
Maintaining the Forest and
Burning out the Underbrush in XTAG

C h r i s t i n e D o r a n , B e t h H o c k e y , P h i l i p H o p e l y , J o s e p h R o s e n z w e i g

A n o o p S a r k a r , B . S r i n i v a s , Fe i X i a
IRCS, Univers i ty of Pennsy lvan ia

Phi lade lph ia , PA 19104
{cdoran, beth, phopely, j osephr, anoop, srini, fxia}@linc, cis. upenn, edu

A l e x i s N a s r , O w e n R a m b o w

CoGenTex , Inc.
840 Hanshaw Road, Sui te 11

I thaca , NY 14850
{nasr, owen}~cogentex, com

A b s t r a c t

In this paper we report on the recent
advancements and current status of the
XTAG Project, housed at the University of
Pennsylvania. We discuss the current cov-
erage of the system, as evaluated on the
TSNLP English sentences, hierarchical or-
ganization of the grammar, and the new
and more portable implementation of the
X-interface to the grammar and all of the
supporting tools in CLISP, which is freely
available. We also present a methodology
for specializing our grammar to a particu-
lar domain, and give some results on this
effort.

1 D e v e l o p m e n t a n d C u r r e n t S t a t u s

o f X T A G

1.1 His to ry of XTAG

The XTAG project has been ongoing at Penn in
some form or another since 1988. It began with a
toy grammar run on LISP machines, and currently
has a large English grammar, small grammars in
several other languages, a sophisticated X-windows
based grammar development environment and nu-
merous satellite tools. Approximately 35 people
have worked extensively on the system, and at least
that many have worked more peripherally. Thus,

while it is not a geographically distributed project, it
has been temporally distributed. At any given time,
there is no single person who is completely familiar
with all aspects of either the grammar or the tool
kit. As a result, careful documentation has proven
to be invaluable. Historically, this has taken the
form of distinct papers on individual components;
this is still the case for the tools. For the grammar,
however, there is now a single document, available as
a (frozen) technical report (XTAG-Group, 1995) or
a constantly updated HTML document. 1 The tech
report has been useful not only for the people work-
ing on the project at Penn, but also for those outside
of Penn who are either interested in Tree Adjoining
Grammar specifically, or simply interested in seeing
how we handled some particular aspect of the gram-
mar.

1.2 C u r r e n t s t a t u s o f X T A G

Working with and developing a large grammar is a
challenging process, and the importance of having
good visualization tools cannot be over-emphasized.
Currently the XTAG system has X-windows based
tools for viewing and updating the morphological
and syntactic databases (Karp et al., 1992; Egedi
and Martin, 1994), and a sophisticated parsing and
grammar development interface. This interface in-
cludes a tree editor, the ability to vary parameters

1 Both are freely available from the project's web page,
at http : / / www.cis.upenn.edu:80 /'xtag.

30

Component Details
Morphological Consists of approximately 317,000 inflected items.
Analyzer and Entries are indexed on the inflected form and return the root form, POS, and
Morph Database inflectional information. Database does not address derivational morphology.
POS Tagger Wall Street Journal-trained trigram tagger (Church, 1988) extended to output
and Lex Prob N-best POS sequences (Soong and Huang, 1990). Decreases the time to parse
Database a sentence by an average of 93% .
Syntactic More than 105,000 entries.
Database Each entry consists of: the uninflected form of the word, its POS,

the list of trees or tree-families associated with the word, and a list of feature
equations that capture lexical idiosyncrasies.

Tree Database 768 trees, divided into 54 tree families and 164 individual trees.
Tree families represent subcategorization frames; the trees in a tree family
would be related to each other transformationally in a movement-based
approach.

X-Interface Menu-based facility for creating and modifying tree files.
User controlled parser parameters: parser's start category, enable/disable/retry
on failure for POS tagger.
Storage/retrieval facilities for elementary and parsed trees.
Graphical displays of tree and feature data structures.
Hand combination of trees by adjunction or substitution for
grammar development.
Ability to assign POS tag and/or Supertag before parsing

Table 1: System Summary

in the parser, work with multiple grammars and/or
parsers, and use metarules for more efficient tree
editing and construction (Becker, 1994). An inter-
face for the lexical organization hierarchy is under
development.

