
Participatory Design for Linguistic Engineering:
the Case of the GEPPETTO Development Environment

F a b i o C i r a v e g n a , A l b e r t o L a v e l l i , D a n i e l a P e t r e l l i , F a b i o P i a n e s i
I s t i tu to :per la Ricerca Scientif ica e Tecnologica

Loc. Pant~ di Povo
1-38050 Trento, I ta ly

e-maih {ciravel lavel l i lpetrel l i [pianesi}Qirst . i tc . i t

A b s t r a c t

Current tools for Linguistic Engineering
(LE) do not completely fit the requirements
for scale development and deployment of
real applications. What seems to lack in
the available tools is a comprehensive study
of user needs. This is a real limitation in a
field where people with very different back-
grounds (from computer scientists to lin-
guists) are involved. To avoid such a short-
coming we adopted the Participatory De-
sign (PD) methodology, i.e. a User Cen-
tered approach that favors the definition of
tools suited to the real user needs. In this
paper we show how such methodology was
used in the design and implementation of a
development environment for LE applica-
tions.

1 I n t r o d u c t i o n

The growing number of applications exploiting NLP
techniques is bringing about a shift from an arti-
san attitude with respect to NLP towards the need
for more sophisticated solutions and tools (Linguis-
tic Engineering, LE). Consequently, interest has in-
creased in the study and implementation of environ-
ments capable of supporting the users in the devel-
opment, testing and debugging of Linguistic Engi-
neering Applications (LEAs). In this respect, a ma-
jor feature of a Linguistic Engineering Application
Development System (LEADS) is to provide facil-
ities for the development, reuse and integration of
linguistic processors and data.

Despite the remarkable results that have been
achieved (too many to be listed here), the general
impression is that these systems do not completely
fit the requirements for scale development and de-
ployment of real applications. In this connection,
one major point is the concern about human fac-
tors. In general, studies have conclusively shown
that even small differences in the characteristics of
the end users (e.g., computer experience, knowledge
about the domain, use of the system) can heavily

affect the suitability of the tools developed (Nielsen,
1993). The development of a LEA is a task involving
different kinds of skills and expertise. For instance,
it is conceivable that the development and mainte-
nance of the needed linguistic resources (grammars
and lexica) require different skills (and be therefore
pursed by different people) than those involved in
the construction and validation of the architecture of
the final application. The involvement of users since
the very beginning of the system design (i.e. the
adoption of a User Centered approach) can greatly
enhance the effectiveness of a LEADS: user needs
can pervade the design and implementation of all
the basic functionalities of the tool. Such an in-
volvement has an impact on the design of the sys-
tem: each typology of user should have available all
the relevant tools for their work. Moreover, it is im-
portant that the system is friendly, and easy to get
accustomed with. Since situations can be envisaged
in which the user is not a full-time LEA developer,
the system must also be perspicuous and intuitive
enough to support her/him on a time-to-time basis.
These results depend on the availability of a careful
analysis of the development cycle of LEAs; only such
an analysis permits to single out basic (even if ab-
stract) typologies of users defined in terms of their
skills, the tasks they accomplish, and the like.

Important support to these considerations comes
from the field of human-computer interaction
(Carmel et al., 1993). As a matter of fact, it is
generally acknowledged that approximately 60-to-
80% of all problems of information systems can be
traced to poor or inadequate requirement specifica-
tions, including both lack of facilities and usability
problems. What is needed is to involve day-to-day
work experience early in the project, when the ba-
sic design choices are made. Positive effects of User
Centered approaches for the design of information
systems are not limited to usability: benefits were
discovered (Nielsen, 1993; Carmel et al., 1993) to be
connected to time and cost saving during develop-
ment, completeness of system functionalities, repair
effort savings as well as to user satisfaction.

