
A Comparative Study of the Application of Different
Learning Techniques to Natural Language Interfaces

Werner Winiwarter and Yahiko Kambayashi
Dept. of Information Science

Kyoto University
Sakyo, Kyoto 606-01, Japan

{ww I yahiko}©kuis, kyoto-u, ac. jp

Abstract

In this paper we present first results from
a comparative study. Its aim is to test
the feasibility of different inductive learn-
ing techniques to perform the automatic
acquisition of linguistic knowledge within a
natural language database interface. In our
interface architecture the machine learn-
ing module replaces an elaborate semantic
analysis component. The learning module
learns the correct mapping of a user's input
to the corresponding database command
based on a collection of past input data.
We use an existing interface to a produc-
tion planning and control system as evalu-
ation and compare the results achieved by
different instance-based and model-based
learning algorithms.

1 Introduction

One of the main obstacles to the efficient use of nat-
ural language interfaces is the often required high
amount of manual knowledge engineering (see (An-
droutsopoulos et al., 1995) for a recent survey). This
time-consuming and tedious process is often referred
to as "knowledge acquisition bottleneck". It may re-
quire extensive efforts by experts highly experienced
in linguistics as well as in the domain and the task
(Riloff and Lehnert, 1994). Therefore, natural lan-
guage interfaces represent a domain that is very well
suited for the application of machine learning algo-
rithms to automate the acquisition process of lin-
guistic knowledge.

So far, inductive learning has already been ap-
plied successfully to a large variety of natural Jan-
guage tasks. This includes basic linguistic problems
such as morphological analysis (van den Bosch et
al., 1996), parsing (Zelle and Mooney, 1996), word
sense disambiguation (Mooney, 1996), and anaphora

resolution (Aone and Bennett, 1996). Besides this,
there also exists some research on applications, e.g.
machine translation (Yamazaki et al., 1996), text
categorization (Moulinier and Ganaseia, 1996), or
information extraction (Soderland et al., 1996).

The learning task in natural language interfaces is
to select the correct command class based on seman-
tic features extracted from the user input. There-
fore, it can be modeled as classification problem, i.e.
the machine learning algorithms construct a theory
from the training data that is used for classifying
unseen test data (Quinlan, 1996). So far, we con-
sider only supervised learning so that each training
case has to be labeled with the correct class.

We apply different existing instance-based and
model-based algorithms to this problem and com-
pare the achieved results. In addition, we have
also developed several new algorithms, which we
present briefly in this paper. We have implemented
all algorithms by means of the deductive object-
oriented database system ROCK ~ ROLL (Barja
et al., 1994).

It solves the problem of updates in deductive
databases in that it separates the declarative logic
query language ROLL from the imperative data ma-
nipulation language ROCK within the context of a
common object-oriented data model. Besides this,
ROCK ~ ROLL makes a clean distinction between
type declarations, which describe the structural char-
acteristics of a set of instance objects and the meth-
ods that can be applied to them, and class defini-
tions, which specify the implementation of the meth-
ods associated with a type.

The use of the available powerful logic and object-
oriented programming language enables an efficient
implementation of the different approaches to ma-
chine learning. It also gives us a convenient in-
tegrated tool that assists in applying the machine
learning algorithms to the data collection stored in
the same database.

Winiwarter ~ Kambayashi 125 Learning and NL Interfaces

Werner Winiwarter and Yahiko Kambayashi (1997) A Comparat ive Study of the Ap p l i ca t ion of Different
Learning Techniques to Natural Language Interfaces. In T.M. Ellison (ed.) CoNLL97: Computational
Natural Language Learning, ACL pp 125-135.
(~) 1997 Association for Computational Lingtfistics

User input

and lexical analysis and lexical analysis ~ I.o. d l exical analysi____,_ _ s

UVL analysis .!

ML classifier

I Database command
generation

Database command

Figure 1: System architecture of natural language interface

As comparative evaluation of the implemented
algorithms, we applied them to an extensive case
study: a natural language interface for a production
planning and control system. The system is used
in a multilingual environment, which includes the
languages English, German, and Japanese. There-
fore, an important issue of the evaluation was to
check whether the learned knowledge is language-
independent, i.e. if it really operates based on se-
mantic deep forms so that it abstracts from linguistic
surface phenomena.

The rest of the paper is organized as follows.
First, we briefly introduce the learning task before
we present the applied machine learning algorithms
in more detail. Finally, we explain the set-up of
the case study and discuss the achieved results from
evaluation.

