
Some apparently disjoint aims and requirements for grammar
deve lopment environments: the case of natural language

generation

J o h n B a te ma n
Language and Communication Research

University of Stirling, Stirling, UK
(J . a. bat eman~st Jr. ac. uk)

m

m

m

n

m

m

m

m-

m

U

m

m

U

m

n

m

m

A b s t r a c t

Grammar development environ-
ments (GDE's) for analysis and for gener-
ation have not yet come together. Despite
the fact that analysis-oriented GDE's (such
as ALEP) may include some possibility of
sentence generation, the development tech-
niques and kinds of resources suggested are
apparently not those required for practi-
cal, large-scale natural language generation
work. Indeed, there is n o u s e of 'standard'
(i.e., analysis-oriented) GDE's in current
projects/applications targetting the gener-
ation of fluent, coherent texts. This un-
satisfactory situation requires some analy-
sis and explanation, which this paper at-
tempts using as an example an extensive
GDE for generation. The support pro-
vided for distributed large-scale grammar
development, multilinguality, and resource
maintenance are discussed and contrasted
with analysis-oriented approaches.

1 I n t r o d u c t i o n : a problem
Grammar development environments (GDE's) for
analysis and for generation have not yet come to-
gether. In fact, the mainstay of design for linguistic
resource development environments is skewed very
far from that necessary for generation; this is illus-
trated well by the following remark from an EAGLES
(Expert Advisory Group for Language Engineering
Standards) report describing the current "conver-
gence" of opinion concerning the required function-
ality for development platforms:

"The necessary functionality of a develop-
ment platform is more or less agreed upon
by grammar writers They should have
a parser for testing the developed gram-
mars with respect to an input string, and

possibly also a generator to test for over-
generation." (EAGLES, 1996, p117)

This marginalization of the generation process nat-
urally impacts on the kinds of development and de-
bugging tools that are provided. For example, per-
haps the most extensive workbench developed within
the European Union, the Advanced Language Engi-
neering Platform (ALEP: cf. (Simpkins et al., 1993)),
while forced to adopt a so-called 'lean' formalism in
order to achieve acceptable efficiency, nevertheless
orients itself most closely to 'mainstream' linguis-
tic formalisms such as HPSG and LFG. Neither of
these formalisms have however found widespread use
in larger-scale generation contexts.

There also continue to be substantial projects
whose specific goals are to build or collect linguis-
tic resources for language engineering--including,
for example, projects such as Acquilex, Eagles,
TransTerm, EuroWordNet and others} However,
these projects have not apparently been configured
to provide the kinds of resources that generation
requires. This can be seen in the virtually zero
take-up of such 'mainstream' (i.e., analysis-oriented)
resources in generation projects (both monolingual
and multilingual) where the goal has been to provide
efficient generation of realistic, useful texts.

Thus, not only is there a lack of uptake of lin-
guistic resources, there is also virtually n o u s e of
'standard' (i.e., analysis-oriented) GDE's in current
projects/applications targetting the generation of
fluent, coherent texts. This unsatisfactory situation
certainly requires some analysis and explanation--
which this paper attempts. To do this, we first
briefly illustrate our claim that the grammar de-
velopment environments and approaches that are
adopted in natural language generation are by and
large disjoint to those developed in natural language

1Sch/itz (Schiitz, 1996) provides a useful overview
of current language engineering projects where multilin-
guality plays a role.

analysis. We then show how the main property that
effectively distinguishes successful generation gram-
mars from analysis grammars (regardless of what
the grammars are used for) is their orientation to
communicative-function and that it is precisely this
property that plays a crucial role in creating power-
ful and efficient grammar development environments
that are suited to the generation task.

We illustrate this relationship between resource
organization and development tools by focus-
ing on techniques for developing and maintain-
ing large-scale linguistic resources (mostly grammar
and semantics-grammar mappings), for distributed
grammar development, and for supporting multilin-
guality that have developed for generation work. A
direct question raised by the paper is then the ex-
tent to which the techniques discussed could also be
relevant and applicable to analysis-oriented develop-
ment environments.

