t of recursion-sort n and
recursion-arity w, w € w*, This says that nodes
in t dominating w; daughters may be labeled with
f € F of arity wy and that its projection labels come
from X5 = {x1,...,Xn}. Given £ and F, we can now
define the M-constructed continuous, one-sorted re-
cursion theory M{p{T(X))) as follows, For v € w™,
w e w*, M(g(T(Z)}}{w,v) is the powerset of all
n-tuples of trees t = (ty,...,4n), where t; is of re-
cursion sort v; and of recursion arity w. Tupling is
again tupling, the function variables play the role of
“higher-order” projections, but composition is spec-
ified as substitution for function-variables which la-
bel internal tree nodes, rather than as substitution
for projection labels at the leaves of trees. For
uew'yvewladwe w let T be a set
of p-tuples of trees t' = (t{,...,1;] of recursion ar-
ity w and of recursion sort v and let T be a set of
n-tuples of trees t = (t1,..,,1n) of recursion arity
v and of recursion sort u , then their composition
T T ={t" ={{t{,t={{t1 - t' st - H)} s
defined recursively as follows:

ot ={xj"} for t¢ = x*

o t! ={ofTy-t',... ,Tq t")}
for t; = ofT1,...,Tq){0 € L)

. t{’ =[t;(TI 'tln"' yir t’)}
for ti = fj(T1,... ., T )(f; € F;)



4 Context-Free and Tree Adjoining
Languages

Consider the example of a single-sorted signature of
monadic algebras:

Zo={e} L ={alaeV}

Due to the fact that L is a monadic signature
trees in T(Z, X} may not contain more than a single
variable. Observe that this corresponds exactly to
the rule format of regular (string) languages, where
the righthand sides of production rules are either
strings in the terminal alphabet or concatenations
of such a string with a single non-terminal. The reg-
ular language V*, e.g., is the solution of the set of
equations {x = a{x}|a}(a € V}in the space p(T{L}).
It should be pointed out that V* and the set of all
variable-free trees in the monadic signature I, in-
troduced a moment ago, are, strictly speaking, not
the same sets. They are nevertheless related by an
obvious one-to-one correspondence.

Once the signature L is extended with one nullary
and one monadic variable, the following example
shows that we obtain the context-free langnage L =
{a™b™} as solution in the same space p(T (X)), where
L1 ={a,b}

G = (L F5T)
Fo = {5} Fi o= (F)
_ s = {Fe)e}
E‘{ Fix) = {a(F{b(x))),a(b(x))} }

——
L(E,S) ={ala...{b(b...[e)... )}

The pair of equations E in the preceding example
is represented by a morphism

E={Ep,E1):0-1 =01

in the recursion theory M(P(T(c))) and the lan-
guage L = {a™b"} is the first component of the least
fixpoint that solves the equational system E.

Observe again that the preceding equational sys-
tem looks suspiciously similar to the usual produc-
tion system for the “same” langnage in a concate-
native signature L”:

G'={Z',F5,P)
Lo={e;a,b} L2={"} Fo={S}
P={5 - ¢]™a,™(S,b))}

L(G"S) ={"(a,™(...,™(&,b)...b)...)}

where 1 occurrences of a precede the same num- ,

ber of occurrences of b for n > 0.
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The following result expresses the fact that the
situation above characterizes already the whole class
of context-free languages: Every context-free lan-
guage can be represented as the solution of a mor-
phism in an algebraic theory that is M-constructed
on the basts of a monadic tree theory.

There is actually a mechanical procedure that al-
lows one to convert an arbitrary context-free gram-
mar G = (V,N,$,P} in Chomsky Normal Form
info a weakly equivalent equational system E =
{Lv,F,E) that has a solution in the space of monadic
trees (Maibaum 1974). The procedure consists in
first forming the monadic signature Ly correspond-
ing to the terminal vocabulary V of G:

(Ivlo={e} {Zv)1 ={V}

The new function variables F are similarly in a one-
to-one correspondence with the nonterminals of G:
Fo={S} Fi={AJAeN}

The equational system E is then obtained through
the following replacements:

S5 AB = S={A(B{))}

S3a = S={ale)}

S = S={e}

A=SBC = A(x)={B{C{x))} forA#S
A=a = A={ax)} for A#S

L(G,S) equals the least solution of E at its S-
component.

Recall that context-free languages are also cap-
tured by the notion of a frontier or yield of a regular
tree set. The obvious question that presents itself in
this connection is which language family is reached
by the addition of monadic function variables to an
arbitrary signature.

In the way of motivating the answer to this ques-
tion it is useful to consider once more the exam-
ple of a simple morphism Ef ; 01 = 0.1 in an
M-constructed recursion theory that is based on a
signature L of arity 3:

I =IyUI; where s ={a,b,c,d} and 5 ={S}

F = Fo UF; where Fy ={5'} and F; = {5}
E ={S'I = {g(s)})g[x} ={S(a,§(5(b,x,c)),d),x}}

In tree form the last equation has the following
shape:



A

S(x)= aSd
S

bxe

This system specifies the string language
{a™b™c™d"™}. Apart from minor notational mod-
ifications the grammar in the last example corre-
sponds to a well-known tree adjoining grammar.
Note that apart from the start symbol the only other
nonterminal is of arity one. As was the case in
connection with the context-free string languages,
the preceding example is a particular instance of
the general situation. The tree adjoining languages
correspond to languages that are M-constructed
from arbitrary signatures through the addition of
monadic function variables.

As in the case of context-free grammars there
exists a mechanical procedure that allows one to
produce for any given tree adjoining grammar G a
weakly equivalent equational system E that spec-
ifies the “same” set of trees. Strict identity is not
guaranteed for grammars that contain nonterminals
with variable arities. To remain within the algebraic
setup, nonterminals that label nodes which branch
out into different numbers of daughters, have to be
assigned to different components of the indexed set
L. Otherwise the procedure that resulted in the gys-
tem of the example is completely general, Terminals
and nonterminals alike are collected into the new
signature L. All nonterminals that are free for an
adjunction become duplicated by a monadic mem-
ber of the set of function variables F. Adjunction
constraints have to be taken over with one modifi-
cation: When sa is the empty set the nonterminal
has no duplicate in F.

5 Conclusion

The M-construction in its general form is conceived
for Lawvere theories regarded as categories. The
main prerequisites a category of such theories has to
satisfy in order for it to be M-able is the existence
of a free theory and of coproducts. Both conditions
are fulfilled by the powerset of n-ary trees.

In compliance with the spirit of algebraic seman-
tics I have considered tree adjoining languages as
solutions of morphisms in a derived theory. Under
the perspective of an operational semantics an ana-
loguous characterization can be obtained by consid-
ering tree adjoining grammars as a restricted form of
context-free tree grammars (Engelfriet and Schmidt
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1977). This has been the topic of a previous publica-
tion where it is shown that not only any tree adjoin-
ing language is presentable as a monadic context-
free tree language, but that the opposite implication
holds as well (Ménnich 1997). The proof in that
paper for this opposite direction of the implication
is easily adapted to the framework of denotational
semantics. As was adumbrated in the introductory
section, the particular conception of denotational se-
mantics that is being developed within the algebraic
tradition promises to provide the right level of ab-
straction from where to investigate the connections
between different types of grammatical formalisms.
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An attractive way to model the relation between an
underspecified syntactic representation and its com-
pletions is to let the underspecified representation
correspond to a logical deseription and the comple-
tions to the models of that description. This ap-
proach, which underlies the Description Theory of
(Marcus et al. 1983) has been integrated in (Vijay-
Shanker 1992) with a pure unification approach to
Lezicalized Tree-Adjoining Grammars (Joshi et al.
1975, Schabes 1990). We generalize Description
Theory by integrating semantic information, that
is, we propose to tackle both syntactic and seman-
tic underspecification using descriptions.® Qur focus
will be on underspecification of scope. We use a gen-
eralized version of LTAG, to which we shall refer as
LFTAG. Although trees in LFTAG have surface strings
at their leaves and are in fact very close to ordinary
surface trees, there is also a strong connection with
the Logical Forms (LFs) of (May 1977). We asso-
ciate logical interpretations with these LFs using a
technique of internalising the logical binding mech-
anism (Muskens 1996). The net result is that we
obtain a Description Theory-like grammar in which
the descriptions underspecify semantics. Since ev-
erything is framed in classical logic it is easily pos-
sible to reason with these descriptions.

1 Syntactic Composition

Descriptions in our theory model three kinds of in-
formation. First, there are input descriptions, which

We wish to thank Xurt Eberle, Barbara Partee,
Stanley Peters and all other participants of the Bad
Teinach Workshop on Madels of Underspecification and
the Representation of Meaning (May 1998) for their com-
ments and criticisms on an earlier version of this paper.

IThe approach to underspecified semantics taken in
(Muskens 1995} was very much inspired by Description
Theory and the work of Vijay-Shanker in (Vijay-Shanker
1992) but did not offer an actual integration with Tree-
Adjoining Grammars. In this paper we endedvour to set
this right.
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vary per sentence. For example, for sentence (1) we
have {2) as an input description. It says that there
are two lexical nodes,? labeled John and walks re-
spectively; that the first of these precedes the sec-
ond; and that these two lexical nodes are all that
were encountered. Secondly, there is a lezicon which
includes semantic information. The entries for John
and walks are given in (3) and (4).

(1) John walks.

(2) 3nina{lex(n:) Alez(na) Any < n2 Alab{ny, john) A
lab(no, walks) A¥n(lez{n) = (n=m V n = na)}))

(3) ¥ni(lab(ny, john) — Inz(lab(na, np) Ana A mA
a*(n3) =n1 Ao(ng) = JohnA
¥a(at(n)=n1 = (n=nzVa=n)}A
Yala™(n) = n; = n=n1)))

(4) ¥na(lab(ng, walks) —
Anynsnenrlab{ng, s) A lab{ns, np) A lab{ns, vp} A
lab(nqy, vp) Ang <Inz Ang dng Ang <" nz Ang QA
ns < ns Aat{n) = at(n7) =naA
Yalat(n)=n; 2> (n=n Vn=nr Vo =n))A
a"[(ny) = a (ng) =n2A
Yn(a (n)=nz o (n=nsVa=nsVn=n)A
7({ny) = o(ns)(o(ns)) A olny) = Av.walk v))

The function symbol at used in these descriptions
positively anchors nodes to lexical nodes, o~ nega-
tively anchors nodes and o gives a node its semantic
value. Since descriptions are unwieldy we partially
abbreviate them with the help of pictures:

st
4
TN
npg UPg
'”Fl’s+ upF
. [
john, walksz

Here uninterrupted lines represent immediate dom-
inance (<) and dotted lines represent dominance
(<*), as usual. Additionally we mark positive and

2vVith lezical nodes we mean those leaves in a tree
which carry a lexeme.
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Figure 1: Elementary descriptions for every man loves a woman

negative anchoring in the following way. If a de-
scription contains the information that a certain
nonlexical node is positively (negatively) anchored,
the term referring to that node gets a plus (minus)
sign. But pluses and minuses cancel and terms that
would get a + by the previous rule will be left un-
marked. Terms marked with a plus (minus) sign
are to be compared with the bottom (top) parts
of Vijay-Shanker’s ‘quasi-nodes’ in (Vijay-Shankar
1992). There is also an obvious close connection with
positive (negative) occurrences of types in complex
types in Categorial Grammar.

To the third and final kind of descriptions belong'

axioms which say that <, <* and < behave like im-
mediate dominance, dominance and precedence in
trees (Al - A10, see also e.g., Cornell 1994, Back-
ofen et al. 1995:9)% combined with other general in-
formation, such as the statements that labeling is
functional (A11), and that different label names de-
note different labels (A412}. A13 and A14 say that all
nodes must be positively anchored to lexical nodes
and that al! lexical nodes are positively anchored
to themselves. The axioms for negative anchoring
(A15 and A186) are similar, but allow the root r to
be negatively anchored to itself.

Al Vk[r <t kvr =4

A2 Vk-katk

A3 Yhikaks [[Al gt ko Ak at ka] - k; at k3]

Ad VEk-k =<k

Ab Vklk-zkg [[kl < kg A ke < ka] =k < kg]

A6 Vhik [kl <o Vhky <k Vhk Y
ks<atiyvig= ko)

AT Whikoks[[k1 <t k2 A ky < kg] = ka < k3]

A8 Vkikaoks E[k; at ks A kg < k1] — kg < kz]

INote that .49 and .A10 in themselves do not suffice to
exclude that some nodes are connected by a dominance
relation without there being a (finite) path of immediate
dominances between them. In fact the nature of our
input descriptions and the form of our lexicon exclude
this.
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A9 Vike [k1 AQky = by at k—z]
A0 Vkiko ks ﬁ[k]_ AQks Ak QT ko Aks at k;]]

ALl VkVi s {[Iab(k, 51) A lab(k,fg)] =6 = Ez]
Al2 ) # 1y, if ] and I are distinct label names
Al Yk lez{at (k)

Ald Vk[lez(k) = ot (k) = k]
AlS VE[k =7V lex{a™ (k)]
Al6 Vi[[lez(k}VEk =71} = a=(k) = k]

Together with this extra information (2), (3) and
{(4) conspire to determine a single model. Only n,;
and ns are lexical nodes. All nodes must be posi-
tively anchored to a lexical node. The set of nodes
positively anchored to n, is {n1,n3} and the set pos-
itively anchored to n is {n2, n4,n7}. So the remain-
ing ns and ng must corefer with one of the constants
mentioned, the only possibility being that ns = ng
and that ng = ns. The reader will note that in
the resulting model ¢(ns) = walk John. The gen-
eral procedure for finding cut which models satisfy
a given deseription is to identify positively marked
terms with negatively marked ones in a one-to-one
fashion. The term r, denoting the root, counts as
negatively marked.

Tn the given example only one tree was described,
but this is indeed an exceptional situation. It is far
more common that a multiplicity of trees satisfy a
given description. This kind of underspecification
enabled (Marcus et al. 1983) to define a parser which
does not only work in a strict left-right fashion but is
also incremental in the sense that at no point during
a parse information need be destroyed. A necessary
condition for this form of underspecification is that
there are structures which can be described. In the
context of semantic scope differences it therefore is
natural to turn to (May 1977)’s Logical Forms, as,
these are the kind of models requu‘ed In fact we
use a variant of May's trees which is very close to
ordinary surface structure: although we will allow
NPs to be raised, the syntactic material of such NPs
will in fact remain in situ. But while the only syntac-



tic effect of raising will be the creation of an extra S
node and Logical Forms will have their correspond-
ing surface structures as subtrees, the ‘movement’
has an important effect on semantic interpretation.
Consider example (5).

(5} Every man loves a womarn.

We have depicted its five lexical items in fig. 1. With
two exceptions they pretty much conform to expec-
tation. The exceptions are that each determiner
comes with a pair of S nodes dominating its NP.
The basic idea here is that the long-distance phe-
nomenon of quantifying-in is treated within the do-
main of extended locality of a determiner. In each
case the semantics of the higher 8 will be composed
out of the semantics of the lower 5 and the seman-
tics of the NP, the semantic composition rule being
quantifying-in.* The two Ss are to be compared to
the two Ss at the adjunction site of a raised NP in
May's theory. There is also an obvious connection
with the (single) S where ‘NP-retrieval’ occurs in
Cooper’s theory of Quantifier Storage (see Cooper
1983).

It is easily seen that in any model of the descrip-
tions in fig. 1 (+ the input description for (5) +
our axioms) certain identities must hold: ng = nay,
nie = N2z, Mg = Mg, Ns = N3, and nyy = nyp are
derivable. But there is a choice between two fur-
ther possibilities, as it can be the case that no = ny4
and n;5 = ny, or, alternatively, that nys = n; and
ng = ny. These two possibilities will correspond to
the two different readings of the sentence.

2 Internalising Binding

How can we assign a semantics to the lexical descrip-
tions in fig. 17 We must e.g. be able to express the
semantics of n; in terms of the semantics of ng, what-
ever the latter turns out to be, i.e. we must be able to
express the result of quantification into an arbitrary
context. In mathematical English we can say that,
for any i, the value of Vzyp is the set of assignments
a such that for all b differing from a at most in z, b
is an element of the value of ¢. We need to be able
to say something similar in our logical language, i.e.
we must be able to talk about things that function
like variables and constants, things that function like
assignments, etc. The first will be called registers,
the second states. Two primitive types are added to
the logic: = and s, for registers and states respec-
tively. We shall have variable registers, which stand

1n this paper only quantification into S is consid-

ered, but in a fuller version we shall generalise this to
quantification into arbitrary phrasal categories.
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proxy for variables and constant registers for con-
stants. However, since registers are simply objects
in our models, both variable registers and constant
registers can be denoted with variables as well as
with constants. Here are some axioms:

ALT VigVu,Vz, [VAR(Y) = 35, {i{v]j A V(v)(5) = z]]
A18 YAV AR(u(k))
Alg Vklk-z [u(kl) = ‘u(kg) — kl = kg]
A20 Vi.V(John.}i) = john,,
Vi.V(Mary)(i) = mary,. ..

Here VAR is a predicate which singles out variable
registers, V assigns a value to each register v in each
state j, and i[d]j is an abbreviation of Vw[w # & —
V(w)(?) = V(w)(j)]. ALl7 forces states to behave
like assignments in an essential way. The function u
assigns variable registers to nodes (A18). Each node
is assigned a fresh register (.419). Constant registers
have a fixed value (A20). For more information on
a strongly related set of axioms see (Muskens 1996).

These axioms essentially allow our logical lan-
guage to speak about binding and we can now use
this expressivity to embed predicate logic into (the
first-order part of) type theory, with the side-effect
that binding can take place on the level of registers.
Write

Réy...8, for A.R(V(&)(),-..,V(6)(H),
not p for Ai-p(i),
gy for Mgl AP,
e for ifpl) - p()
some 6 ¢ for M3j[i[d]F A o(5)],
alld ¢ for MVj[i[d]i = (7))

We have essentially mimicked the Tarski truth con-
ditions for predicate logic in our object language and
in fact it can be proved that, under certain condi-
tions,” we can reason with terms generated in this
way as if they were the predicate logical formulas
they stand proxy for (see Muskens 1998).

It should be stressed that the technique discussed
here can be used to embed any logic with a de-
cent interpretation into classical logic. For exam-
ple, (Muskens 1996) shows that we can use the same
mechanism to embed Discourse Representation The-
ory (Kamp & Reyle 1993) into classical logic. In a
fuller version of this paper we shall also present a ver-

St L e s Lomond e Tilammeiwo - 3 .
sion of LFTAG based on Discourse Representations.

#T'he relevant condition is that in each term p we are
using in this way, and each pair u{n),u(n'} occurring
in ¢, with n and n’ syntactically different, we must be

justified to assume n # n'. In the application discussed
below this condition is met automatically.



o(r) = all upfman up, = some u,, [woman un,; & un, loves un, ]|V
o(r) = some Uy, [woman un,, & all un, [man uy, = Uun, loves up,,}]

Figure 2: A Derivable Disjunction

3 Semantic Composition

We can now integrate semantic equations with the
lexical items occurring in fig. 1.

o(ng) = Un,

o(m) = all ung[o(ne)(un;) = o(ns)]
o(ng) = Av.v loves olns)

o(n7) = o{ne)(o(ns))

0(“16) = Un;s

o(ny) = some upn[o(n19)(Un,) & o(ns)]
ag(ny) = Av.menv

o(na) = Av.womaenv

The first two equations derive from the lexical item
for every, the third and fourth from lowes, the fifth
and sixth from a, and the last two from the common
nouns. Note that in the translation of every, ns
only gets a referent as its translation (namely u{ng),
which for readability we write as u,, ), while the real
action is taking place upstairs. A similar remark
holds for the other determiner.

As we have seen earlier, in any model of the rel-
evant descriptions ng = ngi, Mg = N9g, Ng = Ny,
ng = nz, and nyzg = ns hold. From this it follows
that

g(nr) = Ung loves g,
a(n1) = all ugg{man un, = o(ng)]
o(ny) = some Uy (woman up,, & ons)

The relevant constraints further imply that either
ns = nyq and nis = nz, or, alternatively, that nys =
ny and ny = n7. For the moment let us assume the
second possibility. Since un, {oves un,, is a closed
term (u is a function constant and ns and nyg are
constants that witness existential quantifiers in the
input description of (5)), the assumption that ny =
ny allows us to conclude that

o(n1) = all up,[maen Un; = Ung lOVES Uy,

Note that this is the point where we have made es-
sential use of our internalisation of binding: had
we used ordinary variables instead of our register-
denoting terms, the substitution would not have
been possible. -

Continuing our reasoning, we see that nnder the

given assumption the root node r (=ny4 in this
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case} will be assigned the 3V reading of the sen-
tence. Without assumptions the disjunction in fig.
2 is derivable.

We conclude that the leading idea behind Mar-
cus’ Description Theory allows us to underspecify
semantic information much in the same way as syn-
tactic information is underspecified in this theory.
The price is that we must accept that different se-
mantic readings correspond to different structures,
as the method only allows underspecification of the
latter.
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Abstract

We show how prefix probabilities can be computed for stochastic linear indexed
grammars (SLIGs). Our results apply as well to stochastic tree-adjoining grammars
(STAGs), due to their equivalence to SLIGs.

1 Introduction

The problem of computing prefix probabilities for stochastic context-free languages is de-
fined as follows. Given a word sequence a; -« -a, over some alphabet ¥, which we call the
input prefix, we must compute quantity 3,5+ Pr(a; - -+ apw). This problem has been dis-
cussed in {1, 4] with the main motivation of applications in speech recognition, where we
are given some word sequence ¢y -+« *a@np-1, and must hypothesize the next word a,,.

The main idea leading to the solution of this problem is that all parts of context-free
derivations that are potentially of unbounded size are captured into a set of equations that
can be solved “off-line”, i.e., before a specific prefix is considered. This is possible because
the involved derivations do not depend on the given prefix. Once these equations have been
solved, the results are stored. When computing the prefix probability for an actual input
string, all possible derivations are then considered and a probability is computed, but for
certain parts of these derivations the results that were computed off-line are used, in such
a way that the computation is guaranteed to terminate,.

Cases of derivations of potentially unbounded size might arise because of so called unit
rules, i.e., rules of the form A — B. Such rules potentially cause the grammar to be cyclic,
which means that 4 —* A might hold for some nonterminal A, This allows certain strings
to have derivations of unbounded size. However, also a rule of e.g. the form A — Ba may
effectively behave like a unit rule if ¢ contributes to the unknown suffix following the actual
input that is considered as prefix. :

For stochastic tree-adjoining grammars (STAGs) similar problems arise. STAGs that
are well-behaved and allow a bounded number of derivations for each complete sentence may
require an unbounded number of derivations to be considered, once the input is regarded
as a prefix followed by a suffix of unbounded length. The key idea to solving this problem
is again to break up derivations into parts that are of potentially unbounded size and are
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independent on actual input, and parts that are always of bounded length and do depend
on input symbols. The probabilities of the former subderivations can be computed off-line,
and the results are combined with subderivations of the latter kind during computation of
the prefix probability for a given string.

The distinction between the two kinds of subderivations requires a certain notational
system that is difficult to define {or tree-adjoining grammars. We will therefore concentrate
on stochastic linear indexed grammars instead, relying on their equivalence to STAGs [3].
The solution proposed in the present paper is an alternative to a different approach by
the same authors in {2]. In that publication, a set of equations is transformed in order to
distinguish off-line and on-line computations.

2 Computation of prefix probabilities

We refer the reader to [2] for the definition of LIG. In what follows, we use a, 3, . .. to denote
strings of nonterminals associated with empty stacks of indices, z,y,v,w,2,... to denote
strings of terminal symbols, and & to denote a terminal symbol. Without loss of generality
we require that rules are of the form A{goo] = a B[n'ce] g with Ip7| = 1, or of the form
A[] — 2, where |z| < 1.