The purpose of this paper is to describe a LEADS,

16

called GEPPETTO, which has been developed with
the aim of addressing these issues by adopting a User
Centered design approach (Norman and Draper,
1986). Such a move resulted in an environment that:
(A) supports the whole process of designing and de-
veloping LEAs; (B) provides the different typologies
of users with dedicated facilities which are suited to
their skills and backgrounds; (C) improves on the
training phase.

2 M e t h o d o l o g y

A User Centered (UC) approach was adopted for the
design of GEPPETTO. Indeed, UC approach takes
user needs into account from the very beginning of
the design phase till the final evaluation of the sys-
tem. This way, system design is changed from a
mere technical and individual activity into an inter-
disciplinary and group activity. Importantly, UC ap-
proach secures the at tainment of such goals as: ap-
propriateness with respect to user needs and desider-
ata; flexibility with respect to different skills and dif-
ferent user typologies; and overall usability.

The engagement of users in the system design
can occur at different levels: consultative level when
users are considered as sources of information or as
participants to final evaluations; representative level
when they participate in structured design meetings;
consensus level when users are part of the design
team.

For GEPPETTO we chose the Participatory Design
methodology (henceforth PD, (of the ACM, 1993))
which falls in the third class. In PD, users act
as fully empowered participants to the design pro-
cess, sharing decisions together with system design-
ers. Such a working style promotes mutual learn-
ing between users and designers, and facilitates the
identification of user needs and of possible misun-
derstandings. Hence PD is particularly suitable for
complex domains where it might be difficult for de-
signers alone to get a knowledge sufficient for propos-
ing meaningful solutions. This is certainly true of
LE, because of the complexity of the domain and
of the different skills involved in the development
of a LEA. Moreover, certain peculiar techniques of
PD, such as participatory prototyping, offer a nat-
ural way to reduce errors otherwise not detectable
until the final system is put to use.

PD employs a wide range of techniques (Muller et
al., 1993) whose applicability depends on such fac-
tors as design goals, group size, availability of users
for long periods, and the like.

Concerning GEPPETTO design, PD was imple-
mented by establishing a working group (WG) of five
people consisting of system developers (2), users (2),
and an interface design expert (1). Different tech-
niques were applied at different stages of the design
process:

• E n v i s i o n i n g f u t u r e so lu t ions : in the early

phases, informal discussions for clarifying global
statements and stimulating the users' creative
thinking took place. Outcomes of these meet-
ings concerned the awareness of the different
roles, skills and knowledge involved in the de-
velopment of LEAs, and the identification of a
number of basic user typologies. Moreover, it
seemed unlikely to the WG that a single per-
son could cover the whole process alone. That
is, the development of a LEA is a multidisci-
plinary work which can benefit from some kind
of support in its cooperative evolution.

• P a r t i c i p a t o r y r e q u i r e m e n t spec i f i ca t ions :
the discussion focussed on users desiderata and
system capabilities and resulted in a list of the
required functionalities. Such a list was then
divided into subsets, each one corresponding to
one of the user typologies. The discussion then
centered on how each typology acts in isolation,
and how it interacts with the others, during the
development of a LEA. Thus, different levels for
single and cooperative work were identified. 1

• C o l l a b o r a t i v e low-fi p r o t o t y p i n g : dur-
ing collaborative prototyping workshops, paper
mock-ups (also called low-fi prototypes) were
designed and evaluated by the WG. This activ-
ity was extremely useful to move from ideas to
concrete interface design, to detect and correct
misunderstandings, and to elicit original solu-
tions to unforeseen problems. The outcome was
the complete definition of the system.

• C o o p e r a t i v e eva lua t i ons : cooperative evalu-
ations of the first implementation supported the
final refinements of the implemented environ-
ment. At this stage, feedbacks from the users
were discussed and taken into account for fur-
ther improvements.

• E x p e r i m e n t a l sessions: even if not required
by PD, empirical evaluations with users not in-
volved in PD have been conducted to verify the
effectiveness of the design. Method and results
are discussed in Section 7.