2 T h e lack o f u se of a n a l y s i s - b a s e d
G D E ' s for g e n e r a t i o n

There is clearly a partially 'sociological' explana-
tion to the lack of exchange between approaches
in analysis and generation: the groups working on
analysis and text generation are by and large dis-
joint and the questions and issues thus central in
these groups are also at best only partially overlap-
ping. This is not, however, sufficient. Most input
to analysis-oriented work (e.g., (Pulman, 1991)) has
attempted to achieve a workable level of generality
and formal well-foundedness that would guarantee
the widespread applicability and re-usability of their
results. If this were sufficient and had been success-
ful, one could expect generation developers to have
availed themselves of these results. But uptake for
generation continues to be restricted to those work-
ing in the analysis-oriented tradition, mostly in the
pursuit of 'bi-directional' sentence generation on the
basis of resources developed primarily for analysis.
'Core' text generation activities remain untouched.

One, more contentful, reason for this is that
the particular requirements of generation favour an
organization of linguistic resources that has itself
proved supportive of powerful development and gen-
eration environments. To clarify the needs of gen-
eration and the relation to the GDE's adopted, we
can cross-classify approaches adopted for generation
according to the kind of generation targetted. This
largely corresponds to the size of linguistic unit gen-
erated. Thus we can usefully distinguish generation
of single phrases, generation of single sentence or
utterance generation (such as might also still occur

in MT most typically or in utterance generation in
dialogue systems), generation of connected texts of
a single selected text type, and generation of con-
nected texts of a variety of text types (e.g., showing
variation for levels of user expertise, etc.). These are
distinguished precisely because it is well known from
generation work that different issues play a role for
these differing functionalities.

Three generation 'environments' cover the ma-
jority of projects concerned with text generation
where generation for some practical purpose(s) is
the main aim, not the development of some par-
ticular linguistic treatment or pure research into
problems of generation or NLP generally. These
are Elhadad's (Elhadad, 1990) 'Functional Unifi-
cation Formalism' (FUF), the KPML/Penman sys-
tems (Mann and Matthiessen, 1985; Bateman,
1997), and approaches within the Meaning-Text
Model (cf. (Mel'Suk and Zholkovskij, 1970)) as used
in the CoGenTex-family of generators. Here re-
sources appropriate for real generation are accord-
ingly understood as broad coverage (with respect
to a target application or set of applications) lin-
guistic descriptions of languages that provide map-
pings from enriched semantic specifications (includ-
ing details of communicative effects and textual or-
ganization) to corresponding surface strings in close
to real-time. In addition, there are many systems
that adopt in contrast a template-based approach
to generation--now often combined with full gen-
eration in so-called 'hybrid' frameworks. While,
finally, there is a very small number of serious,
large-scale and/or practical projects where analysis-
derived grammatical resources are adopted. This
distribution is summarized in Table 1. Importantly,
it is only for the approaches in the final righthand
column that standard analysis-based GDE's appear
to be preferred or even applicable. 2

3 C o m m u n i c a t i v e f u n c t i o n : a
c o m m o n t h r e a d in g e n e r a t i o n
r e s o u r c e s

It is well known in natural language generation
(NLG) that functional information concerning the
communicative intent of some utterance provides a
convenient and necessary organization for generator
decisions (cf. (McDonald, 1980; Appelt, 1985; McK-
eown, 1985)). Different approaches focus the role
of communcative functions to a greater or less de-

2For references to individual systems see the Web
or a detailed current state of the art such as Zock and
Adorni (Zock and Adorni, 1996) or Bateman (Bateman,
to appear).

connected
texts
(differ-
ing tex t
types)
connec ted
texts
(single
text
type)
single
s e n -

t e n c e s /
utter-

single
phrases

funct ional approaches

KPML/Penman I FUF
TechDoc
HealthDoc
KOMET

GIST
Drafter
A GILE

Speak!
Pangloss

PlanDoc
Streak
Comet

some

some

dependency ap-
proach

MTM

FOG
LFS
MultiMeteo

many

t empla te
approach

Peba-II

several

many

s t ruc tura l
approach

Verbmobil
CLE
IDAS

A NTHEM

Projects given in italics are essentially multilingual--i.e., they are concerned with the generation
of texts in at least two languages.