As usual, — is extended to a binary relation between sentential forms, and its transitive
and reflexive closure is denoted by —*. When we write A[g] —=* a B[r] 8, the indicated
occurrence of Bfr] is the symbol that inherits the stack content of A[g] in the derivation,
which we will call the distinguished descendant of A[o]. We extend this notation to A[o} =~
@ a 3, when a is generated in one step from the distinguished descendant of Afc]in a previous
sentential form.

We first introduce a subrelation of —* defined by Alo] =* ¢ if Ale] =* ¢, and Ao} =*
B[r] if Ale] =* B|[r] and this derivation does not end on a subderivation of the form
C[r] =% B[r], for any C, where no elements that belong to v are popped and pushed
again. When we write A[g] =* X, then X is of the form B[] or €.

Based on this, two further subrelations of relation —*, written =7, and —7j, ., are
defined below by means of deduction steps. The distinction between —7},,. and —}, is
made in order to record how derivations were built up from subderivations. In the case
of —1%,,, the derivation was constructed from two subderivations A[] —* v B[] w and
B[] —* a C[] y. In all other cases, we use —},.. This distinction is needed to avoid spurious
ambiguity in applications of the deduction steps: the result from combining A[] —=* v B[] w
and B[] —* z C[] v, viz. A[] =3,, v = C[] ¥ w, is not allowed to combine with a third
subderivation C[] =~ z D{] ¢. Note that the desired derivation A[] —=},, vz 2 D[] ¢ y w
can be derived by combining B[] =* z C[] y and C[] —=* 2z D[] ¢, and then A[] =* v B[] w
with the result of this.

All =l v ool w aFe
€ —%. ¢ (1) AJa—=t, vw (2)-
A[] —* B[U] o _’:er Va
Bloo] = a Clpoec] 8 B =%, v
Al @ o Ch=rol ¥ ~ler
A{] _}:CT a D[pool - 7 E[ 00] 6 6 _):Cr 1J6
Elc] =2* X ValgUyls 7 € (4)

Al] =% va vy X 5 vp
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A[] =~ Blo] lab € {ver, hor}
Bloo] = a Clpoo] §  a —3,, Vs
Cll —fu v D[} w T Al] =% v B[] w
D[] -* E[] Y =t Uy B[] =}, z Clly lab € {ver, hor} (6)
EJ oo}——r'yF[on]ﬁ 6 =7, Vs All =i, vaeCllyw
Flo] = VaUgUyls # € (5)
“'_)ver ’UQ‘U’U-,.X’U,S w v
ot Al] =* Ble]
13[[]] e Bl " g{l]ﬁw}; cl g
"ff - 7 ol =* o€
A[] Ty BT W A[] 'ﬁ:er v X w (8)

We now discuss how LIG derivations are uniquely partitioned into subderivations by the
above steps. We will explain later how the above steps can be used in the computation of
prefix probabilities. We call spine any path in the parse tree that leads from a node that
is not a distinguished child of its father (or that does not have a father, in the case of the
root), down to a leaf following distinguished children. This means that for an instance of
arule A[noo] — o B[noo] § in the parse tree, the nodes corresponding to symbols in «
and (8 are each the first node of a distinct spine. Also, the spine belonging to the node
which corresponds to A[noo| leads down along the node corresponding to B[n'ec]. At both
ends of a spine, the stack of indices associated with the nonterminals is empty. In between,
the height of the stack may alternately grow and shrink. This is shown in Figure 1. The
horizontal axis represents nodes along the spine, and the vertical axis represents the height
of the stack.

At some instances of rules, non-empty input is found at some child of a node on the
spine that does itself not belong to the spine. We always investigate such rules in pairs: if
one tule pushes p on the stack, we locate the unique rule that pops that p; only one of the
two rules needs to be associated with non-empty input. Three instances of such pairs of
rules are indicated in the figure.

In Figure 1, the parts of the spine labelled by a and b are accounted for by step (4). From
these two parts, the part labelled ¢ is obtained through step (6). This step combines paths

Figure 1: Development of the stack along a spine, and partitioning according to deduction
steps.

118



in a “horizontal” way, hence the label hor in the consequent. The path is then extended
to the path d in a vertical way by applying step (8). Again vertically, step (5) extends the
path to path e by identifyiug one more pair of rules where non-empty input is found.

Each stack development along a spine, exemplified by Figure 1, can be partitioned in
exactly one way according to the deduction steps. The proof of this fact is rather involved
and is not reported in this long abstract.

We can now discuss how to compute prefix probabilities using steps (1) to (8). We can
compute the inside probability of a given string w by applying the deduction steps in reverse
for the relation §[] —7%,,. w. This gives rise to a unique partitioning into subderivations for
each possible derivation of w in the grammar. We multiply the probabilities attached to
the rules that are used in the derivations, and we add probabilities where more than one
derivation exists due to ambiguity.

We see that statements of the form C[] —* D[] in e.g. step (4) and A[] =* @ in step (3)
cannot themselves be derived by the deduction steps. It is assumed the probabilities of
such derivations are computed off-line, which is possible since they do not depend on actual
input. Also, the joint probability of the pair of derivations A[] »* Blo] and E[g] =* X
in step (4) can be precomputed for a given combination of A, B, E, and X, even though
there may be an infinite number of stacks ¢. These off-line computations can be carried
out by solving systems of equations that express recursive relations among probabilities of
derivations. Again, due to space limitations these systems will not be introduced in this
long abstract.

It is easy to see that the backward application of the deduction steps must necessarily
terminate. This is independent of whether a LIG allows infinite ambiguity.

If prefix probabilities are to be computed instead of inside probabilities, the deduction
steps need to be slightly altered. For example, the condition v,vav,vs # € in step (4) needs
to be reformulated to the effect that at least one symbol from v,vgv,vs should belong to
the input, i.e. the prefix. Further, probabilities of derivations of the form A[] =~ B[] w
should be computed off-line, where w belongs to the unknown suffix, (Cf. unit rules and
rules of the form A — Ba in the case of context-free grammars.)

It is easy to see that the deduction steps are consistent, in the sense that a —73,. f or
o —%,, 8 implies o —* . That the deduction steps are also complete, i.e., that A[] —3,, w
can be derived if A[] —* w, is more difficult to show and cannot be explained here due to
length restrictions. The proof relies on the already mentioned uniqueness of the proposed
partitioning of spines, on which steps (1) to (8) are based.
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Abstract

We present a method for the extraction
of stochastic lexicalized tree grammars (S-
LT@G) of different complexities from exist-
ing treebanks, which allows us to analyze
the relationship of a grammar automati-
cally induced from a treebank wrt. its size,
its complexity, and its predictive power on
unseen data.

Processing of different S-LTG is performed
by a stochastic version of the two-step
Early-based parsing strategy introduced in
{Schabes and Joshi, 1991).

1 Introduction

In this paper we present a method for the extraction
of stochastic lexicalized tree grammars (S-LTG) of
different complexities from existing treebanks, which
allows us to analyze the relationship of a grammar
automatically induced from a treebank wrt. its size,
its complexity, and its predictive power on unseen
data. The use of S-LTGs is motivated for two rea-
sons. First, it is assumed that S-LTG better cap-
ture distributional and hierarchical information than
stochastic CFG (cf. (Schabes, 1992; Schabes and
Waters, 1996)), and second, they allow the factor-
ization of recursion of different kinds, viz. extrac-
tion of left, right, and wrapping auxiliary trees and
possible combinations. Existing treebanks are used
because they allow a corpus-based analysis of gram-
mars of realistic size. Processing of different S-LTG
is performed by a stochastic version of the two-phase
Early-based parsing strategy introduced in (Schabes
and Joshi, 1991).

This abstract describes work in progress. So far,
we have concentrated on the automatic extraction
of S-LTGs of different kinds (actually S-LTSG, S-
LTIG, and S-LTAG). This phase is completed and

we will report on first experiments using the Penn-
Treebank (Marcus et al., 1993) and Negra, a tree-
bank for German (Skut et al., 1997). A first version
of the two-phase parser is implemented, and we have
started first tests concerning its performance.

2 Grammar extraction

Given a treebank, grammar extraction is the process
of decomposing each parse tree into smaller units
called subtrees. In our approach, the underlying de-
composition operation

1. should yield lexically anchored subtrees, and
2. should be guided by linguistic principles.

The motivation behind (1) is the observation that
in practice stochastic CFG perform worse than non-
hierarchical approaches, and that lexicalized tree
grammars may be able to capture both distribu-
tional and hierarchical information (Schabes and
Waters, 1996). Concerning (2) we want to take ad-
vantage of the linguistic principles explicitly or im-
plicitly used to define a treebank. This is motivated
by the hypothesis that it will better support the de-
velopment of on-line or incremental learning strate-
gies (the cutting criteria are less dependent from the
quantity and quality of the existing treebank than
purely statistically based approaches, see also sec.
5) and that it renders possible a comparison of an
induced grammar with a linguistically based com-
petence grammar. Both aspects (but especially the
latter one) are of importance because it is possible
to apply the same learning strategy also to a tree-
bank computed by some competence grammar, and
to investigate methods for combining treebanks and
competence grammars (see sec. 6).

However, in this paper we will focus on the use of
existing treebanks using the Penn-Treebank (Mar-
cus et al., 1893) and Negra, a treebank for German

(Skut et al., 1997). First, it is assumed that the
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treebank comes with a notion of lexical and phrasal
head, i.e., with a kind of head principle (see also
(Charniak, 1997)). In the Negra treebank, head ele-
ments are explicitly tagged. For the Penn treebank,
the head relation has been determined manually. In
case it is not possible to uniquely identify one head
element there exists a parameter called DIRECTION
which specifies whether the left or right candidate
should be selected. Note that by means of this pa-
rameter we can also specify whether the resulting
grammar should prefer a left or right branching.

Using the head information, each tree from the
treebank is decomposed from the top downwards
into a set of subtrees, such that each non-terminal
non-headed subtree is cut off, and the cutting point
is marked for substitution. The same process is then
recursively applied to each extracted subtree. Due
to the assumed head notion each extracted tree will
automatically be lexically anchored {and the path
from the lexical anchor to the root can be seen as
a head-chain), Furthermore, every terminal element
which is a sister of a node of the head-chain will also
remain in the extracted tree. Thus, the yield of the
extracted tree might contain several terminal sub-
strings, which gives interesting patterns of word or
POS sequences. For each extracted tree a frequency
counter is used to compute the probability p(t} of a
tree ¢, after the whole treebank has been processed,
such that 37, ,11)=q P(t) = 1, where o denotes the
root label of a tree t.

After a tree has been decomposed completely we
obtain a set of lexicalized elementary trees where
each nonterminal of the yield is marked for substi-
tution. In a next step the set of elementary trees
is divided into a set of initial and auxiliary trees.
The set of auxiliary trees is further subdivided into
a set of left, right, and wrapping auxiliary trees fol-
lowing (Schabes and Waters, 1995} (using special
foot note labels, like :lfoot, :rfoot, and :wfoot). Note
that the identification of possible auxiliary trees is
strongly corpus-driven. Using special foot note la-
bels allows us to trigger carefully the corresponding
inference rules. For example, it might be possible
to treat the :wfoot label as the substitution label,
which means that we consider the extracted gram-
mar as a S-LTIG, or only highly frequent wrapping
auxiliary trees will be considered. It is also possible
to treat every foot label as the substitution label,
which means that the extracted grammar only al-
lows substitution.

3 Two-phase parsing of S-LTG

The resulting S-LTG will be processed by a two-
phase stochastic parser along the line of (Schabes

and Joshi, 1991}, In a first step the input string
is used for retrieving the relevant subset of elemen-
tary trees. Note that the yield of an elementary tree
might consist of a sequence of lexical elements. Thus
in order to support efficient access, the deepest left-
most chain of lexical elements is used as index to an
elementary tree. Each such index is stored in a deci-
sion tree. The first step is then realized by means of a
recursive tree traversal which identifies all (longest)
matching substrings of the input string (see also sec.
4). Parsing of lexically triggered trees is performed
in the second step using an Earley-based strategy. In
order to ease implementation of different strategies,
the different parsing operaticns are expressed as in-
ference rules and controlled by a chart-based agenda
strategy along the line of (Shieber et al., 1995). So
far, we have implemented a version for running S-
LTIG which is based on (Schabes and Waters, 1995).
The inference rules can be triggered through boolean
parameters, which allows flexible hiding of auxiliary
trees of different kinds.

4 First experiments

We will briefly report on first results of our method
using the Negra treebank (4270 sentences) and the
section 02, 03, 04 from the Penn treebank (the first
4270 sentences). In both cases we extracted three
different versions of S-LT'G (note that no normaliza-
tion of the treebanks has been performed): (a) lex-
ical anchors are words, (b) lexical anchors are part-
of-speech, and (c) all terminal elements are substi-
tuted by the constant ;term, which means that lex-
ical information is ignored. For each grammar we
report the number of elementary trees, left, right,
and wrapping auxiliary trees. The following table
summarizes the results:

Negra words pos iterm
elem. trees: 26553 10384 6515
leftaux trees 184 60 40
rightaux trees 54 35 25
wrapping trees 39 36 29
Penn words pos sterm
elem. tree: 31944 11979 8132
leftaux trees 701 403 293
rightaux trees 649 246 153

wrapping trees 386 306 249

In a second experiment we evaluated the perfor-
mance of the implemented S-LTIG parser using the
extracted Penn treebank with words as lexical an-
chors. We applied all sentences on the extracted
grammar and computed the following average valnes
for the first phase: sentence length: 27.54, number
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of matching snbstrings: 15.93, number of elementary
trees: 492.77, number of different root labels: 33.16.
The average run-time for each sentence (measnred
on a Sun Ultra 2 (200 mhz): 0.0231 sec. In a next
step we tested the run-time behaviour of the whole
parser on the same input, however ignoring every
parse which took longer than 30 sec. (about 20 %).
The average run-time for each sentence (exhaustive
mode): 6.18 sec. This is promising, since the parser
is still not optimized.

We also tried first blind tests, but it turned ont
that the current considered size of the treebanks is
too small to get reliable results on unseen data (ran-
domly selecting 10 % of a treebank for testing; 90 %
for training). The reason is that if we consider only
words as anchors then we rarely get a complete parse
result (around 10 %). If we consider only POS then
the number of elementary trees retrieved through
the first phase increases causing the current parser
prototype to be slow (due to the restricted annota-
tion schema).! A better strategy seems to be the
use of words only for lexical anchors and POS for
all other terminal nodes, or to use only closed-class
words as lexical anchors {assuming a head principle
based on functional categories). In that case it would
also be possible to adapt the strategies described in
(Srinivas, 1997) wrt. supertagging in order to reduce
the set of retrieved trees before the second phase is
called.

5 Related work

Here we will discuss alternative approaches for con-
verting treebanks into lexicalized tree grammars,
namely the Data-oriented Parsing (DOP) frame-
work (Bod, 1995) and approaches based on applying
Explanation-based Learning (EBL) to NL parsing
(e.g., (Samuelsson, 1994; Srinivas, 1997)).

The general strategy of our approach is similar to
DOP with the notable distinction that in our frame-
work all trees must be lexically anchored and that in
addition to substitution, we also consider adjunction
and restricted versions of it. In the EBL approach
to NL parsing the core idea is to use a competence
grammar and a training corpus to construct a tree-
bank. The treebank is then used to obtain a special-
ized grammar which can be processed much faster
than the original one at the price of a small loss
in coverage. Samuelsson (1994) presents a method
in which tree decomposition is completely autom-
atized using the information-theoretical concept of

! Applying the same test as described above on POS,
the average number of elementary trees retrieved is
2292.86, i.e., the number seems to increase by a factor
of 5.

entropy, after the whole treebank has been indexed
in an and-or tree. This implies that a new grammar
has to be computed if the treebank changes (i.e., re-
duced incrementallity) and that the generality of the
induced subtrees depends much more on the size and
variation of the treebank than ours. On the other
side, this approach seems to be more sensitive to the
distribution of sequences of lexical anchors than our
approach, so that we will explore its integration.

In (Srinivas, 1997) the application of EBL to pars-
ing of LTAG is presented. The core idea is to gen-
eralize the derivation trees generated by an LTAG
and to allow for a finite state transducer represen-
tation of the set of generealized parses. The POS
sequence of a training instance is used as the index
to a generalized parse. Generalization wrt. recur-
sion is achieved by introducing the Kleené star into
the yield of an auxiliary tree that was part of the
training example, which allows generalization about
the length of the training sentences. This approach
is an important candidate for improvements of our
two-phase parser once we have acquired an S-LTAG.

6 Future steps

The work described here is certainly in its early
phase. The next future steps (partly already
started) will be: (1) measuring the coverage of an
extracted S-LTG, (2) incremental grammar induc-
tion, (3) combination of a competence grammar and
a treebank. I already applied the same learning
strategy on derivation trees obtained from a large
HPSG-based English grammar in order to speed up
parsing of HPSG (extending the work described in
(Neumann, 1994)). Now I am exploring methods
for merging such an “HPSG-based” S-LTG with one
extracted from a treebank. The same will also be ex-
plored wrt. a competence-based LTAG, like the one
which comes with the XTAG system (Doran et al.,
1994).
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Abstract

This paper discusses a sentence generation system PRO-
TECTOR which uses: (i) a non-hierarchical semantic rep-
resentation which allows for flexible lexical choice and
uniform treatment of different languages, (ii) a lexi-
calised D-Tree Grammar which is very similar to Tree-
Adjoining Grammar in spirit, and {iii) dynamic program-
ming techniques to avoid doing redundant computations.
We review the motivation for choosing such an organi-
sation of the generation system and give an example of
the generation of a sentence which involves a lexical gap.
The generation of the example sentence requires a non-
deterministic mode of computation (the lexical gap forc-
ing backtracking). We show how dynamic programming
techniques can be used to save re-generating structures
using a top-down generation algorithm.

Keywords: natural language generation, non-
hierarchical semantics, lexicalised d-tree grammars, dy-

namic programming.

1 Introduction

Natural language generation is the process of
generating text from a set of abstract commu-
nicative goals. It attempts to model the hu-
man language production mechanisms in man-
machine communication. As part of the overall
generation process computer systems will need
to consider how the communicative goals can
be mapped onto conceptual representations and
these in turn into sentences in a natural lan-
guage. The latter process is known as sentence
generation and this paper discusses a system for
doing this task (realising sentences from mean-
ing representations).

2 Conceptual input

Early work on sentence generation assumed
input of the form: pred(arg;,...arg,) and
the generation process was reduced to mapping
pred — verb, arg; — first complement, etc.
This approach, of course, makes the “seman-

tic structures” be nothing more than disguised

syntactic representations and reduces the sen-
tence generation problem to finding out the or-
dering of the constituents, The tree-like seman-
tic assumption does not allow for handling head
switching examples (Nicolov, 1993), incorpora-
tion of modifiers in the syntactic head (French
blond and blond French girl cannot be gener-
ated from french(blond(girl))) and cases
like: She smiled a welcome to the guests./ She
welcomed the guests with a smile.

Such phenomena can be addressed more el-
egantly using non-hierarchical semantic repre-
sentations. In PROTECTOR conceptual graphs
are used (Sowa, 1992). The same generation
mechanisms can be used with underspecified
discourse representation structures.

3 D-Tree Grammars

D-Tree Grammar (Rambow et al., 1995) is a
grammar formalism which arises from work on
Tree-Adjoining Grammars (TAG) (Joshi, 1987).!
In the context of generation, TAGs have been
used in a number of systems MUMBLE (Mc-
Donald and Pustejovsky, 1985), SPOKESMAN
(Meteer, 1990), wip (Wahlster et al., 1991),
synchronous TAGs (Shieber and Schabes, 1991)
the system reported by McCoy (McCoy et al.,
1992), the first version of PROTECTOR (Nicolov
et al,, 1995), and spuDp (Stone and Doran,
1997). TAGs have been given a prominent place
in the VERBMOBIL project — they have been
chosen to be the framework for the generation
module (Caspari and Schmid, 1994; Harbusch
et al., 1994; Becker et al,, 1998). In the area
of grammar development TAG has been the ba-
sis of one of the largest grammars developed for
English (Doran et al., 1994).

!pTG and TAG are very similar, yet they are not equiv-
alent (Weir pc).
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Figure 1: Subsertion

DTGs uses two operations to combine elemen-
tary structures — subsertion (Figure 1) and
sister adjunction (Figure 2). The elementary
structures are d-trees (descriptions of trees)
which in addition to immediate dominance re-
lation allow for stating dominance relationships
between nodes in the d-tree.

Unlike TAGs, DTGs provide a uniform treat-
ment of complementation and modification at
the syntactic level. DTGs are seen as attrac-
tive for generation because a close match be-
tween semantic and syntactic operations leads
to simplifications in tlie overall generation ar-
chitecture. DTGs try to overcome the problems
associated with TAGs while remaining faithful
to what is seen as the key advantages of TAGs
(Joshi, 1987):

1. the extended domain of locality over which
syntactic dependencies are stated; and

2. function argument structure is captured
within a single initial construction in the
grammar.

Figure 2: Sister adjunction
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ture contains a terminal node (anchor) which
“justifies’ the construction), feature-based (non-

terminals are feature structures) DTG.

4 Generation strategy

PROTECTOR uses declarative specification of the
relation between semantics and syntax encoded
as mapping rules, The mapping rules are el-
ementary d-trees (i.e., tree descriptions) anno-
tated with applicability semantics a match with
which will licence the applicability of the map-
ping rule, In addition if the d-tree has non-
terminal leaf nodes relevant parts of the appli-
cability semantics are related to these nodes so
that we know how tlie semantics is decomposed.
PROTECTOR employs a top-down (recursive de-
scent) strategy for generating the complements
once an initial top-level mapping rule hias been
chosen (this stage is called generation of skeletal
structure). PROTECTOR keeps track Lhow much
of the input semantics it has consumed. Then
in a consequent stage the remaining semantics
is consumed which involves the use of modifica-
tion and sister-adjunction.

5 Example

In this section we discusss the generation of a
sentence which involves a lexical gap:

* Alezander attacked the town ‘full-scalely’.
Alezander launched a full-scale attack on
the town,

The input semantics and the search space are
are shown in Figure 3 (see next page). At the
onset of generation there are at least two top-
level mapping rules that can be chosen (attack
and launch an attack) and the default one (at-
tack) leads to a dead end. The reason is the
lack of a mapping rule (not only in the linguis-
tic knowledge base of the generator but worse
of all in the English language) that would al-
low us to express the concept as
a structure that we can intergrate to the exist-
ing skeletal syntactic structure (Alezander at-
tacked the town). Such is the nature of lexical
gaps and this forces backtracking. The gener-
ator would need to reconsider its previous de-
cisions, it would have to undo (forget) about
all the structures it had built all the way up
to the point when it chose the wrong mapping
rule. This was the first choice that was made
All

. o s
so practically cvery computation is lost.

the work that went into building the subject
and object NPs has to be duplicated. Clhioosing
the alternative (launch an attack) mapping rule
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Figure 3: The search space for the example

and generating its required complements will re-
sult in re-computation of the subject and object
NPs. These NPs can be arbitrarily large and in
order to avoid doing redundant computations
we store the results of previous generation goals
Such dun

neoain
Als wuLIL \-lJ Fes

!16@‘
programming techniques have been exploited
heavily in parsing and PROTECTOR’s declara-

tive mapping rules and flexibility of incorporat-

.
amic
1491

ing alternative generation strategies allows us to
take advangates of that work. This approach is
gaining popularity in generation (Shieber, 1988;
Haruno et al., 1993; Pianesi, 1993; Gerdemann
and Hinrichs, 1995; Kay, 1996; Nicolov et al.,

1997). The other approaches to chart gener-
ation are based on CFGs and in a bottom-up
strategy one has to make sure that in moving

from an N to NP all modifiers have been ex-
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pressed, This causes serious overhead in back-
tracking., Our use of pTGs and flexible way of
adding modifiers using precedence constraints
between semantic classes of modifiers does not
suffer from this problem.