2 L e a r n i n g T a s k

Our interface architecture is displayed in Fig. 1. It
represents a multilingual database interface for the
languages English, German, and Japanese. First,
the language of the user input is detected and the
input is transferred to the corresponding language-

specific morphological and lexical analyzer.
Morphological and lexical analysis performs the

tokenization of the input, i.e. the segmentation into
individual words or tokens. This task is not always
trivial as in the case of Japanese, which uses no
spaces for separating words. As next step the input
is transformed into a deep form list (DFL), which
indicates for each token its surface form, category,
and semantic deep form.

For database interfaces, unknown values con-
tained in the input possess particular importance
for the meaning of a command. Therefore, we t r ea t
those unknown values separately in the unknown
value list (UVL) analyzer. This module checks the
data type of unknown values and looks them up in
the database to find out whether they represent iden-
tifiers of existing entities. In such a case, the entity
type is indicated in the resulting UVL, otherwise we
use the data type instead.

DFL and UVL represent the input to the machine
learning (ML) classifier. It assigns a ranked list
of command classes to the input sentence accord-
ing to the learned classification rules. As last step
the classifications are used for generating appropri-

Winiwarter ~ Kambayashi 126 Learning and NL Interfaces

Input

DFL

UVL

New purchase price St 37 H kostet nun S t 3 7 H g) l l ~ . X d ' ~ r
of St 37 H is 1,7. 1.7 Schining 1, 7 [: . ~ ~_ ?.e ~ k ~,

new
purchase
price
of
be

1 material
1 real

cost
now
schilling

1 material
1 real

purchase
price
change

1 material
1 real

Figure 2: Example of feature encoding

ate database commands.
For the encoding :of the training data we only make

use of the semantic deep forms contained in the DFL.
We use English concepts as deep forms and map
them to binary features, i.e. a certain feature equals
I if the deep form is a member of the DFL, otherwise
it equals 0. For the elements of the UVL we apply
a more detailed encoding, which maps the number
and the type to binary features. Figure 2 shows an
example of the features derived from English, Ger-
man, and Japanese input sentences for the update
of the purchase price for a material.

Thus, the learning task replaces an elaborate se-
mantic analysis of the user input. The development
of the corresponding underlying rule base might re-
quire several man-months. The learning task rep-
resents a realistic real-life application, which differs
from many other problems studied in machine learn-
ing research in that it consists of a large number
of features and classes. Furthermore, the command
classes are often very similar and even for human
experts very difficult to distinguish.

3 L e a r n i n g A l g o r i t h m s

I n s t a n c e - b a s e d L e a r n i n g

Instance-based approaches represent the learned
knowledge simply as collection of training cases or
instances. For that purpose they use the same lan-
guage as for the description of the training data
(Quinlan, 1993a). A new case is then classified by
finding the instance with the highest similarity and
using its class as prediction. Therefore, instance-
based algorithms are characterized by a very low
training effort. On the other hand, this leads to a
high storage requirement because the algorithm has
to keep all training cases in memory. Besides this,
one has to compare new cases with all existing in-
stances, which results in a high computation cost for

classification.
Different instance-based algorithms Vary in how

they assess the similarity (or distance) between two
instances. Two very commonly used methods are
IB1 (Aha et al., 1991) and IBI - IG (Daelemans and
van den Bosch, 1992). Whereas IB1 applies the sim-
ple approach of treating all features as equally im-
portant, IBI-IG uses the information gain (Quinlan,
1986) of the features as weighting function.

We have developed an algorithm called B I N - C A T
for binary features with class-dependent weighting
and asymmetric t reatment of the feature values. The
similarity between a new case X and a training
case Y is calculated according to the following for-
mula:

SIMx,y =
n

E p (D,, Cy) . w, . o" (x,, Yi) -
i----1

n

E p (D,, Cy) " w, . 5y (x,, y,) -
i = 1

n

i = l

(1)

In this formula, n indicates the number of fea-
tures, Di the number of instances that have value 1
for feature i, and Cy the class of the training case Y.
The term p(Di, Cy) then denotes the proportion of
instances in Di that belong to class Cy. o'(xl,yi),
~Y(a~i, yi), and 5x(z i , yi) are determined as follows:

1 i f x i = 1 A y i = 1
o" (xi, Yi) = 0 otherwise

1 i f x i = O A y i = l
•Y (xi,Yi) = 0 otherwise

Winiwarter ~ Kambayashi 127 Learning and NL Interfaces

1 i f z ~ = l A y i = O
5x(~i,yi) = 0 otherwise (2)

so that the second sum in (1) is rated higher for
a larger number of occurrences of the ith feature
for class Cy whereas the third sum is rated lower.
This means that if the training case Y contains a
certain feature and the new case X does not, then
we rate this difference the stronger the more often
the feature occurs for class Cy. On the other hand,
for features appearing in the new case X but not
in Y, the opposite is true.

