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Abstract 

In this paper we describe the application 
of Memory-Based Learning to the problem 
of Prepositional Phrase attachment disam- 
biguation. We compare Memory-Based 
Learning, which stores examples in mem- 
ory and generalizes by using intelligent sim- 
ilarity metrics, with a number of recently 
proposed statistical methods that are well 
suited to large numbers of features. We 
evaluate our methods on a common bench- 
mark dataset and show that our method 
compares favorably to previous methods, 
and is well-suited to incorporating vari- 
ous unconventional representations of word 
patterns such as value difference metrics 
and Lexical Space. 

1 In t roduc t ion  

A central issue in natural language analysis is 
structural ambiguity resolution. A sentence is 
structurally ambiguous when it can be assigned 
more than one syntactic structure. The drosophila 
of structural ambiguity resolution is Prepositional 
Phrase (PP) attachment. Several sources of infor- 
mation can be used to resolve PP attachment am- 
biguity. Psycholinguistic theories have resulted in 
disambiguation strategies which use syntactic infor- 
mation only, i.e. structural properties of the parse 
tree are used to choose between different attachment 
sites. Two principles based on syntactic informa- 
tion are Minimal Attachment (MA) and Late Clo- 
sure (LC) (Frazier, 1979). MA tries to construct the 
parse tree that has the fewest nodes, whereas LC 
tries to attach new constituents as low in the parse 
tree as possible. These strategies always choose the 
same attachment regardless of the lexical content of 
the sentence. This results in a wrong attachment in 
one of the following sentences: 

1 She cats pizza with a fork. 

2 She cats pizza with anchovies. 

In sentence 1, the PP "with a fork" is attached to 
the verb "eats" (high attachment). Sentence 2 dif- 
fers only minimally from the first sentence; here, the 
PP "with anchovies" does not attach to the verb but 
to the NP "pizza" (low attachment). In languages 
like English and Dutch, in which there is very little 
overt case marking, syntactic information alone does 
not suffice to explain the difference in attachment 
sites between such sentences. The use of syntac- 
tic principles makes it necessary to re-analyse the 
sentence, using semantic or even pragmatic infor- 
mation, to reach the correct decision. In the exam- 
ple sentences 1 and 2, the meaning of the head of 
the object of 'with' determines low or high attach- 
ment. Several semantic criteria have been worked 
out to resolve structural ambiguities. However, pin- 
ning down the semantic properties of all the words 
is laborious and expensive, and is only feasible in a 
very restricted domain. The modeling of pragmatic 
inference seems to be even more difficult in a com- 
putational system. 

Due to the difficulties with the modeling of se- 
mantic strategies for ambiguity resolution, an at- 
tractive alternative is to look at the statistics of 
word patterns in annotated corpora. In such a cor- 
pus, different kinds of information used to resolve 
attachment ambiguity are, implicitly, represented in 
co-occurrence regularities. Several statistical tech- 
niques can use this information in learning attach- 
ment ambiguity resolution. 

Hindle and Rooth (1993) were the first to show 
that a corpus-based approach to PP attachment am- 
biguity resolution can lead to good results. For 
sentences with a verb~noun attachment ambigu- 
ity, they measured the lexical association between 
the noun and the preposition, and the verb and 
the preposition in unambiguous sentences. Their 
method bases attachment decisions on the ratio and 
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reliability of these association strengths. Note that 
Hindle and Rooth did not include information about 
the second noun and therefore could not distinguish 
between sentence 1' and 2. Their method is also dif- 
ficult to extend to'more elaborate combinations of 
information sources. 

More recently, a number of statistical meth- 
ods better suited to larger numbers of features 
have been proposed for PP-attachment. Brill and 
Resnik (1994) appl!ed Error-Driven Transformation- 
Based Learning, Ratnaparkhi, Reynar and Roukos 
(1994) applied a Maximum Entropy model, Franz 
(1996) used a Loglinear model, and Collins and 
Brooks (1995) obtained good results using a Back- 
Off model. 