The large grammar (database) version of XTAG
has recently been ported to CLISP, contemporary
public-domain software, with the specific goal of per-
mitting XTAG to run under the (public-domain)
Linux operating system. 2 The public domain soft-
ware suite as of this writing has been tested un-
der SunOS 5.4 and Linux 1.2.13, 2.0.20 & 2.0.21
on [ntel-based platforms. A user currently may
demo a live version of XTAG from a CD-ROM
on Intel Linux without having to install or re-
compile the suite; those interested can contact
x t a g - r e q u e s t ~ l i n c . ¢ i s . upenn, edu for further in-
formation. Development of an MS-DOS-loadable
demo CD-ROM version of the software suite using
Linux is underway, and a Maclinux version is also
planned .3

2 Linux is the largest working example of a distributed
software development project, and has been ported to
more machines than any other operating system.

3Configurations for various memory sizes are being
developed, but it is recommended that an Intel-based
user running a demo have somewhere between 16 and 64
megabytes of memory and at least a 586-level processor

A snap-shot of the English grammar and parser
is shown in Figure 1. We also have a large French
grammar (started at Penn and expanded at Paris
7, by Anne Abeill~), and small grammars for Ko-
rean, Chinese and Hindi. The X-windows interface
is completely modular and can be (and has been)
used with any of these grammars.

1.3 G r a m m a r C o v e r a g e

To evaluate the coverage of the English grammar, we
ran it on the Test Suites for Natural Language Pro-
cessing (TSNLP) English corpus (Lehmann et al.,
1996). The corpus is intended to be a systematic
collection of English grammatical phenomena, in-
cluding complementation, agreement, modification,
diathesis, modality, tense and aspect, sentence and
clause types, coordination, and negation. [t con-
tains 1409 grammatical sentences and phrases and
3036 ungrammatical ones.

Before parsing the TSNLP data, we made a few
tokenization changes: we changed contractions from
two tokens to one, downcased the first words of sen-
tences, changed a pair of square brackets to paren-
theses and changed quotes to pairs of opens and
closes. There were 42 examples which we judged
ungrammatical, and removed from the test corpus.

for relatively decent operation speed.

31

Error Class %
POS Tag 19.7%
Missing i tem in lexicon 43.3%
Missing tree 21.2%
Feature clashes 3%
Rest 12.8%

Example
She adds to /V it , He noises/N him abroad

used as an auxiliary V, calm NP down
should're, bet NP NP S, regard NP as Adj

My every firm, All money
approx, e.g.

Table 2: Error analysis of TSNLP English corpus

These were sentences with conjoined subject pro-
nouns, where one or both were accusative, e.g. Her
and him succeed. Overall, we parsed 61.4% of the
1367 remaining sentences and phrases. The errors
were of various types, broken down in Table 2.

The missing lexicon items are obviously the eas-
iest of these to remedy. This class also highlighted
the fact that our g r a m m a r is heavily slanted toward
American English - our g rammar does not handle
dare or need as auxiliary verbs, and there were a
number of very British particle constructions, e.g.
She misses him out. The missing trees are slightly
harder to address, but the da ta obtained here is very
useful in helping us fill gaps in our g rammar . We do
not currently handle the class of m o d a l + 're contrac-
tions at all, and this clearly ought to be remedied.
The feature clashes are mostly in sequences of deter-
miners, and would need to be looked at more closely
to see whether the changes needed to correct them
would do more harm than good. One general prob-
lem with the corpus is that, because it uses a very
restricted lexicon, if there is one problematic lexical
i tem it is likely to appear a large number of times
and cause a disproport ionate amount of grief. Used
to appears 33 times and we get all 33 wrong. How-
ever, it must be noted that the XTAG g ram m a r has
analyses for syntactic phenomena that were not rep-
resented in the TSNLP test suite such as sentential
subjects and subordinating clauses among others.

As noted by our reviewers, the TSNLP test suite
in its current s tatus is not intended as a ready made
representative set of test da ta that can be used for
cross system evaluation. We are aware of this and
we present the results of our system performance
on TSNLP as another da ta point in our sequence
of g r ammar evaluation experiments. The English
g r a m m a r has previously been evaluated on ATIS,
Wall Street Journal and IBM-Manual da ta (Srinivas
et al., 1996), and found to perform well in these
domains.

2 G r a m m a r O r g a n i z a t i o n

The XTAG English g r am m ar currently consists of
768 tree templates, so g r am m ar maintenance is no

small task. In general, lexicalizing a TAG creates
redundancy because the same trees, modulo their
anchor labels, may be associated with many differ-
ent lexical items. We have eliminated this redun-
dancy by storing only abstract tree templates with
uninstantiated anchor labels, and instantiat ing lexi-
calized trees on the fly, as words are encountered in
the input. Another source of redundancy, however,
is the reuse of tree substructures in many different
tree templates. For example, most sentential tree
templates include a structural f ragment correspond-
ing to the phrase-structure rule S --+ NP VP.