Finally, wi represents the weight of feature i. It is
calculated by making use of the following formula:

c

1 E 1 4.p(Di j) [1 p(Di,j)] (3) W i ~ - - . _ , •

C
j = l

The term under the summation symbol represents
the selectivity of feature i for class j . It equals 1
if either all or none of the cases have value 1 for
this feature. In other words, all instances for class j
then either possess or do not possess this feature,
which makes it a very discriminative characteristic.
The Other extreme is that p(Di,j) equals 50%. In
that case, this feature allows for no prediction of
the class and the term under the summation symbol
becomes 0.

We have implemented all above-mentioned algo-
rithms for binary features in ROCK & ROLL in
that we store the instances as objects and assign
to them the features as ordered lists sorted by the
feature numbers. The calculation of the similarity
between two cases is then realized as method invo-
cation on the feature list. For example, Fig. 3 shows
the ROCK method to compute the distance between
two feature lists according to IS1.

Besides pure instance-based learning we have also
developed an algorithm BIN-PRO, which creates a
prototype for each class. Those prototypes are then
used for the comparison with new cases. This has
the big advantage that one does not have to store
all the training instances and that the number of
required comparisons for classification is reduced to
the number of existing classes. As similarity func-
tion between a new case X and a certain class C we
use the following formula:

SIMx,c IDcl.p (D:, C) .w! -
rex

E p (D y , C I ' w ! •
rex

Winiwarter 8J Kambayashi

In this formula, we give more emphasis to fea-
tures f that are present in X in that we multiply
them by lOci, the number of instances for class C.
However, the second sum takes also important fea-
tures for class C into account tha t are missing in
the new case X. As weighting function wl we use
again (3). The implementation in ROCK ~ ROLL is
performed by creating an object for each prototype
and by invoking the associated method for comput-
ing the similarity to a new test case.

M o d e l - b a s e d L e a r n i n g

In contrast to instance-based learning, model-based
approaches represent the learned knowledge in a the-
ory language that is richer than the language used
for the description of the training data (Quinlan,
1986). Such learning methods construct explicit gen-
eralizations of training cases resulting in a large re-
duction of the size of the stored knowledge base and
the cost of testing new test cases.

In our research we consider the subtypes of deci-
sion trees and rule-based learning as well as hybrid
approaches between them. The main difference be-
tween the various methods for constructing decision
trees is the selection of the feature for splitting a
node. The following two main categories are distin-
guished:

• static splitting: selects the best feature for split-
ting always on the basis of the complete collec-
tion of instances,

• dynamic splitting: re-evaluates the best feature
for splitting for each node based on the current
local set of instances.

(4)

Static splitting requires less computat ional effort
because it performs the feature ranking only once
for the construction process. However, it entails
overhead to keep track of already used features and
to eliminate features that provide no proper split-
ting of the set of instances. Besides that , dynamic
splitting methods produce much more compact trees
with fewer nodes, leaves, and levels. This results in
a sharp reduction of the storage requirement as well
as the number of comparisons during classification.

We have implemented decision trees for static
(BS-tree) and dynamic splitting (SO-tree) by us-
ing the weighting function (3) as ranking scheme
for the splitting criterion. In addition, we have
also implemented the IGTree algorithm (Daelemans
et al., 1997), which uses the information gain as
static splitting criterion, and C~.5 (Quinlan, 1993b),
which applies the information gain to dynamic
splitting. The decision trees are implemented in