PROTECTOR does not assume that lexical
choice is performed prior to surface realisation.
It chunks the input semantics appropriately on
the basis of the mapping rules.

6 Conclusions

We have described a sentence generator which
takes non-hierarchical input, uses mapping rules
to relate parts of the semantics to elemen-
tary d-trees, combines the syntactic structures
in a manner that closely mirrors the seman-
tic decomposition and employs dynamic pro-
gramming to avoid re-generation of structures
on backtracking which cannot always be pre-
dicted in advance as is the case for lexical gaps.
Our architecture allows for easy encoding of al-
ternative generation strategies (e.g., bottom-up,
best-first, etc.) which other systems have not
considered and in fact find rather difficult to
do. Thus, PROTECTOR can be seen as a test
bed for experimenting and evaluating alterna-
tives methods for generation.
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- Recursion as the basis of long-distance dependencies

An important and central insight of Tree Adjoining Grammar is its factorization of local
dependencies—handled through local INITIAL TREES—and recursion—handled through AUXILIARY
TREES and successive applications of the ADJUNCTION operation. Many different frameworks of
grammatical description have converged on a conceptually similar distinction. In the transforma-
tional tradition, the idea of long-distance movement—movement across an ‘essential variable’—has
been abandoned in favor of sequences of short-distance hops (or checks). In feature-based phrase
structure grammars such as GPSG and HPSG, the analog of recursive movement is the transitive
closure of local consistency conditions on local trees containing the SLASH feature.

At first glance, then, this convergence in a variety of theoretical approaches suggests that
recursion in some form is the essential engine in the characterization of natural language long-
distance dependencies. And this assumption might lead us to the following thesis concerning the
relation between recursion and extraction.

Thesis: if U|a) is a well-formed expression of category A containing o gap o of
category B and A[B] is a well-formed expression of category B containing a gap 8 of
category C, then the result of replacing the gap « in Tla] with A[S), which we write
I[AF]] is a well-formed ezpression of category A containing a gap B of category C.

As an example of a case which might be adduced in support of this thesis, consider the unbounded
nature of extraction from noun phrases, as discussed by Kroch {6]. The well-formedness of Which
painting did you see? indicates that did you see is a well-formed expression containing a gap of type
np, and the well-formedness of Which painting did you see a photograph of? and Which painting
did you see a copy of? suggests (in a way consistent with the thesis) that a photograph of and
a copy of are well-formed np's containing np gaps. Accordingly, the thesis, if correct, requires
that Which painting did you see a copy of a photograph of? also be well-formed, as indeed it is.
Yet this simple and elegant thesis concerning recursion encounters well-known difficulties, which

" YThis paper is the product of joint work with Michael Moortgat, with whom a more comprehensive treatment of
these questions is under preparation. This work has been supported by the National Science Foundation under Grant
No. SBR-9510706, which we gratefully acknowledge.
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have been construed as supporting additional theoretical devices such as filters and other forms of
surface constraints. The goal of this paper is to show in the most direct possible way that in one
well-known case, it is possible to formulate recursive principles in a way that obviates the need for
additional theoretical mechanisms and, at the same time, offers a simple formal characterization of
a proposed typological distinction of long-standing interest.

A typological parameter

As Perlmutter {15, 16) first observed, extraction from the np-position following a complementizer
is possible in some languages, but not in others. Thus, we have:

(1a) French Marie se demandait qui Jean a dit que Martin a vu? (after [16])
‘Marie wondered who Jean said that Martin saw?’

(1b) *Marie se demandait qui Jean a dit que a vu Martin? (after [16])
‘who did he say saw Martin?’

(2a) English Marie wondered who Jean said that Martin saw?

{(2b) *Mary wondered who Jean said that saw Martin?

(3a) Mary wondered who Jean said Martin saw?

(3b) Mary wondered who Jean said saw Martin?

(4a) Nederlands Wie zei Marie dat die appel opgegeten heeft? (after [§])
who said Marie that this apple eaten has
‘who did Marie say ate this apple?’
(4b) Wie zei Marie dat Martin gezien heeft? (after [8])
‘who did you say Martin saw’
OR ‘who did Marie say saw Martin’

There are two basic strategies to deal with these issues. The first is to propose general grammat-
ical rules (selectively chosen by each language) which generate exactly the grammatical examples
and fail to generate the ungrammatical examples; the second is to propose general grammatical
principles which generate all the good examples and couple these principles wih constraints (se-
lectively chosen by each language) which weed out particular cases. We call the first strategy
‘constructive’ and the second ‘co-constructive’. There have been many co-constructive proposals to
account for the above phenomena: we mention here only [15, 16, 1, 2]. In the sections to follow, we
develop simple and appealingly symmetrical constructive accounts of these constrasting systems of

extraction.

The framework

We work in the framework of multi-modal grammatical logic [10, 11, 4, 9, 14, 12], a framework
we describe here only in enough depth to support the goals of this paper. From this perspective,
the problem of grammatical composition, within and across such different dimensions of linguis-
tic structure, is regarded as an inference problem: the component pieces of a complex linguistic
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structure are taken to be the premisses of a deductive problem, and its global structure to be a con-
clusion deducible from these premisses in a system of grammatical inference. Thus, grammaticality
is identified with validity within this system. Moreover, the formal system characterizing validity
offers a natural model, in the style of denotational semantics for programming languages [17}, of the
cognitive computation that must be assumed to provide the basis for real-time understanding of
running speech.? Thus the logical methods described here are not introduced in a blind search for
formal rigor; on the contrary, they are introduced because they provide an armentarium of subtle
and suitable tools and methods that allow us to probe the properties of grammatical reasoning.
In such a system, if A is deducible from a structured set of premisses I', we write I' = A. It
is reasonable to suppose that the deducibility relation is reflexive and transitive: that is, for every
formula A, we have A = A; and for every triple of formulas 4, B,C, if A = B and B = C, then
A= C.
" A uni-modal deductive systein contains a single way (or mode) of putting resources premisses
together. To reason about this mode, we introduce a product operator—a form of conjunction—
together with its residuals (or adjoints)—forins of implication. For example, given a binary mode
of composition, we have a product e and two directionally-sensitive implications written, as in the
categorial tradition, / and \. Every product and its adjoints are connected by the basic adjointness
laws. In the binary case, as lere, these take the form:

A= C/B iff AeB=C iff B= A\C

As a simple illustration of the consequences of the adjointness laws, take A to be C/B; by reflexivity,
we have C/B = C/B; using the first adjointness law (left to right), we have (C/B) ¢ B = C. This
is called the co-unit of the adjunction and is also known variously as Modus Ponens (in the logical
literature) or (functional) application (in the categorial literature).

There are a number of different presentations of this system of pure binary residuation logie:
Gentzen style, natural deduction, Hilbert-style, proof nets. These can be easily shown to be equiv-
alent with regard to provability and we identify them all with the non-associative Lambek calculus
NI [7].

Keeping the logical rules expressed by the adjointness laws invariant, we may obtain other
logical systems by adding structural rules [3, 5], such as the following:

RAssoc (AeB)e(C = Ae(BeC()
LAssoc Ae(Be()={(AeB)el(
Perm AeB=DBeA

Contr A= AeA

RWeak AeB= A

LWeak AeB =15

2 Analogously, we may think of models of the unfolding processes of speech comprehension at the psychological
and neurological levels as approximations, at different levels of scale, of the operational semantics of this process.
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The presence or ahsence of these rules defines a family of unimodal logics of conjunction and
implication, some of whose mentbers (with characteristic arrows) are:

logic structural rules arrows
NL none (A/B)eB = A, B= (A/B)\B
L RAssoc, LAssoc A/B = (A/C)/(B/C), A\(B/C) = (A\B)/C

LP RAssoc,LAssoc,Perm A/B = B\A, (A/B)/C = (A/B)/C)

When a particular formula is provable in a particular logical system, we indicate this using Frege’s
symbol . Thus,

NLF s/(np\s) ® (s/(np\s)\s) = s

L+ vp/np = (vp/pp)/(np/pp)

If a formula is not provable in a particular system, we draw a slash through the turnstile, as in

NL ¥ vp/np = (vp/pp)/(np/pp)

From this general perspective, then, binary unimodal deductive systems are definable simply
by specifying, once and for all, what structural rules the single mode of composition enjoys.

Although the applicability of these systems to the analysis of natural language properties has
been the subject of intense scrutiny, it is clear that natural languages differ from unimodal deductive
systems in an essential way. Namely, they exhibit a much more subtle control of inference than
the all or nothing choice of structural rules allows. For example, individual languages often exhibit
varying sensitivity to order. Japanese and Korean, for example, are strict about the position of the
tensed verb in a clause but not strict about the position of the arguments preceding the verb. This
suggests a richer deductive system, one based on multiple modes of combination.> Each mode has
a fixed arity, an associated product operator of that arity and an implication for each argument
position, satisfying the adjointness laws. Each mode is associated with a set of structural rules.
However, something new arises as well: structural postulates involving more than one mode.

As an illustration which will be important in the sequel, consider a system with a single binary
mode, associated with the binary product e and adjoints / and \, and a single unary mode,
associated with a unary operator © and a single adjoint O!. The adjointness laws for the unary

operator take the form:

OA=B iff A=>0!B

1In Tact. the presence of more than one mode of combination is implicit in linguistic practice: phonologists and

morphologists have recognized different kinds of boundaries between elements; X-bar theory recognizes difierent
modes of combination (‘spec-head’ relation, for example) at different levels.

131



Just as we derived the co-unit above by starting with the sequent C/B = C/B, if take A above
to be D! B, then the right hand side holds by reflexivity and the left hand side gives us a unary
counterpart to Modus Ponens:*

oolA= 4

In other words, if the unary operator ¢ has an adjoint, then the composition of ¢O! has an
interesting property: it can play a role in part of a deduction and then disappear. This property
is the first of two crucial properties of multi-modal type logic we will need below. The second, a
small set of structural rules involving the interaction of ¢ and e, will be developed below, after we
prepare the ground by developing some very small fragments which will support the illustration of
the extraction parameters of interest here.

Fragments without extraction

We now develop the simplest possible fragments of French, English, and Dutch without extrac-
tion which can be directly extended to support the extraction constructions of interest. The many
points of grammatical interest that these fragments touch on that are not directly relevant to the
problem at hand will be systematically ignored. The logical framework is simply the pure residua-
tion logic NL: e, /, and \ connected by the adjointness laws; no added structural rules. From this
point of view, all that remains to be added is a set of atomic formulas (categories), common to all
the fragments, and a set of lexical assumptions associating basic expressions with formulas.

40ne may connect this straightforwardly with the binary case discussed earlier by regarding the product A ¢ B
as the result of applying the unary operator A ¢ — to B. This unary operator may be regarded as a modality ©4,
whose corresponding adjoint DL is the unary operator A\~ which yields A\B when applied to B. Applying the
unary adjointness law in this case, we have

O4B=C iff B=o4C
But this is just another way of writing
AeB=C iff B=AC

Similarly, we can write A ¢ B as the unary operator Op applied to A, and regard C/B as DgC. Applying the
unary adjointness law here gives

AeB=C if A= C/B.
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atom  vernacular category

s sentence

is inverted sentence

fs verb-final clause

np noun phrase (including proper names)
partp participle phrase

c that-clause, que-clause, dat-clause

The full set of formulae {categories) is obtained as usual by closing the set of atoms under the
binary type constructors e, /, and \.

The lexical declarations we need are given in the table below:®
language category lexical inhabitants
fr*nch np Marie, Jean, Martin
(np\s)/partp 2
partp/np vu
partp/c dit
c/s que

*ngl*sh np Marie, Jean, Martin
(np\s)/np saw
¢/s that
(np\s)/c said
(np\s)/(np\&))/mp  said

d*tch np Marie, Martin, die appel
np\partp opgegeten, gezien
np\(partp\ fs) heeft
c/fs dat
(isfc)/mp zei

When word w inhabits category t, we write w = t.
For any logical system }, a lexical type assignment w is extended to binarily bracketed sequences

of words in the standard way: thus, if J is an appropriate index set and [];c;w; is a binarily
bracketed sequence of words and 7 is a formula, if there are categories {7;};¢s such that w b w; = 7;

and
Ak HiEI Ti =T
To show both dependencies, we may indicate that such a situation holds by

Mwb [liggwi =7

5The presence of asterisks is to emphasize the [ragmentary character of these simple grammatical systems.
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For example, we have
NL, fr*nch F Jean e (a e (vu o(Martin))) = s

because

fr*nch F Jean = np
fr¥nch F a = (np\s)/partp
fr¥*nch - vu = partp/np
fr*nch F Martin = np
AND

NL F (np e ((np\s)/parip e (partp/np e np))} = s

The first four lines come directly from our lexical assumptions; the final line can be straightforwardly
demonstrated as displayed in the proof tree below, where inference steps are marked with ¢, a, or
r, according to whether they depend on transitivity, adjointness, or reflexivity, respectivety.

r

a,r a
partp/np e np = partp (np\s)/partp e partp = np\s ar
(np\s)/partp e (partp/np e np) = np\s npenp\s = § t’

(np ¢ ((np\s)/partp ¢ (partp/np e np))} = s

Similarly, as the reader is invited to show, we have:

NL, fr¥*nch  F Marie o (a o (dit e (que o (Jean » (a e (vu ¢(Martin)))))}) = s
NL, *ngl*sh | Jean e (said e (that e (Martin ¢ (saw & Marie)))) = s
NL.d*tch | zei o {(Marie o (dat ® (Martin » ((die appel ® gegeten) o heeft)))) = is

These fragments are of course extremely simple. This is obvious at the lexical level, since each
fragment contains fewer than 10 words and speakers of natural languages are estimated to know

SActually, we let t stand for a generalization of transitivity which is easily shown to be valid in the presence of
the adjointness laws. We illustrate with a simple special case. Suppose A = B and C' e B = D. By adjointness,

CeB=D iff B=C\D

By our second premise, the lefthand side holds; thus, the righthand side holds; by our first premise and transitivity,
we have A = C\D; taking this as the righthand side of the adjointness law, the lefthand side gives us Ce A = D.
Thus, we have proved the derived rule of inference {with premisses represented on top of the line and conclusion
below):

A=B CeB=D
CeA=D

By an easy inductive argument, this simple result can be generalized to show that we can generalize transitivity to
substitution inside a product of arbitrary depth.
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on the order of tens of thousands of words. This can be remedied in part by enriching the lexicon.
But enriching the lexicon is not in and of itself a sufficient remedy.

In the next section, we will examine the well-known inadequacies of NL as a logic of extraction
and show how simiple extensions of it can accommodate the properties of interest here of languages
like French, English, and Dutch.

Extraction: preliminaries

An embedded question, such as qui a vu Martin in a French sentence such as Jean s’est demandé
gui a2 vu Martin or who saw Martin in an English sentence like Jean wondered who saw Martin, consists
of two basic parts: the question word who and the body—the clausal remnant saw Martin. Although
the system: NL is too weak to deal adequately with French or English embedded questions, its type
system: can handle this particular case and shows the way toward a system that handles a much

“broader range of cases.

‘We begin with the following fact, which follows directly from the lexical properties of the words

in question by the adjointness laws:

NL, *ngl*sh I saw ¢ Martin = np\s

Now, writing cg for the type of an embedded question, adjointness allows us to solve for the unknown
type x in the sequent

(2o (np\s)) = cq iff @ = cg/(np\s)

Thus, adding cg to our stock of atoms and extending our lexical assignment by the declaration
who = ¢g/(np\s), we can prove:

Jean o (wondered e (who e (saw e Martin))} = ¢

This analysis is lexically extendable to embedded questions with complementizer whether, by
the addition of the lexical type declaration

whether = cg/s

But further generalizations within the system NL are only possible if completely unacceptable
forms of lexical polymorphisin are allowed. For example, to treat the embedded question who Martin
saw from this perspective, we would need to be able to assign a type to Martin saw, which requires a
new type np\(s/np) for saw, relative to which we can show Martin e saw = s/ap. But we also need
a new type for who, cq/(s/np), in order to be able to derive who Martin saw as a cg. Switching the
basic inference system from NL to L by adding the two Associativity rules allows one to combine
all the cases in which the gap is rightmost into a single category (since it is possible to show that
in the presence of Associativity that all clausal remnants with a single, final np gap belong to the
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type s/np), but distinct types are still needed for intial and final gaps and non-peripheral cases

still remain.
Before proceeding further, it is worthwhile to take stock of the situation. We seek a system of

inference with the following properties:
1. there is a type £ such that we may take who, for example, to be of type cg/(£\s) and we may
show using hypothetical reasoning, that the body is provably of type £\s;

2. to show that the body is of type £\s, we must be able to show
£ o [body] = s

" This step requires communication between the hypothetical premise € and the position of the
gap inside the body of the embedded question;

3. communication between the hypothetical premise £ and the position of the gap must be
statable by logical principles; and

4. the additional logical principles allowing communication between the hypothetical premise £
and the position of the gap must not lead to overgeneration (as occurs if we extend our logical
system from NL to LP by adding both the Associativity Rules and Permutation; while this
would allow communication between the hypothetical premise £ and any possible position in
the body, it would also completely destroy the possibility of distinguishing expressions by the
order of their components (just as the associativity rules destroy the possibility of distinguish
expressions by the grouping of sub-expressions)).

All these desiderata can be simultaneously satisfied in a simple multi-modal system of gram-
matical inference.

Ezxtraction: a multi-modal approach

Extend NL by the addition of a unary mode associated with the unary type constructor Oy
and its adjoint Clll“h, to form the system we shall refer to as NLo,,. Recall that by the adjointness

laws, we have
Owhl:ltlu A=A
Now, if we assume that the single type assignment in our fragment for who is
who = ¢q/(Oun vahnp\s),

then we can treat who saw Martin as an embedded question, since we have
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NLowh F (CQ/ (Owhuihnp\s) e np\s) = ¢q.

1t is worth seeing how the proof of this theorem unfolds, in order to appreciate the deductive
role played by the modalities.

1 unery of,r a7
OuprDpmp = np npe (np\s) = s .
(Cunlhgnpe (10\) = 5 -
)
np\s = Owhl:'lluhnp\s (ca/((Own Dlluhnp)\s) * (Oup Dfuhnp)\s) = cq :

(cg/((OwnDymp)\8) @ np\s) = cg

Thus, for the special case in which the body of the embedded question is of type np\s, we now
have two types for who which satisfy all our desiderata (some vacuously), namely the NL-type
eq/(np\s) and the NLo, ,-type cq/(Own Dfuhnp\s). We have already seen that the first of these is
difficult to extend uniformly to a larger range of relevant cases, for at least two reasons:

e atomic categories like np are not part of the logical vocabulary, so our logical system cannot
formulate general laws in terms of particular atoms;

¢ on the other side of the coin, formulating filler-gap communication in terms of particular
atoms would miss the point, since similar communication rules hold with respect to other
atomic categories (such as ap and pp).

In fact, in standard generative syntax, these problems were recognized very early, and movement
rules were formulated not with regard to particular categories, but with regard to a particular
feature (or set of features), such as [+wh]. But in contrast to the inert feature [+wh], which has no
intrinsic logical behavior, the type constructor O,y is a logical operator, with an adjoint DtllJ 5 But
over and above the behavior of the operator ¢, with its adjoint vah (which plays a role in the
proof displayed above), as a product operator, ., can also appear in interaction rules, connecting
it with other operators.

We have already seen how the type cq/(OQ!np\s) accounts for French, English, and Dutch

sentences such as:
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French Jean se demandait qui a vu Martin.
Jean refl asked:impf who has seen Martin
‘Jean was wondering who saw Martin.’

English Jean was wondering who saw Martin.

Dutch  Jan vroeg zich af wie slaapte
Jan asked refl who slept
‘Jan wondered who slept.’

The next simplest step of communication between filler and gap involves sentences such as:

French Jean se demandait qui Martin connait.
Jean refl asked:impf who Martin knows
‘Jean was wondering who Martin knows.’

English Jean was wondering who Martin saw.

Dutch  Jan vroeg zich af wie Martin plaagte
Jan asked refl who Martin teased
‘Jan wondered who Martin teased.’
In French and English, these sentences will be derivable if we add the following interaction

postulate:

K2 OuppAe(BeC)= Be(CeOumA)

In Dutch, the required interaction postulate is:

K2 OupAe(BeC)= Be(OupAeC).

These postulates are pleasantly symmetric. To see that they do what we say they do, look at the
proofs below:

(np\e)/npenp = np\s | npenp\s = s :’r
(npe ((np\s)/npenp)) = s
(np e ((np\s)/npe OOlnp)) = s _,
(OO!npe (np e (np\s)/np)) = s f ar! wr
(np e (np\s)/np) = (OOlnp)\s (cg/((©D'np)\s) o (©Dlnp)\s)) = cq
cq/((OOinp)\s) ¢ (np o (np\s)/np) = cq - )
who e (Martin e saw) = cg
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L. SOlw=np " Twen\m\)) S s
(npenp\s) =s (OOInp e np\(np\s)) = np\s ;
(np e (OO'np e np\(np\s))) = s _,
(OOlnp o (np e np\(np\s))) = s
np @ np\(np\s) = (OO!np)\s cg/((COlnp)\s) o ((OO'np)\s) =

cq/((ODnp)\s) o (np e np\(np\s)) = cg
wie o (Martin e plaagte) = ¢g e

2!

The postulate E 21 recursively allows a modally decorated type to adjoin to the left of any right
branch. For example, starting with

OOlA e (Be(C1eC2))

the modally-decorated subformula can move in one step to the left of the product (C'1 ¢ C2) and
subsequently in a second step to the left of C2, as illustrated below:

OOlAe(Be(CleC2))= Be(COOlAe (C1eC2))= Be(Cle(00'AeC2))

This correctly allows for

Jan vroeg zich af wat (Marie (Piet zou geven)
Jan ask refl particle what Marie Piet would give
‘Jan wondered what Marie would give Pete’

While X 2 allows the modally-decorated type to look recursively down the left branch of a
right branch, it is also possible in Dutch to find the gap down the left branch of a left branch:”
Jan vroeg zich af ((op wie)(Marie (gestellt was)))
Jan asked refl particle prep whom Marie like
*Jan wondered who Marie liked’
In this example, the extracted phrase must communicate with the position to the left of gestellt.
This is accomplished by adding to the Dutch postulate package the interaction postulate K 11,

formulated below:

K1 ©Ae(BeC)= (CAeB)eC

"The example involves pied-piping with the preposition op; this fact is orthogonal to our interests here, so is not
pursued here. For treatments of pied-piping, see Morrill {13].
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Unlike K 2l, the postulate K2r is not recursive, since its output can never be matched to
its input. Still, in English, the output of K2r must be able to communicate with more deeply
embedded positions, as in

Jean wondered (who (Maxima (tried (to (telephone)))))
Jean wondered (who (Maxima (persuaded (to (telephone Kim))))}

These examples are obtainable with the mirror images of the postulates for Dutch:
Klr ((AeB)eOC)= ((As OC)e B)
K2 ((AeB)eOC)= (Ae(Be0C))

We assume that these postulates hold for French as well as English. On this view then, the
differences between French and English, on the one hand, and Dutch, on the other, reside in the
choice between two sets of interaction postulates, displayed in Figures 1 and 2.