Table 1: Distribution of generation systems by task and approach

gree. Some subordinate it entirely to structure, some
at tempt to combine structure and function felici-
tously, others place communicative function clearly
in the foreground. Among these latter, approaches
based on systemic-functional linguistics (SFL) have
found the widest application. Both the FUF and
KPML/Penman environments draw heavily on SFL.
This is to emphasize the role of the paradigmatic
organization of resources in contrast to their syn-
tagmatic, structural organization. It turns out that
it is this crucial distinction that provides the clean-
est account of the difference between a GDE such as
ALEP and one such as KPML.

Viewed formally, a paradigmatic description of
grammar such as that of SFL at tempts to place
as much of the work of the description in the type
lattice constituting the grammar. The role of con-
straints over possible feature structures is minimal.
Moreover, the distinctions represented in the type
lattice subsume all kinds of grammatical variat ion--
including variations that in, for example, an HPSG-
style account might be considered as examples of the
application of lexical rules. Diathesis alternations
are one clear example; differing focusing construc-
tions are another. These are all folded into the type
lattice. Generation with such a resource is then re-
duced to traversing the type lattice, generally from
least-specific to most-specific types, collecting con-
straints on structure. A grammatical unit is then

exhaustively described by the complete list of types
selected during a traversah this is called a selection
expression. Additional mechanisms (in particular,
the 'choosers') serve to enforce determinism: that
is, rather than collect parallel compatible partial se-
lection expressions, deterministic generation is en-
forced by appealing to semantic or lexical informa-
tion as and when required. This approach, which is
theoretically less than ideal, in fact supports quite
efficient generation. It can be equated with the use
of 'lean' formalisms in analysis-oriented GDE's.

This paradigmatic design sketched here has
proved to have significant consequences for the de-
sign of appropriate development environments. The
properties of these development environments are
also directly inferable from the properties of the lin-
guistic descriptions they are to support. Among the
results are:

• a much improved mode of resource debugging,

• a powerful t reatment of multilinguality in lin-
guistic resources,

• and strong support for distributed large-scale
grammar development.

We will briefly note these features and then present
some derivative functionalities that also represent
differences between analysis and generated oriented
GDE's. For the functional approaches, our con-
crete descriptions will be based on KPML: FUF is

• : :.. :: :. :: : : •..:.:.;: .. : : ...:

, :~,v, , ' ' " " ' ~ : : : : ~ :
r ~ J : : + T ~ : " . .

. . . . • sub~titul:ion-~alli~ fl~
. : : : : :

: . . . , . . : : . : . :

: . . : • , : : : : : . !::

: : : : : : i

: ' : : ' ' : : ' ' : • • : i : •

: : • ~ n ~ - - ^ ~

: : : : : : :

. i" ~

. : : i

~ ~ : f ~ ~ : + u t ~ .~.~.
~ , ~ : : : : • • . : : : : : ::

~ - ~ .
• $~.

H 0 ~ :

: c 0 ~ 0 f ~
~ ~ : : : :

.:Oal~l'ii~r~E: " "
: ~ w ~ : :

• : :

: : : + : . ' . . : + • . • : : : • : . : : • : i . • • • ! !

~ m ~ . : : • : : • • . . : :

,:.:~+~ ~ t ~ t . ~ . ' . ! ~ u ~ ~
• • : : : : . i • • • : :

Figure 1: Accessing points in the grammatical type lattice from a generated structure

not explicitly multilingual and has as yet few vi-
sualization tools for resource development (limited,
for example, to basic graphs of tile type lattice).
KPML is more similar in its stage of development
to, for example, ALEP, in that it offers a range ofvi-
sualisation techniques for both the static resources
and their dynamic use during generation, as well as
support methods for resource construction, includ-
ing versioning, resource merging, and distinct kinds
of modulari ty for distributed development. FUF is
still mostly concerned with the underlying engine
for generation and represents a programming envi-
ronment analogous to CUF or TDL.

B e y o n d i n t e r a c t i v e t r a c i n g

Experiences with debugging and maintaining
large generation grammars lead to the conclusion
that ' tracing' or 'stepping' during execution of the
resources is usually not a useful way to proceed. This
was the favored (i.e., only) mode of interaction with,
for example, the Penman system in the 80s. This has
been refined subsequently, both in Penman and in
KPML and F U F , s o that particular tracing can occur,
interactively if required, only when selected linguis-
tic objects (e.g., particular disjunctions, particular
types of 'knowledge base' access, etc.) are touched

during generation or when particular events in the
generation process occurred. However, although al-
ways necessary as a last resort and for novices, this
mode of debugging has now in K P M L given way com-
pletely to 'result focusing'. Here the generated result
(which can be partial in cases where the resources
fail to produce a final generated string) serves as a
point of entry to all decisions taken during gener-
ation. This can also be mediated by the syntactic
structure generated.

