
H y p e r t e x t u a l G r a m m a r D e v e l o p m e n t *

Luca Dini and Giampaolo Mazzini
Centro per l'Elaborazione del Linguaggio e dell'Informazione (CELI)

Via G. Ferraris 109, Palazzo Tartara 13100 Vercelli (Italy)
E-mail: {mazzini ,dini}~celi. sns. it

A b s t r a c t

We will present a new model of grammar
documentation which exploits the poten-
tialities of an hypertextual representation
of lingware. As we will show this model
insures the following benefits:

• Constant coherence between the doc-
umentation and the various pieces of
linguistic information.

• Valuable organization of the linguis-
tic knowledge, in order to increase the
productivity of the grammar writer.

• Possibility of sharing grammatical re-
sources and related documentation
with other sites in a completely intu-
itive way.

1 Introduction

In recent years a big stress has been put on the view
of grammar development as a subtype of software
development. The attention reserved to phases like
grammar design, testing and validation, as well as
the key role assumed by issues such as reusability
and portability, is a clear sign of the tendency to
narrow the gap between grammar and software de-
velopment (Nagao 1988, Boitet 1989, Schfitz 1995).
A further element of similarity is represented by
the fact that grammar development is nowadays al-
ways involving more than one single grammar de-
veloper, the standard situation being one of coop-
eration among different sites (cf., for instance, the
LS-GRAM, ERGO, and Vermobil scenarios). In this
respect, it mirrors the same evolution of industrial
software systems, which privileged a distributed ar-
chitecture over a centralized one.

We are grateful for suggestions and discussions to
Gregor Erbach, Stephan Oepen, Axel Theofilidis.

There is a point, however, where methodologies
in grammar writing and in software engineering still
diverge: documentation. It has been pointed out
by many authors (e.g. Metzeger & Boddie 1996)
that documentation should take at least 10% of
the person-power allocated to a project, and that,
in any case, documentation should be taken as se-
riously as design, programming and testing. For
these reasons, different programming styles have de-
veloped different techniques in order to guarantee
both consistency and user-friendliness of documen-
tation, the most striking example being represented
by Computer-Aided Software Engineering, which
evolved, originally, as a tool for software documen-
tation.

On the side of grammar engineering, on the con-
trary, the topic seems to have been underestimated,
and even projects where grammar documentation
was central (such as LS-GKAM) conceived it in a
quite traditional and obsolete way, i.e. as a process
of editing huge reports after the end of the imple-
mentation phase (cf. the criticisms to this approach
made by Booch (1996)).

The present work aims at providing a new model
of grammar documentation, by exploiting the poten-
tialities of an hypertextual format. As we will show
our model insures the following benefits:

• Constant coherence between the documentation
and the various pieces of linguistic information.

• Valuable organization of the linguistic knowl-
edge, in order to increase the productivity of
the grammar writer.

• Possibility of sharing grammatical resources
and related documentation with other sites in
a completely intuitive way.

The program implementing this model (Hyper-
Gram) is currently fully compatible with ALEP, and
it will be soon integrated with PAGE. In any case,

24

its extension to other grammar development plat-
forms is quite unproblematic, and in the future we
will consider the integration with a broader range of
grammar development tools.

2 D e s i d e r a t a

2.1 D o c u m e n t a t i o n in S o f t w a r e a n d
G r a m m a r E n g i n e e r i n g

In Booch (1996) documentation-driven projects are
described as a "...degenerate of requirements-driven
processes, a case of bureaucracy gone mad in the face
of software...". Their most salient feature is the need
of producing documentation packages as deliveries
for the various phases of the project. What usually
happens in these cases is that the implementative
work stops a couple of weeks before the deadline,
and a massive documentation work is performed,
all in once, until the delivery is pushed out of the
door. On the contrary, in standard requirements-
driven projects there is no temporal gap between
code writing and documentation writing (cf. also
Metzeger & Boddie, 1996).

This situation can be generalized to grammar
writing, where the standard practice seems to con-
fine the writing of the documentation to a kind of
leftovers. As a consequence, in many cases, docu-
mentation does not reflect the rationale under cer-
tain choices of the implementation, but reduces to
an informal description of formally represented lin-
guistic structures. Moreover, in successive releases
of the same implementation, the links between the
documentation and the implementation tend to be-
come weaker and weaker. In big projects it is almost
impossible to ensure the coherence between the im-
plementation and the documentation.

This situation is particularly problematic in cases
of distributed grammar development, when more
sites are involved in cooperative work. Under these
circumstances, lack of synchronization between doc-
umentation and real code could cause serious com-
munication problems and a general delay in the work
flOW.