In the next section we will focus on the results of
the first two steps of the PD methodology, as applied
to GEPPETTO design.

3 U s e r s , T a s k s a n d L E S y s t e m s

The discussion inside working group was organized
around three main (sequential) topics:

• the construction process of LEAs: development
cycle, involved skills and tasks, etc.;

• user desiderata: rapid prototyping, graphical
interfaces, openness of the architecture, deliv-

1The present version of GEPPETTO does not provide
features for advanced cooperative work.

17

_Applicative Raw
Cons~a/n~ Corpora

of Rc m~ntatiw

Test
Corpus

[Defimti°n °f l
ArcMtectulal
Requtrements

Amhiteetural
Requt:emenCa

] DefiMtiot~ Mign I [LinguiJtic
& Specification of I Proce~ors Data Develolnnent

1 1
Ptoc~ots Lingtustie Resources

Rdiner~ent

t
Figure 1: Development cycle of LE applications

ery systems, modular approach to linguistic de-
velopment, etc.;

• specifications of system facilities: tools for
browsing and editing linguistic data, API for
integrating external resources, etc.

3.1 Building LE Applications
The working group focused on the abstract defini-
tion of the development cycle of LEAs and of the
typologies of the involved users. As a mat ter of fact
this is a requirement of an LE approach to NLP sys-
tems.

The development cycle of LEAs was defined as in
figure 1.

As a first step, applicative constraints must be con-
sidered. In fact, the working context of a LEA de-
termines not only the global behavior of the LEA,
but also the way the different modules interact to
produce the desired behavior. Another preliminary
step is the collection of raw corpora.

After such a preparatory work, the following de-
velopment cycle typically takes place:

• identification of representative corpora. In this
step the aforementioned raw corpora are classi-
fied and filtered to find a set of examples that is
representative of the characteristics of the whole
corpus. The resulting corpus is then split in two

parts: one to be used during the system devel-
opment (training corpus), the other during the
testing phase (test corpus);

• definition of the architectural requirements.
Given the applicative constraints and the char-
acteristics of the corpus, the specific require-
ments of the LEA are defined;

• definition, design and implementation of the
processors, according to the requirements of the
previous point;

• development of the linguistic resources, accord-
ing to the requirements arising from the previ-
ous analysis;

• testing and refinement of both the processors
and the data collection.

Once all these steps have been gone through, the
resulting architecture is delivered (delivery system)
and customization can start.

The working group singled out three different user
typologies which can play a role in the tasks above.
Each of them corresponds to different backgrounds,
knowledge and skills: 2

• Linguistic Engineer (LER): expert on architec-
tures for LE. Background: computer science;
knowledge of computational linguistics;

• Computational Linguist (CL): expert on lin-
guistic data development. Background: com-
putational linguistics; little knowledge of com-
puter science;

• Processor Manager (PM): expert on processors
for language processing. Background: com-
puter science; knowledge of computational lin-
guistics.

Accordingly, the development cycle has been re-
fined as follows:

• identification of representative corpora: LER
interacts with CL to provide a representative
corpus for the application;

• definition of architectural requirements: given
the corpus and the requirements for processors
and linguistic data, LER interacts with PM and
CL to define the correct architecture;

• definition, design and implementation of the
processors: PM chooses (or designs and imple-
ments) them;

• development of linguistic resources: CL chooses
(or designs and implements) them;

2Actually the working group added also an Applica-
tion Manager, i.e. an expert of the domains and of the
users of the LEA. Such a profile is not discussed in this
paper.

18

• test and refinement: LER checks the correspon-
dence between the current implementat ion and
the architectural requirements; the processors
are tested by PM and the data collection by
CL.

In the end, the working group had effectively spec-
ified the actions, the tasks, and the skills required to
create LEAs. The following step was the identifica-
tion of the user needs.