This redundancy poses a problem for g r a m m a r
maintenance and revision. To consistently imple-
ment a change in the grammar , all the relevant trees
currently must be edited individually, al though we
do have an implementat ion of Becket's metarules
(Becker, 1994) which allows us to au tomate this pro-
cess to a great extent. For instance, the addition of a
new feature equation associated with the structural
fragment corresponding to S -~ NP VP would affect
most clausal trees in the grammar . Crucially, one
can only manually verify that such an update does
not conflict with any other principle already instan-
t iated in the g rammar . As the g rammar grows, the
difficulty of this task grows with it.

Following the idea first proposed in (Vijay-
Shankar and Schabes, 1992), we extend the idea of
abstraction over lexical anchors. A tree templa te
with an unspecified anchor label subsumes an en-
tire class of lexically specified trees; similarly, we
define "meta- templates ' , or quasi-trees, which sub-
sume classes of tree templates. The quasi-trees are
specified by partial tree descriptions in a logical
language patterned after Rogers and Vijay-Shanker
(Rogers and Vijay-Shankar, 1994); we call the par-
tial descriptions blocks. Since we are using a feature-
based LTAG, our language has also been equipped
with descriptive predicates allowing us to specify a
tree's feature-structure equations, in addition to its
structural characteristics. Each block abstractly de-
scribes all trees incorporating the partial structure
it represents.

An elementary tree template is expressed as a con-

32

D e a l t l N e
Des~paon

Sut~e~ ht$ deciuctlve
feauee~
Verb hal dee.Ju|tlva
fetmle~
Se1~ec~ il ~betimtim

°
°

bdw'irJ

~ c ~ p | o n
. . . . Sut~a i o m m ~ y

• .o
. tvbe~ •

Impem0w I

" . [Suf ~nm his impeutive

" [Verb Im ,mp~alve

I " ~ r ' " I :~'~ ' ' " "

Figure 1: Tree are generated by combining partial tree description

junction of blocks. The blocks are organized as an
inheritance lattice, so that descriptive redundancy
is localized within an individual block. Within this
description lattice, we isolate two sub-lattices which
form more or less independent dimensions: the sub-

categorization sub-lattice and the sub-lattice of de-
scriptions of "transformations" on base subcatego-
rization frames, such as wh-question formation and
imperative mood. The subcategorization sub-lattice
is further divided into four fairly orthogonal sub-
parts: (1) the set of blocks describing the syntactic
subject, (2) those for the main anchor(s), (3) those
describing complements and (4) those for structure
below a complement.

Similar approaches have been pursued for a large
French LTAG by (Candito, 1996) and for the XTAG
English grammar by (Becket, 1994). Following the
ideas set forth in (Vijay-Shankar and Schabes, 1992),
Candito constructs a description hierarchy in much
the same way as the present work, albeit for a
smaller range of constructions than what exists in
the XTAG grammar. Becker's meta-rules can also
been seen as partial descriptions, wherein the inputs
and outputs of the meta-rules are sisters in a de-
scription hierarchy and the parent is the common
structure shared by both. However, there is still re-
dundancy across meta-rules whose inputs apply to
the same partial descriptions. For instance, the sub-
ject wh- extraction and subject relative metarules
would be specified independently and both refer to
an NP in subject position of a clause.

2.1 Hierarchical Organization of the
Current English G r a m m a r

We use the hierarchy to build the tree templates for
the XTAG English grammar. In maintaining the
grammar, however, only the abstract descriptions
need ever be manipulated; the larger sets of tree
templates and actual trees which they subsume are
computed deterministically from these high-level de-
scriptions, as given in Figure 1.

Consider, for example, the description of the rel-
ative clause tree for transitive verbs which contains
four blocks: one specifying that its subject is ex-
tracted, one that the subject is an NP, one that
the main anchor is a verb, and one that the com-
plement is an NP. These blocks correspond to the
quasi-trees (partially specified trees) shown in Fig-
ure 2 and 3(1) and when combined will generate the
elementary tree in Figure 3(2). For the sake of sim-
plicity, feature equations are not shown. In these
figures, solid lines and dashed lines denote the par-
ent and dominance relations respectively; each node
has a label, enclosed in parentheses, and at least
one name. Multiple names for the same node are
separated by commas such as VP, AnchorP in Fig-
ure 2(2). The arc in Figure 3(1) indicates that the
precedence order of V and AnchorP is unspecified.
(In small clauses, the main anchor is a preposition,
adjective or noun, not a verb, so AnchorP and VP
are not always the same node.)