This is an effective means of locating resource
problems since, with the very conservative 'formal-
ism' supported (see above), there are only two pos-
sible sources of generation errors: first, when the
linguistic resources defined cover the desired gen-
eration result but an incorrect grammatical feature
is selected (due to incorrect semantic mappings, or
to wrongly constrained grammatical selections else-
where); and second, when the linguistic resources
do not cover the desired result. This means that the
debugging task always consists of locating where in
the feature selections made during generation--i .e. ,
in the selection expressions for the relevant gram-
matical uni ts - -an inappropriate selection occurred.

The selection expression list is accessed from the
user interface by clicking on any constituent, either

from the generated string directly or from a graphi-
cal representation of the syntactic structure. The list
itself can be viewed in three ways: (i) as a simple list
functioning as a menu, (ii) as a graphical representa-
tion of the type lattice (always a selected subregion
of the lattice as a whole) with the selected features
highlighted, and (iii) as a animated graphical trace
of the 'traversal' of the type lattice during genera-
tion. In addition, all the structural details of a gen-
erated string are controlled by syntactic constraints
that have single determinate positions in the type
lattice. It is therefore also possible to directly in-
terrogate the generated string to ask where particu-
lar structural features of the string were introduced.
This is a more focused way of selecting particular
points in the type lattice as a whole for inspection.

Figure 1 shows a screenshot during this latter kind
of user activity. The user is at tempting to find out
what where the lexical constraints responsible for
the selection of the noun "TIME" in the phrase "At
the same TIME" were activated. Selecting to see the
lexical class constraints imposed on this constituent
(THING#3 in the structure top-right) gives a listing
of applied constraints (lower-right). This indicates
which lexical constraints were applicable (e.g., NOUN,
COMMON-NOUN, etc.) and where in the type lattice
these constraints were introduced (e.g., at the dis-
junction named HEAD-SUBSTITUTION, etc.). Click-
ing on the disjunction name brings up a graphical
view of the disjunction with the associated struc-
tural constraints (upper-left). The feature selected
from a disjunction is highlighted in a different color
(or shade of grey: l e x i c a l - t h i n g) . The 'paradig-
matic context ' of the disjunction (i.e., where in the
type lattice it is situated) is given to the left of the
disjunction proper: this is a boolean expression over
types presented in standard systemic notation.

Several directions are then open to the user. The
user can either follow the decisions made in the type
lattice to the left (less specific) or to the right (more
specific): navigating in either case a selected sub-
graph of the type lattice. Alternatively, the user can
inspect the semantic decisions that were responsible
for the particular selection of grammatical feature in
a disjunction. This 'upward' move is also supported
graphically. The particular decisions made and their
paths through semantic choice experts ('choosers')
associated with each (grammatical) disjunction are
shown highlighted. Since all objects presented to the
user are mouse-sensitive, navigation and inspection
proceeds by direct manipulation. All objects pre-
sented can be edited (either in situ or within auto-
matically linked Emacs buffers). Any such changes
are accumulated to define a patch version of the

loaded resources; the user can subsequently create
a distinct patch for the resources, or elect to accept
the patches in the resource set. Generation itself is
fast (due to a simple algorithm: see above), and so
creating a new 'result string' for further debugging
in the face of changes made is the quickest and most
convenient way to conduct further tests. This elim-
inates any need for backtracking at the user devel-
opment level. It is possible to examine contrastively
the use of resources across distinct generation cycles.

One useful way of viewing this kind of activity is
by contrast to the state of affairs when debugging
programs. KPML maintains the linguistic structure
as an explicit record of the process of generation. All
of the decisions that were made during generation
are accessible via the traces they left in the generated
structure. Such information is typically not available
when debugging a computer program since when the
execution stack has been unwound intermediate re-
sults have been lost. If certain intermediate results
must consequently be re-examined, it is necessary
to introduce tracing at appropriate poin ts - -a pro-
cedure that can now usually be avoided resulting in
significantly faster cycles of debugging/testing.