3.2 U s e r N e e d s a n d D e s i d e r a t a

The working group discussed some of the desirable
features of a LEADS, from the point of view of the
users. Results can be summarized as follows:

• facilities for the rapid prototyping of LEAs via
graphical interfaces;

• facilities for choosing among resources (e.g. lex-
ica and grammars) provided by libraries of lin-
guistic data;

• specialized graphical browsers and editors for
linguistic data;

• facilities for interactively testing and debugging
processors and data;

• facilities for testing and debugging the whole
architecture against test suites;

• aids for providing the delivery system;

• facilities for integrating processors and data dif-
ferent from those already provided by the envi-
ronment;

• facilities for integrating knowledge stored in ex-
ternal modules (e.g. Knowledge Bases).

One of the main outcomes of PD discussions was
that the different users would benefit from a sin-
gle, common tool capable of facilitating and support-
ing their mutual interactions (even when performing
their tasks independently) as well as the integration
of resources developed independently. 3

On the other hand, given the different profiles
and skills involved, each of the three user typolo-
gies needs different facilities and might prefer differ-
ent interaction modalities. For example CLs tend to
favor graphical interfaces that hide as much as pos-
sible low-level details (e.g. internal data representa-
tion). On the other hand, PMs have to cope with
low level details. As it turns out, the ideal environ-
ment should both address the differing interaction
styles of each user, and, at the same time, provide a

3In this paper we focus on the interactions among
users belonging to the different typologies and on the
integration of their work. We will not address the im-
portant question of how to support the interactions and
integration involving users of the same typology. For
instance, we will not discuss here the issue of how the
development of large grammars by different CLs can be
properly supported by a LEADS.

uniform environment where their contributions can
be easily integrated. These results can be obtained
if, at any time, the user can select all and only the
functionalities he/she actually needs.

A similar tension involves also linguistic data and
processors. LERs want to see them as units that can
be assembled to build the final architecture. PMs are
inclined to consider the linguistic data as a unit, but
see the processors as complex modules to manipu-
late. Finally, CLs obviously must be able to single
out pieces of linguistic data and organize them in a
significant way, while using the processors as black
boxes.

Before discussing how user needs have been im-
plemented in GEPPETTO, we briefly introduce the
formalism for linguistic data as it was developed by
the CLs of the working group.

4 The Formalism for Linguistic Data

CLs participating in the working group suggested
a Typed Feature Logic oriented (Carpenter, 1992)
formalism. The reasons were as follows:

• TFL formalisms provide a way for breaking
down the structure of linguistic data, allowing
for a clear separation between the description of
abstract linguistic types and that of g rammat -
ical rules and lexical entries. 4 This facilitates
knowledge encapsulation as well as a modular
architecture of linguistic data. Such a modular-
ity can play an important role in the reuse of
existing data;

• typing secures to a high degree the consistency
of the linguistic data. This speeds up the pro-
cess of data editing and debugging;

• the formalism is well known and many basic uni-
fication algorithms are available;

• it meets the demands of many current linguistic
theories, e.g. LFG, GPSG, HPSG, etc.

TFL specifications are compiled into a graph for-
mat , where each node represents a Typed Feature
Structure (TFS). Types and the type hierarchy have
been implemented by adapting the encoding schema
proposed by (Ait-Kaci et al., 1989) to the TFL for-
mat . This permits to efficiently handle very large
type hierarchies as well as to account in a straight-
forward way for type disjunction. The standard TFL
formalism has been modified to accommodate:

• D e c l a r a t i o n s t a t e m e n t s specifying, for instance,
that a certain object is not an ordinary TFS. In
case its properties must be assessed by other,

4In this respect, CLs strongly suggested that some
phrase-structure-like skeleton should be provided. This
seems to better address their expectations and ways of
thinking than a system in which grammar rules are ab-
sent, as it is normally possible in type-oriented linguistic
formalism (e.g. HPSG).

