
ALEP-Based
Distr ibuted Grammar Engineering

A x e l T h e o f i l i d i s
IAI

Mar tm-Luther -~ , t r . 14
66111 Saarbr/ icken, G e r m a n y

a x e l ~ i a £ , un±- sb . de

P a u l S c h m i d t
Univers i ty of Mainz , FASK G e r m e r s h e i m

An der Univers i t~t 2
76726 G e r m e r s h e i m , G e r m a n y

schmidtp@usun2, fask. uni-mainz, de

A b s t r a c t

Starting from a clarification concerning
the notion of distributed grammar engi-
neering, we present options of distributed
grammar engineering as are supported by
the ALEP grammar development platform
and as were instantiated in the LS-GRAM
project. The notion of distributed gram-
mar engineering being grounded in the
concepts of grammar modularization and
grammar module integration, we focus on
ALEP features providing operational sup-
port for these two concepts in terms of
both data storage and internal classifi-
cation of grammar code. We conclude
with an indication of the major benefits
of ALEP facilities for distributed gram-
mar engineering and derive some general
desiderata from this.

1 T w o N o t i o n s o f D i s t r i b u t e d

G r a m m a r E n g i n e e r i n g

According to our understanding, two notions of
distributed grammar engineering (DGE) should be
distinguished: (i) DGE meaning that tasks which
jointly contribute to the development and mainte-
nance of a grammatical resource are distributed over
different persons working, perhaps, at different sites;
(ii) DGE meaning that different domains of linguis-
tic information, different layers of linguistic descrip-
tion are distributed over different processing (sub-
)tasks.

Irrespective of this difference in notion, there is
a fundamental presupposition common to both no-
tions of DGE: that grammatical resources bear a
modular structure, and that grammar modules be-
ing distributed over different authors or processing
devices can neatly be integrated to form a coherent
grammatical resource, respectively to support a co-
herent chain of processing tasks. Thus, as shown
in Figure 1, the idea of DGE is firmly grounded
in the concepts of modularization and integration:

once grammar modularization is provided and inte-
gration of grammar modules is ensured, the option
of DGE falls off as a side-effect.

grammar

in t eg ra t ion ~ modu la r i za t i on

distribution

Figure 1: DGE grounded in the concepts of modu-
larization and integration

In the following two sections we will present
options of grammar modularization and grammar
module integration as are supported in the ALEP
grammar development platform both in terms of
data storage (section 2) and in terms of internal
classification of grammar code (section 3). We will
indicate how these options were made use of to sup-
port DGE in the LS-GRAM project, 1 in the context
of which broad-coverage grammatical resources for
nine EU-languages were developed. Though no op-
erational concept of DGE has been implemented at
the multi-lingual level in this project, each particu-
lar grammar was collaboratively written by several
authors which, in some cases, were even located at
different sites? thus giving rise to a real need for
DGE support.

1LRE 61029: Large-Scale Grammars for EU
Languages

2The Dutch grammar was developed at SST, Utrecht,
and KUL, Leuven; the German grammar at IAI,
Saarbrficken, and IMS, Stuttgart; the Italian grammar
at DIMA, Torino, and ILC, Pisa; the Spanish grammar
at FBG and UPF, both Barcelona.

84 •

2 G r a m m a r M o d u l a r i z a t i o n a n d
I n t e g r a t i o n i n t e r m s o f D a t a
S t o r a g e

The ALEP platform realizes an object-oriented envi-
ronment. As such it assumes storage of data at two
levels: the file level and the object level. At the file
level, data (grammar code) may be distributed over
an arbitrary number of files, each of them contain-
ing a particular type of data (e.g. type and feature
declarations, lexical entries, phrase structure rules).
A phrase structure grammar, for instance, may be
distributed over several files each of them containing
a set of rules accounting for a particular domain of
constituency (e.g. 'S', 'VP', 'NP') or for some par-
ticular type of construction (e.g. apposition, coordi-
nation, extraposition). Similarly, a lexicon may be
distributed over several files along dimensions such
as part-of-speech category or sub-language.