Also, both reusability and usability are affected
by poor or incoherent documentation. On the side
of reusability, the costs for learning and maintaining
an undocumented grammar are often comparable to
the costs of a development from scratch. On the side
of usability, grammar documentation is the base for
producing final user documentation, without which
no natural language system will ever be able to at-
tract any industrial user (cf. Zoeppritz, 1995).

2.2 D o c u m e n t a t i o n in G r a m m a r
E n g i n e e r i n g

One of the key point of recent developments in
Grammar Engineering is represented by the conver-
gence of certain linguistic theories (e.g. LFG and
HPSG) and real grammar development (cf. Cole
& al 1997, Ch. 3.3). Thus, certain theoretical
results can be easily incorporated in actual imple-
mentations, and certain computational treatments
have proved to be able to provide valuable hints to
theoretical research. This mutual relationship con-
stitutes a good rationale for the view of grammar
writing mainly as documentation writing. Both the
phase of grammar design and implementation could
be conceived as the production of a set of abstract
linguistic generalizations, where the actual imple-
mentative platform only plays a role in restricting
the power of the tools to express such generaliza-
tions. Indeed, as soon as migration tools among dif-
ferent platforms are available (cf. Dini 1997, Bloch
1997, EAGLES 1996) the concrete syntax of the im-
plementation plays a much lighter role than in the
past, and the documentation becomes, in a sense,
the grammar. 1 From the opposite perspective, the
availability of clear and well designed documentation
would would make grammar reports attractive for
theoretical linguists (Cf. Erbach & Uszkoreit 1990).

3 H y p e r G r a m

HyperGram (Hypertextual Grammars) is a model
for grammar development and documentation in-
spired to the idea of literate programming, which was
first proposed by Knuth (1974) (cf. Knuth (1992),
for an overview). Actually, the main source of inspi-
ration is the hyper-literate programming approach
(Steinman ~; Yates 1995, 1996), a revision of liter-
ate programming stressing the importance of hyper-
textual connections between pieces of code, in order
to increase both the quality of the documentation
and the productivity of the programmer. Therefore
HyperGram is meant to serve as a tool both for doc-
umenting grammars and for facilitating the work of
the grammar engineer. 2

1The similarity with the literate programming ap-
proach immediately comes to mind. Such a similarity
will be emphasized in section 3 where the HyperGram
model will be presented.

2In a sense, documentation tools need to be tailored
with respect to the kind of linguistic organization (or
linguistic theory) which is chosen as the basis for the
implementation. In the case we are considering in this
paper, we have in mind a typed, unification-based user
language, which fits very well the hypertextual organi-
zation of the lingware. Indeed values of attributes are

25

The main goals that the model is intended to
reach, which, we think, constitute possible answers
to real needs of a typical user of systems like ALEP
or PAGE in the context of a grammar development
project, are the following:

1. It allows to produce an updated printed docu-
mentation at any stage of the process of gram-
mar development, avoiding inconsistencies be-
tween the real grammar code and the code ex-
emplified in the report; inconsistencies of this
sort are frequent in standard reports.

2. It produces an hypertextual version of the doc-
umented resources, which can be directly made
available for public consultation, e.g. via the
Internet;

3. It provides the grammar writer with the possi-
bility of accessing the lingware during the de-
velopment or debugging work, by means of a
unique hypertextual interface, which empha-
sizes user-friedliness and efficiency. This inter-
face allows the direct interaction with the real
grammar modules which can be edited, modi-
fied, compiled and so on.

4 HyperGram's Modules
The general organization of the HyperGram system 3
is shown in fig. 1, where the relations between the
various modules and the linguistic resources are
made explicit. The basic idea is that during the pro-
cess of grammar production an integrated HTML
text containing both the documentation and the
links to the lingware is maintained. Such a report
will be available at any time either for browsing (us-
ing a standard http compliant program) or print-
ing. The coherence between the HTML version of
the lingware and the one which is actually compiled
is preserved through a set of automatic compilation
steps completely transparent to the grammar engi-
neer. Also the distinction between "reporting" and
"implementing" looses much of its importance, as
relevant pieces of documentation can be accessed
and modified in a hypertextual fashion directly dur-
ing grammar editing. The single conversion steps
are described in details in the remaining sections.

easily understandable as links to piece of information
contained in the type system. These pieces of informa-
tion, the types, refer, in turn, to other sets linguistic
constraints which can be analougously interpreted in a
hypertextual fashion.

3The instance of HyperGram that we will describe
in the following is centered on documentation of ALEP
lingware. Analogous considerations hold for the PAGE
version.