K2 OunAe(BeC)= Be(CeOumA)
K1r ((AeB)e0C)= ((AeOC)eB)
K2r ((AeB)eOC) = (Ae(BeoC))

Figure 1: postulates for French and English

K2 OupAe(BeC)= Be(OyAeC)

—

K1l ©Ae(Be(C)= (CAeB)e(

Figure 2: postulates for Dutch

The Dutch postulates allow an extracted phrase to occur directly following a complementizer.
For exaniple, consider the sentence Wie zei Marie dat die appel opgegeten heeft? Figure 3 displays
the bracketing we assume and the succession of structures involved in a proof.?

On the other hand, the postulates proposed here for English and French do not allow extraction
sites to follow a complementizer. More precisely, although it is possible for a modally-decorated
expression to communicate with the position following a complementizer, this requires the expres-
sion to be on the right branch of a binary structure whosc left branch is the complementizer, and
this position makes it impossible for the expression to combine with the predicate.

8Full details of the proof depend on an analysis of extraposition, which we need not pursue here.
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((zei Marie) (dat (©D'np ((die appel) (opgegeten heeft))))) _,
({zei Marie)(©D!np (dat ((die appel) (opgegeten heeft))))) £ 2
©0np((zei Marie)(dat ((die appel) (opgegeten heeft))))

FAIL —
(Marie (said ((that ©Olnp)(saw Martin)))) % 17

(Marie ((said (that (saw Martin))) ©Olnp)) I},’ or
©0tnp(Marie (said (that (saw Martin)))) K2

Discussion

The principles of distributivity on which the above account of extraction systems depends on
are non-deterministic and dynamic. These properties distinguish this approach from alternatives in
the literature and offer new perspectives on natural language extraction systems. The fuller report
on this research in preparation will contain a comparison with current theoretical alternatives
mentioned in the introduction.
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Introduction

Based on the work in (Poller, 1994) and a minor
assumption about a normal form for TAGs, we
present a highly simplified version of the two-
step parsing approach for TAGs which allows
for a much easier analysis of run-time and space
complexity. It also snggests how restrictions on
the grammars might result in improvements in
run-time complexity.

The main advantage of a two-step parsing
system shows in practical applications like Verb-
mobil (Bub et al, 1997) where the parser
must look at multiple hypotheses supplied by a
speech recognizer (encoded in a word hypothe-
ses lattice) and filter out illicit hypotheses as
early as possible. The first {context-free) step
of our parser filters out some illicit hypotheses
fast (O(n®)); the constructed parsing matrix is
then reused for the second step, the complete
(O(n®)) TAG parse.

Simplifying Root and Foot Nodes

The normal form that we assume in the follow-
ing is only a very minor modification and allows
for a trivial retrieval of parses from the results
of the normal form-based parser.

We call a TAG clean if the root node of ev-
ery elementary tree and the foot node of every
auxiliary tree is labeled with the null-adjoining
constraint. Obviously, every TAG can be trans-
formed into a clean TAG by simply adding
to every elementary tree an additional node,
immediately dominating the root node, with
the same label as the root node and the null-
adjoining constraint and also adding an addi-
tional node, immediately dominated by the foot
node, with the the same label as the foot node
and the null-adjoining constraint (see figure 1),
While this transformation adds new nodes to

the derived trees, no adjunctions can take place
at these additional nodes and they can easily
be eliminated again from a derived tree, result-
ing in the derived tree of the original grammar.
Thus, every TAG can be transformed into an
“almost” strongly equivalent clean TAG.

In a clean TAG, no adjunction can take place
at the root or foot node. This allows us to drop
numerous special data structures and steps from
the algorithm in (Poller, 1994), resulting in a
much cleaner presentation. We also omit the
treatment of linear precedence rules, which can
easily be added.

A Simplified Two-Step TAG parser

An initial offline step is the extraction of the
context-free kernel from the TAG G, a context-
free grammar Gy which overgenerates, i.e.,
L(G) Cc L(Gk).

The first step of the parser is a standard parse
with the Earley-algorithm (Earley, 1970). The
second step is the repeated elimination of ad-
joined trees from the parser’s matrix. Thus a
TAG derivation is constructed inside-out!.

First, we describe the additional data struc-
ture which is added to the items of the Earley
parser. An item is a tuple (7,7, S = o e 3), rep-
resenting a derivation of @;41...a; from «. In
addition, every non-terminal node in the item
carries a list with node numbers, taken from the
TAG grammar G, uniquely identifying a node in
an elementary tree of G which contributed the
rule S = of. Furthermore, every node num-
ber in an item can store a list of pointers, called
foot node pointers (see below). Figure 2 shows
two elementary trees and an example item with
node numbers.

10r rather bottom-up in terms of the derivation tree
of the TAG.
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Figure 1: Transforming an auxiliary tree into
a clean tree.
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Figure 2: Two example trees and an item
from the context-free kernel with node num-
bers.

Our stepwise approach to TAG-parsing is
open to different degrees of precision for the
context-free parsing step depending on how
much information about the elementary TAG-
trees is integrated into the context-free pars-
ing step. We expect that the following alter-
natives have different influences on the realtime
behaviour of a practical system mainly depend-
ing on the grammar’s characteristics (size, am-
biguitiy, ...).

(1) Solely the node labels are used to gener-
ate the context-free kernel. In this case the node
numbers attached to the terminals and nonter-
minals have no influence at all on the Earley
operators. In this paper we describe this alter-
native.

(2) An other possibility is to integrate the
node addresses from the elementary TAG trees
into the rules of the context-free kernel?. This
requires extensions of the Earley operators be-
cause they are now controlled by the character-
istics of a specific node of a TAG tree instead
of just a label. In particular, the prediction of a
nonterminal node now only produces items for
context-free rules that are valid according to the
TAG grammar and also don’t violate any ad-
junction constraint of the predicted node. This

*Thanks to the anonymous reviewer who suggested
this procedure.

allows for the integration of the TAG constraint
check into the context-free parsing step. Simi-
larly, the completor also works only with valid
derivation steps according to the TAG gram-
mar. On the other hand, we cannot share node
number alternatives in one item anymore. But
this increases the overall number of items only
by a constant factor.

While the first alternative filters out only in-
valid context-free derivation steps with respect
to node labels, the second one is a stronger filter
because it only produces items which represent
locally valid derivation steps with respect to the
TAG grammar but reduced to the context-free
domain of locality. Furthermore it requires one
item for each occurence of a context-free rule in
different TAG trees. This is a trade off between
the number of items to be produced in the first
parsing step and the precision of its filtering ef-
fect.

It is interesting to note that it is also pos-
sible to derive the node number specific items
of the second alternative from the parsing ma-
trix of the first one, If the node number check
is organized top-down starting with successful
context-free derivations (similar to the initial-
ization of the TAG parsing step below) we get a
3-step parser functioning as a cascade of filters.

Independent of these alternatives there is a
special parsing strategy for lexicalized TAGs
(Schabes et al., 1988). As each terminal is as-
sociated with a set of elementary trees we can
immediately restrict the relevant TAG trees for
the parser to those that are associated with
the terminals of the input string. This strat-
egy can still be applied since the rules of the
context-free kernel can be computed in advance
for each elementary tree separately. Once the
relevant elementary trees are determined for an
input string, the context-free kernel is simply
the union of the associated context-free rules.

For all variants of the context-free parsing
step, the second step (the actual TAG parsing
step) remains basically the same,

Within the second step an initialization pro-
cedure filters out irrelevant itemis by a top-
down traversal starting from roots of success-
ful context-free derivations through the pars-
ing matrix. This sets the ground for an it-
erated elimination of complete, adjoined trees.
This initialization is not strictly necessary (and
takes O(n?®) time), but it provides an impor-
tant speed-up because now only valid context-
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free derivations are considered. Invalid context-
free derivation steps are filtered out which might
become relevant in practical systems with large
grammars.

Initially, all leaf nodes (including foot nodes)
are marked, i.e., the corresponding node num-
bers in all items, are labeled ok, then these ini-
tial ok’s are propagated “bottom-up” along the
context-free derivation steps if they took place
inside the same elementary tree which can eas-
ily be checked by comparing the unique node
numbers. This ok-propagation also propagates
relevant information about foot node positions.

While recovering elementary trees in the pars-
ing matrix, we need to keep track of possible
foot node positions. Each node number in an
item is associated with a set of corresponding
foot node pointers. A foot node pointer points to
a particular node number in some item. Thus,
when an ok is eventually propagated to a node
number that represents the root node of an el-
ementary tree, all possible positions of its foot
node have been collected in the foot node pointer
list. Note that there can be O(n?) foot node
pointers for each node number, since there are
O(n?) items.

The relevant computational steps during the
iteration are: elimination, upwards propagation,
and horizontal propagation. Elimination of an
adjoined tree in the Earley matrix is realized
by propagating all ok’s from immediately “be-
low” all possible foot nodes to all immediate su-
pertrees of the root node®. Upwards propagation
is the propagation of an ok from a complete!
item to its ancestor. Horizontal propagation is
the propagation of an ok to an item where the
dot has moved one position to the right.

In the following, all complexity statements
are based on the limited number of items that
are produced by the Earley algorithm, in partic-
ular the number of items in a so called itemlist.
Each itemlist I contains at most O(k) items so
that the number of all items produced by the
Earley algorithm is bound by: Y p.,O(k) =
0O(n?). Another important point for our com-
plexity statements is that each individual item
is stored exactly once by the Earley algorithm

*Implementations of the concepts “below” and “su-
pertree” are already provided by the Earley parser.

A complete item has the dot at the rightmost
position. .

5An itemlist [z is defined as the set of all items
(i,5,8 = c e 3) where k = ;.

{even though it might be derived by more than
one operation), which means that there are no
two identical items, ,
We can now present a sketch of the algorithm:
for j from 0 to n
for i from j downto 0O
foreach item (i,7,4A > ae )
There are only three cases for a node number
N of A labeled ok of an item (7, j, A — e 3):
1. f=e
1.1 N is the root of an auxiliary tree:
perform an elimination of all en-
codings of this tree,
This can be done in O(n?) time.
1.2 N is an inner node of an elemen-

tary tree: perform an upwards
propagation.
This can be done in O(n3) time.
2. f#e

perform a horizontal propagation.
This can require O(n3) time.
end foreach; end for j; end for i;

The most expensive step is elimination (step
1.1). For each root node of an adjoined tree
to be eliminated there can be O{n?) foot node
pointers because there are at most O(n?) items
to which they can point to. They result in
O(n?) positions from which this tree can be
eliminated, i.e., ok’s at these positions and their
foot node pointer lists must be propagated. Col-
lecting all these foot node pointers lists {of size
O(n?) each) from each of the O(n?)} positions
results in O(n?) time complexity (see figure 3).
It is important to note that this computational
step cannot produce more than O(n?) new foot
node pointers at the current root node although
their computation costs O(n?). Therefore the
fact that each node has at most ©@(n?) foot node
pointers is an invariant of the iterative elimina-
tion.

The complexity of step 1.2 (upwards propaga-
tion) is also based on the limited number’of foot
node pointers. Since the ok of a node is propa-
gated to its “context-free” ancestors and all pos-
sible ancestors are contained in the same item-
iist, the complexity is limited by the G{n?) foot
node pointers and the O(n) items (“supertree”
in figure 4) to which they have to be propagated
to, which results in O(n?®) time complexity.

Finally, step 2 (horizontal propagation) can
also be done in O(n®) time. Again, O(n?) foot
node pointers of an ok have to be propagated to
all items where the dot has moved one position
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£,

(k,,A->BC.)

Figure 3: Complex elimination of a completely
recognized auxiliary tree.

(kj,A->BCF) A

(1J,C->DE.)

Figure 4: Simple propagation of ok to the an-
cestor node, i.e., the corresponding items.

to the right. Since there are no identical items
there can be at most O{n) items (one item from
each itemlist; see figure 5)5.

(i,7,S = ae XB) "3 (3,5 + k, 8 = aX o §)

Figure 5: Horizontal propagation of ok to the
next item.

The overall time complexity of the parsing al-
gorithm is O(n®) since there are O(n?) items for
which elimination (O(n?)) must be performed.

Obviously, the two-step parsing algorithm
does not have the correct prefix property
{Nederhof, 1997) as it requires the entire sen-
tence to be analyzed by the Earley parser before
the second (TAG parsing) step begins. How-
ever, the Earley step itself has the correct prefix
property wrt. the context-free kernel and also
the discussion in (Poller, 1994) of a completely
incremental setup also applies to the simplified
two-step TAG parsing algorithm presented here.

. %The concepts “next” and “previous” explicitly rep-
resent links between items coming from dot movements
by the Earley parser.

Current Work

Although our parser does not have the correct-
prefix property it can run incrementally as de-
scribed in {Poller, 1994) namely by running the
TAG parsing step in parallel to the construction
of the context-free parsing matrix. Although
this may require additional computational steps
on unsuccessful context-free derivation steps,
the effects on the realtime behavior of a practi-
cal system again depend on grammar character-
istics. So it would be very helpful to find some
kind of “grammar classification” with respect to
their “parser suitability” in practical implemen-
tations answering the question “Which TAG
parser is best suitable for my current task?”.

The analysis of the elimination step shows
clearly that the time complexity of our TAG
parser stems from the number of possible foot
node positions. We are currently investigating
whether certain restrictions on TAG grammars
can lower this number. E.g., this is obviously
the case for unambiguous grammars.
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1 Introduction: TAG and
wh-Movement

The analysis of wh-movement given within TAG
is a very convincing argument for the use of a
constrained tree-rewriting formalism in syntax,
since wh-movement does not require any spe-
cial mechanism in TAG. wh-movement can be
localized to elementary trees, and island effects
are obtained naturally. This situation contrasts
with approaches based on string-rewriting for-
malisms such as CFG, which require extensions
(mathematical or at any rate definitional) to the
basic mathematical formalism (resulting in the-
ories such as GPS3G, HPSG, LFG, or transfor-
mational grammar).

However, the question arises how other tree-
rewriting formalisms such as D-Tree Gram-
mar (Rambow et al., 1995) can handle wh-
movement.  Specifically, the question arises
whether an equally elegant solution to the prob-
lem of wh-movement can be found. In this pa-
per, we propose to study exactly which what
features of the formal (mathematical) definition
of TAG contribute to the correct analysis of wh-
movement (in English). We will mainly concen-
trate on TAG, but occasionally mention tree-
local MC-TAG.

The paper is structured as follows. In Section 2,
we present the relevant elements of the defini-
tion of TAG. We then proceed to discuss specific
island types and how these can be expressed in
TAG: relative clause and other adjunct isiands
in Section 3, sentential subject islands in Sec-
tion 4, and wh-islands in Section 3.

2 Elements of the Definition of TAG

In this paper, we will distinguish the following
elements of the definition of TAG. (For a full

mathematical definition, see (Vijay-Shanker,
1987).)

e The extended domain of locality
(EDL). In TAG, the elementary structures
are trees (rather than strings), so we can
state extensive linguistically motivated re-
strictions on the shape of the elementary
trees of a grammar. In fact, any such lin-
guistic restriction on the shape of elemen-
tary structures exploits EDL,.

e The geometry of adjunction (GA). By
this term, we mean the specific, mathemat-
ical defiuition of the adjunction operation
in TAG and, especially, the shape of the re-
sulting derived tree. Specifically, an auxil-
iary tree ( has a designated footnode; when
[ is adjoined in a tree « at node v, it is in-
serted in its entirety into . In the process,
[ remains intact, but « is divided in two
subtrees at node v, with @ now attached at
v and the subtree formerly rooted in » now
attached to the footnode of 4.

e The factoring of recursion (FR). By def-
inition, in an auxiliary tree 3, the footnode
and the root node must have the same Ia-
bel, A. Furthermore, # can only be ad-
joined at a node labeled A. We observe
that this aspect of the definition of TAG is
not essential in the sense that the restric-
tions could be lifted without affecting the
remainder of the definition, in particular
the geometry of adjunction. The crucial
part for the geometry of adjunction is the
presence of a footnode; its label does not a
priori matter,

We observer that tree-local MC-TAG has the
same notion of EDL as TAG, and it has it own
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notion of GA. FR is limited to those cases in
which adjunction of on eof the component trees
takes place.

By definition, any other tree-rewriting system!
will also have EDL, while GA and FR are spe-
cific to TAG. Thus, we are in particular inter-
ested in the extent to which GA and FR are
used in deriving island constraints, since such
use would not necessarily carry over to other
tree-rewriting systems.

In the following, we will be making an impor-
tant assumption. Because of the EDL of the ele-
mentary structures of TAG, it is possible to lez-
icalize TAG in a straightforward manner (Sch-
abes, 1990), meaning that each elementary tree
in a grammar is associated with exactly one lexi-
cal item. Furthermore, we can require that each
tree corresponding to a lexical item has posi-
tions (substitution nodes or a footnode) corre-
sponding to each syntactic argument of that lex-
ical item, and that the derivation thus reflects
the syntactic relation between the lexical items
involved (Rambow and Joshi, 1996) (the “lex-
ical derivation constraint”). In this paper, we
will only be interested in lexicalized grammars
and in derivations that conform to the lexical
derivation constraint.

3 Relative Clause Islands and Other
Adjunct Islands

Sentence-initial extraction from certain ad-
juncts such as relative clauses modifying non-
fronted object NPs or VP sentential adjuncts is
ruled out simply by GA (in conjunction with
the lexical derivation constraint). It is simply
impossible to adjoin (or substitute) a tree into
a (non-fronted) object, or adjoin a tree at a VP
node (in a tree which has a subject NP to the
left of the VP node), and obtain a derived tree
in which some part of the adjoined tree is now
in sentence-initial position.

In contrast, it is quite possible to adjoin a rela-
tive clause to a subject or adjoin an S-adjunct
to a clausal tree (i.e., and adjunct phrase rooted
in 8), and obtain a wh-extraction to sentence-
initial position. A sample auxiliary tree that
would result in illicit extraction is shown in Fig-

'We include in this category systems which operate
on tree-like structures.

NP
/N
NP NP* S’
/\
who
/\

S
£ VP
/\
\lf £

wear

Figure 1: Relative clause with wh-moved ele-
ment

ure 1. This tree can be ruled out in several
different ways resorting to linguistic arguinents.
For example, one could exclude the tree by say-
ing that extraction beyond the root node of an
adjunct is impossible since the root node is not
part of the projection of the lexeme anchoring
the adjunct, or one could say that the tree in
Figure 1 is illicit because of independently for-
mulated constraints on node labels. In any case,
one would be exploiting the EDI: to express lin-
guistically motivated constraints on the shape
of elementary structures in the grammar. But,
crucially, these constraints would carry over to
the case of the relative clause modifying an ob-
ject NP, and to the case of the VP-adjunct: it
is not plausible that the linguistic constraints
would be formulated in such a way that they
only apply to subject relative clauses (or S ad-
juncts), but not to object relative clauses (or VP
adjuncts). Thus, these cases are redundantly
rules out by GA.

Furthermore, there is a point that is easily
overlooked. While object relative clauses with
sentence-initial fronting are ruled out by GA,
we also need to rule out non-initial fronting:

(1) *I saw what;the man who was wearing t;

While these kinds of sentences may be patho-
logically bad, they still need to be ruled out in
a TAG grammar
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We close by observing that if we are using tree-
local MC-TAG, an arguinent very similar to the
one above can be made to demonstrate that any
predictive power obtained from the geometry of
tree-local multicomponent adjunction is redun-
dant with respect to independently required lin-
guistic restrictions on the shape of the elemen-
tary tree sets. We omit the details.

4 Sentential Subjects

It would be possible to derive extraction fromn
sentential subjects in the same manner that
we derive extraction from sentential objects,
namely by adjoining a matrix clause of the type
shown in Figure 2 into the subordinate clause.
In order to exclude such a derivation, we must
say that the subject position, even when la-
beled S, cannot be a footnode. Thus, simply
saying that we have factoring of recursion does
not limit the extraction patterns: we must, in
addition, make a linguistically motivated choice
among possible footnodes. Designating a footn-
ode is equivalent to allowing extraction from
that position,

S
/\
S* YP
/\
x,f NP,
think

Figure 2: Matrix clause with sentential subject

However, the designation of the footnode is
not sufficient. This is because of a well-
known asymmetry in extraction from picture-
NPs: while extraction from certain object NPs
is possible, extraction fromn subject NPs never
is.

(2) a. What; did you buy a picture of t;?
b. * What; did a picture of t; fall on your
head? :

Thus, if we use tree-local multicomponent MC-
TAG to derive picture-NP extraction by sub-

stituting the main NP and substituting or ad-
joining the extracted wh-element, we must still
specifically rule out extraction from subject po-
sition in some manner.? Furthermore, the same
problem arises when we want to distinguish be-
tween verbs that allow picture-NP extraction
and those that do not (as readily). There-
fore, we will need some formal device (say, a
feature EXTRACT on frontier nodes which regu-
lates multicomponent derivations across them)
for blocking extraction from certain positions in
addition to the choice of footnodes. (This will
also exclude extraction from sentential subjects
if these are analyzed as projecting to NP.) The
use of the device will need to be linguistically
motivated. Some sort of equivalent device with
similar linguistic motivation for its use can be
used in tree rewriting systems which do not have
FR or GA.

5 Wh-Islands

In English, we can exclude some wh-islands by
restricting the shape of elementary trees.

(3) *What; do you know whom; Mary gave t;
;7

(3) is excluded because the elementary tree for
give, which would need t have two wh-moved el-
ements, is already excluded (we never have mul-
tiple wh-movement in English elementary trees).
This analysis exploits the EDL and transfers to
other tree-rewriting formalisms.

But that does not cover all cases of wh-islands.

(4) *What; do you know whom; Mary told t;
that she had bought t;?

In (4), there is only one wh-extraction per el-
ementary verbal tree. These cases can be ex-
cluded in several ways, but they all use FR. We

?Kroch (1989) suggests instead that the traces of
picture-NP extractions are found in the elementary
structures of the main verb. They are not licensed in
the verbal tree because not bound; an index is adjoined
through multi-component adjunction {along with the wh-
element), which provides the binding. However, unlike
traces in object position, traces in subject position are
never licensed to begin with. This analysis exploits the
EDL and could be expressed in other tree-rewriting for-
malisms as well.
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take (Frank, 1992) as the most advanced exam-
ple. There, trees in which wh-extraction from
below takes place are footed in C’ and (hence
by FR)} are rooted in C’, while those without
wh-extraction from below are both footed and
rooted in CP. This ensures that if there is a wh
element below (and assuming wh elements are
always in SPEC(CP)}, then the tree below must
project to CP, and then the foot node must be
CP, and hence the root node as well. There-
fore, there is no room for a further wh element
up front that would come from below. Note that
if there is a single wh-movement at any depth of
embedding, then because of the recursion part
of FR, all trees above it must be CP-footed-and-
rooted as well.

Frank’s analysis makes use of several linguistic
constraints on elementary structures (exploiting
EDL), among which:

1. In an elementary tree, a C' may never dom-
inate a CP.

2. An eclementary tree may not have two
CP nodes one immediately dominating
the other (the “anti-CP-recursion stipula-
tion”}.

3. Each tree can only contain a single lexi-
cal item and its projection and (crucially})
no part of a different lezical item’s projec-
tion. Otherwise, we could have (did) (john)
wonder whether in one tree which is rooted
and footed in C’. Such a tree would allow
sentences such as *Who did John wonder
whether Sue saw?.

Given these linguistic constraints as well as FR,
it is impossible to obtain a node labeled CP im-
mediately dominating a wh-element on the path
separating a “moved” wh-element from the rest
of its tree,

In tree rewriting systems that do not have FR,

it will be necessary to derive the path constraint

in some other manner. In DTG, it is possible
to include path constraints explicitly in the el-
ementary structures. In such an approach, the
linguistic restrictions can be relaxed; it is not
necessary to assume the anti-CP-recursion con-
straint, for example, and it would even be pos-
sible to allow an inversion of CP and C'.