At the object level, on the other hand (cf. (Groe-
nendijk, 1994)), an arbitrary number of files consti-
tuting a coherent grammar module may be grouped
into an object being defined in terms of the ALEP
User Language (AUL) 3 and stored in the ALEP Ob-
ject Repository (AOR). Figures 2 and 3 show sam-
ple (but partial) AUL objects representing a phrase
structure component and a declarations component
of a grammar.

lg_ps_rules I
lowv [name

nowv [.owner

rule_files

str]
i~ j

loc

(file-infolbTe

\file_info [base

decl_ref

'GRAM//RULES//STR//']
str_xp J'

'GRAM//RULES/STR//']
str_sent J '

[,ypo]
/ n°wV [o me dec]

tnowv" nowvLOWner iai j j

Figure 2: Sample A UL object representing a phrase
structure component

The object of type I lg_ps_rules bears the list-type
feature 'rule_files', with each of the 'fileAnfo' fea-
ture structures pointing to a file containing a set
of phrase structure rules. 4 In addition, an object of
type ~ is referred to by the feature 'decl_ref'.

3A typed feature structure notation similar to the lin-
guistic formalism supplied with ALEP.

4A UNIX directory path and a file name are given as
the vMues of the attributes 'loc' and 'base'.

85

nowv [name dec]
nowv/owner iaij

(r,o
decl_files file_info I.base

'ORAM //DEOLS // PES //'] \
typ_syn J'~

Figure 3: Sample A UL object representing a decla-
rations component

This object (shown in Figure 3) represents the dec-
larational basis of the respective phrase structure
component. It refers, in its turn, to a list of files con-
taining a coherent set of declarations (e.g. type and
feature or macro declarations) upon which a phrase
structure component or any other grammar compo-
nent (e.g. a lexicon component) may be based.

A coherent set of grammar components may, in
turn, be grouped (i.e. integrated) into a higher-
level object of type lglingware_group] represent-

ing a complete grammar (or sub-grammar). This is
shown in Figure 4 illustrating the modular and, at
the same time, hierarchical style of data structuring
characteristic of ALEP. 5

Presuming a principled distribution of grammat-
ical data over files (reflecting, for instance, differ-
ent types of grammatical phenomena or different do-
mains of grammatical description), a whole range of
specialized grammars or grammar components may
be configured at the object level according to par-
ticular grammar development or maintenance tasks.
Objects may be defined, for instance, which incre-
mentally extend the core coverage of a grammar by
new domains of linguistic description. This is illus-
trated in Figure 5, where two [lg_ps_rules] objects
are shown, both of which share the files containing
the basic phrase structure rules dealing with senten-
tim (file 'str_sent') and non-sentential (file 'str_xp')
constructions, but which extend this set of files once
by a file accounting for coordinated structure and, in
the second case, by a file accounting for paragraph
structure.

Based on this kind of definition of specialized
grammars or grammar components, grammar de-
velopment and maintenance tasks being related to
particular domains of linguistic decription may eas-
ily be assigned to, and distributed over, different
persons possibly working at different sites. Physi-
cal distribution (exchange) of grammar components
is conveniently supported by the ALEP 'Export '

5Objects of typo I lg_lox ules I and L lg_tlm_r°lesl
represent lexicon, respectively two-level morphology,
components.

lgJingwa,re_group]

I'g ex-,:u'es I I'g-p s-ru'esl I 'g-t m-rulos I

~ ~ GRAM/

DECLS'~ ~ "~ RULES/

x LEX/ STR/ TLM/
l \ l \ l \

1 \ / % 1 \
l \ l %. 1 \

l %. l \ l \

Figure 4: Data storage at the AOR object level and the UNIX file level

lg_ps_rules

[lOWV

name str_coor]
owner axel I

versionW°rkarea" ~lsg_de, i i)J
n o w v

Ig_ps_rules

[lOWV

name str_para I
owner thierry /

versionW°rkarea ~lsg_de, ims)]

nOWV

.../str..sent .../str_xp .../str_coor .../str_para

Figure 5: Object-based definition of specialized grammar components

and 'Import' functionality, where 'Export' performs
a (UNIX) 'tar' operation on a selected set of ob-
jects, and 'Import' performs an 'untar' operation on
an 'Export'-created tar-file, asserting all respective
objects to the AOR as well as creating all directo-
ries and files being referred to by these objects (of.
(Groenendijk, 1994), chapter 3).

