
An Object-Oriented Linguistic Engineering Environment using
LFG (Lexical Functionnal Grammar) and CG (Conceptual

Graphs)

J ~ r 6 m e V a p i l l o n , X a v i e r B r i f f a u l t , G d r a r d S a b a h , K a r i m C h i b o u t

L a n g u a g e a n d C o g n i t i o n G r o u p
L I M S I - C N R S

B.P. 133, 91403 Orsay Cedex, FRANCE
vap/xavier/gs/chibout ©rl ims i. fr

Abstract
In order to help computational linguists,
we have conceived and developed a lin-
guistic software engineering environment,
whose goal is to set up reusable and evo-
lutive toolkits for natural language pro-
cessing. This environment is based on a
set of natural language processing compo-
nents, at the morphologic, syntactic and
semantic levels. These components are
generic and evolutive, and can be used
separately or with specific problem solv-
ing units in global strategies built for man-
machine communication (according to the
general model developed in the Language
and Cognition group: Caramel). All these
tools are complemented with graphic in-
terfaces, allowing users outside the field of
Computer Science to use them very eas-
ily. In this paper, we will present first the
syntactic analysis, based on a chart parser
that uses a LFG grammar for French, and
the semantic analysis, based on conceptual
graphs. Then we will show how these two
analyses collaborate to produce semantic
representations and sentences. Before con-
cluding, we will show how these modules
are used through a distributed architecture
based on CORBA (distributed Smalltalk)
implementing the CARAMEL multi-agent
architecture.

1 Introduction
1.1 G e n e r a l i t i e s

Natural language processing is nowadays strongly
related to Cognitive Science, since linguistics, psy-
chology and computer science have to collaborate
to produce systems that are useful for man-machine
communication. This collaboration has allowed for-
malisms that are both theoretically well-founded and
implementable to emerge. In this paradigm, we have
conceived and developed a linguistic software engi-

neering environment, whose goal is to set up reusable
and evolutive toolkits for natural language process-
ing (including collecting linguistic data, analysing
them and producing useful data for computer pro-
cesses). Based on a large number of graphical, very
intuitive, interfaces, this environment has two main
goals:

* to provide tools usable by users outside the field
of Computer Science (e.g., computational lin-
guists) for them to be able to easily collect data
and test their linguistic hypotheses

* to allow computer scientists to exploit these
data in computer programs

Remark: in the text, some figures describe the
structure of our tools; we have used Booch's conven-
tions (Booch, 1994) about object oriented analysis
and conception. They are summarized here:

I name I class
operations

cent ains/uses
1,2...N relation cardinality

inherits

Figure 1: symboles used in the figures

1.2 E x t e n s i o n s t o L F G f o r m a l i s m

Four types of equations are defined in classical LFG
(Bresnan and Kaplan, 1981):

1. unifying structures (symholised by " - ") ,

2. constrained unification of structures, only true
if a feature is present in both structures, but
may not be added (symbol "=c"),

3. obligatory presence of a feature (symbol "~") ,

4. obligatory absence of a feature (symbol tilde).

99

We have defined three non-standard types of equa-
tions used in our parser:

1. obligatory difference between two values (sym-
bol "#") ,

2. disjunction of obligatory differences (a sequence
of obligatory differences separated by the sym-
bol "1") (this can also be viewed as the negation
of a conjonction of obligatory presences)

3. priori tary union, copy into a F-Structure the
at tr ibutes of the other that are not present in
the first one, nor inconsistent with it.

Among other existing systems (e.g., A. An-
drew's system , Charon, The "Konstanz LFG
Workbench" and Xerox "LFG Workbench"; see
h t tp : / /c lwww.essex .ac .uk/LFG for more details on
these systems), only the last one is a complete en-
vironment for editing g rammars and lexicons. Our
system adds to this feature an open architecture and
many interfaces that make it very easy to use.