6 Conclusion

In conclusion, we have seen that for relative
clause islands and clausal adjunct islands, and
for sentential subject islands, the TAG analysis
exploits EDL but not GA or FR. These anal-
yses would therefore carry over to other tree-
rewriting systems. In the case of wh-islands, FR.
is exploited in conjunction with several linguis-
tic EDL-type constraints in order to limited the
occurrence of certain nodes on the path of wh-
“movement”. While this can not be replicated
exactly in a system without FR, any other de-
vice to restrict the path has the same effect.
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‘In Rogers (1997b) we introduced a new class of
models, three-dimensional tree manifolds (3-TM),
that can serve as both the derived and derivation
structures for TAGs in the same way that trees serve
as both derived and derivation structures for CFGs.
These tree-manifolds are higher-dimensional analogs
of trees; in a 3-TM the children of a node form an
ordinary (two-dimensional) tree just as in ordinary
trees the children of a node form a string. From
this point of view the elementary structures of a
TAG can be interpreted as labeled local 3-ThMs—
a root node and its set of children (a pyramidal
structure)—analogous to the interpretation of the
rewrite rules of a CFG as local trees. Adjunction
in TAGs and substitntion in CFGs both reduce to
a form of concatenation, of local trees in CFGs, of
local 3-TMs in TAGs. In Figure 1, for example, the
local 3-TMs corresponding to the elementary trees
«y and J; are concatenated to form the 3-TM corre-
sponding to the result of adjoining 4, into ;. The
two-dimensional yield of this structure is the corre-
sponding derived tree and its one-dimensional yield
is the derived string.

This analogy can be extended downward to en-
compass the regular languages and upward generat-
ing the control language hierarchy of Vijay-Shanker
et al. (1987), Weir (1988), Weir (1992). And it
turns out to be quite deep. The ordinary finite-state
automata (over strings—the one-dimensional level)
accepting the regular languages becoine, at the two-
dimensional level, the tree-automata accepting the
recognizable sets of trees. The corresponding au-
tomata over 3-TM turn out to accept exactly the sets
of tree manifolds that are generated by TAGs (with
adjoining constraints} modulo a relaxation of the
usual 1equimment that the root and foot of an aux-
iliary tree be labeled identically to cach other and te
the node at which it adjoins. (We refer to these sets
as the recognizable sets of three-dimensional tree
manifolds.) Moreover, essentially all of the famil-
iar antomata-theoretic proofs of properties of reg-
ular languages lift divectly to automata over tree-
manifolds of arbitrary dimension—the dimensional-
ity of the structures is simply a parameter of the

proof and plays no essential role.

In Rogers {1998) we exploit this regularity to ob-
tain results analogous to Biichi’s characterization
of the regular languages in terms of definability in
w518 (the weak monadic second-order theory of the
natural numbers with successor) (Biichi, 1960) and
Doner’s (1970) and Thatcher and Wright’s (1968)
characterizations of the recognizable sets (of trees)
in terms of definability in wSnS (the weak monadic
second-order theory of n successor functions—the
complete n-branching tree). The recognizable sets
of 3-TM are cxactly the finite 3-TM definable in the
weak monadic second-order theory of the complete
n-branching three-dimensional tree manifold, which
we refer to as wSnT3. This raises the prospect of
defining TALs through the medium of collections
of logical constraints expressed in the signature of
wSnT3 rather than with explicit TAGs. In this pa-
per, we introduce this approach and begin to explore
some of its ramifications in the context of TAGs for
natural languages.

Rather than work in wSnT3 directly, we work with
an equivalent class of structures that is linguistically
more natural. A Labeled Headed Finite 3-THM is a
structure:

5. A. A + 4+ 4t
(T) d3, d2, 91, 93, 42, 9, q,‘i ,dg 7q] )Hl!Pa)a’Ezw

where T is a rooted, connected, finite subset of the
complete n-branching 3-TM (for some n); <; is im-
mediate domination, El,- is local proper domination
(among siblings) and <} is global proper domina-
tion {inherited), all in the 7t dimension;! Hy is the
set of Heads (exactly one in each string of children—
these are undetlined in the figures) and P, are the
labels (each picking out the set of nodes labeled o,
not necessarily mutually exclusive).

We begin by looking at a simnple example: assign-

ment of case in XTAG main verh {a) and anxiliary

verh (B;) trees. We interpret node names as first-
order variables and tree names as monadic second-

order variables with, e.g., a;(x) satisfied iff z is

I'Domination, in its familiar form in trees, is domination
in the second dimension here. Domination in the {irst dimen-
sion is usually known as linear precedence. VWe will refer to
domination in the third dimension as abone.
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the (3" -dimensional) root of the local 3-TM cor-
responding to ay:

ni(s) ©
(357, npo, vp, v, np1)|
SA3 S, AS A3 npp ASBUPASQUAS QG A
Ming(s,) A Maxa(npg) A Maxa(v) A Maxg(np;)A
5p <2 npp A sp 9 vp A Hy(vp)A
Minj {npe) A npo <1 vp A Maxy (vp)A
up <2 v Avp <9y npy AH, (V)A
Min; (v) A v <y np; A Max (npy )A
Initial(s) A Anchor(v) A Subst{npg) A Subst(np,;)

]

Here Min; and Max; pick out minimal (root) and
maximal (leaf) nodes wrt the i*" dimension—these

are defined predicates:
Min;(z) = -(3y)[y «; z].

Initial{x) is true at the root of each local 3-TM
encoding an initial tree, Anchor(z) is true at each
anchor node (we will ignore insertion of the lexical
iterns), and Subst(z) is true at each node marked for
substitution-—these are labels, in L. We require all
Subst nodes to have children in the 3'¢ -dimnension
and require the set of Initial nodes to be exactly the
Subst nodes plus the root of the entire 3-TM:

(Va)}[Subst{r) = (3y)[= <1 y]]
(Vr)[Initial{z) ¢ (Subst(z) V Mins(z})]

Figure 2 shows the distribution of features respon-
sible for case assignment in the XTAG grammar.
Following the approach of Rogers (1997a) we inter-
pret the paths occurring in the feature structures
decorating the trees as monadic predicates: I in-
cludes each sequence of features that is a prefix of
a path occurring in a feature-structure derivable in
the grammar.? We will refer to this set of sequences

As is typical in FTAG, we assume finite feature-
structures.

as Feat., Each node is multiply labeled: the feature-
structure associated with it is the union of the paths
labeling it. In order to capture the distinction be-
tween top and bottom feature-structures we will pre-
fix their paths with ‘" arid ‘b’, respectively, We can
then add to the definition of a;:

(t : case : acc)(np;) A (b : assign-case : nom){v).

This encoding of feature-structures gives us a
straightforward definition of predicates for path
equations as well. For any sequences w, v € Feat:

(w = v)(z,y) = /\ [0 s u)(@) & (v u)(w)].
w:u€Feat
ar mucFeat

With this we can add the re-entrancy tags:

{b : assign-case = t : assign-case){vp, v)A
(b : assign-case = t : assign-case) (s,, vp)A
{b : assign-case = t.: case){s,, npp)A

(t = t)(s,s,).

The labeling of the elementary trees can then be
interpreted as a collection of constraints on local 3-
TM, with the set of structures licensed by the gram-
mar being the set of 3-TM in which every node sat-
isfies one of these collections of constraints. Note
that for a 3-TM in which the 3; 3-TM expands the
VP node in an a; 3-TM to be licensed, the VP node
must satisfy both the constraints of the a; 3-TM and
the constraints on the voot. of the 3; 3-TM. Thus the
top feature-structure of the VP is unified with the
top feature-structure of VP, and the bottom feature-
structure with the bottom feature-structure of the
foot VP by simple transitivity of equality. There is
no need for additional path equations and no exira-
logical mechanisms of any sort; licensing is simply a
matter of ordinary model-theoretic satisfaction. To
get the (default) unification of top and bottom fea-
ture structures of nodes that are not expanded by
adjunction we add a single universal principle:

(Va)Maxa () = (¢ = D), »)].
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Figure 2: Case assignment in XTAG.

Taken literally, this approach yields little more
than a fully declarative restatement of the original
grammar. But. in fact, a large proportion of the fea-
tures decorating elementary trees are there only to
facilitate the transport of features through the tree:
there is no obvious linguistic motivation for posit-
ing that “assign-case” is a feature of VPs or of S.
In the language of wSnT3 there is no need for these
intermediate “functional” features or even any need
to distinguish top and bottom feature structures—
we can state directly that the value of the case fea-
ture of the subject NP, for instance, must agree with
the value of the assign-case feature of the verb. Of
course, what is interesting about this relationship is
the effect of adjoined auxiliaries. The TAG analysis
includes an assign-case feature for the jntermediate
VP in order to allow auxiliary verbs adjoined at the
VI to intercept this relationship by interposing be-
tween the VP's top and bottom feature structures.
In wSn'T3 we obtain the same result from the way
in which we identify the relevant verb. For instance,
if we take it to be the last adjoined verb3—the one
most deeply embedded in the third dimension-—we
can add to the definition of ag:

(Fr, ) [wp 95 @ A Maxg{x) Az 2y gh
{assign-case) (y) A {assign-case = case)(npo,¥)].

In somewhat more linguistically natural terms? we

might say that a verbal head governs, for the pur-
poses of case assignment, all arguments in its lo-
cal tree manifold (i.e., the minimal associated strue-
ture). Furthermore a verbal liead in an auxiliary tree
governs all nodes in the structure it adjoins into, as
well as all nodes governed by them-—effectively each
case assigner governs every child of each node prop-
erly above it up to the first Initial node:

Governs(r, y) =
{assign-case) {w:jA
(F2)[z of = Az a3 yA

(V=)[(z of 2’ A 2" «f &) — —Initial(2")]).

A This is corrret only if the foot nodes have null-adjoining
constraints, as s usual. '

4This is not meant to be a proposal of an analysis of as-
signment of ¢ase in XTAG. only to be an example of the style
ol analyses that can be supported by this approach.

Then v assigns case to npg iff it governs it and is
not, itself, governed by some other case assigner:

{(Vz, y)[(Governs(z, y} A -(3z)}[Governs(z, x)]) —
{assign-case = case){x, y)}.

Alternatively, we could adopt existing accounts
based on the more familiar relationships in the two-
dimensional projections of the 3-TMs such as tra-
ditional GB accounts or Rizzi's (1990} Relativized
Minimality. All of these are definable in wSnT3 and
all, therefore, correspond to soine TAG account of
case assignment to subjects. The central question,
perhaps, is which comes closest to the intuitions in-
forming the existing grammar.

This factoring of a TAG granmar into component
linguistic principles is not a new idea. Vijay-Shanker
and Schabes’s (1992) hierarchical encoding of TAG
lexicons using partial descriptions of trees becomes,
from this perspective, a matter of classifying the lex-
icon on the basis of shared properties—every verbal
anchor is associated with a subject aund the associ-
ated structure (see Figure 3):

(Vv}[(Anchor(v) A Verb(v)) —
{35y, npo, UP)[5r 92 npg A s 92 P A P Q3 VA
{case}(npo) A {(assign-case : nom){(v) A - -]},

transitive verbs, in addition, are associated with an
object:

{Vo)[(Anchor{v) A Verb{v) A Transitive(z)) —
(3npp){v 9 npy A {case:ace){(npy) A -+ -],

and so on. Note that, since concatenation of 3-
TMs does not. disturb relationships internal to them,
there is no non-monotonicity here {or,rather, the ap-
parent non-monotonicity is an artifact of the yield
operation)—there is no need to distinguish top and
hottom quasi-nodes, no need for partial trees.

connection can

A more ohvipug
A more opvious

Frank’s (1992) exploration of universal grammati-
cal principles as interactions of the TAG mechanism
with linguistically motivated constraints on the ele-
mentary structures. From the current perspective,
these constraints are just properties of the local 3-
TMs occurring in well-formed grammatical strue-
tures. Here, again, the coustraints are not disturbed
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by the process of building 3-TMs from these local
structures—these are properties not just of the el-
ementary structures but of every local 3-TM in all
well-fornied structures. More interestingly, not all
of these constraints are simple properties of the cle-
mentary trees, some depend on the derivations. The
Specifier Licensing Condition (SLC), for instance, in
its basic form, can only be satisfied once an adjunc-
tion lias taken place. As it turns out, the mecha-
nism emploved in capturing this as a condition on
the elementary trees is to encode it as a require-
ment. that certain features of the sort we have been
calling “functional” are instantiated.> Again in this
context, in abstracting away from such implementa-
tion details, wSn'T3 offers a more direct expression
of the constraint.

The key feature of this approach is that it iso-
lates the linguistic theory being expressed from the
mechanical details of the grammar formalisin ex-
pressing it—in this respect there is a strong par-
allel to Mosier’s category theoretic approach to
HPSG (Moster, 1997)—mwithout losing the restric-
tions that the formalisimn imposes. Thus, while the
linguistic principles can usually be stated directly,
the fact that they must be expressible within the
signature of wSnT3 limits them to principles which
can be enforced by TAGs. In fact the characteriza-
tions of the recoguizable sets of 3-TM by definabil-
ity in wSnT3 and of TAG tree and string languages
as the vields of recognizable sets of 3-TM are con-
structive and when these constructions are carried
out many “functional” features of the sort that the
logical approach eschews are instantiated in the re-
sulting TAG. This raises the possibility of using the
logical definitions not just as an abstract means of
discussing the linguistic theory, bnt also as a sort
of higher-level language which can be compiled into
TAGs of the familiar sort.®

A Perhaps coincidentally, these attribute case-assignment to
1Ps and 1s in close parallel to the XTAG example we started
with.

" “There are some formidable obstacles to realizing this idea,
not the least of which is the fact that the process of compiling
w8nT3 formulae into 3- TNl automata has, at least potentially,
noen-elementary complexity. Nonetheless, prior experience at
the one- and two-dimensional levels suggests that the process
mav be Feasible even for relatively substantial theories and
here we have the knowledge that reasonably comnpact gram-
mars for similar theories exist (as witnessed by the XTAG
pranunar). Thus, in some sense, the potential intractability
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Abstract

In this paper we describe a semantic depen-
dency model for estimating probabilities in a
stochastic TAG parser {Resnik, 1992) (Schabes,
1992), and we cornpare it with the syntactic de-
pendency model inherent in a TAG derivation
using the flat treatment of modifiers described
in {Schabes and Shieber, 1994).

1 Introduction

The use of syntactic dependencies to estimate
parser probabilities is not uncommon (Eisner,
1996) (Collins, 1997) (Charniak, 1997). Typi-
cally, a maximum probability parse is estimated
from bigram statistics of lexical items that par-
ticipate in head-modifier or head-complement
dependencies with other lexical items. These
dependencies can be characterized as { head, la-
bel, modifier ) triples and { head, label, comple-
ment } triples — or as labeled directed arcs in a
graph — which have the property that each lexi-
cal item may participate as a modifier or a com-
plement in no more than one dependency. Using
a TAG derivation tree (Joshi, 1987) with a flat
treatment of modifiers (Schabes and Shieber,
1994), it is possible to capture the long dis-
tance dependencies of wh-extractions and rel-
ative clauses as adjacent arcs in a dependency
structure, making them available for probabil-
ity estimates within the parser as well. In this
case, the head-complement dependencies for a
sentence correspond to a set & of substitution
triples {v,7n,a) (where tree o substitutes into
tree v at note address 77), and the head-modifier
. dependencies correspond to a set A of adjunc-
tion triples {v,n;8) (where tree § adjoins into
tree y at node address 5), in a probabilistic TAG

(Resnik, 1992).1

Although the TAG-based syntactic depen-
dency model has the necessary domain of local-
ity (in terms of adjacent arcs on the derivation
tree) to accurately guide a statistical parser,
it is still susceptible to sparse data effects, in
part because it does not generalize attachment
statistics across syntactic transformations. An
adjective used as a declarative predicate, for
example, could not draw on attachment statis-
tics for the same adjective used as a modifier,
or as a predicate in a relative clause, and vice
versa, because each transformation uses a differ-
ent syntactic dependency structure. The triples
in the syntactic dependency sets § and A for the
sentences, “The damaged handle is attached to
the drawer,” and “The handle attached to the
drawer is damaged,” are represented as arcs in
Figure 1.

In order to group these attachment statistics
into denser pools of data, we need to abstract
a common semantic structure from the various
syntactic structures, effectively adopting a com-
mon argument frame for each transformation.
This means that each auxiliary tree must have
an argument position corresponding to the sub-
ject substitution site in its predicative trans-
formation if it is a modifier auxiliary, or cor-
responding to the wh-object substitution site
in its object-extraction transformation if it is a
predicative auxiliary.2 For convention, we place

! Although Resnik uses a direct function S(-, 7, ) to
the [0 — 1] interval where we use a probability of set
membership P{{y,n,a) € §). Also note that this corre-
spondence between head-complement dependencies and
substitution dependencies is not strictly true in the case
of predicative auxiliaries (Schabes and Shieber, 1994},
which are handled by adjunction in TAG.

2%ee {Schabes and Shieber, 1994} for a descrip-
tion of the distinction between modifier and predicative
auxiliaries.
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Figure 1: Syntactic dependencies in TAG

this extra argument position at the foot node of
the auxiliary tree, so the auxiliary takes the tree
it adjoins into as an argument. This means that
our semantic dependency model effectively re-
verses the direction of dependencies involved in
adjunction from the syntactic model. The triples
in the semantic dependency set D for the sen-
tences, “The damaged handle is attached to
the drawer,” and “The handle attached to the
drawer is damaged,” are represented as arcs in
Figure 2.

Formally, we augment the syntactic depen-
dency sets S and A with a semantic dependency
set D of { predicate, label, argument ) triples
defined as follows:

o For every substitution (head-complement)
dependency {y,7,a) in & add a predicate-
argument dependency
{anchor (%), argnum(y, 1), anchor(c))  to
D; and

e For every adjunction (head-modifier) de-
pendency {v,m,8)
in A add a predicate-argument dependency
{anchor(B), argnum(B, foot(8)), anchor (7))
to D;

where anchor(a) returns the lexical anchor of
tree o, and argnum(a,n) returns the semantic
argument position corresponding to node 7 in
tree «. In this way we can combine argument
attachment distributions for initial tree trans--
formations and auxiliary tree transformations
into a common attachment distribution for the
underlying predicate.

damage
0
attach to hﬂl:dle
handle door attach to
0 I
damage door
The damaged handlejs ~ The handle attached to
attached to the door. the door is damaged.

Figure 2: Semantic dependencies

2 Parsing

Parsing proceeds in three passes of O(n%) com-
plexity. First, the chart is filled in from the bot-
tom up, as described in (Schabes et al., 1988),
and the input is recognized or rejected. The
parser then constructs a shared forest (Vijay-
Shanker and Weir, 1993) top-down from the
elements in the chart, ignoring those items on
bottom-up dead ends. Finally, the parser pro-
ceeds with the more expensive operations of fea-
ture unification and probability estimation on
the reduced set of nodes in the shared forest.
The chart consists of a set of items that each
specify a node address 5 in an elementary tree
@, atop (T) or bottom (L) marker denoting the
phase of operation on the node, and four indices
1,7,k, and [, composing the extent of the node’s
coverage in the sentence: {a,n,T,1,7,k,1). The
shared forest consists of an and/or graph, with
‘or’ arcs from each non-dead-end chart item
to instantiations of the parser productions that
could have produced it, and ‘and’ arcs from each
instantiation of a parser production to the chart
items it would have required.

In order to select a most-preferred parse for
an ambiguous input, a highest-probability item
is selected from the top node in the shared for-
est, and a parse is read off below it by traversing
the subordinate items with the most probable
dependencies. The probability of each shared
forest item is computed as the maximum of the
probabilities of its ‘or’-adjacent parser produc-
tions. The probability of each instantiation of
a parser production is computed as the proba-
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bility of the relevant dependency for that pro-
duction multiplied by the probabilities of the
chart items that production required. Finally,
the probability of each parse must be multiplied
by the probability of each elementary tree given
a lexical item in the input.

The probability model is adapted from
(Resnik, 1992), which assigns a probability to
any arc {a,n,3) (where tree 3 is attached to
tree a at node address 7) being in the set of
substitutions S or adjunctions A in a derivation.
The root of the derivation tree is represented as
(MAIN,0,e) in &, and null adjunctions (which
terminate the adjunction of modifiers at a node)
are represented as {«,17,¢) in 4. Finally, the
probability of a tree « is represented as the
probability of the double (anchor(a),tree(a))
being in the set 7 of elementary trees used in a
parse.

Probabilities for the dependencies in a parser
production are estimated from observed fre-
quencies that a child predicate ¢ (the base-form
anchor of a tree) occurs in argument position
a of a parent predicate p (the base-form an-
chor of another tree), within some training set
D of dependency structures: ﬁ‘((a,p, c) € D).
The top-level dependency is represented in D
as (MAIN,0,c), and null adjunctions are rep-
resented as (NULL, 0, c).® Note that we use the
same dependencies as Resnik (the syntactic de-
pendency sets S and A) in describing the proba-
bility model, and use the semantic dependencies
(D) only in the estimation of those probabilities.

Probabilities are estimated as follows:

e For any topmost item in a derivation tree:
{,0,T,0,—,—,n)
the initial probability would be:
P({MAIN,0,a) € § | (MAIN,0,.) €8)

which we estimate as:
FUMAIN Danchor(a))eD)}
F{{MAIN0,25¢D)

e For any chart production for the substitu-
tion of initial tree « into 7 at node address
7, where ¢ and j are indices, and 7 is a sub-
stitution site in v with the same label as
the root of a:

3 Although since the null-adjunction probability only
conditions on the parent tree, it will be a constant in ev-
ery case, and can be ignored in estimating the maximum
probability.

(Of, 0: T: i‘) ] —1.7)
('Ys m Ta 7:3 —': —:j)
the probability would be:

P{{v,me) €S| (v,m ) €S)

which we estimate as:
F{anchor(y),argnum(yn),anchor(a))€D)
F{{enchor(y),argnum{v,n),-}eD)

¢ For any chart production for adjunction of
auxiliary tree 4 intc v at node address 7,
where 1, j,1', 5/, p and q are indices, and 7 is
an adjunction site in v with the same label
as the root of 3:

rnnLidhpg,5") 5,0, 7,444 5)
v Lipa,7)
the probability would be:

P(lv,m, By € Al {y,m, ) € A)

which we estimate as:

F({anchor(B),ar gnum(8, foot(8)) anchor (v))€D)
F{{_,—,anchor{7)}cD)

e For any chart production for closing ad-
junction at a node address 5 in tree «:

{1,m Tyindy ko D)
(')’: n,1,%7 ka [)
the probability would be:

P((y,me) € A| (v,m,-) € A)

which we estimate as:
F{{NULLDanchor(y))eD)
F({-,nanchor(7)}eD)

e For any other chart production, the proba-
bility would be 1.

¢ Finally, the probability that each elemen-
tary tree « is in the set of trees 7 used in
the parse, given a lexical item is:

P({anchor(a),tree(a)) € T |{anchor(a), )€T)
which we estimate as:

F{{anchor{a),tree(a))eT)
F({anchor{a),_)eT)

3 Practical Issues
The extended goal of this project was to provide

- i ¥
a natural language interface for “Jack” {Badler

et al., 1993), a human-like agent that answers
questions and carries out instructions in a vir-
tual 3-D environment. The system’s restricted
domain makes unknown words and unknown
svntactic structures unlikely, and the goal of
trauslating inputs into a formal language for
the agent avoids the danger of modifier scoping
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ambiguity (which our model does not evaluate),
since the scoping of modifier adjuncts can usu-
ally be ignored in transfer. It is for this reason
that we concentrate our attention on parsing
attachment ambiguity at the expense of other
problems which might seem more relevant in
free text applications.