19

possibly external, modules; such a fact can be
specified by means of external constraints;

• External constraints providing ,explicit links to
external modules, e.g. morphological proces-
sors, independent KBs, etc.;

• Directives for the unifier. For instance, it is
possible to force the unifier to consider in the
first place the paths that have been observed to
cause more frequent failures (Uszkoreit, 1991).

• Macros.

Declaration statements and external constraints
greatly enhance the modularity and portability of
the LEAs developed by means of GEPPETTO, by al-
lowing the reuse of existing processors and/or data.

5 T h e G E P P E T T O E n v i r o n m e n t

In this section some of the characteristics of GEP-
PETTO are outlined, focusing on those aspects that
specifically meet user needs. A more detailed de-
scription of GEPPETTO is contained in (Ciravegna
et al., 1996).

In GEPPETTO an application consists of two main
parts: a (set of) processor(s) and a Linguistic Sys-
tem. The latter is the collection of all the sets of
linguistic descriptions relevant for the characteriza-
tion of a given corpus. Given the kind of formal-
ism adopted, namely TFL, a Linguistic System con-
sists of: a type hierarchy, a grammar, a lexicon, and
a set of macros. The concept of linguistic system
is not simply conceived as a set of the four com-
ponents just mentioned but it is a complex object
with a central role in GEPPETTO: much of the de-
velopment of LEAs is centered around linguistic sys-
tems. CLs edit, browse, and update linguistic sys-
tems. They can reuse existing linguistic systems, or
parts thereof, to produce new ones.

GEPPETTO maintains a conceptual distinction be-
tween browsing/editing and testing/debugging. Ac-
tually, browsing/editing can be performed indepen-
dently by different users, whereas testing/debugging
can require a strict cooperation between different ty-
pology of users. This is so whenever an error is due
to unexpected interactions between data and proces-
sors. These observations emphasize the advantage of
a single environment for the whole development cy-
cle: different users have dedicated facilities for devel-
opment, but a common environment for integrating
and testing.

We now turn to a discussion of the facilities and
tools provided to the different users.

5.1 S u p p o r t i n g t h e L ingu i s t i c E n g i n e e r

LER main task is the study of architectural require-
ments (together with PM). He/she also controls the
compliance of the LEA with the initial requirements.
To this end, GEPPETTO provides support for: (a)

the rapid prototyping of architectures by assembling
already existing processors and linguistic systems,
and (b) tests against a test corpus. Both data and
processors are seen by the LER as black boxes that
can be combined by means of a graphical interface.

When the architecture meets the requirements, a
delivery system can be produced. It contains the
selected linguistic system and processor(s), and ex-
cludes the GEPPETTO development environment.

5.2 S u p p o r t i n g t h e P r o c e s s o r M a n a g e r

PM task is to identify the processors that can satisfy
the architectural requirements. She/he can choose
among the processors made available by GEPPETTO 5
or link external ones to the environment. In the lat-
ter case, an API is provided to connect the exter-
nal processor to the GEPPETTO world. Once a new
processor has been properly linked, it is completely
identical to the other default processors: it can be
selected via the graphical interface, it can take ad-
vantage of the debugging/testing facilities, and so
o n .

Via API, it is also possible to interface LEAs with
other kinds of external modules, e.g. modules which
make available functionalities not provided by the
environment (e.g. Knowledge Bases or morphologi-
cal analyzers).

PM can also choose among different unification
algorithms that have been designed to:

* carefully control and minimize the amount of
copying needed with non-deterministic parsing
schemata (Wroblewski, 1987) (Kogure, 1990);

• provide a better match between the character-
istics of the unifiers and those of the linguis-
tic processors. Indeed, different linguistic pro-
cessors may profit of different unification algo-
rithms. The availability of different unification
algorithms allows the user to choose the one
which best fits the needs of the particular lin-
guistic processor at hand.