M u l t i l i n g u a l r e p r e s e n t a t i o n s

The use of multilingual system networks has been
motivated by, for example, Bateman, Matthiessen,
Nanri and Zeng (Bateman et al., 1991). KPML
provides support for such resources, including con-
trastive graphical displays of the type lattices for dis-
tinct languages. In addition, it is possible to merge
automatically monolingual or multilingual resource
definitions and to separate them out again as re-
quired. Importing segments of a type lattice for one
language to form a segment for a distinct language
is also supported. This has shown that it is not nec-
essary to maintain a simple division between, for ex-
ample, 'core' grammar and variations. Indeed, such
a division is wasteful since language pairs differ in
the areas they share. The support for this multi-
linguality is organized entirely around the paradig-
matic type lattice. The support tools provided for
manipulating such language-conditionalized lattices
in KPML appear to significantly reduce the devel-
opment time for generation resources for new lan-
guages. A black-and-white representation of a con-
trastive view based on the Eagles morphology rec-
ommendations is shown in Figure 2. The graph em-
phasizes areas held in common and explicitly labels
parts of the lattice that are restricted in their lan-
guage applicability.

The possibilities supported for working multilin-
gually (e.g., inheritance, merging resources) rely en-

Rm~m~o GJ,apm~ cmi~m¢ c~1~tm~ Fsmmmm~s
Dispk~f Modes ~ ~lt~nUon To

I ~ l t ~ Show ~ V~IJl Collecl~d Feat]ures

R e g x a ~ ~ TYPES : Langum~g: O ~

0 ~)))+I

W ~ .

Figure 2: Views on a multilingual resource

tirely on the relative multilingual applicability of the
paradigmatic organization of the grammar. It ap-
pears a fact of multilingual description that paradig-
matic functional organizations are more likely to
show substantial similarities across languages than
are the syntagmatic structural descriptions. In an
overview of resource definitions across 6 languages,
it was found that the multilingual description only
contains 32% of the number of objects that would
be need if the 6 grammars were represented sepa-
rately. Significant degrees of overlap have also been
reported whenever a description of one language
has been at tempted on the basis of another (cf.,
e.g., (Alshawi et al., 1992; Rayner et al., 1996)).
The paradigmatic basis simply extends the range
of similarities that can be represented and provides
the formal basis for providing computational tools
that support the user when constructing language
descriptions 'contrastively'.

D i s t r i b u t e d l a rge - sca l e g r a m m a r
d e v e l o p m e n t

The paradigmatic organization of a large-scale
grammar shows a further formal property that is
utilized throughout the KPML GDE. Early work on
systemic descriptions of English noted that emer-
gence of 'functional regions': i.e., areas of the gram-
mar overall that are concerned with particular areas
of meaning. As Halliday notes:

"These [functional] components are re-
flected in the lexicogrammatical system
in the form of discrete networks of op-
tions. Each . . . i s characterized by strong
internal but weak external constraints: for
example, any choice made in transitivity
[clause complementation] has a significant
effect on other choices within the transi-
tivity systems, but has very little effect
on choices within the mood [speech act
types] or theme [information structuring]
systems." (Halliday, 1978, pl13).

This organization was first used computationally in
the development of the Nigel grammar of English
within the Penman project. Nigel was probably the
first large-scale computational grammar whose pre-
cise authorship is difficult to ascertain because of the
number of different linguists who have contributed
to it at different times and locations.

The basis for this successful example of dis-
tributed grammar development is the organization
of the overall type lattice of the grammar into mod-
ular functional regions. This has now been taken
as a strong design principle within KPML where all
user access to the large type lattices making up a
grammar is made through specific functional regions:
for example, asking to graph the lattice will by de-
fault only present information within a single re-
gion (with special pointers out of the region to indi-
cate broader connectivity). This is the paradigmatic
equivalent of maintaining a structural grammar in
modules related by particular syntactic forms. How-
ever, whereas the latter information is not strongly
organizing for work on a generation grammar, the
former is: work on a generation resource typically
proceeds by expanding a selected area of expressive
potential--i .e. , the ability of the grammar to express
some particular set of semantic requirements. This
can include a range of grammatical forms and is
best modularized along the paradigmatic dimension
rather than the syntagmatic.