2 The LFG Environment

2.1 F o u n d a t i o n : a L F G p a r s e r

According to the principles of lexical functional
grammars , the process of parsing a sentence is de-
composed into the construction of a constituent
parts structure (c-structure) upon which a func-
tional structure is inserted. C- structure construc-
tion is based on a chart parser, that allows the sys-
tem to represent syntactic ambiguities (Kay, 1967),
(Winograd, 1983). In order to be used within a LFG
parser, a classical chart has to be complemented
with a new concept: completed arcs (which repre-
sent a whole syntactic structure) have to be differ-
enciated between completed arcs linked with a cor-
rect F-Structure, and those which are linked to an
F- Structure tha t cannot be unified or that does not
respect well-formedness principles.

2.2 V i s u a l i s i n g the Chart

In the Chart interface, words are separated by
nodes, numbered from 1 to numberOfWords + 1.
Each arc is represented by a three segment polygon
(larger arcs are above the narrower, for readibility
reason).

Active arcs are grey and positioned under the
words. Completed arcs with uncorrect F-Structures
are red and also placed under the words. Com-
pleted arcs with correct F-Structures are blue and
above the words. Lastly, completed arcs with F-
Structures tha t don ' t respect well formedness prin-
ciples are grey and above the words. The user can
select the kind of arc he is interested in. By clicking
on an arc with the left button, the arc and all its
daughters become green, thus showing the syntac-
tic hierarchy. By clicking with the middle button, a

iii suaJ saU°n vl°.,~ . ® !

PlIOPOSITiON:t~,

GNSSCOMPL',I_t]
CONTEXTE :t 4 '

........ _GNSIMPLE:t2
SN:I~/

ii I - G; ;SCOMPm__.__....~1:2
~ 1) : ~ , , , GVCO!IUR;~ 7

P__L~_ :ni lC N$$COMPL;s SV:te

iii ,PI).O r,I :L-dl. N k ' d V :flit 'ONCT '..m I
i

me Z ch ien 3 mangea i t 4 $

Figure 2: The Chart Interface

menu appears within which one can choose to exam-
ine the applied rule or the F-Structures (see below
for the corresponding interface).

2.3 V i s t t a l i s ing F - S t r u c t u r e s

As shown in Figures 3 and 4, F-Structures are repre-
sented by attr ibute-value pairs (a value may itself be
a F- Structure). In addition to such a graphical rep-
resentation, a linear representation (more suitable
for storing data on files or printing them) has been
developed and it is possible to switch from one to
the other. This allows us to keep track of previous
results and to use them for testing the evolution of
the system.

2.4 Lexicon and lexicon management

Since LFG is a "lexical" g rammar , it is impor tan t
to have powerful and easy to use lexicon manage-
ment tools. To be as flexible as possible, we have
choosen to use several lexica at the same t ime in the
same analyser. The lexicon manager contains a list
of lexica ordered by access priority. For each word
analysed, the list is searched, and the first analysis
encountered is returned.

Two kinds of lexica are currently used; this kind
of structuration is quite flexible:

• if the user uses a big lexicon, but wants to re-
define a few items for his own needs, he just
has to define a new small lexicon containing the
modified items, and to give it a high priority.

• if the user has a big lexicon with a slow ac-
cess, the access can be optimised by put t ing the

mm

u

m

n

n

m

[]

N

m

n

mm

m

[]

m

[]

100

U l J l i t a i r e s

P T y p e P r o v =

P r e d =

N e g =

T e m p s =

T y p e A u x =

$uj =

Mode =

PType =

A f t =

A U X =

S u j e t - *

T r a n s = direct

P r o n o m i n a l = -

id : 2 .262000

I

assert

/ ' m a n g e r ' < S u j [S u j O h) >/

impa r fa i t

au;,C, v o i r

D e f = de f in i

N u m e r a l = ~

P r e d = / ' c h i e n ' /

G e n r e = m a s c

N u m = s i n g

Pe rs = p r s 3

R e l = ~

A r t i c l e - +

id ' 2261 ,¢,38

i n d i c a t i f

asser t

÷

Figure 3: graphical representation of a F-Structure

words frequently used in a direct access lexicon
stored in memory.

Our lexicon currently contains 7000 verbs, all the
closed classes words (e.g., prepositions, articles, con-
junctions), 12000 nouns and about 2500 adjectives.
To mitigate the consequences of some lacks of this
lexicon, a set of subcategorisation frames is indepen-
dently associated with the lexicon (3000 frames).