5.3 S u p p o r t i n g t h e C o m p u t a t i o n a l L i n g u i s t

A considerable amount of effort has been devoted
to create suitable (specialized) graphical tools for
CL. Recall that CL main task is to build a linguistic
system satisfying the application requirements. The
graphical environment must allow CL to ignore low-
level details as much as possible, and concentrate on
the linguistic aspects of data description.

CLs can build a linguistic system both by pasting
already existing components (and modifying them

5At present, GEPPETTO features two chart-based
parsers (a bidirectional Head-Driven Bottom-Up (Satta
and Stock, 1989) and a CYK-like) and a Head-Driven
Bottom-Up non-deterministic generator (Pianesi, 1993).
We plan to make available a wider array of processors in
the near future.

20

Figure 2: GEPPETTO during a debugging session.

when necessary) and by building it from scratch. 6
As the data forming the parts of a linguistic sys-

tem differ in attributes, global organization and
functions, specialized graphical tools have been de-
signed for browsing/editing the type hierarchy, the
grammar, the lexicon and the macros.

The main tools for the CL are:

• a grapher for browsing and editing the type in-
heritance hierarchy. It displays mouse sensible
nodes and allows to add/delete /modify nodes,
as well as to modify the hierarchy itself;

• browsers for data sets such as lexicon,
grammar and macros. They allow to
add/dele te /modify /copy elements in the data
sets, as well as to undertake actions on the data
set as a whole (e.g. compiling it);

• editors for editing and modifying properties of
single lexical entries, grammar rules, macros
and type hierarchy nodes. They include edi-
tors for TFL descriptions, feature appropriate-
ness statements, etc. TFL-syntax error check-
ing, TFL description compilation and TFS vi-
sualization are supported. Documentation and

SCurrently GEPPETTO provides some standard re-
sources for Italian: a type hierarchy, two lexica and two
grammars.

comment notes can be attached to each item;

* interactive and post processing debugging tools
(at now mainly a sophisticated chart browser).

Facilities are also supplied for computing statistics
about performances on test suites. In particular, it
is possible to detect points where unification failures
arise. Such results can be exploited either to hand-
tune the linguistic systems to the corpus needs, or by
feeding them into a module which forces unification
algorithms to consider unification failure hypothesis
first, this way speeding up the whole processing.

6 P D at Work: the Debugging Tools

The PD working group suggested to divide the tools
for testing and debugging into interactive facilities
(such as tracers and steppers to follow the applica-
tion of grammar rules during processing), and "post-
processing" facilities. In the working group it was
agreed that naive interactive tools can be quite diffi-
cult to be fully exploited given the great number
of rule applications and unifications that happen
during parsing. In order to reduce the number of
rule applications and unifications traced, it is neces-
sary to have a very powerful (and complex) language
which makes the user able to program the tracer; but
usually tracer's expressive power is quite difficult to

21

be fully taken advantage of. Moreover, it is impor-
tant that the tools are (relatively) easy to use, so
that they can be usefully exploit also by users not
necessarily expert of that particular tool or by time-
to-time users. Given these considerations and also
the fact that all the processors currently available
are chart-based (and hence all the results produced
during processing are still available at the end of
the processing itself), the discussion focused on the
post-processing tools.

Within such tools, the chart browser plays a cen-
tral role. To better discuss its characteristics, paper
mockups were jointly created and ,evaluated. Such
an effort produced a highly detailed description of
the tool functionalities and of its layout; in partic-
ular, the kind of information and actions (showing
parse/generation trees, TFS descriptions associated
with edges) to be made available to the user, the
different viewpoints on edges and vertices, etc.

As it turned out, the chart browser window is the
starting point for the exploration of the structures
produced during processing. The tool (cf. figure 2)
allows the user

• to see the edges either in a strictly sequential
way or as organized around the objects con-
necting them (i.e. vertices for the parser and
constraints for the generator);

• to filter edges according to their type (ac-
t ive/inactive edges), to their categories, etc.;

• to browse through the wide and complex data
structures produced;

* to activate auxiliary tools.