128 Learning and NL Interfaces

type E,featurelist:
public [feature];
ROCK:

distance(x: featurelist): int;
end-type
class E.featurelist

public:
distance(x: featurelist): int
begin

var ix: int;
var iy: int;
var fx: int;
var fy: int;
var dist: int;
ix := 1;
iy := 1;
while (ix <= upper@x) do
begin

fx := get_fnr@(l[ix]);
fy := get_fnr@(get_member at(iy) @self);
if (fx = fy) then
begin

i x : = i x + 1;
i y : = i y + 1;

end
else
begin

dist := dist + 1;
if (fx < fy) then

ix := ix + 1;
else

i y : = i y + 1;
end
if (ix > upper@x) then

while (iy <= upper@self) do
begin

iy := iy + 1;
dist := dist + 1;

end
if (iy > upper@self) then

while (ix <= upper@x) do
begin

i x : = i x + 1;
dist := dist + 1;

end
end
dist

end
end-class

type declaration for feature lists
list of features
ROCK methods
method for calculation of distance to
feature list of new instance X
persistent class definition
visibility
method for distance calculation

index for instance X
index for instance Y
feature for instance X
feature for instance Y
computed distance
initialization of index ix
initialization of index iy
while index/xS that of last feature for X do

get feature number for instance X at index ix
get feature number for instance Y at index iy
if same feature, then

increment indices

else

increment distance
if feature number for X smaller than
that for Y, then increment index/x
else
increment index iy

if index ix> that of last feature for X, then
while index iy~ that of last feature for Y do

increment index iy
increment distance

if index iy> that of last feature for Y, then
while index/x~ that of last feature for X do

increment index ix
increment distance

return distance

Figure 3: ROCK & ROLL code segment for IB1 distance calculation

ROCK & ROLL by creating an object for each node
and by linking the nodes according to the tree struc-
ture. The classification of a new case is then simply
performed as top-down traversal of the tree starting
from the root. Besides this exact search we have also
implemented an approximate search method, which
allows one incorrect edge along the traversal to find
a larger number of similar cases.

Rule-based learning represents a second large cat-
egory of model-based techniques. It aims at deriving
a set of rules from the instances of the training set.
A rule is here defined as a conjunction of literals,
which, if satisfied, assigns a class to a new case. For
the case of binary features, the literals correspond

to feature tests with positive or negative sign. This
means that they check whether a new case possesses
a certain feature (for positive tests) or not (for neg-
ative tests).

The methods for deriving the rules originate from
the field of inductive logic programming (Muggleton,
1992). One of the most prominent algorithms for
rule-based learning is FOIL (Quinlan and Cameron-
Jones, 1995), which learns for each class a set of
rules by applying a separate-and-conquer strategy.
The algorithm takes the instances of a certain class
as target relation. It iteratively learns a rule and re-
moves those instances from the target relation tha t
are covered by the rule. This is repeated until no in-

Winiwarter 8¢ Kambayashi 129 Learning and NL Interfaces

type E.literal:
properties:

public:
lift: feature,
sign: bool;

ROLL:
differ(featurelist);

end-type
class E.literal

public:
differ(featurelist)
begin

differ(Flist) :-
S == geLsign@self,
S == true,
F == get_lift@self,
-is_in(F) @ Flist;

differ(Flist) :-
S == get_sign @ self,
S == false,
F == geLlift@self,
is_in(F) @ Flist;

end
end-class
type E.rule:

properties:
public:

rulenr: int,
ruleclass: int;

public [literal];
ROLL:

differ(featurelist);
end-type
class E.rule

public:
differ(featurelist)
begin

differ(Flist) :-
is in(L)@self,
differ(Flist) @ L;

end
end-class

type declaration for literals
attributes
visibility
feature
sign of feature test
ROLL methods
method for performing feature test

persistent class definition
visibility
method for performing feature test
retums true if test is not satisfied, otherwise false
test for positive sign
get sign of feature test
test if sign is positive
get feature
test if feature is not member of feature list
test for negative sign
get sign of feature test
test if sign is negative
get feature
test if feature is member of feature list

type declaration for rule
attributes
visibility
rule number
class of rule
list of literals
ROLL methods
method for performing test of rule

persistent class definition
visibility
method for performing test of rule
returns true if test is not satisfied, otherwise false

get individual literals
invoke method for all literals

Figure 4: ROCK & ROLL code segment for test of rules

stances are left in the target relation. A rule is grown
by repeated specialization, adding literals until the
rule does not cover any instances of other classes.
In other words, the algorithm tries to find rules that
possess some positive bindings, i.e. instances that be-
long to the target relation, but no negative bindings
for instances of other classes. Therefore, the reason
for adding a literal is to increase the relative propor-
tion of positive bindings.