The user may also define a direct access lexicon,
whose equations are written in a formalism close to
the s tandard LFG formalism. Dedicated interfaces
have been developped for editing these lexica, with
syntactic and coherence checking.

Example of an entry of a canonical form:
@chien={ 'chien canonique'
C A T - - N;
T Pred = chien}

Example of an entry of an inflected form:
#chiennes={ "chien fern plur ' "chiennes f-flechie"
T Num = plur;
T Genre = f e m ;
@chien-~'chien canonique'}

All these lexica conform to the specification de-
fined by an abstract lexicon class. It is possible, and

101

U U l i t a l r ~

PTypeProv = asser t

Pred = / ' m a n g e r ' < Su j I Su l O b j > /

N e g - -

T e m p s = imparfait
T y p e A u x = a u x A v o i r

M o d e = indicatif
PType = asser t

A f t = +

A U × = ~

$u je t = +

T rans = direct
P r o n o m i n a l = -

Su j = FS : [

Def = deflni

N u m e r a l = ~

P red = / ' c h i e n ' /

Genre = masc

Num = sing

Pers = prs3
Rel = ~

A r t i c l e = ÷

}

• l I¢

Figure 4: textual representation of a F-Structure

very easy, to add new kinds of lexica, provided they
conform to this specification.

2.5 T r a c k i n g f a i l u r e c ause s

A specific feature ("Error ") allows the system to
keep a value that makes explicit the reason why the
unifying process has failed. Possible situations are
listed below:

1. Unifying failure. The values of a given feature
are different between the two F-Structures to
be unified. The generated F-Structure contains
the feature Error , whose value is an associa-
tion of the two uncompatible values. Example:
Num = sing --+ plur.

2. A feature present in an equation has non
value in either of the two F-Structures to
be unified. Example: with the equation
'~ Suj Num = ~ N u m " and two F-Structures

without the Num feature, the generated F-
Structure contains "Num -- n i l -+ nil" .

3. While making a constrained unification (e.g.,
J, Num =c sing) a feature does not exist. We
obtain: Num = sing --* nil.

4. An obligatory feature is absent.Example: Num
-- obligatoire.

5. A forbidden feature is present. The forbid-
den state for a feature is represented by adding
the value "tilde" to the feature (e.g., Num --
"tilde"). Therefore, this is the same situation
as the simple unification. A failure results from

the case when a F-Structure contains this fea-
ture. Example: Num=sing-+ "tilde".

6. A feature has a forbidden w~lue. Example:
Num= "tilde" sing.

7. When a disjunction of constraints is the rea-
son of the failure, the block itself is set as the
value of the "Error" feature in the resulting F-
Structure.

These errors can be recovered through the interface
(errors are highlighted in the representation), which
allows the user to track them easily. Moreover, these
well defined categories make it easy to find the real
cause of the error and to correct the g rammar and
the lexicon.

2.6 S t r u c t u r e o f t h e ru l e s

Smalltalk80 specific features (mainly the notions of
"image" and incremental compilation) have been
heavily exploited in the definition of the internal
structure of the g rammar rules. Basically a rule is
defined as the rewriting of a given constituent (left
part of the rule), equations being linked to the right
constituents. Each non terminal constituent of the
g r ammar is then defined as a Smalltalk class, whose
instance methods are the rules whose left part is this
constituent (e.g., NP is a class, NP --* ProperNoun
and NP --~ Det Adj* Noun are instance methods of
this class).

The Smalltalk compiler has been redefined on
these classes so tha t it handles LFG syntax. There-
fore, all the s tandard tools for editing, searching,
replacing (Browsers) may be used in a very natural
way. A specific interface may also be used to consult
the rules and to define sets rules to be used in the
parser.

A great interest of such a configuration is to allow
the user to define his own (sub-)set or rules by defin-
ing sub-classes of a category when he wants to define
different rules for this category (since a method with
a given name cannot have two different definitions).