The relative strength of intra-region connections
in contrast to extra-region connections has provided
a solid basis for distributed grammar development.
Developers typically announce that they are inter-
ested in the expressive potential of some functional
region. This both calls for others interested in the
same functional region to exchange results coopera-
tively and warns generally that a functional region
may be subject to imminent change. When a revised
version of the region is available it replaces the pre-
vious version used. Integration of the new region
is facilitated by a range of visualization tools and
connectivity checks: the final test of acceptability

m

[]

mm

m

m

m

mm

m

m

m

m

[]

m

m

m

[]

m

m

m

m

m

m

m

I
PPSPATIOTIPORAL CIRClRSTA]~*IAL

32 systems 2 6 systems
4 inputs 10 inputs
1 output

55 systems

21 inputs
9 outputs

12 sys tem
I inputs
5 outputs

\
\

Figure 3: Functional region connectivity for English (extract)

is that all test suites (see next subsection) generate
the same results as with the previous region version
and that a new test suite is provided that demon-
strates the increased or revised functionality of the
new region.

Regions are defined across languages: the current
multilingual resources released with KPML include
around 60 regions. A partial region connectivity
graph for the English grammar is shown in Figure 3.
This graph also serves as a 'menu' for accessing fur-
ther graphical views of the type lattice as well as
selections from test suites illustrating use of the re-
sources contained within a region. Dependencies be-
tween regions are thus clearly indicated.

I n t e g r a t e d t e s t su i t e s

Sets of linguistic resources for generation are typ-
ically provided with test suites: such test suites con-
sist minimally of a semantic specification and the
string that should result when generating. In KPML

these are indexed according to the grammatical fea-
tures that are selected during their generation. This
permits examples of the use and consequences of any
feature from the type lattice to be presented during
debugging. This is one particularly effective way not
only of checking the status of resources but also for
documenting the resources. The complete genera-
tion history of examples can be examined in exactly
the same way as newly generated strings. An inter-
esting line of development underway is to investigate
correspondences between the paradigmatic features

describing features in a KPML-example set and those
features used in the TSNLP initiative.

4 D i scus s ion

The basic premises of a generation-oriented GDE
s u c h as KPML differ in certain respects to those those
of an analysis-oriented GDE such as ALEP. This also
stretches to the style of interaction with the system.
For example, interaction with the KPML GDE is,
as with Smalltalk and ALEP, object-oriented but, in
contrast to ALEP, the objects to which a user has
access are strongly restricted to just those linguistic
constructs that are relevant for generation. This sep-
arates development environment details from the re-
sources that are being developed. This is, of course,
both possible and desirable because KPML is not in-
tended to be tailored for particular types of resource
by the user: the theoretical orientation is fixed.

The benefits of this approach seem to far outweigh
the apparent limitations. First, the visualizations
provided are exactly tailored to the details of the
linguistic objects supported and their use in genera-
tion. Thus resource sets, networks, systems (disjunc-
tions), semantic choice experts, dynamic traversal of
the network, syntactic structures, etc. all have their
own distinctive graphical representations: this es-
tablishes a clear modularity in the conception of the
user that is easily obscured when a single more gen-
eration representation style (e.g., feature structure
presented in a feature structure editor) is used for a

wide range of information. This clarifies the differ-
ence in information modules and thus helps devel-
opment. It is then also possible to 'fold' generation
decisions into the visualizations in a natural way:
thus supporting the 'result focusing' mode of devel-
opment described above. Thus, whenever resources
are inspected, their use during selected cycles of gen-
eration is also displayed by highlighting or annotat-
ing the appropriate objects shown.

This also influences the kind of user for which the
GDE is appropriate. The central areas in generation
are still pr imari ly functional and pragmat ic rather
than structural and syntactic. It is less common that
linguists and developers concerned with pragmatics
and text linguistics are fully comfortable with con-
straint logic programming. The dedicated graphical
presentation of linguistic objects provided in KPML
appears to provide a more generally accessible tool
for constructing linguistic descriptions. G r a m m a r
components have been written using KPML by com-
puter scientists without training in computat ional
linguistics, by functional text linguists, by transla-
tors and technical writers, as well as by computa-
tional and systemic-functional linguists.