In this paper, we examine whether Memory-Based 
Learning (MBL), a family of statistical methods 
from the field of Machine Learning, can improve on 
the performance of previous approaches. Memory- 
Based Learning is described in Section 2. In order 
to make a fair comparison, we evaluated our meth- 
ods on the common benchmark dataset first used 
in Ratnaparkhi, Reynar, and Roukos (1994). in sec- 
tion 3, the experiments with our method on this data 
are described. An important advantage of MBL is 
its use of similarity-based reasoning. This makes it 
suited to the use of various unconventional represen- 
tations of word patterns (Section 2). In Section 3 a 
comparison is provided between two promising rep- 
resentational forms, Section 4 contains a comparison 
of our method to previous work, and we conclude 
with section 5. 

2 M e m o r y - B a s e d  L e a r n i n g  

Classification-based machine learning algorithms 
can be applied in learning disambiguation problems 
by providing them with a set of examples derived 
from an annotated corpus. Each example consists 
of an input vector representing the context of an 
attachment ambiguity in terms of features (e.g. syn- 
tactic features, words, or lexical features in the case 
of PP-attachment); and an output class (one of a 
finite number of possible attachment positions rep- 
resenting the correct attachment position for the in- 
put context). Machine learning algorithms extrap- 
olate from the examples to new input cases, either 
by extracting regularities from the examples in the 
form of rules, decision trees, connection weights, or 
probabilities in greedy learning algorithms, or by 
a more direct use of analogy in lazy learning algo- 
rithms. It is the latter approach which we investigate 
in this paper. It is our experience that lazy learn- 
ing (such as the Memory-Based Learning approach 
adopted here) is more effective for several language- 

processing problems (see Daelemans (1995) for an 
overview) than more eager learning approaches. Be- 
cause language-processing tasks typically can only 
be described as a complex interaction of regularities, 
subregularities and (families of) exceptions, storing 
all empirical data as potentially useful in analogical 
extrapolation works better than extracting the main 
regularities and forgetting the individual examples 
(Daelemans, 1996). 

Analogy f rom Neares t  Neighbors  

The techniques used are variants and extensions of 
the classic k-nearest neighbor (k-NN) classifier al- 
gorithm. The instances of a task are stored in a 
table, together with the associated "correct" out- 
put. When a new pattern is processed, the k nearest 
neighbors of the pattern are retrieved from memory 
using some similarity metric. The output is deter- 
mined by extrapolation from the k nearest neigh- 
bors. The most common extrapolation method is 
majority voting which simply chooses the most com- 
mon class among the k nearest neighbors as an out- 
put. 

Similar i ty  metr ics  

The most basic metric for patterns with symbolic 
features is the Overlap me t r i c  given in Equations 1 
and 2; where A(X, Y) is the distance between pat- 
terns X and Y, represented by n features, wi is a 
weight for feature i, and 5 is the distance per fea- 
ture. The k-NN algorithm with this metric, and 
equal weighting for all features is called IB1 (Aha, 
Kibler, and Albert, 1991). Usually k is set to 1. 

A(X, Y)  = f i  w~ 5(x~, Yi) (1) 
i = l  

where: 

5(x,, y~) = 0 i f  x, = Yi, else 1 (2) 

This metric simply counts the r/umber of 
(mis)matching feature values in both patterns. If 
no information about the importance of features 
is available, this is a reasonable choice. But if 
we have information about feature relevance, we 
can add linguistic bias to weight or select different 
features (Cardie, 1996). An alternative, more 
empiricist, approach is to look at the behavior of 
features in the set of examples used for training. 
We can compute Statistics about the relevance 
of features by looking at which features are good 
predictors of the class labels. Information Theory 
provides a useful tool for measuring feature rele- 
vance in this way, see Quinlan (1993). 
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I n f o r m a t i o n  G a i n  (IG) weighting looks at each 
feature in isolation, and measures how much infor- 
mation it contributes to our knowledge of the cor- 
rect class label. The Information Gain of feature 
f is measured by computing the difference in un- 
certainty (i.e. entropy) between the situations with- 
out and with knowledge of the value of that  feature 
(Equation 3): 

w! = H(C) - Eveyf  P(v) × H(CIv) 
sift) 