We consider our approach orthogonal to sta-
tistical smoothing techniques such as (Char-
niak, 1997) for addressing the sparse data prob-
lem, and for this reason do not discuss them.
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1 Introduction

This paper presents work that forms part of
the ongoing LEXSYS project on wide-coverage
parsing,! and more precisely, some differences
between our D-Tree grammar and XTAG 1995,

2 Grammar Formalism

We use the Lexicalised D-Tree Grammar
(LDTG) formalism (Rambow et al. 95), which
is based on the Lexicalized Tree Adjoining
Grammar (LTAG) formalism. In LDTG, there
are two types of edges between nodes: d-edges,
represented with a broken line, and p-edges, rep-
resented by a solid line. Trees are combined by
two substitution-like operations, both of which
involve combining two descriptions, by equating
exactly one node from each description. One
of the operations is always used to add comple-
ments, and involves equating a frontier node (in
the d-tree that is getting the compiement) with
the root of some component (in the d-tree that
is providing the complement), such that the two
nodes being equated are compatible . An exam-
ple of substitution is shown in Figure 1.

The d-tree for to adore is composed with the
d-tree for seems by equating the two nodes la-
belled VP[fin: —]. The top component of the o
adore tree can then be fitted into the resulting
d-tree by equating the root of the seems tree
with the lower S of the fo adore tree.

A second operation is used to add modifiers,
but we are not going to discuss it in this paper.

!This work is supported by UK EPSRC project
GR/K97400 ‘Analysis of Naturally-occurring En-
glish Text with Stochastic Lexicalized Grammars’
(http://vev.cogs.susx.ac.uk/lab/nlp/dtg/).

3 Differences between XTAG and
LEXSYS Grammars

3.1 Trees Are Syntactic
Representations

A first difference between our DTG and TAG is
that we do not claim that elementary trees ex-
press in all cases the predicate-argument struc-
ture of their anchor; instead, they represent the
syntactic requirements of their anchor. To illus-
trate, because raising verbs subcategorize for a
syntactic subject, they anclhior a standard verb
tree with a subject, and not a tree rooted in
VP without a subject, as in TAG. On the other
hand, there are trees rooted in VP which repre-
sent VP complements and can be anchored by
any verb. In those trees, there is no subject
(because VP complements do not have syntac-
tic subjects), and a semantic argument of the
verb is thus missing.

This choice allows us to adopt other linguistic
analyses than the ones supported by XTAG, as
will be shown in the next sections.

3.1.1 Complementation and Long
Distance Dependency

A main difference between the two grammars is
that there are VP complements in our grammar,
when there are only S complements in XTAG
(except for auxiliaries and raising verbs). To the
sentence in (1), our grammar gives the analysis
in (1a), while XTAG gives the analysis in (1b).

(1a) [S He wants [VP to [VP come]]]
(1b) [S He wants
[s [NP PRO] [VP to [VP comelll]

In (ia), the complement of want is a VP; in
(1b), it is an S, and the subject of the sentence
is PRO (an empty pronominal). The analysis

in (1la) is the one proposed in lexical theories
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(7]

S:[fin: +]
hotdogs NP yphin +)
N P :
3 Vo veinm -] Nl
Mury | “{fin: -)
seems v/\m

adore 3

Figure 1; Example of unbounded dependency in DTG (left) and in TAG (right)

such as Head-Driven Phrase Structure Gram-
mar (HPSG, Pollard and Sag 1994) and Lexi-
cal Functional Grammar (LFG, Bresnan 1982)
while the analysis in (1b) is the analysis of Gov-
ernment and Binding (GB, Haegeman 1991).

Arguments given in the XTAG report for the
representation in (1b) include a uniform treat-
ment for indicative, infinitive and gerund em-
bedded clauses (XTAG report 1995, 1998). This
implies that both infinitive and gerunds are ana-
lyzed as having an empty subject, which is ques-
tionable, because there is no evidence for the ex-
istence of PRO? ; it is even more questionable
for gerunds, which have the same distribution as
NPs (this is true even for verbal gerunds), and
can hardly be characterized as clauses (Malouf
1997 inter alia).

An important reason for XTAG to adopt the
analysis in (Ib) is that it seems to be the only
type of analysis possible in that formalism (ex-
cept if equi verbs like want anchor the elemen-
tary tree for raising verbs). This comes from
the fact that unbounded dependencies which ex-
tend across more than one clause boundary are
achieved through the use of auxiliary trees in
XTAG: to derive the sentence in (2), an initial
tree for buy is combined with an auxiliary tree
for want (Figure 1).

(2) What do you want to buy?

2PRO, besides being unmotivated, creates theory-
internal problems: XTAG has to define two different
infinitive auxiliaries {0, one which assigns the case ne
case (when the subject is PRO) and the other one which
does not assign any case (when the complementizer for
assigns accusative case to the subject). This distinction

between two to is of course ad-hoc.

The auxiliary tree for want is grafted onto the
lower S of the buy tree, and the recursivity of the
process creates unbounded dependency. And
because in auxiliary trees the root node and the
foot node must be of the same category, verbs
such as want cannot take a VP complement (as-
suming want anchors an S-tree).

In our grammar, on the other hand, there
is no such restriction, and verbs can take S
complements as well as VP complements. This
decision to introduce VP complements in the
grammar has a number of consequences (some
of which are related to what was discussed in
section 1)

e auxiliaries and raising verbs anchor the
same tree family as other verbs which take
VP complements;

¢ passive trees are rooted in VP;

e because trees for auxiliaries and raising
verbs are rooted in S as any other verb tree,
there are no predicative trees;

o the grammar has at least twice as many
verb trees as XTAG 95 (edch tree rooted
in S has a counterpart rooted in VP), and
in fact, more than that as we use multi-
ple instances of the same tree to represent
disjunctive feature values. '

Each of these points will be addressed in the
next sections.

3.2 Verbs of Considering

Another type of construction for which we as-
sume the existence of a VP complement is the
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Subject-to-Object Raising {SOR) structure il-
lustrated in (3). :

(3) We believe [Kim] [to be very smart)]

In that analysis®, which we adopt, raising verbs
such as believe have two complements, an NP
and a VP. In the XTAG analysis, SOR verbs
have only one complement, a clause.

We assign the same kind of analysis to an-
other type of verbs, referred to as verbs of con-
stdering in Pollard and Sag (1994): consider in
(4) and regard in (5) have two complements, an
NP and respectively an AP and a PP.

(4) I consider Jack quite intelligent
(56) We regard him as a nuisance

This analysis has been debated since the early
seventies, and supported by a number of re-
searchers, Pollard and Sag (1994) among oth-
ers.

XTAG, on the other hand, adopt the GB
analysis, which considers that verbs of consid-
ering and the like have only one complement, a
small clause. Small clauses are Ss headed by an
empty verb, and anchored by the complement
of that verb (NP, PP or AP). This account is
not without problems. First, it has to postu-
late an unmotivated empty verb position: there
is no evidence that such a position should ex-
ist. Its purpose is to allow adjunction of raising
and auxiliary verbs, but this is a purely techni-
cal device which is not supported by linguistic
evidence,

A more important problem is the fact that
verbs which take small clause complements
must be able to constrain the small clause pred-
icate: consider allows PPs, NPs and APs (6)
while prefer allows PPs only (7).

(6)

We consider Kim a good teacher
We consider Kim quite good

We consider Kim out of his mind

(7)

*He prefer Kim a good teacher
*We prefer Kim quite good

HWe prafer Kim out of here

2L fa

3The SOR analysis has been advocated with com-
pelling arguments by Bresnan (1982}, Postal and Pullum
(1988) and Pollard and Sag (1994) inter alia.

Verbs who subcategorize for clausal comple-
ments cannot specify the subcategorization re-
quirements of the verb in the complement
clause; for example, there is no example of a
verb like say which would stipulate what kind of
complement the verb in its clausal complement
should have. Accordingly, in the XTAG ac-
count, the clausal complement is not expanded,
whether it is a standard clause or a small clause.
But the data in (6) and (7) show that verbs
of considering and the like do select the type
of phrases which follow the NP; the solution
adopted in XTAG is to use the feature mode
(whose values are usually indicative, imperative,
subjunctive, etc.) and to add to the range of
features nom and prep (for NP and AP, and PP
respectively). The verb consider selects an S
which has a feature mode with value nom/prep,
while prefer selects a small clause with prep as
value for the feature mode. Of course, the de-
cision to add these values to the range of val-
ues of the feature mode is ad-hoc, as they have
nothing to do with verb mode, and are only a
technical device to match the subcategorization
requirements of the verb of considering with the
actual category of the complement in the em-
bedded small clause. Our solution, on the other
hand, is straightforward: if the verb consider
constrains the type of phrase that follows the
NP it is because this phrase is also one of its
complements,

Our choice of analysis, besides being straight-
forward and motivated by the data, also allows
for a more uniform account of passive: the pas-
sive of verbs of considering and the like is han-
dled by the same lexical rules as for other tran-
sitive verbs,

3.3 Auxiliaries and Raising Verbs

In XTAG, raising verbs and auxiliary verbs an-
chor the same auxiliary tree rooted in VP. In
our grammar, on the other hand, those verbs
anchor trees rooted in S, and belong to differ-
ent families.

There have been debates in the literature
about the status of auxiliary verbs, and several
authors have argued that auxiliaries and modals
should be considered as main verbs (Pullum and
Wilson (1977}, Gazdar et al. (1982)). Argu-
ments include the fact that some auxiliaries be-
have also like main verbs (be and have, ought,
is in 1s t0), and the existence of semi-auxiliaries
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(need, used, dare and have to*) which behave
like main verbs in certain environments and like
auxiliaries in other environments. So, the dis-
tinction between auxiliaries and main verbs is
not clear-cut, and either the tree family for aux-
iliary verbs will include verbs which do not al-
ways behave like auxiliaries, or verbs classified
as main verbs will share characteristics with
auxiliary verbs. In both cases, the obvious solu-
tion is to abandon the distinction between main
verbs and auxiliaries in terms of drastically dif-
ferent types of tree, and adopt instead a unified
representation for both kinds of verbs.

A second issue is the fact that in the tree for
auxiliaries and raising verbs, the complement of
the anchor is a VP. This implies that all sub-
ject raising verbs subcategorize for VP, which is
clearly not the case (become subcategorizes for
AP or NP, turn out for AP, NP or VP). Thus,
in order to get the right distribution of subcat-
egorization, constraints on the complement of
the raising verbs have to be expressed through
percolation of the mode feature, which use has
already been shown to be ad-hoc in similar in-
stances.

3.3.1 Predicative Trees

There are no predicative trees in our grammar:
this is a consequence of our decision to adopt a
tree rooted in S for both raising verbs and aux-
iliaries. Also, we want a uniform treatment of
predicative complements, and this would not be
the case if we adopted different trees for pred-
icative complements of verbs of considering and
predicative complements of other types of verbs.
So, predicative complements just substitute in
the tree of their governing verb, like other types
of complements. .

A main criticism of our approach will be that
the basic trees do not express all semantic rela-
tions: a predicative complement places seman-
tic restrictions on the subject, and this cannot
be captured in the basic trees, because predica-
tive complements are substituted in the tree for
the auxiliary/raising verb; similarly, for the VP
complement trees, which do not have a subject®;

*Actually, have to behaves like a main verb in all
envitonments, but has a meaning very similar to musl
This shows that which verbs are auxiliaries cannot be
predicted from semantic information alone, as was noted
by Pullum and Wilson (1977).

%] do not see any advantage of having PRO instead

finally, in the case of passive, the passive par-
ticiple anchors a VP tree too, and the subject
is not expressed either in the elementary tree.
We agree with this, but we do not claim that
we can express every type of relation between
constituents in basic trees; instead, we believe
that it is impossible to capture all relevant in-
formation, syntactic and semantic, in the basic
trees. We therefore adopt a modular represen-
tation, with the basic trees expressing mainly
syntactic information, and the derivation tree
most of the semantic information. We hope that
this division of labour will allow us to express
motivated syntactic analyses in the grammar,
without having to compromise in order to also
express at the same level semantic relations.

3.4 Conclusion

This paper has presented some differences be-
tween XTAG and the grammar we are develop-
ing in the LEXSYS project. It has shown that
the DTG formalism gives us the possibility to
adopt linguistic analyses which have proven to
be more motivated than the GB ones (which can
also be expressed with the same formalism).

The fact that we will have much more trees
than TAGs might seem like a drawback to our
approach. But Evans and Weir (1998) are ex-
ploring ways to allow a compact representation
of the grammar for parsing purposes,
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Abstract

This paper describes the use of a compact encoding
scheme to represent the trees of the wide-coverage
DTG grammar currently being developed in the
LEXSYS project (Caroll et al 1998). The encoding
scheme is derived from the scheme for LTAG gram-
mars described in Evans, Gazdar and Weir (1995),
but the LEXSYS grammar is the first attempt to
apply these ideas on a larger scale. In this paper we
report on the approach taken and discuss some tech-
nical improvements to the encoding scheme that we
have introduced to overcome problems of scaling.

1 Compact encoding of LTAG/
DTG trees

Evans, Gazdar and Weir (1995) describe a compact
representation of LTAG trees using the default in-
heritance language DATR. (Evans and Gazdar 1996).
This representation uses two techniques to make tree
grammars more compact. First, inheritance between
trees allows them to share common structure: for ex-
ample a transitive verb tree can inherit the structure
of an intransitive verb, adding a direct object argu-
ment, and a ditransitive can inherit all this struc-
ture from the transitive, adding a further indirect
argment. Second, the grammar includes rules which
derive new trees from old: tree relations such as pas-
sive, dative movement and topicalisation are encoded
as rules, allowing the full grammar to be encoded as
a set of base trees plus a set of such generative rules.

The representation of rules is internal, in the sense
that they are expressed as part of the tree definitions
themselves, rather than externally as a set of rules in
a separate representation system. For example, pas-
sive is represented as a constraint between an ‘input’
tree with a direct object and an ‘output’ tree with-
out one. This relation is part of the definition of any
transitive verb and can be ‘invoked’ by setting the

Roger Evans
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input to be the base tree for the verb and reading
off the outpu as the resultin surface tree (see Evans,
Gazdar and Weir 1995 for full details).

This approach has a number of advantages. Rule
definitions can directly access test or modify any
part of the tree under consideration, and they ean
themselves use the inheritance mechanisms to share
structure between rules. In addition rules can be po-
sitioned in the main tree hierarchy so that they are
only visible to trees they can sensibly be applied to.
For example, the passive rule definition can be lo-
cated as part of the transitive verb tree definition,
and so will be inheritied by ditransitives (which also
passivise) but not by intransitives, sentential comple-
ment verbs etc., which cannot. Thus by internalising
rules, one can simply express generalisations about
their scope.

However, the specific proposal in Evans, Gazdar
and Weir (1995) also had some less desirable fea-
tures. In order to apply a rule, it was necessary
to ‘plumb together’ inputs and outputs using inheri-
tance statements in a new DATR node. In addition,
rule definitions included specific references to their
own names, making it difficult for rules to share def-
initions in practice, and difficult to apply a rule more
than once to the same tree. The present approach
uses an improved version of this scheme which ad-
dresses these issues:

1. rule application is achieved by adding path pre-
fixes (specifying rules to be applied) to queries
on the basic tree definition, rather than creating
a new node and ‘plumbing’;

2. rule definitions are no longer dependent on the
name of the rule they define, they are properly
modular, making it easier to generalise across
rules; )

3. as a consequence it is now possible to apply a
rule more than once to the same tree if required;

These improvements make it more feasible to con-
sider a more realistic set of rules with more complex

164



interactions, as required for a large scale grammar
such as the LEXSYS grammar.

2 Application to LEXSYS

2.1 The rules

There are at present 35 rules in the grammar that
we are developing as part of the LEXSYS system.
Roughly half of these rules are movement rules, be-
cause there is currently a different movement rule for
each possible extraction site: e.g. there is a rule for
wh-questions on the subject, another one for ques-
tions on the first object, different rules for extraction
of prepositional objects depending of whether or not
the preposition is stranded, etc. Other rules are the
passive rules (with or without a by-phrase), the rules
concerning the order of particles and complements,
the inversion rule, the rule deriving VP complements
from S, ete.; there are also rules for nouns, determin-
ers, adjectives and adverbs.

Rules which share common characteristics are
coded as a hierarchy, which allows them to share
much of their structure. For example, for movement
rules! the top of the hierarchy is the topic rule, which
specifies the top structure of the derived tree (where
the ‘extracted’ element is localised). The rule topobj!
{topicalization of the first object) inherits the infor-
mation in topic and specifies the position in the tree
of the null category coindexed with the ‘extracted’
element. Finally, the rules whebj! and relobj! in-
herit from the rule topebjl and specify the type of
the topicalized category: wh-word or relative word.

This organization in an inheritance hierarchy al-
lows to capture linguistic generalizations: the wh-
movement rules?(topicalization, wh-questions, rela-
tive clauses) ‘move’ a constituent to the same posi-
tion, the front of the clause; the fronted constituent
can be a NP (if the ‘extracted’ element is the subject,
a direct object or the object of a preposition), a PP
(a prepositional object with no preposition strand-
ing), an AP (adjective phrase) or an AdvP (adverb
phrase). This constituent is associated with a gap
corresponding to one of the arguments of the verb,
and it shares the syntactic and semantic information
of the gap: for example, a wh-pronoun can be an ac-
cusative form only if it corresponds to the object of
the verb or of a preposition.

. 1We are only discussing the rules referred to in the HPSG
" literature as filler-gap constructions or strong unbounded de-
pendency constructions.

2These constructions are discussed as a separate class of
unbounded dependencies in the literature (Pollard and Sag
1996, see previous footnote).

The only information which is not shared is the
type of the preposed constituent ( unmarked, wh-
word or relative word), which determines the type of
the inbounded dependency.

Another example of rule organization is given by
the passive rules: information is inherited along two
different dimensions. First, the rule for simple pas-
sive, defined at the tree for transitive verbs, is in-
herited by trees lower in the hierarchy: for example,
the tree for verbs with prepositional objects (V4+PP,
such as look after), inherits the information provided
by the general passive rule, and need only specify id-
iosyneratic information (about the preposition of the
original complement).

Second, the rule for passive with by inherits the
information provided by the rule for simple passive
and adds information relative to the prepositional
phrase.

This hierarchical organization of rules captures the
fact that there is one passive rule, which can vary de-
pending on the object of the original transitive verb,
and whether the agent is expressed or not. This can-
not be captured if the different passive trees are rep-
resented independently of each other, with no more
connection between them than between a passive tree
and, for example, the gerund tree.

2.2 Application of rules

Not all rules are applicable to all trees, and not all
orders of rule application are valid for all trees. There
are three ways in which we constrain rule application:

¢ by the rule’s position in the main hierarchy — as
discussed above, rules applying to just a subset
of trees can be located at the most general node
defining that subset, and no other trees will be
able to access the rule. The fact that inheri-
tance is non-monotonic allows the expression of
exceptions to rules: for example, transitive verbs
which cannot passivize inherit from the general
definition for transitive verbs, but add that the
passive rule does not apply.

o by specifying conditions directly within the rule
— for example, the passive rule can check that
the first complement really is a noun phrase and
fail to apply if not. Note that this may not be
achievable porely by method (1) due to the pos-
sibility of applying other rules first: a transitive
verb from which the direct object has been ex-
tracted will still be within the scope of the pas-
sive rule, but the rule will not be able to apply to
it because the object has disappeared. Another
example is the wh-question on the subject: the
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rule should apply only if the subject is not an
expletive pronoun, and .this has to be checked
by the rule itself.

e by explicitly specified constraints — although the
previous two methods provide theoretically ad-
equate mechanisms for all constraints, for ef-
ficiency reasons we also maintain a separate
model of which rules can apply in which combi-
nation. The rules defined at each node are first
grouped into sets if they enter into a paradig-
matic relationship (if they cannot apply simul-
tanecusly on the same tree): this is the case in
English for the extractions rules discussed ear-
lier, and for the passive rules, for example. Rules
and sets of rules are then ordered, according to
a partial ordering of the rules, and all possible
rule application sequences which respect that or-
dering are computed off-line. Not all these se-
quences will apply in all cases {due to the con-
straints of type (1) and (2)) but this is still much
more efficient than blind search through all pos-
sible rule combinations.

This situation is reminiscent of the debate about
rule ordering which took place in transformational
grammar in the seventies (Soames and Perlmutter
(1979)). One position defended an ordering of trans-
formations, the other position maintained that order-
ing the rules is unnecessary, because rules should be
allowed to apply whenever their structural descrip-
tion is met. In practical applications, however, this
means computing and testing all possible rule com-
binations, which in the case at hand is impractical®.

2.3 Grammar expansion and parsing

The LEXSYS pgrammar currently includes 44 basic
trees and 35 rules which together expand to 619 trees.
This is work in progress, and we predict that the
number of trees will quickly grow. Also, we do not
allow disjunctive feature values, but use multiple in-
stances of the same tree, and this will also increase
the number of trees. We currently expand the gram-
mar as an off-line process before parsing. The high
number of trees resulting from this expansion might
be seen as a drawback for parsing, but techniques
described in Evans and Weir (1998) can be applied
to optimise the parsing of such large grammars by
converting them to automata which can be merged
and minimised.

3Rule application is an issue also in computational appli-
cations of lexicalist grammars which use rules, such as HPSG
{Meurers and Minnen 1995).

3 Related work

Other work in this general area includes Becker
{1993, 1994) and Vijay-Shanker and Schabes (1992).
Somewhat more recently, Candito (1996) presented
an approach which is somewhat different, in spirit. In
her approach, LTAG is viewed as the compilation of
what she calls a metagrammar. This metagrammar
is based on the notion of syntactic function and hier-
archically organizes information along three dimen-
sions: initial predicate-argument structure, redistri-
bution of functions and surface realization of syntac-
tic functions. These three types of information are
combined to yield cross-classes, and there is a step of
translation of these resulting classes into trees. In-
heritance is monotonic, except for functional infor-
mation {the redistribution of functions can overwrite
the initial distribution of functions). This scheme
does not provide for an efficient way to handle ex-
ceptions or subregularities: if a predicate does not
select some trees belonging to its tree family, these
trees have to be stipulated in the lexical entry of the
predicate.

On the other hand, trees, in our approach, are di-
rectly organized in a non-monotonic inheritance hi-
erarchy, so that there is no translation step. Our
use of nonmonotonicity enables us to capture excep-
tions easily, but also contributes to the succinctness
of some of our generalisations. A detailed compari-
son of the two approaches on a significant grammar
fragment would therefore be very interesting.
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The verbal complexes in Dutch, German,
and Hungarian have interesting structures, pro-
viding good tests for formal syntactic theories.
These structures have posed a problem for the-
ories in the transformational tradition that have
assumed just two, distinctly different kinds of
movement operations: strictly local, morpho-
logically motivated head movement and
unbounded phrasal movement (Chomsky
1986). The problem is that while some verbal
complexes seem to consist of only heads, thus
allowing a head-movermnent analysis, there are
closely related constructions which involve
projections larger than bare heads, thereby
requiring phrasal movements of some kind.
The (synchronic) similarities between these
constructions and also historical consider-
ations suggest that we are missing a generali-
zation by proposing both a head movement
analysis and a phrasal one. The TAG formal-
ism does not rest on any assumption of dis-
tinctly different head vs. phrasal movement
operations, and so the TAG analysis of West-
Germanic verb raising proposed by Kroch and
Santorini (1991) fares rather well.