Management of larger sets of objects being iter-
atively exchanged between persons or sites is well
supported by a number of features being assigned to
every object, such as the 'comment' feature, which
allows to encode a comment string with every ob-
ject, and, most importantly, the object identifica-
tion feature 'nowv' which requires every object to
be assigned a unique combination of (object) name,
(object) ownership, (object) workarea, and (object)
version (cf. (Groenendijk, 1994), chapter 4), thus
allowing to keep track of distributedness in gram-
mar writing. In the illustration given in Figure 5,
for instance, the 'nowv' feature indicates that Axel

obviously is the person who elaborates on the sec-
ond version of a phrase structure component cover-
ing coordinated structure as part of the German LS-
GRAM resources developed at IAI, whereas Thierry
is the person who elaborates on the third version of
a phrase structure component covering paragraph
structure as part of the German LS-GRAM re-
sources developed at IMS.

This style of distributed grammar development
has been a standard practice in the LS-GRAM
project. Thus, for instance, it has been a typical
approach to have the morphological and the syn-
tactic grammar components developed by different
persons and, as in the case of the Italian or Spanish
grammar, even at different sites.

After each cycle of distributed grammar develop-
ment based on the definition of specialized grammars
or grammar components, re-integration of the var-
ious grammar modules can easily be performed at
the level of data storage by defining respective new

86

I lg-"ngware-gr°up" I I 'g ngware-gr°up b I [lg_"ngware_group

1 I I I I I 1

.../lex_core .../lex_finc .../lex_econ
(= finance) (= economy)

.../str_core .../str_apps /str_coor
(= apposition) (= coordination

Figure 6: Object-based sub-grammar configuration

objects. Grammar modules being established at the
file level and spread over different objects represent-
ing specialized grammar components can be merged
into one object representing a full coverage gram-
mar component. Such full coverage grammar com-
ponents may, in turn, be grouped into a higher level
object of type I lg_lingware_group] representing a full
coverage grammar. 6

Interesting to note is that the style of modular-
ization and integration of grammars supported in
ALEP at the level of data storage not only conve-
niently supports DGE (as we hope to have shown),
but also a high degree of flexibility in configuring
(and re-configuring) grammars according to specific
(and changing) demands of different application sce-
narios. This is illustrated in Figure 6, showing how
sub-grammars with varying coverage can be con-
figured at the object level based on a fine-grained
modularization of grammar components along di-
mensions such as sub-language for lexicon compo-
nents, or types of syntactic constructions for phrase
structure components.

Grammar Modularization and
Integration in terms of Data
Classification

Besides in terms of data storage, ALEP also sup-
ports grammar modularization and integration in
terms of internal classification of grammar code
based on the notion of specifiers. Specifiers are desig-
nated feature structures 7 which serve the purpose of
encoding membership of a rule in one (or more than
one) class of rules and, thus, realize the notion of a
rule classifier. By specifying rules to be members of

6Though the process of merging objects is not yet
functionally supported in the ALEP environment, it
is considered a trivial task to integrate a respective
functionality.

7'designated' in that they are picked out by a special
feature path declaration

particular classes of rules, grammars are internally
(and, in that, multi-dimensionally) partitioned into
sub-grammars (cf. (Simpkins, 1994a), chapters 5
and 7).

Specifier-based grammar partitions may be estab-
lished along two basic dimensions illustrated in Fig-
ure 7: along a vertical dimension, grammar par-
titions may be established according to different
types of processing operations to apply; lexical en-
tries, for instances, may be specified to be applied
during word segmentation (= two-level based mor-
phographemic analysis), during analysis (= pars-
ing), or during refinement only (the operation of re-
finement will be explicated below). Along a horizon-
tal dimension, on the other hand grammar partitions
may be established according to different types of
structural units being involved in the parsing oper-
ation; structure rules may be specified to be applied
only when parsing morphemes to words, words to
sentences, or sentences to paragr~,phs.