4.1 H G - c o n v e r s i o n

The module labeled as HG-convers ion in fig. 1 is a
program written in emacs- l±sp aimed at assigning
an hypertextual structure to the lingware files used
by the system. The various conversion steps are the
following:

* The lingware files (written in plain ASCII) are
assigned a basic HTML tagging, in such a way
that the original indentation of the code (for
instance the one automatically produced by
emacs modes for grammar editing) is main-
tained (using the < P R E > tag). The original
lingware files are of course left unchanged, while
the HTML files (HTML lingware, in the figure)
are saved in a directory specified by the user
when the HyperGram system is configured.

* Some hypertextual links among linguistic de-
scriptions used in the lingware are expressed
by means of the standard anchor mechanism of
HTML, by interpreting the grammar formalism.
The main idea is to use hypertextual links to
express the logical relations holding among the
various objects involved in the grammar struc-
ture, namely types, phrase structure rules and
macros (or templates). For instance, whenever
a type or a macro is used as the value of an
attribute in a linguistic description of any sort
(i.e. a type declaration, a rule, or the body of
a macro definition), an HTML anchor is pro-
duced, pointing to the definition of the relevant
type or macro; when a type is introduced in the
type declaration, it is anchored to the fragments
of hierarchy where it appears. And so on.

4.2 Integrated R ep o r t

In order to produce an integrated HTML version of
the documentation, the following preconditions have
to be satisfied:

• Every rule, or type declaration or macro defini-
tion in the lingware is labeled by means of an
unambiguous identifier. This identifier can be
expressed either as the value of a specific at-
tribute in the body of the expression, or as an
external comment.

• Wherever a particular piece of lingware code is
specifically documented in the report, a pointer
to its identifier (in the sense specified above) is
inserted, rather than a copy of the code itself;
let us refer to that pointer as main pointer. If
the code is referred to in other sections of the
report, then a different pointer to the same iden-
tifier has to be established (secondary pointer).

26

()

I
Report

ALIEP ling.

HG-conver~ian

HTML ling.

linking

| W 3

~ l r ~

HG hlml21+4mx

Figure 1: The general work flow of HyperGram

Unlike the main pointer, which must be unique,
it is possible to specify many secondary pointers
to the same identifier.

Once these relations between the documentation
text and the documented code are made explicit by
the grammar writer, the integrated hypertextual re-
port is automatically produced by a compiler (the
module labeled linking in the figure).

The work done by this compiler is rather sim-
ple. It converts the pointers and identifiers described
above into HTML anchors, with the following gen-
eral organization:

The pointers used in those sections of the report
where parts of code are documented (i.e. the
main pointers) are translated into anchors to
the appropriate rules (or types or macros) in
the HTML-lingwaxe files containing them;

Similar anchors are established in all the other
points of the report where a rule is referred to
by means of a secondary pointer,

In the HTML-lingware, each object is anchored
to the section of the report where it is more

specifically described: namely, where its main
pointer is declared.

In this way an updated, standard HTML-based
hypertextual version of the whole grammatical mod-
ule and of the related documentation is in principle
available at any time for Intranet/Internet consulta-
tion.

4.3 D o c u m e n t a t i o n P r i n t i n g

In spite of our belief that the best format to de-
liver grammar documentation is the hypertextual
one, there might be case where also printed docu-
mentation is required. Thus we developed a module
aimed at producing a printable version of the doc-
umentation, labeled as HG html21atex in fig. 1. A
set of e m a e s - l i s p functions is devoted to convert
the original hypertextual documentation, which, as
described above, is assumed to have been origi-
nally written in HTML format, into a printable
LATEXdocument.

The HG html21atex module interprets the point-
ers and the identifiers declared in the report and in
the grammar files respectively, as described above in
section 4.2. As a result, every rule or type or macro
is included in the printed report in only one point,

27

namely where the main pointer to :it has been pre-
viously declared. This is automatically done by the
program, which retrieves the parts of code associ-
ated to each pointer from the actual grammar files,
and includes them in the report at the appropriate
place.

In all the other parts of the report where a piece of
lingware is mentioned, but not specifically described,
a ~,TF_ ~ internal cross-reference is introduced. This
is precisely the reason for the use of different types of
pointers in the report (see 4.2 above). Indeed, under
this assumption, the point where the code must ap-
pear in the printed report is unambiguously specified
by means of the unique main pointe.r. In the hyper-
textual version of the integrated report this kind of
distinction is not relevant, as any reference to the
lingware is simply an anchor to a specific part of a
lingware file.

4.4 Browsing and Edit ing the Lingware

The interface chosen in the HyperGram model for
the hypertextual navigation within the lingware and
the associated documentation is the emacs-internal
HTML browser emacs-w3.