This paper explores a new idea from the
transformational tradition: an analysis of Hun-
garian and Germanic verbal complexes that
involves phrasal movement only (Koopman &
Szabolcsi, forthcoming, hereafter K & Sz). By
dropping the assumption that there are two
fundamentally different kinds of movement
involved, this analysis avoids the problem with
earlier transformational approaches to verbal
complexes. Moreover, the essence of the anal-
ysis is easily formalized in a very simple frag-
ment of transformational grammar that has
been formalized by Stabler (1996, 1997). Like
the TAG formalism, this formalism involves
operations on trees. The proposed analysis

cannot, however, be duplicated in the TAG for-
malism, because it is based on extensive "rem-
nant movements", of the kind that have gotten
a lot of attention especially since Kayne's
(1994) influential proposals, and "heavy pied-
piping" (Nkemnji 1995, Koopman 1996). (A
remnant is a constituent from which extrac-
tions have taken place.) The Hungarian verbal
complexes “roll up" the tree as remnants
increasing in complexity without bound.

Specifically, K & Sz consider the data in
the following paradigm, all of which mean “I
will not want to begin to go home.”

(1) Nem fogok akarni kezdeni hazamenni
NEG will+18 want-inf begin-inf home+go-inf

(2) Nem fogok akarni hazamenni kezdeni
NEG will+1s want-inf home+go-inf begin-inf

(3) Nem fogok hazamenni kezdeni akarni

NEG will+1s home+go-inf begin-inf want-inf
“Haza” is a verbal modifier (P) that cannot
appear in sentence final position. Kenesei
(1989) noted that sentences like (1) and (3) are
(partial) mirror irages of one another. Based
on this insight, K & Sz observe that Hungarian
verbal constructions exhibit fully inverted
orders, as in (3), non-inverted orders, as in (1),
and partially inverted orders, as in (2). Thus,
the following orders are possible:

V1V2V3iPV4
VIVZPV4V3
VIPV4V3V2

There are restrictions, however, on the
character of the partially inverted orders. Spe-
cifically, once a lower verb fails to invert its
complement, this un-inverted string cannot be
inverted by a higher verb. Thus, the following

orders are impossible on the relevant reading:
*VIV2{P{V3[_VA4]]]]
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*VI1[[V3 [P V4]l V2]
*VI1[V3[V2[[PV4]_IN

K & Sz propose that the acceptable pat-
terns are derived by extracting the arguments
of the verbs and then moving the VPs, now
containing nothing except the verb, into larger
and larger structures:

V1V2V3[PV4]->VIV2[[PV4]V3]->
V1[[PV4]V3]V2

In the linguistic literature, this type of move-
ment is referred to as “remnant movement”.
This analysis also makes use of “heavy pied-
piping” in which a feature of a sub-part trig-
gers movement of a larger piece of the struc-
ture. K & Sz make a number of theoretical
assumptions that dictate this type of strategy.
The formalization of these assumptions forms
the underpinnings of the analysis to be pro-
posed here.

The assumptions as laid out by K & Sz are,
first of all, that all languages are binary
branching with underlying Spec-Head-Com-
plement order, following Kayne (1994). Sec-
ondly, they adopt the Universal Base
Hypothesis (Sportiche 1993, 1995, Cinque
1997, Koopman 1996), which requires that
cross-linguistic variation be attributal to fac-
tors other than hierarchical differences. Fur-
ther, they propose that certain categories (DP,
CP and PredP) must be licensed by moving
into the specifier of a special licensing projec-
tion (LP(DP), LP(CP), LP(PredP)). These
licensing projections generalize the role of
“CASE” in Case Theory. All movement must
be overt and motivated by features. They fur-
ther assume a number of restrictions on move-
ment and principles that force movement. In
particular, we have the COMP+ restriction,
which is closely related to the Left Branch

- Condition.
COMP+ Restriction on Movement. A maxi-
mal projection can move if it meets either
of the following two requirements.

(a) if it is the rightmost sister of a minimal pro-

jection and it has no ancestor which is the

leftmost daughter of a maximal projection

(b) if it is the leftmost daughter of a maximal
projection and that maximal projection is
(1) the rightmost sister of a minimal pro-
jection and (2) has no ancestor which is the
leftmost daughter of a maximal projection

In addition, they assume the following two
principles, from Koopman (1996), which force
movement in a number of cases.

Principle of Projection Activation (PPA): A
projection is interpretable iff it has lexical
material at some stage in the derivation

Modified LCA: No projection has both an overt
Spec and an overt head at the end of the
derivation.

These principles in combination with the
restrictions on movement simplify the syntac-
tic analysis of the above data quite consider-
ably. The derivations are reduced to a more-or-
less mechanical operation in which consituents
“roll up” the tree. Word order differences come
from limited sources of optionality. One
source of optionality is the amount of material
that can pied-pipe. The other source of option-
ality is the optionality of the functional cate-
gory PredP, which is discussed in more detail
below. A skeleton derivation for an inverted
order involving only two verbs has been sche-
matized below to illustrate the character of this
analysis.

(1) WP is an extension of VP. All VPs are dominated by
a WP. Spec, WP should always be filled. When
there is no particle (P) or lower WP or CP to fill this

position, the entire VP can move into Spec, WP.
WP2

oW

\'s

/\
A\ t

(2) Alt WPs are dominated by a CP. This CP can be
selected by another auxiliary (here V1), VP1 is
dominated by a WP. The lower WP moves into the
Spec of the higher WP.
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WP1
/\
WP2; w’
/\ /\
p,. W Wl VPl
/\ /\
w2 VP2 \'A
/\ /\
\%A Vi CP2
/\ /\
v2 g ¢
/\
C t

(3) K & Sz generalize Case theory to categories not tra-
ditionally thought to require licensing. This results
in licensing projections (LPs) for DPs, CPs and
PredPs (to be discussed below). An LP wants an XP
of the appropriate category in its Specifier. The low-
est CP in this derivation did not have an LP(CP)
because there was no lower CP that needed to be

licensed.
LP(CP)
CP2y L' (CP)
/\
C L(CP) WPI
/\ /\
C t; WPZj w’
N
P, W w1 VP1
PN
w2 VP2 v’
/\ /\
\A Vi tx
/\
V2 t;

Above we have a fully inverted order. To
obtain an un-inverted order, the sources of
optionality, namely presence of PredP and
amount of pied-piped material, need to be
exploited.

Inspired by Koster (1994} and Zwart
(1994, 1997), PredP is really another extension
of the VP which obligatorily dominates WP in
certain circumstances. WP will move to Spec,
PredP. PredP must then be licensed in an
LP(PredP) position. WP will then cause large
portions of structure to pied-pipe.

Using the type of strategy outlined above
it is possible for constituents to “roll up” the-
tree, forming unbounded dependencies. The
technology proposed by K & Sz can be used to

generate a"b"c"d"e" type languages. In fact,
this style of derviation derives languages well
outside the class of mildly context sensitive
languages. In this framework, the same kind of
derivation, "rolling up" constituents by moving

remnants, easily derives the language a"b"c"d-

e, Roughly,
... -> eaabbccdd[ee] -> [ee]eaabbcedd ->
dfeeleaabbcedd -> [dd}d{eeleaabbee -> ..,
-> aaabbbccedddeee
In fact, it is possible to obtain unboundedly
many counting dependencies in this fashion.

These derivations require very large trees
which make use of very little recursion,
although extensive use is made of mechanical
operations to ensure regularities between
structures. This suggests that, if K & Sz are on
the right track, TAG formalisms of their analy-
sis would require many large elementary trees,
leaving important regularities to the character-
ization of the elementary tree set.

It is easy to adapt Stabler’s (1996, 1997)
Derivational Minimalism to formalize this type
of derivation, using only phrasal movement
from certain structural configurations to derive
the acceptable structures without allowing the
unacceptable ones. This adaptation will then
also allow unbounded counting dependencies
to be captured in Derivational Minimalism,
which has already been shown to be capable of
capturing copying languages (Cornell 1996,
Stabler 1997).

To adapt this derivation to Stabler’s frame-
work, certain aspects of the K & Sz proposal
need to be formalized. The COMP+ restriction
on movement has already been discussed. The
additional principles and restrictions on move-
ment can be formalized in terms of features in
the Derivational Minimalism framework. For
example, the requirement that all movement be
overt is translated into Derivational Minimal-
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ism by requiring that all attractor features be

strong (+X features only).

The PPA will be formalized by requiring
that all lexical entries bear at least one strong
attractor feature, This will ensure that all mini-
mal projections have something in their speci-
fiers at some stage of the derivation.

To capture the Modified LCA , all empty
heads will have a strong attractor feature.
Additionally, a mechanism will be established
to verify that when an overt lexical item
licenses a constituent that constituent has addi-
tional licensee features if it is overt.

The universal base that K & Sz assume is
ensured through feature selection. Lexical
items will select features in the following order
for the relevant domain:
lpred >> Ic >> 1d >> pred >> inf >> w >>v

Using these mechanisms, it is easy to for-
malize the basics of the K & Sz analysis in
Derivational Minimalism. Because the formal-
ism is so simple and the analysis so mechani-
cal, the prospects here look quite good.
Additionally, the type of analysis proposed
here allows for any number of counting depen-
dencies to be enforced. Derivational Minimal-
ism can handle these dependencies quite
simply, by *“rolling up” constituents. Lan-
guages like these cannot be defined in standard
TAGs (Vijay-Shanker and Weir 1994). The
lack of recursion makes this type of analysis
challenging in standard TAGs. Moreover, the
regularities of the data will not be readily
observable as the regularities seem to have
mechanical properties.
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1 Introduction

We describe the development of XHPSG, a
large-scale English grammar in the HPSG for-
malism translated from the XTAG grammar
(The XTAG Research Group, 1995). Our goal
is to obtain a large-scale, linguistically sound
grammar for our HPSG parser (Makino et al,,
1998) with a relatively small workload. For this
purpose, we try to make an HPSG grammar
equivalent to the XTAG grammar in the strong
sense where we preserve the structures and the
linguistic analysis of the XTAG grammar.

To guarantee the equivalence of the XHPSG
and XTAG grammars, the following conditions
must be satisfied: 1} An XTAG elementary tree
is translated to an XHPSG lexical item that
translates back to the original elementary tree
by applying the schemata and principles; 2) No
XHPSG lexical item translates back to a tree
other than the original XTAG elementary tree;
3) Substitution and adjunction allowed in the
original grammar, and no other opeations, are
simulated in the XHPSG parsing.

We not only use the HPSG formalism to
express the linguistic analyses of the XTAG
grammar, but also preserve, as much as pos-
sible, the general framework of the linguistic
analyses given in the standard HPSG (Pollard
and Sag, 1994). We use the standard HPSG
schemata and the principles that are concerned
with syntax, and translate the XTAG elemen-
tary trees into lexical feature structures so that
they satisfy the conditions 1), 2) and 3) with
them. Given that the XTAG features are used
for controlling the substitution and adjunction,
the condition 3) is reduced to the problem of
whether or not all the XTAG features can be

*This work is partially founded by Japan Society for
the Promotion of Science (JSPS-RFTFI6P00502).
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mapped to HPSG feature structures so that
their values are properly propageted by the ap-
plication of those schemata and principles.

2 Translation

We start with the standard HPSG feature struc-
ture and schemata! with slight modification and
addition. As for principles, we use phonology-,
head-feature-, valence-, non-local feature-, spec-
and marker-principles.

We separate the translations to two steps.
First, we translate the tree structure of elemen-
tary trees to HPSG feature structures. Second,
we map the XTAG feature into the HPSG struc-
ture.

2.1 Translation of the tree structure

In most inijtial trees, labels of the nodes on the
trunk (the path from the anchor to the root) are
the projections of that of the lexical anchor. On
the other hand, in HPSG, labels are expressed
by a part of the HEAD and the VALENCE features.
The HEAD feature corresponds to the projection
of a category. For example, VP is expressed
as a structure whose HEAD is verd and COMPS
is saturated and S is expressed as a structure
whose HEAD is verd and both COMPS and SUBJ is
saturated (Figure 1). Thus, if no features are
concerned, the nodes on the trunk corresponds
to the HEAD feature? and we can construct the
lexical feature structure corresponding to an ini-
tial tree by translating the label of the nodes on

'Refer to (Pollard and Sag, 1994) for the mean-
ing of the standard HPSG features and schemata.
We use the [ollowing abbreviations for feature
names: S$SS=SYNSEM, LOC=LOCAL, NOHLOC=HNONLOCAL,
VAL=VALENCE, HARK=MARKING.

?In a few initial trees whose label of the root is dif-
ferent from that of the anchor, we set the HEAD feature
according to the root node because of the substitution.



S3(LOC|CAT|KEAD verb
vaL[svRs | ] ~_3
|

SS1LOC]CAY HEAD  verd
comrs |
VN / ‘]:‘”“- suBy lss1:|

cows 1]
ss|mclut|:mn verb

NP VP
VAL [Stes Iaﬂ] ‘—V/\
comps 1ist NP

Figure 1: Correspondence between node labels
and feature structures

the trunk into the HEAD features and remain-
ing nodes into SUBJ, COMPS or SLASH features
according to the syntactic role of the nodes.
For example, ¢ in Fig 2 shows the tree for a
transitive verb like. As an HPSG schema cor-

LTAG HPSG
at
5 - $(_ like _)
. \
mb]tcr/\ : subject N head
N vP
7\ Py NP VP(like _)
{’ J N head /\ complement
'
o camplement Vv {like) NP
projection i
'.- ey PHOW Like 1
3 s CN b
NP VE [:> ! “'1:‘535 nil
K A SUBJ[NP |,
v NP mﬁi‘? .
] ];‘ ................ CONT INDEX |
-J,l'_g. ........ NONLOC SLASH )

Figure 2: Translation of verb like

responds to one branching of the tree, the tree
can be re-constructed if a proper schema is se-
lected for each branching. In this case, applying
head-complement, and head-subject in this or-
der will restore the shape of a tree and properly
project the information contained in the anchor
to the root of the tree®.

In auxiliary trees, we translate the anchor to
the HEAD and leaf node other than the foot node
to an element of either SUBJ, COMPS, or SLASH
list, as in initial trees. However, as an auxiliary
tree adjoins to a node of another tree, the la-
bel and the structure of the adjoined tree must

3The specification of schemata presented in (Pollard
and Sag, 1994) ensures that the schemata are applied
in proper order. For example, the condition on head-
subject schema that the COMPS of the head daughter must
be empty ensures that the subject comes above the com-
plements on the tree structure,
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be preserved after the adjunction. Therefore,
in the application of a schema corresponding
to a branching just above the foot node, the
HEAD,VAL and SLASH must be preserved {(Figure
3). Considering this property and the fact that

S

NP VP ————— . $3|LOC|CAT verb

vy [9%)
/"}5’\ P {l:l
Ad" w. VP /

This structure must be kept

auviliary tree V. NP
¢ afer the adjunction

Figure 3: Adjunction

the auxiliary tree selects the node it adjoins,
it seems natural to put the foot node into the
MOD or SPEC feature so that the head-adjunct or
head-marker schema will be applied to form the
branching just above the foot node in a way that
the auxiliary tree becomes the adjunct or the
marker (Figure 4). As adjunction involves the

" [pHON really
v 93] 1.0c [€AT [yean I:adv ]

MOD VP
Adv Vp* m[suag { ]]
I coups [ 1
really CONT INDEX

NONLOC SLASH [ }

Figure 4: Translation of medifiers

propagation of other feature values, the transla-
tion of an auxiliary trees is re-examined in sec-
tion 2.2.

2.2 Translation of the feature and the
auxiliary trees

Generally, the HPSG features propagate from
the daughters to the mother as iri Table 14.
We put the XTAG features that have an
equivalent in the HEAD features of the stan-
dard HPSG into XHPSG HEAD features. We
call these XTAG features HEAD' features. WWe
observed that the values of HEAD’ features are
propagated from the node defined as the head-

daughter in section 2.1 on the branching that is

*In exceptional cases, the propagation is explicitly
matked in the lexical item



Table 1: Propagation of HPSG features

] Schema
Feature |head-subjjhead-complhead-adjlhead-markihead-fill
HEAD T H H H H
MARKING H H n H
INDEX A H e H H
SLASH e e e e U

H:the value propagates from head-daughter to the
mother n:the value propagates from head-daughter to
the mother e:the value propagates from either daughter
A:the value must agree between both daughters U:the
value of the feature on the head-daughter unifies the non-
head daughter

not the one just above the foot node of an aux-
iliary tree. We put the agr feature into INDEX
feature and trace into the SLASH feature.
Among the remaining features, the ones
whose value propagates in the same way as
the HEAD’ feature values are also put into the
XHPSG HEAD feature, and the others are put
into the MARKING feature. Table 2 shows where
the XTAG features are put into in the XH-
PSG feature structure. Now, we re-examine

Table 2: Correspondence of XTAG and XHPSG
features

[XTAG feature XHPSG feature

assign—case, assign-comp, case™, ex-|HEAD
tracted®, inv¥, mainv*, mode*, passive,
perfect, pred, progressive, pron, tense*

card, comp, const, decrease, definite,[HARKING
gen, neg, quan, sub-conj, wh

AgT INDEX

trace SLASH

The features marked with * has a counterpart HEAD
feature in the standard HPSG analysis.

the translation of tree structure regarding foot
nodes. We determine the schema to be applied
to the branching above the foot node as fol-
lows: If the auxiliary tree changes the value of
the HEAD feature on adjunction, we apply the
head-complement schema on the branching just
above the foot node. In this case, the foot node
becomes a complement just as in the case of
substitution node® (Figure 5); If the auxiliary
tree does not change the value of the HEAD node
but changes the value of the MARKING feature on

3The tree structure of the tree that this kind of aux-
iliary tree adjoins to is kept by letting the appropiriate
part of the VALENCE feature structure-share betweeu the
head and the complement.
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.
f2 PHON think

s sqLocca verb |
MOD nil

NP/\VP — VAL[SUBJ{NP ]J
AN COMPS S)
Vv S§* MARK
| CONT INDEX
think ] NONLOC SLASH ] J

Figure 5: Translation of verbs that take a sen-
tential complement

adjunction, we apply the head-marker schema
on the branching just above the foot node. In
this case, the foot node becomes the head to
be selected by the SPEC feature of the lexical
feature structure corresponding to the auxiliary
tree (Figure 6); Otherwise, we apply the head-

B3 PROH soxe

881 L0C [ exe Mpeaper
SPEC NP

Det NP*
m[sm[ !
l cores [ )
some !
CONT INDEX :
SLASKH J;

Figure 6: Translation of determiners

modifier schema on the branching just above
the foot node. In this case, the foot node be-
comes the head to be selected by the MOD feature
of the lexical feature structure corresponding to
the auxiliary tree & (Figure 4).

3 Problems

Though in most cases the abovementioned
translation works, there are a few exceptional
cases. In this section, we mention two cases.
The first one is a treatment of bar level, the
second is predicatives,

3.1 Bar level

As mentioned in section 2.1, bar-level is not
explicitly marked in the standard HPSG (sece
Figure 1), but implicitly stated in VALENCE fea-
tures. In consequence, there is no distinction
between a word who has no arguments and the
phrase just consists of that word.

In the latter two cases, the tree structure of the trec
that the auxiliary tree adjoins to is kept by the valence
principle and the head-marker (head-adjunct) schema.



This caused a problem when modifiers are in-
volved. For example, there is no way to prevent
a noun-modifying adjective from modifying an
NP as there is no distinction between N with no
arguments and NP.

To solve the problem we introduced features
named XP and ASSIGN _XP. XP is used for restrict
the modifiee’s bar-level. ASSIGN_XP is used by a
modifier to assign a bar-level to a phrase gener-
ated as a result of modification,

3.2 Predicatives and small clause

In XTAG analysis, a predicative noun’ has a
tree whose root is labeled S and the copula be
has an auxiliary that adjoins to the tree. We
assigned a head feature verb to a predicative
noun (see the footnote in section 2.1). How-
ever, we could not allow the extraction of the
predicative noun, because it would be the head
that is extracted. We splitted the lexical entry
of be to handle the extraction.

4 Implementation

We have translated the syntactic lexicon of the
XTAG grammar version 1.1 and implemented
the translated grammar in LiLFeS language
(Makino et al., 1998). We assumed only binary
branching, and splitted the schemata according
to whether the head is on the left or on the right.

Currently we have verified our grammar par-
tially in the sense that XHPSG grammar gen-
erates the structures equivalent to the elemen-
tary trees and the trees constructed with one
or less adjunction. For the general cases, we
are currently working on constructing a struc-
ture equivalent to the derivation tree for XTAG
parsing in XHPSG. The derivation trees will en-
able us to easily compare the parsing results be-
tween the original and the translated grammars
to check the validity of XHPSG in a practical
sense.

We optimized the grammar
by pre-compiation (Torisawa and Tsujii, 1996)
and measured the parsing time of the ATIS cor-
pus using the two-phased parsing of the pre-
compiled XHPSG. The average user time was
1.12 seconds on Alpha Station (400MHz CPU,
4GB main memory). We expect a futher speed-
up of the parsing by packing feature structures
(Miyao et al., 1998).

Tadjeclive and preposition also
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5 Conclusion and Future Work

We translated the XTAG grammar to get a
wide-coverage grammar in the HPSG formal-
ism. By assigning an HPSG schema to a branch-
ing of XTAG trees, we have shown that the
branching in XTAG trees can be licensed by the
standard HPSG schemata and principles.

We are also interested in comparing our result
to the HPSG English grammar being developed
at Stanford University (CSLI, 1998) and to the
CCG English grammar converted from XTAG
grammar (Doran and Srinivas, to appear).
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CONSISTENTDENDRIFICATION: TREESFROMCATEGORIES
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1. Introduction

I shall start by taking a fairly simple Combinatory
Categorial Grammar (CCG) of the type developed by
Steedman over the past decade or so {e.g. Stecdman
1996) including rules of functional application, and
functional composition. [ shall have nothing to say
about functional substitution in this paper, and shall
assume that there are type-raised categories in the
lexicon (e.g. S/(S\NP)). 1 shall also assume, following
Steedman, that synlactic symbols such as S, NP, S\NP
are in fact abbreviations for feature bundles.

From a Phrase Structure Grammar (PSG) perspective, a
CCG derivation that uses functional compeosition, if
interpreted as building a structural level o
representation, can give rise to some very strange
looking trees containing some very unusual node
labels. Whereas certain labels correspond to PSG ones
{e.g. VP = S\NP), others do not (e.g. S/NP),
Furthermore, because certain analyses require a rule of
composition, such trees and labels will be required.
there is anything at all "real" about traditional PSG
categories for languages such as English, then on the
faccof it, CCG failsto capture them. There is a related
point. Ifthese strange categories such as S/NP need to
be assembled, then one would expect that some lexical
items would require such a category either as an
argument or as the result. But, there seem to be
curiously few such words and possibly no verbs.

What we shall do in this paper is examine how CCG
categories can correspond to trees (cf. Joshi & Kulick
1996 and Henderson 1992 for other approaches). We
shall see that interpreting a lexical CCG category as a
partial description of a tree using a number of very
simple principles will aliow a number of "natural"
distinctions to fall out without being stipulated. In
particular, subjects but not objects will be immediately
dominated by the S, different types of “"empty”
categories will be predicted; and structural differences
between raising and control verbs will be observed. I
the lexicon is constrained so that the categories can be
interpreted as trees in the manner we shall describe, and
if during the course of a successful derivation such trees
can then be combined with other trees, then we shall
say that the lexicon is constrained by a principle of
“"Consistent Dendrification”,
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2. Hypothesising Trees

As a start towards interpreting a lexical CCG category
{e.g. XXY) as a partial description of a tree, we shall
assume that a category does a maximum of threc
things: it "names" certain nodes within a subtree @
crucial point we shali return to is that these may not be
unique nodes); it describes a minimum of dominance
relations (not necessarily immediate dominance); and
where appropriate it describes relative precedence
relations. For example, in the example given, X and Y
would be two named nodes, X would dominate a
subtree (is the root) which would contain the node Y
and also a node dominating the lexical item (gengral
principles which we shall spell out later determine how
this item is named). Finally, because of Lhe direction of
slash, the Y argument subtree must be to the left of
another node.