O n t h e u s e o f t h e E n v y / M a n a g e r s o u r c e
c o d e m a n a g e r to m a i n t a i n t h e s y n t a c t i c r u l e s
ba se . Envy/Manager is a source code manager for
team programming in Smalltalk, proposed by OTI.
It is based on a client-server architecture in which
the source code is stored in a common database ac-
cessible by all the developpers. Envy stores all the
successive versions of classes and methods, and pro-
vides tools for managing the history. Applications
are defined as sets of classes, methods, and exten-
sions of classes, tha t can be independently edited
and versioned. Very fine grained ownership and ac-
cess rights can be defined on the software compo-
nents. The structurat ion of our syntactic rules base
enables us to benefit directly of these functionali-
ties, and hence to be able to manage versions, access
rights, comparisons of versions (Figure 5)... on all
our linguistic data.

I Non termin~d Constituent I iMAGE

I User CItes r I DellN~on(m e t

I Application Versi(x~ ~ CI~a Version ~ Method Version

ENV Y/MANA GER

Figure 5: Structuring the set of rules

C o n t e n t o f t h e ru l e s . The current g r ammar
contains about 250 rules that covers most of the
classical syntactic structures of French simple sen-
tences. They have been tested on data coming from
the TSNLP european project. In addition to these
simple sentences, difficult problems are also han-
dled: clitics, complex determiners, completives, var-
ious forms of questions, extraction and non limited
dependancies, coordinations, comparatives. Some
extensions are currently under development, includ-
ing negation, support verbs, circonstant subordinate
phrases and ellipses.

3 Conceptual graphs
Conceptual graphs (Sowa, 1984) form the basis of
the semantic and encyclopedic representations used
in our system. Conceptual graphs are bipart i te
graphs composed of concepts and relations. A con-
ceptual graph database is generally composed of the
following subparts:

• a lattice of concepts and relation types

• a set of canonical graphs, associated with con-
cepts and relation types, used for example to
express the selectionnal restrictions on the ar-
guments of semantic relations.

• a set of definitions, associated with concepts
and relation types, used to define the meaning
of concepts.

• a set of schemas and prototypes.

• a set of operations, such as join, contraction,
expansion, projection...

• a database containing the description of a situ-
ation in terms of conceptual graphs.

The framework we describe here aims at managing
all this information in a coherent manner, and at
facilitating the association with the linguistic pro-
cesses described above.

Graphs can be visualized, modified, saved,
searched through different interfaces, using graph-
ical or textual representations. Operat ions can be
performed programmatical ly or using the interface
shown in Figure 7.

102

Figure 6: Graphical representation of "a cheap horse
is scarce" (with second order concepts)

The lattice, and the different items of informa-
tion associated with concepts and relations types,
can be visualized, modified, searched and saved us-
ing graphical or textual representations (Figure 10).

An "individual referents inspector" allows to in-
spect the cross-references between references, con-
cepts and graphs.

4 A n a l y s i n g a s e n t e n c e

The processus of analysis from sentence to seman-
tic representation can be separated into three sub-
processes. After the sentence has been segmented,
we obtain the lexical items in LFG-compliant form
via the lexieal manager. After parsing, we obtain
some edges with their respective F-Structures. (Del-
monte, 1990) has developed a parser which uses basic
entries with mixed morphological, functionnal and
semantic informations. The rules use different level
information. We propose to map the semantic struc-
ture on the syntactic one in a manner that avoids
too many interdependencies. We use a intermedi-
ate structure (named "syntax-semantic table") that
expresses the mapping between the value of a LFG
Pred and a concept, as well as connected concepts
and relations. Semantic data in the lexical knowl-
edge base are defined by using conceptual graphs,
as shown in the paragraph 4.1 below about some
verb examples. Selectional restrictions defined with
canonical graphs are then used to filter the graphs,
when more than one is obtained at this level.