(3) 

si(f) = - E P(v)log 2 P(v) (4) 
veVf 

Where C is the set of class labels, V! 
is the set of values for feature f ,  and 
H(C) : - E e e C  P(c) log 2P(c)  is the entropy 
of the class labels. The probabilities are estimated 
from relative frequencies in the training set. The 
normalizing factor si(f) (split info) is included to 
avoid a bias in favor of features with more values. 
It represents the amount  of information needed to 
represent all values of the feature (Equation 4). The 
resulting IG values can then be used as weights in 
Equation 1. The k-NN algorithm with this metric 
is called IBI-IG, see Daelemans and van den Bosch 
(1992). 

The possibility of automatically determining the 
relevance of features implies that  many different and 
possibly irrelevant features can be added to the fea- 
ture set. This is a very convenient methodology if 
theory does not constrain the choice sufficiently be- 
forehand, or if we wish to measure the importance 
of various information sources experimentally. 

M V D M  a n d  L e x S p a c e  

Although IBI-IG solves the problem of feature rele- 
vance to a certain extent, it does not take into ac- 
count tha t  the symbols used as values in the input 
vector features (in this case words, syntactic cate- 
gories, etc.) are not all equally similar to each other. 
According to the Overlap metric, the words Japan 
and China are as similar as Japan and pizza. We 
would like Japan and China to be more similar to 
each other than Japan and pizza. This linguistic 
knowledge could be encoded into the word represen- 
tations by hand, e.g. by replacing words with se- 
mantic labels, but  again we prefer a more empiricist 
approach in which distances between values of the 
same feature are computed differentially on the ba- 
sis of properties of the training set. To this end, we 
use the Modified Value Difference Metric (MVDM), 

see Cost and Salzberg (1993); a variant of a met- 
ric first defined in Stanfill and Waltz (1986). This 
metric (Equation 5) computes the frequency distri- 
bution of each value of a feature over the categories. 
Depending on the similarity of their distributions, 
pairs of values are assigned a distance. 

5(v1, v2) = ~ IP(CdV1) - P(CdV2)[ (5) 
i = 1  

In this equation, V1 and V2 are two possible val- 
ues for feature f ;  the distance is the sum over all n 
categories; and P (C~ ]1~) is estimated by the relative 
frequency of the value ~ being classified as category 
i. 

In our PP-at tachment  problem, the effect of this 
metric is that  words (as feature values) are grouped 
according to the category distribution of the pat- 
terns they belong to. It is possible to cluster the 
distributions of the values over the categories, and 
obtain classes of similar words in this fashion. For 
an example of this type of unsupervised learning as 
a side-effect of supervised learning, see Daelemans, 
Berck, and Gillis (1996). In a sense, the MVDM 
can be interpreted as implicitly implementing a sta- 
tistically induced, distributed, non-symbolic repre- 
sentation of the words. In this case, the category 
distribution for a specific word is its lexical represen- 
tation. Note that  the representation for each word 
is entirely dependent on its behavior with respect to 
a particular classification task. 

In many practical applications of MB-NLP, we 
are confronted with a very limited set of examples. 
This poses a serious problem for the MVD metric. 
Many values occur only once in the whole data  
set. This means that  if two such values occur 
with the same class, the MVDM will regard them 
as identical, and if they occur with two different 
classes their distance will be maximal.  In many 
cases, the latter condition reduces the MVDM to 
the overlap metric, and additionaly some cases 
will be counted as an exact match on the basis of 
very shaky evidence. It is, therefore, worthwile 
to investigate whether the value difference matr ix  
5 ( ~ , ~ )  can be reused from one task to another. 
This would make it possible to reliably estimate all 
the 5 parameters on a task for which we have a large 
amount of training material, and to profit from 
their availability for the MVDM of a smaller domain. 