Finally, however, the well understood relationship
between systemic-functional style descriptions and,
for example, typed feature representations provides
a bridge from the less formal, more functional style
of description back to the kind of representations
found in NLA-oriented GDE's . It is therefore to
be expected that a broader range of linguistic input
and development work will be encouraged to feed
into large-scale resource development than would be
possible if the kind of development were limited to
that practised for purposes of analysis.

R e f e r e n c e s

Hiyan Alshawi, David Carter, BjSrn Gamb£ck, and
Manny Rayner. 1992. Swedish-English QLF trans-
lation. In Hiyan Alshawi, editor, The Core Language
Engine, pages 277 - 319. MIT Press.

Douglas E. Appelt. 1985. Planning Natural Language
Utterances. Cambridge University Press, Cambridge,
England.

John A. Bateman, Christian M.I.M. Matthiessen, Keizo
Nanri, and Licheng Zeng. 1991. The re-use of linguis-
tic resources across languages in multilingual gener-
ation components. In Proceedings of the 1991 Inter-
national Joint Conference on Artificial Intelligence,
Sydney, Australia, volume 2, pages 966 - 971. Morgan
Kaufmann Publishers.

John A. Bateman, 1997. KPML Development Envi-
ronment: multilingual linguistic resource development
and sentence generation. German National Center

for Information Technology (GMD), Institute for in-
tegrated publication and information systems (IPSI),
Darmstadt, Germany, January. (Release 1.1).

John A. Bateman. to appear. Automatic discourse gen-
eration. In Allen Kent, editor, Encyclopedia of Li-
brary and Information Science. Marcel Dekker, Inc.,
New York.

EAGLES. 1996. Formalisms working group final report.
Expert advisory group on language engineering stan-
dards document, September.

Michael Elhadad. 1990. Types in functional unification
grammars. In Proceedings of the 28th. Annual Meet-
ing of the Association for Computational Linguistics,
pages 157 -164. Association for Computational Lin-
guistics.

Michael A.K. Halliday. 1978. Language as social semi-
otic. Edward Arnold, London.

William C. Mann and Christian M.I.M. Matthiessen.
1985. Demonstration of the Nigel text genera-
tion computer program. In James D. Benson and
William S. Greaves, editors, Systemic Perspectives on
Discourse, Volume 1, pages 50-83. Ablex, Norwood,
New Jersey.

David D. McDonald. 1980. Natural Language Pro-
duction as a Process of Decision Making under Con-
straint. Ph.D. thesis, MIT, Cambridge, Mass.

Kathleen R McKeown. 1985. Text Generation: Using
Discourse Strategies and Focus Constraints to Gen-
erate Natural Language Text. Cambridge University
Press, Cambridge, England.

A. Mel'~uk, Igor and A.K. Zholkovskij. 1970. Towards a
functioning "meaning-text" model of language. Lin.
guistics, 57:10-47.

Stephen G. Pulman, editor. 1991. EUROTRA E T 6 / I :
rule formalism and virtual machine design study - fi-
nal report. Commission of the European Communi-
ties, Luxembourg. Contributors: H. Alshawi, D.J.
Arnold, R. Backofen, D.M. Carter, J. Lindop, K. Net-
ter, S.G. Pulman, J. Tsujii and H. Uszkoreit.

M. Rayner, D. Carter, and P. Bouillon. 1996. Adapting
the core language engine to french and spanish. In
Proceedings of NLP-IA-96, Moncton, new Brunswick,
May.

JSrg Sch/itz. 1996. European Research and Develop-
ment in Machine Translation. MT News Interna-
tional, 15:8-11, October. (Newsletter of the Interna-
tional Association for Machine Translation).

N.K. Simpkins, G. Cruickshank, and P.E International.
1993. ALEP-0 Virtual Machine extensions. Technical
report, CEC.

Michael Zock and Giovanni Adorni. 1996. Introduction.
In Giovanni Adorni and Michael Zock, editors, Trends
in natural language generation: an artificial intelli-
gence perspective, number 1036 in Lecture Notes in
Artificial Intelligence, pages 1-16. Springer-Verlag.