4.1 S e m a n t i c v e r b c lass i f i ca t ion in t h e
lexica l k n o w l e d g e base

The lexical knowledge base is based on a hierarchical
representation of French verbs. We have developped
a systematic and comprehensive representation of
verbs in a hierarchical structure, data coming from
the French dictionary "Robert". Our method relies
on classification method proposed by (Talmy, 1985)
and (Miller, Fellbaum and Gross, 1989), (Miller and
Fellbaum, 1991). We chose a description with a
structure composed of a basic action (the first of the
most general uperclasses, e.g. stroll and run can
be associated with walk as a basic action, andwalk,
ride, pass point atmoving, which is a step further in
generality) associated with thematic roles that spec-
ify it (i.e., object, mean, manner, goal, and method).
The basic actions are in turn defined with the same
structure, based on a more general basic action.

The hierarchy of verbs depends on the thematic
relations associated with them. A verb V1 is the
hyperonym (respectively a hyponym) of a verb V2
(which is noted VI~-V2, respectively VI-<V2) if they
share a common basic action and if, in the thematic
relations structure associated with it, we have:

* absence (for the hyperonym) or presence (for
the hyponym) of a particular thematic relation:
e.g. for the pair divide /cut ; to cut is to divide
using a sharp instrument, thus divide ~- cut

• presence of a generic value thematic relation
vs. a specific value (example cut (object is
generic:solid object ~- behead (object is ahead))

For every verb:
• the semantic description pointed out is coded

in the lexical knowledge base as a definitional
graph.

t y p e cu t (*x) is [divide: *x]-
(obj) [Object: (car) --* [solid]
(method) --+ [traverse]--~ (Object: ~'y)
(mean) -+ [Instrument]--* (car) --+

[shar,].
• a canonical graph makes explicit the selectional

restrictions

C a n o n i c a l g r a p h fo r cu t is
(Agent) -~ [Animate]
(Obj) ---+ [Object: *y]--~ (car) ---+ [solid].

4.2 A n e x a m p l e

Below, we give an example for the sentence "Un av-
ocat vole une pomme" (a lawyer steals an apple),
where "avocaf' is ambiguous and refers to a lawyer
or to an avocado. A semantic representation of
this sentence is derived from its non-ambiguous F-
Structure.

The entries in the translation table (from LFG
pred [in French] to conceptual graphs types [in En-
glish]) are as follow:

103

Figure 7: Conceptual graph operation manager, showing the result of a join between two graphs, and the
liste of available operations.

' avoc a t ' --. (Lawyer Avocado)

' p o m m e ' ---* (Apple).

' v o l e r (d e r o b e r) ' --* (Steal(Agent ~ I Suj; Ob-
jet --* 1" Obj)),

Explanations: the first item between quotes is
the Pred value, followed by a list of types of con-
cepts (or types of relations) and their mapping def-
inition structure in the F-Structure. ~ represents
the local F-Structure. T represents the F-Structure
that contains the local F-Structure. For example,
Agent --* ~ Suj means that a concept of Type "Steal"
is connected to a concept that can be found in the F-
Structure of the feature "Suj" in the local F- Struc-
ture. From these data, the following graphs (Figure
8) are obtained.

The "Deft feature of the F-structure gives us in-
formation about the referents of concepts. For ex-
ample, the F- Structure for 'apple' contains "Def =
indefini", which implies the use of a generic referent
for the concept (corresponds to a n apple, indicated
by a star in Figure 8). Then, since canonical graphs
express selectional restrictions, they are used to fil-
ter the results through the join operation. For ex-

2) Avocado'.* Agent SteaJ Object Apple:'

Figure 8: Graphs from the sentence "Un avocat vole
une pomme"

ample, "Steal" needs an animated agent (Figure 9),
therefore graphs with the "Avocado" concept can be
removed from the selection.

Figure 9: Canonical Graph for "Steal"

These principles are the bases of the system cur-
rently available, but we are working on improve-
ments and extensions. We want to address the
issue of adjunct processing, prepositional comple-

IL

104

Figure 10: Lattice visualizer, showing (bottom right) the canonical graphs of "d~concerter" (to disconcert),
the "graph origin" inspector (top right), and the menu of operations (bottom left)

ments (with problem of second order concepts), etc.