Such a possibility of reuse of lexical similarity is 
found in the application of Lexical Space represen- 
tation (Schiitze, 1994, Zavrel and Veenstra, 1995). 
In LexSpace, each word is represented by a vector of 
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real numbers tha t  s tands for a "fingerprint" of the 
words'  distributional behavior across local contexts 
in a large corpus. The distances between vectors can 
be taken as a m e ~ u r e  of similarity. In Table 1, a 
number  of examples of nearest neighbors are shown. 

For each focus-word f ,  a score is kept of the num- 
ber of co-occurrences of words from a fixed set of 
C context-words wl (1 < i < C) in a large corpus. 
Previous work by Hughes (1994) indicates tha t  the 
two neighbors on the left and on the right (i.e. the 
words in positions n - 2, n - 1, n + 1, n + 2, rela- 
tive to word n) are a good choice of context. The 
position of a word in Lexical Space is thus given by 
a four component  vector, of which each component  
has as many  dimensions as there are context words. 
The dimensions represent the conditional probabili- 
ties P(w~-2[f) . . .  P(w~+ilf). 

We derived the distributional vectors of all 71479 
unique words present in the 3 million words of Wall 
Street Journal  text,  taken from the A C L / D C I  CD- 
ROM I (1991). For the contexts, i.e. the dimen- 
sions of Lexical Space, we took the 250 most frequent 
words. 

To reduce the 1000 dimensional Lexical Space vec- 
tors to a manageable  format  we applied Principal 
Component  Analysis 1 (PCA) to reduce them to a 
much lower number  of dimensions. PCA accom- 
plishes the dimension reduction that  preserves as 
much of the structure of the original da ta  as pos- 
sible. Using a measure of the correctness of the clas- 
sification of a word in Lexical Space with respect to 
a linguistic categorization (see Zavrel and Veenstra 
(1995)) we found tha t  PCA can reduce the dimen- 
sionality from 1000 to as few as 25 dimensions with 
virtually no loss, and sometimes even an improve- 
ment  of the quality of the organization. 

Note tha t  the LexSpace representations are task 
independent in tha t  they only reflect the structure of 
neighborhood relations between words in text. How- 
ever, if the task a t  hand has some positive relation 
to context prediction, Lexical Space representations 
are useful. 

3 M B L  f o r  P P  a t t a c h m e n t  

This section describes experiments with a number 
of Memory-Based models for PP a t tachment  disam- 
biguation. The first model is based on the lexical in- 
formation only, i.e. the a t tachment  decision is made 
by looking only at the identity of the words in the 
pattern.  The second model considers the issue oflex- 

1 Using the simplesvd package, which was 
kindly provided by Hinrich Schfitze. This software 
can be obtained from f t p : / / c s l i . s t a n f o r d . e d u  
/pub/pr os it/papers/s implesvd/. 

ical representation in the MBL framework, by taking 
as features either task dependent (MVDM) or task 
independent (LexSpace) syntactic vector represen- 
tations for words. The introduction of vector repre- 
senations leads to a number  of modifications to the 
distance metrics and extrapolat ion rules in the MBL 
framework. A final experiment examines a number  
of weighted voting rules. 

The experiments in this section are conducted 
on a simplified version of the "full" PP-a t t achment  
problem, i.e. the a t tachment  of a PP in the se- 
quence: VP NP PP. The da ta  consist of four-tuples 
of words, extracted from the Wall Street Journal  
Treebank (Marcus, Santorini, and Marcinkiewicz, 
1993) by a group at IBM (Ratnaparkhi ,  Reynar,  and 
Roukos, 1994). 2 They took all sentences tha t  con- 
tained the pat tern  VP NP PP and extracted the head 
words from the constituents, yielding a V N1 P N2 
pattern.  For each pat tern they recorded whether the 
PP was attached to the verb or to the noun in the 
treebank parse. Example  sentences 1 and 2 would 
then become: 

3 eats, pizza, with, fork, Y. 