The main effect that can be obtained by an
intelligent specifier-based grammar partitioning is
in terms of increased performance efficiency: By
specifier-based grammar partitioning, access of rules
during execution of some processing (sub-)task can
be restricted to a sub-grammar being identified via
a particular instance of the specifier feature struc-
ture and encoding only as much information as is
relevant to the respective processing task.

Irrespective of performance support, however,
specifier-based grammar partitions constitute an op-
erational concept of grammar modularization that
can be multiply exploited in DGE. In that, the
ALEP 'Refine' operation plays a crucial role. 'Re-
fine' is a monotonically operating feature-decoration
algorithm which (re-)applies structure rules and lex-
ical entries to consolidated structure trees as are ob-
tained from analysis (or synthesi, 0. Important with
regard to DGE, as we will see shortly, is that 'Re-
fine' may be executed an arbitrary number of times
in succession.

The set of rules applied by the: 'Refine' operation

87

sent-to-para

word-to-sent

morph-to-word

- Oegmen 3 - - C-. yse - - - -

Figure 7: Grammar partitioning along a vertical and a horizontal dimension

must constitue a complete grammar which is unifi-
able (partially identical perhaps) with the grammar
that was applied by the preceding operation. In
that, however, 'Refine' will produce an effect only
by application of rules which add some information
(feature decoration!) compared to the corresponding
rules that were applied by the preceding operation.

By a systematic distribution (based on a vertical
grammar partition scheme) of different domains of
linguistic information over an analysis grammar and
one, or more, 'Refine' grammars, the presumed mod-
ularity of linguistic knowledge is (monotonically)
fleshed out at the level of grammar engineering.
Thus, for instance, it has been a typical practice
in LS-GRAM to distribute syntactic and semantic
information over an analysis and a refinement gram-
mar respectively; by this, parsing will not be affected
by ambiguities residing in the semantic domain (cf.,
for instance, (Schmidt et al., 1996a) and (Schmidt
et al., 1996b)).

1

Canalyse~

!

!

syntax

semantics

Figure 8: Grammar partitioning according to differ-
ent domains of linguistic information

More importantly with regard to DGE, however,
is that grammar modules being distributed over
the processing operations of analysis and refine-
ment and being delimited according to different do-
mains of linguistic information, can simultaneously
be distributed over different authors according to
their specific expertise. The degree of this kind of
distributedness can be significantly increased by a
still finer-grained modularization of grammatical re-
sources assuming multiple application of the 'Refine'

operation, as illustrated in Figure 9. Thus an ac-
count of syntax can be distributed over a grammar
module supporting shallow parsing and a grammar
module performing syntactic filtering based on the
refinement operation; different aspects of semantics
and pragmatics may futhermore be distributed over
distinct grammar modules being successively applied
during further refinement stages:

~ e f l n e ~

Oef lnek~

1

t
Creflne,.D

l

syntax1 : shallow parsing

syntax2: syntactic filtering

semantics1: linking theory

semantics2: lexical semantics

pragmaticsl : register & style

pragmaticsz : implicature

Figure 9: Grammar partitioning according to differ-
ent domains of linguistic information

However, if the only effect of specifier-based gram-
mar partitioning was that of distributing differ-
ent domains of linguistic information over grammar
modules to be applied during successive process-
ing stages, the same effect could also be obtained
by simply assuming distinct grammar modules in
terms of data storage (i.e. at the file and object
level of data storage). But, in terms of both gram-