A set of specific emacs-lisp functions have been
added in order to integrate the standard navigation
procedures with the possibility for the user to ac-
cess the source lingware, to edit it and, possibly,
to compile it in the relevant grammar development
platform. Crucially, the HTML version of lingware
files should never be accessed by the grammar devel-
oper; it is automatically produced or updated once
the lingware has been modified. Moreover, the user
friendliness of the navigation through the lingware
is enhanced by making explicit the type of relation
expressed by an anchor (for instance the relation be-
tween a type used as a value in a rule and its def-
inition in the type theory) by means of a special
formatting, such as a particular font or color for the
text.

Here is how the browsing mechanism within gram-
mar files will look from the point of view of the user:

• having an existing grammatical file (call it
rg ._f i le) , written in the relevant user language,
a single command in an emacs buffer will al-
low the user 1) to create an updated HTML file
(hg_.file) bearing all the information described
above in terms of internal and external hyper-
textual links; 2) to invoke the emacs-w3 browser
on that file; and 3) to browse it.

• if an anchor that points to a different grammar
file is followed, the relevant hg_file is generated
if it does not exist, while if it is already existent,

it is updated when necessary (i.e. if the corre-
sponding rg_file has been modified after the date
of its creation).

when browsing an hg_file in a emacs-w3 buffer,
a single command allows to switch to the un-
derlying rg_file, with the cursor located in the
same region. A parallel command allows to go
back to the hypertext, which is automatically
updated if necessary, namely if the rg_file has
been modified; also in this case the cursor loca-
tion is maintained.

The whole mechanism allows the grammar writer
to systematically use hypertextual navigation within
the grammatical module, taking a possible advan-
tage from the fact that the hypertextual model pro-
posed here makes some relations among linguistic
objects explicit. Since it is important to keep in
mind these relations when working on a complex
grammar, with a highly structured type theory, the
hypertextual approach could provide a substantial
help to the grammar writer. In many cases, it could
represent a preferable alternative to the use of more
sophisticated tools for graphical representation of
linguistic objects, in that, on the one hand, it is fully
integrated with the editing tool, and, on the other
hand, it covers in an uniform way all the object used
in the grammar module, not only the type theory.

5 C o n c l u s i o n s

The system is oriented towards the need of fast
grammar development, easy training for researchers
which start working on an existing grammar, and
high quality documentation, which are undoubtedly
crucial points for the success of a grammar project
based on available language engineering platforms
and for the reusability of its results. These needs
emerge with a particular relevance when consider-
ing distributed projects for grammar development
where both information sharing among cooperating
groups and public dissemination of the results via
the World Wide Web become crucial.

Also, the possibility of producing in short time
paper versions of the documentat ion seems to fit the
needs of a standard grammar development projects,
where many checking points are still based on the
evaluation of printed documentation.

R e f e r e n c e s

Boitet, Charles, 1989, Sofwteare and Lingware En-
gineering in Modern M(A)T Systems. In I.S.
Batori, W. Lenders and W. Putschke, Computa-
t ional Linguis t ics - An In ternat ional Handbook

28

on Computer Oriented Language Research and
Applications, Walter de Gruyter, Berlin and
New York.

Booch, Grady (1996). Object Solutions. Addison-
Wesley, Menlo Park, CA.

Cole, Ronald; Joseph Mariani; Hans Uszko-
reit; Annie Zaenen; Victor Zue, (1997).
Survey of the State of the Art in Hu-
man Language Technology. Web version:
http ://www. cse. ogi. edu/CSLU/HLTsurvey/.

Dini Luca (1997). The ALEP2PAGE Grammar
Translator, In Proceedings of the 3rd ALEP
User Group Workshop. IAI, pp. 27-33.

EAGLES (1996). Formalisms Working Group Fi-
nal Report. Version of September 1996.

Erbach, Gregor; Hans Uszkoreit (1990). Grammar
Engineering: Problems and Prospects. CLAUS
Report No. l, July 1990.

Metzeger, Philip; John Boddie (1996). Managing a
Programming Project. Prentice Hall PTR, New
Jersey.

Knuth, Donald E. (1974). Computer Programming
as an Art. In Communications of the ACM 17,
pp. 667-673.

Knuth, Donald E. (1992). Literate Programming.
CSLI Lecture Notes, no. 27.

Schiitz, JSrg (1995). Language Engineering - Fix-
ing Positions. IAI Memo, ME0695

Steinman, Jan; Barbara Yates (1995). Managing
Project Documents.In The
Smalltalk Report, June 1995, also available at
http ://www. Byt esmi~hs, tom/pubs/index, h~ml.

Steinman, Jan; Barbara Yates (1996). Doc-
uments on the Web in The Smalltalk Re-
port, June/July 1996, also available at
http ://www. Byt esmiths, com/pubs/index, html.

Zoeppritz, Magdalena (1995). Software Er-
gonomics of Natural Language Systems, in Lan-
guage Engineering, Gerhard Heyer and Hans
Haugeneder Eds., Vierweg, Wiesbaden.

29