4 eats, pizza, with, anchovies, N. 

The data  set contains 20801 training patterns,  
3097 test patterns, and an independent validation 
set of 4039 pat terns for parameter  optimization.  It  
has been used in statistical disambiguat ion meth-  
ods by Ratnaparkhi ,  Reynar,  and Roukos (1994) and 
Collins and Brooks (1995); this allows a comparison 
of our models to the methods they tested. All of the 
models described below were trained on all of the 
training examples and the results are given for the 
3097 test patterns. For the benchmark  comparison 
with other methods from the literature, we use only 
results for which all parameters  have been optimized 
on the validation set. 

In addition to the computat ional  work, Ratna-  
parkhi, Reynar, and Roukos (1994) performed a 
study with three human subjects, all experienced 
treebank annotators,  who were given a small ran- 
dom sample of the test sentences (either as four- 
tuples or as full sentences), and who had to give the 
same binary decision. The humans,  when given the 
four-tuple, gave the same answer as the Treebank 
parse 88.2 % of the time, and when given the whole 
sentence, 93.2 % of the time. As a baseline, we can 
consider either the Late Closure principle, which al- 
ways attaches to the noun and yields a score of only 

2 The dataset is avaliable from 
ftp://ftp, cis. upenn, edu/pub/adwait/PPatt achDat a/. 
We would like to thank Michael Collins for pointing this 
benchmark out to us. 
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"iN 
for(in)0.05 ~n since(in)0.10 at(in)0.11 after(in)0.11 under(in)0.11 
on(in)0.12 until(in) 0.12 by(in)0.13 among(in)0.14 before(in)0.16 

' "  G R O U P  n n  
network(nn)0.08 firm(nn)0.11 measure(nn. )0.11 package(nn)0.11 chain(nn)0.11 

] club(np)0.11 bin(nn)0.11 partnership(nn)0.12 panel(nn)0.12 fund(nn)0.12 
J JAPAN np  

china(rip)0.16 france(np)0.16 britain(np)0.19 canada(np)0.19 mexico(rip)0.19 
J india(rip)0.19 australia(np)0.20 korea(np)0.22 ital~(np)0.23 detroit (np)0.23 

Table 1: Some examples of the direct neighbors of words in a Lexical Space (context:250 lexicon:5000 norm:l) .  
The 10 nearest neighbors of the word in upper case are listed by ascending distance. 

59.0 % correct, or the most likely at tachment associ- 
ated with the preposition, which reaches an accuracy 
of 72.2 %. 

The training data  for this task are rather sparse. 
Of the 3097 test patterns, only 150 (4.8 %) occurred 
in the training set; 791 (25.5 %) patterns had at least 
1 mismatching word with any pattern in the training 
set; 1963 (63.4 %) patterns at least 2 mismatches; 
and 193 (6.2 %) patterns at least 3 mismatches. 
Moreover, the test set contains many words that  are 
not present in any of the patterns in the training set. 
Table 2 shows the counts of feature values and un- 
known values. This table also gives the Information 
Gain estimates of feature relevance. 

O v e r l a p - B a s e d  M o d e l s  

In a first experiment, we used the IB1 algorithm 
and the IBi-IG algorithm. The results of these al- 
gorithms and other methods from the literature are 
given in Table 3. The addition of IG weights clearly 
helps, as the high weight of the P feature in effect pe- 
nalizes the retrieval of patterns which do not match 
in the preposition. As we have argued in Zavrel and 
Daelemans (1997), this corresponds exactly to the 
behavior of the Back-Off algorithm of Collins and 
Brooks (1995), so that  it comes as no surprise that  
the accuracy of both methods is the same. Note 
that  the Back-Off model was constructed after per- 
forming a number of validation experiments on held- 
out data  to determine which terms to include and, 
more importantly,  which to exclude from the back- 
off sequence. This process is much more laborious 
than the automatic  computat ion of IG-weights on 
the training set. 