88

[:o.o.O: r]
gramphen [extrp :

g_phen " " "
core y

spec spec

l [appo~ n]
gramphen [: : t °'d... y

g_phen
[.core Y

[:ppo d n]

gramphen [?xtrp ;

core g_pheny
spec

Figure 10: Specifier feature structures establishing a cross-classificatory grammar partition

mar development and maintenance tasks it is, in
fact, an advantage of the specifier-based approach
to grammar modularization that logically related
grammar code may be stored in one and the same
file, though it will be applied, in effect, at differ-
ent processing stages. An even bigger advantage
is that the specifier-based approach to grammar
modularization supports a multi-dimensional, cross-
classificatory partitioning of grammars which is not
possible in terms of data storage, unless at the cost
of redundantly duplicating grammar code. In terms
of specifier feature structures as those shown in Fig-
ure 10, for instance, grammar rules are simultane-
ously assigned to the class of rules establishing a
core-coverage grammar and to one of several classes
of rules accounting for specific grammatical phenom-
ena, such as apposition, coordination or extraposi-
tion.

Based on specifier feature structures establishing
a cross-classificatory partition scheme for grammars,
specialized grammar modules can be both uniquely
identified by full specification, and integrated by un-
derspecification, of specifier features. Thus, for in-
stance, by reference to the underspecified feature
structure shown in Figure 11, all grammar modules
are called except for those dealing with extraposi-
tion.

[gramphela [extrp n]]
spec [g_pnen

Figure 11: Underspecified specifier feature structure
effecting grammar module integration

4 C o n c l u s i o n s and D e s i d e r a t a

The mechanisms and devices described in the pre-
vious sections constitute a first step towards remov-
ing a decisive bottleneck in large-scale distributed
grammar engineering s. The bottleneck is that the
bigger and the more complex a grammar becomes
the more difficult it is to extend it, improve it, or

8We think that large-scale grammar engineering must
be distributed in general.

adapt it. Grammars tend to become huge, incom-
prehensible monolithic blocks which are more and
more difficult to maintain, with distributed develop-
ment becoming impossible. In the following we will
make some general, summarizing points about what
we think can be derived from the kind of facilities
provided by ALEP for DGE in general. In this, we
will mainly focus on benefits of specifier-based parti-
tioning, addressing the issues of testing, distribution,
maintenance and deployment, as well as touching on
the issue of monotonic vs. non-monotonic grammar
development. In section 4.2 we conclude with deriv-
ing some general desiderata for DGE.

4.1 Benef i t s for Large-Sca le G r a m m a r
E n g i n e e r i n g

Tes t ing: A major advantage of the specifier facil-
ity lies in the fact that testing (and thus develop-
ment) becomes easier as specific modules (that may
be under reconstruction) may be tested separately
by plugging together just the relevant modules in
terms of reference to the approriate specifiers. Thus,
it is possible to plug together a core grammar with
a coordination module in order to test coordination
while leaving aside other phenomena, such as ex-
traposition, which may be irrelevant at the given
stage of grammar development. Then, gradually,
more modules may be added (one by one) in order
to explore the interaction of these modules.

D i s t r i b u t i o n : It is obvious that, as far as distri-
bution of grammar development is concerned (in the
sense that different linguists develop the same gram-
mar), facilities as described are a minimum. Based
on mechanisms of grammar partitioning, grammars
can be developed in a distributed fashion in that one
linguist may work on developing a treatment of ap-
positions, building on a given core grammar, while
another one is working on a treatment of coordina-
tion, building on the same core grammar without
unwanted interference.

M a i n t e n a n c e : From what has been said about
testing and distribution, it is obvious that a gram-
mar existing in a modular form as supported by
the facilities described is better maintainable than
a monolithic one.

D e p l o y m e n t : In the same way grammar mod-
ules can be plugged together for testing and, more

89

generally, for development purposes, grammar mod-
ules can also be plugged together in order to be de-
ployed in different application scenarios with distinct
requirements in terms of linguistic coverage or depth
of analysis. That is, one could well envisage that,
for particular applications, specific sets of grammar
modules are plugged together by reference to the ap-
propriate specifiers.