The chart browser is a fairly standard debugging
tool; in GEPPETTO the adoption of a User Cen-
tered approach permitted to design a flexible and
extendible tool, which is the central structure for
browsing through the elements built during process-
ing.

Besides the chart browser facilities described
above (and already implemented), the working
group faced the problem of how to single out the
failures happened during parsing and to understand
their causes. Browsing edges in the chart it is pos-
sible to identify (guess) possible error points and to
concentrate the focus on them: it was envisaged the
possibility of selecting some edges in the chart and
run the parser on them in a special mode. During
this special running mode G~.PPETTO reports diag-
nostic messages on the causes of the failure: missing
grammar rules/lexical items, failure during unifica-
tion, etc. If the failure is due to unification, the
involved paths are reported.

7 E v a l u a t i o n s w i t h U s e r s

The implemented system was assessed by means of
a formative evaluation (Nielsen, 1993), to test its

general usability and the quality of the proposed so-
lutions.

P a r t i c i p a n t s The testing group consisted of eight
people from our department. Participants had dif-
ferent degrees of expertise in NLP, though none of
them had ever used GEPPETTO before, nor had par-
ticipated in the PD process. Participants were not
required to have any previous knowledge of the TFS
formalism.

P r o c e d u r e Users were given the manual in ad-
vance but they were not required to read it before
the test, nor any training occurred before the testing
phase. During the experiment, users were allowed
to freely consult the manual. Each participant was
asked to perform 4 tasks:

1. architecture definition and composition: the
participant was required to create her/his per-
sonal LEA by composing existing linguistic re-
sources and processors to form a new architec-
ture;

2. lexicon update: the participant had to insert
lexical entries in the lexicon, and to run the
parser over a sentence containing the new terms;

3. hierarchy manipulation and grammar update:
the participant was asked to modify the type
hierarchy by acting on its graph. Furthermore,
she/he had to modify the grammar. Finally,
by browsing the resulting parse tree, the sub-
ject was asked to verify the correctness of the
changes;

4. test suite run: lastly users had to load an exist-
ing test suite (a file), to add the sentence of task
2 and to run their architecture over it; results
of the running had to be saved in a log file.

During the experiment, participants were re-
quested to verbalize their thoughts. This method,
known as thinking-aloud, permits an easy detection
of the problematic parts of the human-computer in-
teraction as well as to understand how users perceive
the system (Nielsen, 1993). An experimenter sat
near the participant, taking notes on occurring prob-
lems and stimulating the subject to express her/his
thoughts. After the test phase, the experimenter in-
terviewed each participant, discussing the problems
she/he run into, gathering suggestions on possible
improvements, and investigating user satisfaction.
All performances were videotaped to allow succes-
sive analysis.

R e s u l t s The choices done and implemented into
GEPPETTO supported naive users in moving around
and acting in a complex and unfamiliar environment.
Even participants who had not read the manual and
had only a little experience in NLP were able to
complete the tasks in less then one hour. 7 Through

7This time is definitely low considering that users
were required to comment their actions, were allowed

22

observations and interviews it could be verified that
participants reached a good understanding of the
system and judged it positively.

Some weaknesses in the interface design were iden-
tified: problems mainly limited to common graphi-
cal user interfaces mistakes, e.g. lack of feedback
in resource status, and to the understanding of the
terminology developed during PD (naming problem)
emerged. Identified problems may be solved with a
limited revision of the graphical interface.

Experiments demonstrated that the adoption of
PD can bring intuitiveness also in the design of a
complex LEADS: even users without any experience
with GEPPETTO and limited knowledge in NLP were
able to easily understand the system organization
and to effectively use its tools to accomplish non
trivial tasks.

8 C o n c l u s i o n s a n d F u t u r e W o r k

In this paper we have discussed the importance of
user involvement in the design of a LEADS and ex-
emplified it by discussing our experience with GEP-
PETTO.