The other methods for which results have been 
reported on this dataset include decision trees, 
Maximum Entropy (Ratnaparkhi,  Reynar, and 
Roukos, 1994), and Error-Driven Transformation- 
Based Learning (Brill and Resnik, 1994), 3 which 
were clearly outperformed by both IB1 and IBI-IG, 
even though e.g. Brill ~ Resnik used more elaborate 
feature sets (words and WordNet classes). Adding 

aThe results of Brill's method on the present bench- 
mark were reconstructed by Collins and Brooks (1995). 

more elaborate features is also possible in the MBL 
framework. In this paper, however, we focus on more 
effective use of the existing features. Because the 
Overlap metric neglects information about the de- 
gree of mismatch if feature-values are not identical, 
it is worthwhile to look at more finegrained repre- 
sentations and metrics. 

Continuous Vector Representations f o r  
Words 

In experiments with Lexical Space representations, 
every word in a pattern was replaced by its PCA 
compressed LexSpace vector, yielding patterns with 
25x4 numerical features and a discrete target  cate- 
gory. The distance metric used was the sum of the 
LexSpace vector distance per feature, where the dis- 
tance between two vectors is computed as one minus 
the cosine, normalized by the cumulative norm. Be- 
cause no two patterns have the same distance in this 
case, to use only the nearest neighbor(s) means ex- 
trapolating from exactly one nearest neighbor. 

In preliminary experiments, this was found to give 
bad results, so we also experimented with various 
settings for k : the parameter  tha t  determines the 
number of neighbors considered for the analogy. The 
same was done for the MVDM metric which has 
a similar behavior. We found that  LexSpace per- 
formed best when k was set to 13 (83.3 % correct); 
MVDM obtained its best score when k was set to 
50 (80.5 % correct). Although these parameters 
were found by optimization on the test set, we can 
see in Figure 1 that  LexSpace actually outperforms 
MVDM for all settings of k. Thus, the represen- 
tations from LexSpace which represent the behav- 
ior of the values independent of the requirements 
of this particular classification task outperform the 
task specific representations used by MVDM. The 
reason is that  the task specific representations are 
derived only from the small number of occurrences 
of each value in the training set, whereas the amount  
of text available to refine the LexSpace vectors is 
practically unlimited. Lexical Space however, does 
not outperform the simple Overlap metric (83.7 % 
correct) in this form. We suspected that  the reason 
for this is the fact that  when continuous represen- 
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Feature 
V 
N1 
P 
N2 
C 

train values total v a l u e s  unknown IG weight 
3243 3475 232 0.03 
4315 4613 298 0.03 
66 69 3 0.10 
5451 5781 330 0.03 
2 2 0 - 

Table 2: Statistics of the PP attachment data  set. 

Method 
Overlap 
Overlap IG ratio 
C4.5 
Maximum Entropy 
Transformations 
Back-off model 
Late Closure 
Most Likely for each P 

percent 
83.7 % 
84.1% 
79.7 % 
77.7 % 
81.9 % 
84.1% 
59.0 % 
72.0 % 

correct 

Table 3: Scores on the Ratnaparkhi et al. PP-at tachment  test set (see text); the scores of Maximum Entropy 
are taken from Ratnaparkhi et al. (1994); the scores of Transformations and Back-off are taken from Collins 
& Brooks (1995). The C4.5 decision tree results, and the baselines have been computed by the authors. 

tations are used, the number of neighbors is exactly 
fixed to k, whereas the number of neighbors used in 
the Overlap metric is, in effect, dependent on the 
specificity of the match. 