At this point the tree will be very under specified.
However, we shall also assume a sct of very general
principles thai can be applied to the minimum
information specified in the category and these will
ailow other nodes to be hypothesised, named, and
related to still more nodes in the tree. Finally, when a
tree combines with another tree during the course of a
derivation the resulting tree will be further specified.

2.1 Principles and Conventions of Tree
Building

1 shall first give two principles governing how nodes
that have been hypothesised are labelled, then give two
mechanisms for hypothesising nodes in a tree, and
finally state a principle of economy that limits the
number of nodes that can be hypothesised.

Prineiple of Full Correspondence: All (non-slash
{(and brackets)) labels in a category correspond to, i.e.
they label, (not necessarily different) nodes in a tree.

For example, with the category S/(S/NP) ("whom"),
nodes must have been hypothesised that can be labetled
with an 8, an §, and an NP, but crucially, the
argument (i.e. S/NP) will not be used to label a node,
because it has been separated into an S and an N.
Suppose we were to an S/NP label; then, the tree will
contain an S/NP node which does not correspond to
any standard PSG node, If we wanted to relate CCG to
standard trees, then we would have to give an



alternative category to words such as "whom" and a
differentanalysis to long distance dependencies.

Naming Principle: Any node that has been
hypothesised and does not correspond to a label in the
catcgory will be labelled with the label of the
dominating node as the result part of the label and with
the label of the other daughter of the dominating node
as the argument part of the label. The position of this
other daughier on the left or right will determine the
direction of the slash,

Note that the Principle of Full Correspondence entails
that functional nodes in the tree e.g. X\Y must be
labelled by the Naming Principle. 1t will often be the
case that the dominating node referredto in the Naming
Principle is the nodes mother, and the other daughter is
the nodes sister,

Lexical Anchor: A node is hypothesised that
immediately dominates the lexical item.

Argument and Result  Correspondence; (Not
necessarily different) Nodes will be hypothesised to
correspond to every argument (i.e. the right-hand-side
of a slash), and to every result (i.¢. left-hand-side of a
slash) in a category.

Note the important difference between this mechanism
governing the hypothesis of nodes in a tree and the
Principle of Fuli Correspondence, governing the
labelling of nodes. A node will be hypothesised for the
argument S/NP in the S/(S/NP) category (and for the
NP argument and the S ard S results). However, it
will not be labelled with a S/NP label.

We might also note the importance of the lexical
anchor, Trees hypothesised from categorial grammar
categories will be binary branching. Consequently, a
minimal subtreec will consist of three nedes. Of these
three, the root node will correspond to the result part of
the category and one of the daughter nedes will
correspond to the argument part of the category. In
higher reaches of the tree, the second daughter node
will correspond to the root of a lower subtree,
However, there are two situations in which this will
not be the case. One such situation will be when the
(functional) lexical category is split into the result and
argument categories. A root node and a sister node will
be hypothesised to correspond to this division, but a
second daughter node will not have been hypothesised.
The Lexical Anchor forms this node. The second
siiualion can anse when an argument is itself a
functional category. This will be the situation with the
category of "whom" S/(S/NP). In this case, an § node
will by hypothesised; an NP node, which must be on
the right of some other node, will also be
hypothesised, and a relation of dominance, although
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not necessarily immediate dominance, will be assumed
between the two nodes. According to the Principle o
Economy that we will introduce next, no other nodes
can be hypothesised on the basis of the category d
"whom". And, this is what we want, since if another
daughter of S were hypothesised as a sister of the NP,
then by the Naming Principle it would receive the label
S/NP. 1t would not correspond to any conventional
PSG category, and nor would it be found in trees
hypothesised from simple transitive verbs, so
preventing combination of trees. Finally, the NP is the
object NP being questioned and such an NP can be
arbitrarily low in the tree. We do not want lo
hypothesise exactly what this NPs sister is until the
tree for "whom" has combined with trees hypothesised
from other categories,

Principle of Economy: The smallest number of
hypotheses about nodes, and dominance and precedence
relations are made.

This principle entails that nodes and relations between
nodes are not hypothesised without evidence. 1t also
entails that if there is reason to hypothesise two nodes
and these two nodes will receive the same label, then
all things being equal the two labels will refer to the
same node.

3. Sample Analyses

3.1 Type-Raised Subjects

Let us assume that the lexicon gives the following
category for the proper noun "John" foruse as a subject
S/(S\NP), The assumption of a Lexical Anchor leads to
the hypothesis of a node dominating "John" although
at the moment it cannot be named. Let us call this
node 1. By Argument and Result Correspondence, we
can hypothesise two further nodes by splitting the
category into a result part and an argument part, We
shall call the node corresponding to the result node 3.
Turning now to the argument, the right slash entails
that there will be a node to the right of node 1
corresponding to the subtree hypothesised from the
S\NP. Let us call this node 2. This subtree can also be
split into an argument and a result. Consequently, we
can at this point hypothesise two nodes for the subtree,
By the Principie of Full Correspondence, we can label
these an S and an NP, Let us call these nodes 2:1 and
2:2. Because of the left slash we also know that node
2:2 must appear on the lecft of some other, as yet
unknown, node. Can we equate nodes 2 and 2:1, i.e. is
the sister of the lexical anchor an 7 At this point, this
question cannot be answered since node 2:1 could also
be a higher node that dominates node 2. At this stage
we cannot choose between these two options, so we
will leave the node unlabelled.



We can now turmn to node 3, ie the node
corresponding to the resuit part of the S/S\NP category.
Since the result cannot be split into a result and an
argument, we can label it with an § by the Principle of
Full Correspondence.

We can return to the earlier hypotheses. The node
corresponding to the S\NP argument (i.e. node 2) was
required to be dominated by an S (node 2:1). The just
hypothesised root node (nede 3) will dominate this
node and so by the Principle of Economy we shall
equate nedes 3 and 2:1. Node 2:1 dominates an NP,
node 2:2, which must appear on the left. We have
cquated nodes 3 and 2;1. There is an as yet unlabelled
node on the left that is dominated by node 3 and that is
node 1, the lexical anchor. Consequently, we shal
equate nodes 1 and 2:2. Node 2 has not yet been
labelled. However, its sister is labelled NP, and its
mother is labelled 5. Consequently, by the Naming
Principle, node 2 will be labelled S\NP. In other
words, the tree corresponding to a type-raised subject is
the following:

1} S 3=2:1
A
1=2:2 NP S\WNP 2
i
John

Assuming a correspondence between an S\NP and a
VP, this is the correct result.

Suppose that the lexicon contained an S\(S/NP)
category for a type-raised object. It should be clear that
if this were the case the resulling tree would be as
depicted in 2,

2) 5
i
S/NP NP

I
John

Not only does such a tree contain the S/NP label that
does not correspond to a PSG label, it will not be able
to combine with any tree that does not also include a
S/NP labe! as the danghter of the S, 1n particular it will
not be able to combine with the tree hypothesised from
a simple transitive verb. In other words, if the
categories in the lexicon will be interpreted as trees,
then the type of category that may occur will be

constraincd. We can say that the lexicon is consttained

by a requirement of consistent dendrification.
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Wh-words

We shall assume that categories for the question words
"who" and "whom" are S/(S\WP) and S/(S/NP)
respectively, Notice that in terms of major features the
category of a subject wh-word and that of a type-raised
subject are identical. However, we have assumed,
following Steedman, that Iabels are in fact feature
bundles, and we shall assume that an S label with
interrogative force has a +int feature. Consequently, a
fuller description of these categories would be:
S+int/(S-infANP) and S+int/(S-int/NP).

I shall take the subject wh-word first. In the previous
example, we assumed that the two Ss referred {o the
same node. However, in these examples, they differ
with respect to the int feature. Much of the procedure
for hypothesising a tree proceeds as before, but since
the two Ss are no longer identical nodes 3 and 2:1
cannot be equated. If nodes 3 and 2:1 cannot be
equated, then one S will be dominated by the other S
and it will be nodes 2 (i.e. the node corresponding to
the S\NP argument) and 2:1 (i.e. the result part of the
S\WWP argument) that will b¢ equated. Node 2:1
dominates an NP, node 2:2, This time no other nede
has been hypothesised that can be equated with node
2:2. In particular, node 2:2 will not be equated with
the lexical anchor nede 1. A consequence of this is that
no node has been hypothesised as a sister of the NP
node. As discussed earlier, such a node will only be
intreduced when this tree combines with another tree
that has an S root, an NP on the left (or right if the
category is the object we-word) and a sister of the NP.
Again as discussed earlier, the absence of a sister node
means that the NP may be arbitrarily far from the 8.
Finally, if the lexical anchor (node 1) is not equated
with nede 2:2, then it must be named by the Naming
Principle. Its mother is an § node (node 3) and its
sister is also an S node (nede 2:1), Consequently, the
node dominating the word "whom" has the category
S/S. The tree then consists of the wh-word chomsky-
adioined on the left side of a declarative sentefice as
depicted in 3. This again is the result we want.

3 S 3
£ A
1 T 2=2:1
|/

who NP 2:2

3.3 Subject Raising Verbs

[ shall assume that if we restrict ourselves to major
features, then the category for a raising verb such as
"seem" and the category of a control verb such as "try"
is the same: S\NP/(S\NP) (¢f. Jacobson 1990 for an
alternative view).



We shall proceed as usual. A lexical anchor will be
hypothesised (node 1), The category splits into an
argument corresponding to the S\NP (node 2) and
result corresponding to another S\NP (node 3). The
argument also splits into a result (node 2:1) and an
argument (node 2:2). Node 2:1 will dominate node
2:2. Since both of the categories corresponding to these
nodes are atoms, these nedes will be labelled with an S
and an NP respectively.

In this case, the result node (node 3) corresponds to a
functional category and so node 3 will not be
immediately named, and will be dominated by a node
corresponding to the result (node 3:1) which will also
dominate a node corresponding to the argument (node
3:2). The result of the result (i.e. the node
corresponding to the S) cannot be split into an
argument and result and so by the Principle of Full
Correspondence, it wiil be labelled with an 8. This is
the root of the tree. Similarly, the argument of the
result cannot be split, and so node 3:2 will be labelled
with an NP. By the Naming Principle, node 3, which
has an § mother and NP sister will be labelled S\NP,

Ifwe have hypothesised nodes and labels for the result
part of the lexical item, we can turn to the argument
part. The node corresponding to this is node 2. The
subtree corresponding to this node is dominated by m
S (node 2:1). In this case node 3:1 is labelled with an
S and dominates (aithough not immediately
dominates) node 2. There appears to be no reason in
terms of features not to equate nodes 3:! and 2:1,
However, if their daughter nodes 3:2 and 2:2 were
labelled differently, then these could not be equated and
as a consequence their mothers could not be equated. In
this instance both are NPs and on the left. However, we
might ask whether they differ in terms of minor
features. In a raising construction, the subject NP has
no independent theta-role projected by main verb. Its
theta-role is projected from that of the subordinate verb,
If we examine the lexical category, it is the subtree
hypothesised from the result that will combine with the
tree hypothesised from an adjacent verb. In other words
NP 2:2 will be marked as taking an independent theta-
role, and NP 3:2 marked as not having an independent
theta-role. In such a situation, I shall assume that there
is no possibility of theta-roles clashing, node 2:2
equates with node 3:2. If on the other hand, both NPs
had been marked as taking independent theta-roles,
then I will assume that the nodes could not be equated,

What about the label for node 27 Since node 2 was
hypothesised to be dominated by an S {node 2:1)
which also dominates an NP (node 2:2), it will also be
labelled S\WNP. We can finally return to the lexical
anchor. The node corresponding to the resuit (node 3)
that dominates it is labelled with an S\NP, and the
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node corresponding to the argument is also labelied
with an S\NP, and so this node is labelled with an
S\NP\(S|NP).

4) S 3:1=12:1
I\
3:2=2:2 NP SWNP 3
I\
1 S\NP/(S\NP) S\NP 2
|
seem

Control Verbs

I shall assume that a verb such as "try" has the same
category as "secem"”, the only difference being that the
two NPs have independent theta-roles. A consequence
of this differenceis that nodes 3:2 and 2:2 cannot be
equated. This in turn entails that the two S nodes (3:1
and 2:1) cannot be equated, Instead, node 2 will be
equated with node 2:1, and will dominate node 2:2,
which will have no hypothesised node yet as a sister.
Finally, the label of the lexical anchor will be different
from that given to it in the case of "seem". It will be
dominated by an S\NP and its sister will be an 8.
Hence the label will be S\NP/S,

5) S 3:1
1\
3:2 NP S\NP 3
£\
1 S\NP/S S 2=21
|/
tried NP 2:2
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1 Introduction

An important characteristic of an FB-LTAG is
that it is lexicalized, i.e., each lexical item is an-
chored to a tree structure that encodes subcat-
egorization information. Trees with the same
canonical subcategorizations are grouped into
tree families. The reuse of tree substructures,
such as wh-movement, in many different trees
creates redundancy, which poses a problem for
grammar development and maintenance (Vijay-
Shanker and Schabes, 1992). To consistently
implement a change in some general aspect of
the design of the grammar, all the relevant trees
currently must be inspected and edited. Vijay
Shanker and Schabes suggested the use of hi-
erarchical organization and of tree descriptions
to specify substructures that would be present
in several elementary trees of a grammar. Since
then, in addition to ourselves, Becker, (Becker,
1994), Evans et al. (Evans et al,, 1995), and
Candito{Candito, 1996) have developed systems
for organizing trees of a TAG which could be
used for developing and maintaining grammars.

Our system is based on the ideas expressed in
Vijay-Shanker and Schabes, (Vijay-Shanker and
Schabes, 1992), to use partial-tree descriptions
in specifying a grammar by separately defining
pieces of tree structures to encode independent
syntactic principles. Various individual specifi-
cations are then combined to form the elemen-
tary trees of the grammar. Our paper begins
with a description of our grammar development
system and the process by which it generates
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the Penn English grammar as well as a Chi-
nese TAG. We describe the significant proper-
ties of both grammars, pointing out the ma-
jor differences between them, and the methods
by which our system is informed about these
language-specific properties. We then compare
our approach to other grammar development
approaches for LTAG such as the specification
of TAGs in DATR (Evans et al., 1995) and Can-
dito’s implementation {Candito, 1996).

2 System Overview

In our approach, three types of components —
subcategorization frames, blocks and lexical re-
distribution rules — are used to describe lexi-
cal and syntactic information. Actual trees are
generated automatically from these abstract de-
scriptions. In maintaining the grammar only
the abstract descriptions need ever be manipu-
lated; the tree descriptions and the actual trees
which they subsume are computed determinis-
tically from these high-level descriptions.

2.1 Subcategorization frames

Subcategorization frames specify the category
of the main anchor, the number of arguments,
each argument’s category and position with re-
spect to the anchor, and other information such
as feature equations or node expansions. Each
tree family has one canonical subcategorization
frame,



2.2 Blocks

Blocks are used to represent the tree substruc-
tures that are reused in different trees, i.e.
blocks subsume classes of trees. Each block in-
cludes a set of nodes, dominance relation, par-
ent relation, precedence relation between nodes,
and feature equations. This follows the defini-
tion of the tree descriptions specified in a logi-
cal language patterned after Rogers and Vijay-
Shanker{Rogers and Vijay-Shanker, 1994).

Blocks are divided into two types accord-
ing to their functions: subcategorization blocks
and transformation blocks. The former de-
scribes structural configurations incorporating
the various information in a subcategorization
frame. For example, some of the subcategoriza-
tion blocks used in the development of the En-
glish grammar are shown in Figure 1.1

When the subcategorization frame for a verb
is given by the grammar developer, the system
will automatically create a new block (of code)
by essentially selecting the appropriate primi-
tive subcategorization blocks corresponding to
the argument information specified in that verb
frame.

The transformation blocks are used for var-
ious transformations such as wh-movement.
These transformation blocks do not encode rules
for modifying trees, but rather describe the
properties of a particular syntactic construc-
tion. Figure 2 depicts our representation of
phrasal extraction. This can be specialized to
give the blocks for wh-movement, topicaliza-
tion, relative clause formation, etc. For exam-
ple, the wh-movement block is defined by fur-
ther specifying that the ExtractionRoot is la-
beled S, the NewSite has a +wh feature, and so
on.

!1n order to focus on the use of tree descriptions and
to make the figures less cumbersome, we show only the
structural aspects and do not show the feature value
specification. The parent, (immediate dominance), rela-
tionship is illustrated by a plain line and the dominance
relationship by a dotted line. The arc between nodes
shows the precedence order of the nodes are unspecified.
The nodes’ categories are enclosed in parentheses.
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(a) is_main_frame (blpred_has_subject (c)pred_has_object

Figure 1: Some subcategorization blocks

ExtractionRoot
NewSite Root('S")
|
f
ExtractionTrace

€

Figure 2: Transformation block for extraction

2.3 Lexical Redistribution Rules
(LRRs)

The third type of machinery available for a
grammar developer is the Lexical Redistribu-
tion Rule (LRR). An LRR is a pair (r, )
of subcategorization frames, which produces a
new frame when applied to a subcategorization
frame s, by first matching® the left frame 7 of
r to s, then combining information in r; and
s. LRRs are introduced to incorporate the con-
nection between subcategorization frames. For
example, most transitive verbs have a frame
for active(a subject and an object) and another
frame for passive, where the object in the for-
mer frame becomes the subject in the latter. An
LRR, denoted as passive LRR, is built to pro-
duce the passive subcategorization frame from
the active one. Similarly, applying dative-shift
LRR to the frame with one NP subject and two
NP objects will produce a frame with an NP
subject and an PP object.

Besides the distinct content, LRRs and blocks
also differ in several aspects:

*Matching occurs successfully when frame s is com-
patible with r; in the type of anchors, the number of
arguments, their positions, categories and features. In
other words, incompatible features etc. will block cer-
tain LRRs from being applied.



e They have different functionalities: Blocks
represent the substructures that are reused
in different trees. They are used to re-
duce the redundancy among trees; LRRs
are introduced to incorporate the connec-
tions between the closely related subcate-
gorization frames.

¢ Blocks are strictly additive and can be
added in any order. LRRs, on the other
hand, produce different results depending
on the order they are applied in, and are
allowed to be non-additive, i.e., to re-
move information from the subcategoriza-
tion frame they are being applied to, as in
the procedure of passive from active.

4 S, Sy
NP‘//\S NP‘/ \s NP‘/ \5
N
NP VP NF’{ VB NPy VP

et 7 2N

. " /=\ Ve NP PR Yo /PF,\
AL P, NP, P, NP,

! I [
la £ o 3

(a) (b} (©

Figure 3: Elementary trees generated from com-
bining blocks

2.4 Tree generation

To generate elementary trees, we begin with
a canonical subcategorization frame. The sys-
tem will first generate related subcategorization
frames by applying LRRs, then select subcate-
gorization blocks corresponding to the informa-
tion in the subcategorization frames, next the
combinations of these blocks are further com-
bined with the blocks corresponding to various
transformations, finally, a set of trees are gener-
ated from those combined blocks, and they are
the tree family for this subcategorization frame.
Figure 3 shows some of the trees produced in
this way. For instance, the last tree is obtained
by incorporating information from the ditransi-
tive verb subcategorization frame, applying the
dative-shift and passive LRRs, and then com-
bining them with the wh-non-subject extraction
block.
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3 Generating grammars

We have used our tool to specify a grammar for
English in order to produce the trees used in
the current English XTAG grammar. We have
also used our tool to generate a large grammar
for Chinese. In designing these grammars, we
have tried to specify the grammars to reflect the
similarities and the differences between the lan-
guages. The major features of our specification
of these two grammars are summarized in Table
1.

English Chinese
examples passive bei-construction
of LRRs dative-shift object fronting

ergative ba-construction
examples wh-question | topicalization
of transformation | relativization | relativization
blocks declarative argument-drop
# LRRs 6 12
# subcat blocks 34 24
# trans blocks 8 15
# subcat frames | 43 23
# trees generated | 638 280

Table 1: Major features of English and Chinese
gramrmars

By focusing on the specification of individual
grammatical information, we have been able to
generate nearly all of the trees (91.3% - 638 out
of the 699) from the tree families used in the
current English grammar developed at Penn.
Our approach, has also exposed certain gaps in
the Penn grammar. We are encouraged with the
utility of our tool and the ease with which this
large-scale grammar was developed.

We are currently working on expanding the
contents of subcategorization frame to include
trees for other categories of words. For exam-

f\lﬁ o Framo \l)‘}\;f‘}\ hnc " SI’\Q!‘;HQF gnr] anNno ND
FAvy @ 2AaGdillT Fralalas G0 U opFDLIRTL Gl US4

complement and whose predicate is a preposi-
tion will correspond to PP — P NP tree. We'll
also introduce a modifier field and semantic fea-

3We have not yet attempted to extend our coverage
to include punctuation, it-clefts, and a few idiosyncratic
analyses that are included in the sixty trees we are not
generating.




tures, so that the head features will propagate
from modifiee to modified node, whiie non-head
features from the predicate as the head of the
modifier will be passed to the modified node.

4 Comparison to Other Work

Evans, Gazdar and Weir (Evans et al., 1995)
also discuss a method for organizing the trees
in a TAG hierarchically, using an existing lexi-
cal representational system, DATR (Evans and
Gazdar, 1989). Since DATR can not capture
directly dominance relation in the trees, these
must be simulated by using feature equations.
There are substantial similarities and signifi-
cant differences in our approach and Candito’s
approach, which she applied primarily to French
and Italian. Both systems have built upon
the basic ideas expressed in {Vijay-Shanker and
Schabes, 1992) for organizing trees hierarchi-
cally and the use of tree descriptions that en-
code substructures found in several trees. The
main difference is how Candito uses her dimen-
sions in generating the trees. Her system im-
poses explicit conditions on how the classes ap-
pearing in the hierarchy can be combined, based
on which dimension they are in. For example,
one condition states that only a terminal node
(leaf node of a hierarchy) of the second dimen-
sion can be used in constructing a tree. There-
fore two redistributions (such as passive and
causative) can be used in a single tree only when
a new passive-causative terminal node is first
created manually. In contrast, our approach au-
tomatically considers all possible applications of
LRRs, and discards those that are inconsistent.

5 Conclusion

We have described a tool for grammar develop-
ment in which tree descriptions are used to pro-
vide an abstract specification of the linguistic
phenomena relevant to a particular language. In
grammar development and maintenance, only
the abstract specifications need to be edited,
and any changes or corrections will automati-
cally be proliferated throughout the grammar.
In addition to lightening the more tedious as-
pects of grammar maintenance, this approach
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also allows a unique perspective on the gen-
eral characteristics of a language. Defining hi-
erarchical blocks for the grammar both necessi-
tates and facilitates an examination of the lin-
guistic assumptions that have been made with
regard to feature specification and tree-family
definition. This can be very useful for gain-
ing an overview of the theory that is being im-
plemented and exposing gaps that remain un-
motivated and need to be investigated. The
type of gaps that can be exposed could include
a missing subcategorization frame that might
arise from the automatic combination of blocks
and which would correspond to an entire tree
family, a missing tree which would represent a
particular type of transformation for a subcat-
egorization frame, or inconsistent feature equa-
tions. By focusing on syntactic properties at
a higher level, our approach allows new oppor-
tunities for the investigation of how languages
relate to themselves and to each other.
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