M o n o t o n i c vs. N o n - M o n o t o n i c G r a m m a r
D e v e l o p m e n t : The specifier facility, as introduced
so far, suggests that the optimal way of proceeding
in grammar development (also independently of this
facility) is to proceed monotonically, i.e. by sim-
ply adding different modules accounting for specific
domains of linguistic description (such as those ex-
emplified by coordination and extraposition) to al-
ready available modules. However, this is an unreal-
istic requirement as the treatment of new phenom-
ena hardly ever consists of simply adding (monoton-
ically) sets of new rules to an existing grammar. It
is often required to revise existing modules (even the
core grammar) in the light of requirements deriving
from the treatment of new phenomena. But even in
this case the modularization achieved by specifier-
based partitioning of grammars is the condition for
performing the required changes efficiently and un-
der optimal control, since the consequences of such
changes can be studied module by module.

As a final point, it should be mentioned that par-
titioning of grammars by approriate specifiers sup-
ports adaptation of a grammar to new theoretical
insights about the nature of human language that
may become necessary by new developments in the-
oretical linguistics. Specifiers thus contribute con-
siderably to the 'reusability' of grammars.

4.2 D e s i d e r a t a

The options of grammar modularization provided in
ALEP both in terms of file and object-based data
storage and in terms of specifier-based classification
of grammar code, constitute a good basis for sup-
porting DGE at an operational level. As for support
for grammar module integration, however, we still
see the need for add-on functionality complementing
operational support for grammar modularization.

When thinking of grammar module integration in
terms of data storage, one has to bear in mind that,
in itself, integration of grammar modules at the level
of data storage does not yet entail an integrated
grammar. Integration of grammar modules presup-
poses integration in terms of linguistic specifications
meaning that each particular grammar module must
be integratable at least wrt. a common declarational
basis (type and feature theory, macros etc.) and
some implemented notion of a core grammar.

In both respects, problems with integration may
occur during the course of distributed grammar de-
velopment, where different persons simultanously
elaborate on different grammar modules. Interfer-

ences may occur, for instance, due to the fact that
work on a specific grammar module requires parts
of the declarational basis to be modified which are
shared by other modules. Interference may also oc-
cur due to the fact that a specific grammar module
being developed by one author feeds in information
into modules developed by other authors, with these
modules, in turn, being supposed to thread this in-
formation to still other modules. To get hold of such
interferences, sophisticated versioning control func-
tionality is required providing for automatic creation
of version protocols (encoding modifications, author-
ship etc.), for comparing or merging parallel versions
of some grammar module, and for checking informa-
tion paths across grammar modules.

As for the concept of specifier-based grammar
partitioning, we consider it desirable to provide a
direct linking to the data storage layer by provid-
ing the option of defining objects not only in terms
of a reference to files, but also in terms of a ref-
erence to specifier information. The idea is that
the data being represented by an object can be se-
lected (and automatically stored in appropriate files)
based on a full or partial specification of the spec-
ifier feature structure. By implementation of this
idea, specifier-based grammar partitions of arbitrary
grain-size could become physically manifest at the
object-level of data storage making them immedi-
ately accessible to object-level support of DGE such
as the 'Expor t ' / ' Impor t ' functionality.

R e f e r e n c e s

Marius Groenendijk. 1994. Environment Tools
Guide. ALEP-2 - Guide to the ALEP User In-
terface Tools. CEC, Luxembourg.

Paul Schmidt, Sibylle Rieder, Axel Theofilidis,
Thierry Declerck. 1996a. Final Documen-
tation of the German LS-GRAM Lingware
(LRE 61029, Deliverable DC-WP6e (German)).
IAI, Saarbriicken (http://www.iai.uni-sb.de/LS-
GRAM).

Paul Schmidt, Sibylle Rieder, Axel Theofilidis,
Thierry Declerck. Lean Formalisms, Linguis-
tic Theory, and Applications. Grammar Devel-
opment in ALEP. 1996b. In Proceedings of the
16th International Conference on Computational
Linguistics (COLING-96), pages 286-291, Copen-
hagen, Denmark.

Neil K. Simpkins. 1994a. ET-6/1 Linguistic Formal-
ism. ALEP-2 - User Guide. CEC, Luxembourg.

Neil K. Simpkins. 1994b. Linguistic Development
and Processing. ALEP-2 - User Guide. CEC,
Luxembourg.

90