Weighted Voting 
This section examines possibilities for improving the 
behavior of LexSpace vectors for MBL by consider- 
ing various weighted voting methods. 

The fixed number of neighbors in the continuous 
metrics can result in an oversmoothing effect. The 
k-NN classifier tries to estimate the conditional 
class probabilities from samples in a local region of 
the data  space. The radius of the region is deter- 
mined by the distance of the k-furthest neighbor. 
If k is very small and i) the nearest neighbors 
are not nearby due to data  sparseness, or ii) the 
nearest neighbor classes are unreliable due to noise, 
the "local" estimate tends to be very poor, as 
illustrated in Figure 1. Increasing k and thus taking 
into account a larger region around the query in 
the dataspace makes it possible to overcome this 
effect by smoothing the estimate. However, when 
the majori ty voting method is used, smoothing can 
easily become oversmoothing, because the radius 
of the neighborhood is as large as the distance of 
the k ' th nearest neighbor, irrespective of the local 
properties of the data. Selected points from beyond 
the "relevant neighborhood" will receive a weight 
equal to the close neighbors in the voting function, 
which can result in  unnecessary classification errors. 

A solution to this problem is the use of a weighted 

voting rule which weights the vote of each of the 
nearest neighbors by a function of their distance to 
the test pattern (query). This type of voting rule 
was first proposed by Dudani (1976). In his scheme, 
the nearest neighbor gets a weight of 1, the furthest 
neighbor a weight of 0, and the other weights are 
scaled linearly to the interval in between. 

dk-dj if dk ~ dl 4k-d, (6) 
Wj = 1 if dk = dl 

where dj is the distance to the query of the j ' t h  
nearest neighbor, dl the distance of the nearest 
neighbor, and dk the distance of the furthest (k'th) 
neighbor. 

Dudani further proposed the inverse distance 
weight (Equation 7), which has recently become pop- 
ular in the MBL literature (Wettschereck, 1994). In 
Equation 7, a small constant is usually added to the 
denominator to avoid division by zero. 

1 (7) w j =  ~j  

Another weighting function considered here is 
based on the work of Shepard (1987), who argues for 
a universal perceptual law, in which the relevance of 
a previous stimulus for the generalization to a new 
stimulus is an exponentially decreasing function of 
its distance in a psychological space. This gives the 
weighed voting function of Equation 8, where o~ and 
fl are constants determining the slope and the power 
of the exponential decay function. In the experi- 
ments reported below, oe = 3.0 and fl = 1.0. 
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Figure 1: Accuracy on the PP-attachment test set of of MVDM and LexSpace representations as a function 
of k, the number of nearest neighbors. 

Method 
LexSpace (Dudani, k=30) 
LexSpace (Dudani, k=5O, IG) 

% correct 
84.2 % 
84.4 % 

Table 4: Scores on the Ratnaparkhi et al. PP- 
attachment test set with Lexical Space representa- 
tions. The values of k, the voting function, and the 
IG weights were determined on the training and val- 
idation sets. 

= ( 8 )  

Figure 2 shows the results on the test set for a wide 
range of k for these voting methods when applied to 
the LexSpace represented PP-attachment dataset. 

With the inverse distance weighting function the 
results are better than with majority voting, but 
here, too, we see a steep drop for k's larger than 17. 
Using Dudani's weighting function, the results be- 
come optimal for larger values of k, and remain good 
for a wide range of k values. Dudani's weighting 
function also gives us the best overall result, i.e. if we 
use the best possible setting for k for each method, 
as determined by performance on the validation set 
(see Table 4). 