Our lexical organization tool is implemented in
Prolog, and contains blocks which account for 85%

33

Root Root /

/ ~ Subject VP,AnchorP

Subject('NP') VP [
V,Anchor('V')

AnchorP

Anchor Complement('NP')

(1) Subject_is_NP (2) Main_anchor is Verb (3)Complement is NP

Figure 2: Subcategorization quasi-trees

ExtraetionRoot('NP')

Root('S')

/ \
S ubj¢ct,ExtractionTrace('NP') VP('VP')

I / - > " V('V') AnchorP

Anchor

(1) quasi-tree for relative clause

ExtractionRoot('NP')

R~t ('S ')

VP,~chorP('VP') S ubject.ExtractiotaTrace(' NP') / /

V,Anchor('V') Complement('NP')
g

(2) tree generated from the four quasi-trees

Figure 3: Quasi-tree for subject extraction in relative clause, and tree generated by combining it with the 3
quasi-trees in Figure 2

of the current English grammar. By the time of the
workshop, the remainder of the grammar will also be
implemented. There is also an interface to the Pro-
log module, and a visualization tool for displaying
portions of the description lattice.

2.2 A tool for g r a m m a r examina t ion

Being able to specify the grammar in a high-level
description language has obvious advantages for
maintenance and updating of the grammar, in that
changes need only be made in one place and are
automatically percolated appropriately throughout
the grammar. We expect to reap additional bene-
fits from this approach when developing a grammar
for another language. Beyond these issues of effi-
ciency and consistency, this approach also gives us
a unique perspective on the existing grammar as a
whole. Defining hierarchical blocks for the grammar
both necessitates and facilitates an examination of
the linguistic assumptions that have been made with
regard to feature specification and tree-family defini-
tion. This can be very useful for gaining a overview
of the theory that is being implemented and expos-
ing gaps that have not yet been explained. Because
of the organic way in which the grammar was built
over the years, we have always suspected that there
might exist a fair amount of inconsistency either
within the feature structures, or within the tree fam-
ilies. The effort in organizing the lexicon has so far

turned up very few non-linguistically motivated in-
consistencies, which is a gratifying validation of the
constraints imposed by the LTAG formalism.

Our work in tree organization has allowed us to
characterize three principal types of exceptions in
the XTAG English grammar: (1) a class of trees is
missing from the grammar, though this class would
be expected from allowing the descriptive blocks
to combine freely (for example, a sentential sub-
ject with a verb anchor and a PP complement);
(2) within a class of trees, some member is miss-
ing, though an analogous member is present in an-
other class (extraction of the clausal complement of
a noun-anchored predicative); (3) one tree in a class
can be generated by combining quite general de-
scriptions, but there is an exceptional piece of struc-
ture or feature equation (the ergative alternation of
transitive verbs). While these may sometimes re-
flect known syntactic generalizations (e.g. extrac-
tion islands, as with the example in (2)), they may
also reflect inconsistencies which have arisen over the
lengthy time-course of grammar development and
need to be corrected. As previously noted, the lat-
ter have so far been quite limited in number and
significance.

Our approach makes it incumbent on us to seek
principled explanations for these irregularities, since
they must be explicitly encoded in the description

34

hierarchy. Without the description hierarchy, there
would be no need to reconcile these differences, since
they would be entirely independent pieces of a flat
grammar.

3 Tailoring XTAG to the Wea the r
Domain

While it is certainly interesting to develop a wide-
coverage grammar for its own sake, it is clear that
for any practical application the grammar will have
to be tailored to the particular domain. Our overar-
ching goal in building the English grammar was to
make it broad enough and general enough that tai-
loring would be a mat ter of extracting the desired
subset of the lexicon and/or the tree database. In
this section, we will discuss and evaluate various ap-
proaches to specializing a large grammar, and then
will discuss our effort at specializing the XTAG En-
glish grammar for a weather-message domain.