5 C o n c l u d i n g r e m a r k s : S h a r i n g t h e
t o o l s o n a n e t w o r k w i t h C O R B A

The different tools described in this paper are cur-
rently being extended to be CORBA-compatible.
CORBA (Common Object Request Broker Archi-
tecture) (Ben-Natan, 1995), has been defined by
the OMG as an interoperability norm for heteroge-
neous languages (Smalltalk, C++, JAVA) and plat-
forms (UNIX, Macintosh, PC). CORBA defines a
common interface definition language (IDL), as well
as a set of services (naming service, security, con-
currency management...). CORBA objects can be
distributed worldwide (for example using Internet)
using an ORB (Object Request Broker). Various
tools implement this CORBA norm. We have used
Distributed Smalltalk (Pare Place Digitalk) to real-
ize the distributed implementation of an analyser.
With this system, users can currently make an anal-
ysis, see the results of this analysis, the F-structures,
see the syntactic rules base... With this kind of
architecture, systems necessiting a large amount of

ressources can be distributed amongst workstations
on a network and/or be used by clients having few
ressources. Moreover these ressources can be phys-
ically located in any place of a network, allowing
thus to distribute the responsibility of their man-
agement and maintenance to different persons. With
the communication possibilities offered by Internet,
it makes it possible to coordinate the cooperative
efforts of several teams in the world around a sin-
gle, coherent, though distributed system. We are
continuing our work toward the implementation of a
complete distributed multi-agent system, following
the CARAMEL architecture (Sabah and Briffault,
1993), (Sabah, 1995), (Sabah, 1997).

R e f e r e n c e s

Ben-Natan, R. 1995, CORBA, a Guide to the Com-
mon Object Request Brocker. McGraw-Hill.

Booch G. 1994, Analyse et conception orientees
objets , Addison-Wesley, Reading Mass.

Bresnan Joan and Ronald Kaplan 1981, Lexical
functional grammars ; a formal system for gram-

105

matical representation, The mental representation
of grammatical relations, MIT Press, Cambridge,
Mass.

Delmonte R. 1990, Semantic Parsing with LFG and
Conceptual Representations, Computers and the
Humanities, Kluwer Academic Publishers, 24 , p.
461-488.

Kaplan R.M. and J.T. Maxwell].994, Grammar
Writer's Workbench, Xerox Corporation, Version
2.0.

Kay Martin 1967, Experiments with a powerful
parser, Proceedings 2nd COLIN(], , p. 10.

Kay Martin 1979, Functional grammars, Proceed-
ings 5th. annual meeting of the Berkeley linguistic
society, Berkeley, p. 142- 158.

Miller A. G., C. Fellbaum and D. Gross 1989,
WORDNET a Lexical Database Organised on
Psycholinguistic Principles, Proceedings IJCAI,
First International Lexical Acquisition Workshop,
Detroit.

Miller G. A. and C. Fellbaum 1991, Semantic net-
works of English, Cognition, 41 , p. 197-229.

Pitrat Jacques 1983, R~alisation d'un analyseur-
g@n@rateur lexicographique g@n~ral, rapport de
recherche GR22, Institut de programmation, Paris
VI, 79/2.

Sabah G@rard 1995, Natural Language Understand-
ing and Consciousness, Proceedings AISB - work-
shop on "Reaching for Mind", Sheffield.

Sabah G~rard 1997, The fundamental role of
pragmatics in Natural Language Understanding
and its implications for modular, cognitively mo-
tivated architectures, Studies in Computational
Pragmatics: Abduction, Belief, and Context, Uni-
versity College Press, to appear, London.

Sabah G@rard and Xavier Briffault 1993, Caramel:
a Step towards Reflexion in Natural Language Un-
derstanding systems, Proceedings IEEE Interna-
tional Conference on Tools with Artificial Intelli-
gence, Boston, p. 258-265.

Sowa John 1984, Conceptual structures: informa-
tion processing in mind and machine , Addison
Wesley, Reading Mass.

Talmy L. 1985, Lexicalisation patterns: Semantic
structure in lexical forms, Language typology and
syntactic description, 3 , Cambridge University
Press, New York, p. 57-149.

Winograd Terry 1983, Language as a cognitive pro-
cess, Volume I syntax, Addison Wesley, Reading
Mass.

106