The PD methodology enabled users to express
their desires and needs while participating to the de-
sign phase. This permitted to create an environment
whose facilities are suited for each of the users/tasks
involved in the development of a LEA. The design
work started from very general issues (e.g. the defi-
nition of the development cycle) and went into very
specific details (e.g. the functionalities associated
with the buttons of each window).

It must be stressed that a crucial role was played
by the interface design expert, who organized the
many different ideas in a concrete and coherent in-
terface layout, provided the necessary insights to
analyze user-machine interactions, and continuously
stimulated the active cooperation within the work-
ing group.

GEPPETTO has been implemented under Allegro
Common Lisp and runs on SUN SPARCstations.
The graphical facilities have been implemented by
means of CLIM and Grasper.

GEPPETTO has been used in the development of
a number of applicative projects, in different ap-
plication domains, including multi-lingual text gen-
eration (LRE-GIST), information extraction from
agency news (LE-FACILE), and Natural Language
information query (LE-TAMIC-P); all these projects
have been funded by the European Union.

Future work on GEPPETTO will address a num-
ber of important pending issues. Among them it
is worth mentioning: the full implementation of the
debugging tools suggested by the user group and the
implementation of a number of facilities to improve

to consult the manual and were stimulated in exploring
GEPPETTO.

GEPPETTO's capability of supporting the design of
LEA architectures.

R e f e r e n c e s

Hassan Ait-Kaci, Robert Boyer, Patrick Lincoln,
and Roger Nasr. 1989. Efficient implementation
of lattice operations. A CM Transactions on Pro-
gramming Languages and Systems, 11(1):115-146.

Erran Carmel, Randall Whitaker, and Joey George.
1993. PD and Joint Application Design: A
transatlantic comparison. Communication of the
ACM, 36(4):40-48, June.

B. Carpenter. 1992. The Logic of Typed Feature
Structures. Cambridge University Press, Cam-
bridge, Massachusetts.

Fabio Ciravegna, Alberto Lavelli, Daniela Petrelli,
and Fabio Pianesi. 1996. The Geppetto Develop-
ment Environment. Version 2.0.b. User Manual.
Technical Report 9608-10, IRST, August.

Kiyoshi Kogure. 1990. Strategic lazy incremen-
tal copy graph unification. In Proceedings of the
International Conference on Computational Lin-
guistics, pages 223-228, Helsinki, Finland.

Michael Muller, Daniel Wildman, and Ellen White.
1993. Taxonomy of PD practices: A brief prac-
titioner's guide. Communications of the ACM,
36(4):26-28, June.

Jakob Nielsen. 1993. Usability Engineering. Aca-
demic Press.

Donald A. Norman and Stephen W. Draper. 1986.
User Centered System Design: new Perspectives
on Human-Computer Interaction. Lawrance Erl-
baum Associates.

Communications of the ACM. 1993. Special Issue
on Participatory Design, June.

Fabio Pianesi. 1993. Head-driven bottom-up gener-
ation and Government and Binding: a unified per-
spective. In Helmut Horacek and Michael Zock,
editors, New Concepts in Natural Language Gen-
eration: Planning, Realization and Systems, pages
187 - 214. Pinter Publishers, London.

Giorgio Satta and Oliviero Stock. 1989. Formal
properties and implementation of bidirectional
charts. In proceedings of the Eleventh Interna-
tional Joint Conference on Artificial Intelligence,
Detroit, MI.

Hans Uszkoreit. 1991. Strategies for adding control
information to declarative grammars. In Proceed-
ings of the Annual Meeting of the Association for
Computational Linguistics, pages 237-245, Berke-
ley, California, USA.

David A. Wroblewski. 1987. Nondestructive graph
unification. In Proceedings of AAAI-87, pages
582-587, Seattle, WA.

23