3.1 G e n e r a l Considerations

In considering how one might specialize a grammar,
we make the following basic assumptions: that a
sub-language exists; that it can be identified; that
there is training data (usually unannotated) avail-
able; that default mechanisms will be adequate for
handling over-specialization (since we know training
data will not perfectly reflect the genre) and that the
smaller grammar combined with defaults will still be
more efficient than the large grammar.

Based on these assumptions, the first choice is
whether to do full parsing at all in the final ap-
plication. If the domain contains a large number
of fragments, it might be preferable to use a par-
tial parsing approach, in which case development of
a sub-grammar will be less crucial. Supertagging
(Joshi and Srinivas, 1994) is one such approach; once
the supertagger is trained for the domain, it could
be used in place of the full parser. If, however, it
is determined that full parsing is practicable for the
domain, there are still a number of considerations in
deriving the sub-grammar.

In the ideal situation, there would already be a
corrected parsed corpus (treebank), which can be
used for crafting a sub-grammar for the domain.
This is exceptionally unlikely, and in the more com-
mon case, training data will have to be constructed,
either manually or automatically. In a lexicalized
grammar like LTAG, this turns out to be quite
manageable, since there are distinct representations
which encode syntactic structures. We can use a
statistical approach, such as supertagging, to make
a first pass at assigning the correct structures to each

word, and then hand-correct them to derive the rele-
vant set of structures. In non-lexicalized grammars,
this process would be much more difficult, because
there is no straightforward way to associate struc-
tures with lexical word and to identify the rules to
be eliminated. If it is impossible to create training
data by any other method, the full grammar can
be applied and then the output corrected to create
a treebank of the training da ta . Needless to say,
this is a tedious, time-consuming and computation-
ally expensive task. Alternatively, a domain expert
could provide a list of grammatical phenomena need-
ing to be handled, and this list used to extract the
sub-grammar.

Once the training data has been processed by
one of these methods, the sub-grammar is extracted
based on the elementary objects in the grammar re-
quired to handle all of the syntactic phenomena iden-
tified in the training set. This could mean extracting
precisely the constructions used in the training set,
or generalizing from them. A lexical hierarchy such
as that described in Section 2 can be used for this
process, with generalization performed along either
of the hierarchy dimensions. The expansion could
be done by general principles (add all trees of a cer-
tain subcat frame if any are present), or could be
done based on performance of the sub-grammar on
held-out training data.

Most domains have a rich terminological vocab-
ulary, which if not taken into account can cause
prohibitive ambiguity in parsing and interpretation.
Identifying and demarcating domain specific termi-
nology is helpful for all of these approaches, since the
terms can then be treated as single tokens. This can
been done either manually or automatically (Daille,
1994; Jacquemin and Royaut, 1994).

Once the sub-grammar has been finalized, strate-
gies for recovering from failure to parse should be
developed. One simple strategy is to fall back to the
large/whole grammar. A more sophisticated strat-
egy would be to back off using a lexical hierarchy in
the same way it was used for generalizing from the
training set.

3.2 Specializing to the Weather Domain

The domain we chose to test out these strategies was
weather reports, provided to us by CoGenTex3 The
sentences tend to be quite long (an average of 20 to-
kens/sentence) and complex, and included a large
amount of domain specific terminology in addition
to many geographical names. To identify the domain

4Thanks to the Contrastive Syntax Project, Linguis-
tics Department of the University of Montreal, for the
use of their weather synopsis corpus.

35

specific terms, we are using a hand-collected list,
but we are currently working with Beatrice Daille
(Daille, 1994) to collect them automatically. Col-
lapsing these terms reduced the length of the test
sentences by 22%. Example 1 is illustrative of the
type of sentences and the terminology in this do-
main. We split the development data into a training
set (99 sentences) and a test set (50 sentences).

(1) Skies were beginning to clear over [western
New-Brunswick] and [western Nova Scotia]
early this morning as [drier air] pushed into
the district from the west.

We primarily pursued the full-parsing approach,
but explored partial parsing to a more limited ex-
tent as well. Since we did not have access to parsed
training data, we tried several of the approaches dis-
cussed above for creating the small grammar. Pars-
ing with the full grammar was impractical and in-
efficient. We also attempted to parse the training
sentences using a sub-grammar, created with the aid
of a domain expert who identified relevant syntactic
constructions. We used this information as input to
the lexical organization tool to extract a sub-lattice
of the grammar hierarchy (along both the subcat
and transformational dimensions). However, initial
experiments suggest this first pass sub-grammar was
still too large, and that more radical pruning of the
large grammar would be required.