The Dudani weighted k-nearest neighbor classi- 
fier (k=30) slightly outperforms Collins ~ Brooks' 
(1995) Back-Off model. A luther small increase 
was obtained by combining LexSpace representa- 
tions with IG weighting of the features, and Dudani's 
weighted voting function. Although the improve- 
ment over Back-Off is quite limited, these results are 
nonetheless interesting because they show that MBL 
can gain from the introduction of extra information 
sources, whereas this is very difficult in the Back- 
Off algorithm. For comparison, consider that the 

performance of the Maximum Entropy model with 
distributional word-class features is still only 81.6% 
on this data. 

4 D i s c u s s i o n  

If we compare the accuracy of humans on the 
V,N,P,N patterns (88.2 % correct) with that of our 
most accurate method (84.4 %), we see that the 
paradigm of learning disambiguation methods from 
corpus statistics offers good prospects for an effec- 
tive solution to the problem. After the initial effort 
by Hindle and Rooth (1993), it has become clear 
that this area needs statistical methods in which an 
easy integration of many information sources is pos- 
sible. A number of methods have been applied to 
the task with this goal in mind. 

Brill and Resnik (1994) applied Error-Driven 
Transformation-Based Learning to this task, using 
the verb, nounl, preposition, and noun2 features. 
Their method tries to maximize accuracy with a 
minimal amount of rules. They found an increase 
in performance by using semantic information from 
WordNet. Ratnaparkhi, Reynar, and Roukos (1994) 
used a Maximum Entropy model and a decision tree 
on the dataset they extracted from the Wall Street 
Journal corpus. They also report performance gains 
with word features derived by an unsupervised clus- 
tering method. Ratnaparkhi et al. ignored low 
frequency events. The accuracy of these two ap- 
proaches is not optimal. This is most likely due 
to the fact that they treat low frequency events as 
noise, though these contain a lot of information in a 
sparse domain such as PP-attachment. Franz (1996) 
used a Loglinear model for PP attachment. The fea- 
tures he used were the preposition, the verb level 
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Figure 2: Accuracy on the PP-attachment test set of various voting methods as a function of k, the number 
of nearest neighbors. 

(the lexical association between the verb and the 
preposition), the noun level (idem dito for nounl), 
the noun tag (POS-tag for nounl), noun definite- 
ness (of nounl), and the PP-object tag (POS-tag 
for noun2). A Loglinear model keeps track of the 
interaction between all the features, though at a 
fairly high computational cost. The dataset that 
was used in Franz' work is no longer available, mak- 
ing a direct comparison of the performance impos- 
sible. Collins and Brooks (1995) used a Back-Off 
model, which enables them to take low frequency ef- 
fects into account on the Ratnaparkhi dataset (with 
good results). In Zavrel and Daelemans (1997) it is 
shown that Memory-Based and Back-Off type meth- 
ods are closely related, which is mirrored in the per- 
formance levels. Collins and Brooks got slightly bet- 
ter results (84.5 %) after reducing the sparse data 
problem by preprocessing the dataset, e.g. replacing 
all four-digit words with 'YEAR'. The experiments 
with Lexical Space representations have as yet not 
shown impressive performance gains over Back-Off, 
but they have demonstrated that the MBL frame- 
work is well-suited to experimentation with rich lex- 
ical representations. 

5 C o n c l u s i o n  

We have shown that our MBL approach is very com- 
petent in solving attachment ambiguities; it achieves 
better generalization performance than many previ- 
ous statistical approaches. Moreover, because we 
can measure the r'elevance of the features using an 
information gain metric (IBI-IG), we are able to add 
features without a high cost in model selection or an 
explosion in the number of parameters. 

An additional advantage of the MBL approach is 

that, in contrast to the other statistical approaches, 
it is founded in the use of similarity-based reasoning. 
Therefore, it makes it possible to experiment with 
different types of distributed non-symbolic lexical 
representations extracted from corpora using unsu- 
pervised learning. This promises to be a rich source 
of extra information. We have also shown that task 
specific similarity metrics such as MVDM are sen- 
sitive to the sparse data problem. LexSpace is less 
sensitive to this problem because of the large amount 
of data which is available for its training. 
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