The most effective strategy for us was to use the
supertagger to create an annotated training cor-
pus. The supertagger (which had been trained on
200,000 words of correctly supertagged WSJ data)
performed at about 87%. We then manually cor-
rected the erroneous supertags, and prepared a sub-
grammar using the word/POS-tag/supertag triples
from the weather training corpus. Using this sub-
grammar, we set up the task to parse the 50 test
sentences, backing off to the full grammar. As of the
time of submission of this paper, we were still pars-
ing these sentences. Although the sentences which
could be parsed by the sub-grammar were assigned a
parse very quickly, overall, we did not see the antic-
ipated speed up that we expected. We suspect that
backing off to the full grammar is not the best way
to go, and are working on ways to back off using the
lexical inheritance hierarchy.

There are a number of directions for future work
suggested by these initial experiments. With regard
to partial parsing, we retrained the supertagger on
the 100 training sentences (1416 tokens). This su-
pertagger performed at 78%, a considerable decrease
from the WSJ-trained supertagger, but respectable
given the small training set. Some of the errors pro-

duced by the WSJ-trained supertagger were idiosyn-
cratic to the newswire domain, so we plan to explore
strategies for combining the information from the
WSJ domain with the weather report domain, anal-
ogous to techniques used in the speech domain.

R e f e r e n c e s

Becker, T. 1994. Patterns in metarules. In Proceed-
ings of the 3rd TAG+ Conference, Paris, France.

Candito, Marie-Helene. 1996. A principle-based hi-
erarchical representation of LTAGs. In Proceed-
ings of COLING-96, Copenhagen, Denmark, Au-
gust.

Church, Kenneth Ward. 1988. A Stochastic Parts
Program and Noun Phrase Parser for Unrestricted
Text. In 2nd Applied Natural Language Processing
Conference, Austin, Texas.

Daille, Beatrice. 1994. Study and Implementation of
Combined Techniques for Automatic Extraction
of Terminology. In The Balancing Act Workshop:
Combining Symbolic and Statistical Approaches to
Language.

Egedi, Dania and Patrick Martin. 1994. A
Freely Available Syntactic Lexicon for English.
In Proceedings of the International Workshop
on Shamble Natural Language Resources, Nara,
Japan, August.

Jacquemin, C. and J. Royaut. 1994. Retriev-
ing terms and their variants in a lexicalised
unification-based framework. In Proceedings of
SIGIR94, pages 132-141.

Joshi, Aravind K. and B. Srinivas. 1994. Disam-
biguation of Super Parts of Speech (or Supertags):
Almost Parsing. In Proceedings of the 17 th Inter-
national Conference on Computational Linguis-
tics (COLING '94), Kyoto, Japan, August.

Karp, Daniel, Yves Schabes, Martin Zaidel, and
Dania Egedi. 1992. A Freely Available Wide
Coverage Morphological Analyzer for English.
In Proceedings of the 15 th International Con-
ference on Computational Linguistics (COLING
'92), Nantes, France, August.

Lehmann, Sabine, Stephan Oepen, Sylvie Regnier-
Prost, Klaus Netter, Veronika Lux, Judith Klein,
Kirsten Falkedal, Frederik Fouvry, Dominique Es-
tival, Eva Dauphin, Herv~ Compagnion, Judith
Baur, Lorna Balkan, and Doug Arnold. 1996.
T S N L P - - Test Suites for Natural Language Pro-
cessing. In Proceedings of COLING 1996, Kopen-
hagen.

36

Rogers, J. and Vijay-Shankar. 1994. Obtaining trees
from their descriptions: An application to tree
adjoining grammars. Computational Intelligence,
10(4).

S0ong, Frank K. and Eng-Fong Huang. 1990. Fast
Tree-Trellis Search for Finding the N-Best Sen-
tence Hypothesis in Continuous Speech Recogni-
tion. Journal of Acoustic Society, AM., May.

Srinivas, B., Christine Doran, Beth Ann Hockey, and
Aravind Joshi. 1996. An approach to robust par-
tial parsing and evaluation metrics. In Proceedings
of the Workshop on Robust Parsing at European
Summer School in Logic, Language and Informa-
tion, Prague, August.

Vijay-Shankar and Y. Schabes. 1992. Sharing in lex-
icalized tree adjoining grammar. In Proceedings of
COLING-92, Nantes, France, August.

XTAG-Group, The. 1995. A Lexicalized Tree Ad-
joining Grammar for English. Technical Report
IRCS 95-03, University of Pennsylvania.

37