As weighting function for selecting the next literal,
FOIL uses the information gain. We have imple-
mented FOIL, and besides this, we also use the algo-
r i thm BIN-rules with the following weighting func-
tion:

w 1 , , , c = b] . (b - - b T) . • (5)

In this formula, s indicates the sign of the feature
test. The number of positive (negative) bindings
after adding the literal for the test of feature f is
written as b~" (57). Finally, b- indicates the number
of negative bindings before adding the literal so that
b- - b~ calculates the reduction of negative bindings
achieved by adding the literal. The weights w1,~,c
are calculated as class-dependent weights for class C
by making use of the feature weights w! from (3):

wy . p (D/ , C) if s positive
w/, , ,c = w I • [1 - p(D1, C)] otherwise . (6)

We have implemented the test of rules as deduc-
tive ROLL method as shown in Fig. 4. The invoca-
tion of the method is a query with the parameter f l
for the feature list of the new case. The test returns

Winiwarter ~ Kambayashi 130 Learning and NL Interfaces

false for those rules that are satisfied by the new
case. The result of the query can then be assigned to
the set of satisfied rules r s by using the command:
r s := [{l : t}l , -~diffor(!f l)~l~] ;. As in the case of
decision trees, we have developed an approximate
test, which tolerates one divergent literal.

As last group of:model-based algorithms we look
at hybrid approaches between decision trees and rule-
based learning. There exist two ways in principle
to combine the advantages of the two paradigms.
The first one is to extract rules from a decision tree
whereas the second one follows the opposite direc-
tion by constructing a decision tree from a rule base.

As example of the first type of approach we have
implemented C~. 5-R ULES (Quinlan, 1993b), which
extracts rules from the decision tree built by C4.5.
Rules are computed as paths along the traversal
from the root to all'leaves. In a second run, rules are
pruned by removing redundant literals and rules.

Regarding the second type of approach, we start
from the rule base:produced by BIN-rules and use
it for building an SE-tree (Rymon, 1993). SE-trees
are a generalization of decision trees in that they
allow not only one but several feature tests at one
node. Therefore, a much flatter and more compact
tree structure is achieved. For the construction of
the tree we sort the feature tests of the rules first.
Starting from a root node, we then construct paths
according to the literals of the individual rules. For
this process we make use of existing paths as far as
possible before creating new branches.

4 E v a l u a t i o n

As case study for investigating the feasibility of the
implemented machine learning algorithms, we use a
multilinguM natura ! language interface to a produc-
tion planning and control system (PPC). The PPC
performs the mean-term scheduling of products and
resources involved in the manufacturing processes,
i.e. material, machines, and labor. The resulting
master production schedule forms the basis of the
coordination of related business services such as en-
gineering, manufacturing, and finance. The modeled
enterprise makes precision tools by using job order
production and serial manufacture as basic strate-
gies. The efficient realization of the high demands
of the application exceeds the power of relational
database technology. Therefore, it represents an
excellent choice for deriving full advantage of the
extended functionality of deductive object-oriented
database systems, i Furthermore, the sophisticated
functionality justifies the effective use of a natural
language interface.

During previous research (Winiwarter, 1994) we

developed a German natural language interface
based on 1000 input sentences that had been col-
lected from users by means of questionnaires. The
input sentences were then mapped to 100 command
classes (10 for each class). The mapping was per-
formed by elaborate semantic analysis; for the devel-
opment of the underlying rule base we spent several
man-months.

Therefore, we were eager to see if we could replace
this extensive effort by a machine learning compo-
nent that learns the same linguistic knowledge auto-
matically. For this purpose we divided the 1000 sen-
tences into 900 training cases and 100 test cases. In
addition, we collected 100 Japanese and 100 English
test sentences to check whether the learned knowl-
edge really operates at a semantic level independent
from language-specific phenomena.

As result of the encoding of the training set (see
Sect. 2), we obtained the large number of 316 fea-
tures, 289 for the DFL and 27 for the UVL. For
the evaluation of the different machine learning algo-
rithms we used as performance measures the success
rate, i.e. the proportion of correctly classified test
cases, and the top-3 rate. The latter indicates the
proportion of cases where the correct classification
is among the first three predicted classes. For the
case of model-based approaches we had to produce
additional candidates for classes. This was achieved
by applying approximate methods that allow one in-
correct edge along the traversal of decision trees or
one divergent literal for the test of rules (see Sect. 3).

Our first experiment was the comparison of the
four instance-based algorithms IB1, IBi-IG, BIN-
CAT, and BIN-PRO. As can be seen from the results
in Table 1, BIN-CAT clearly outperforms IB1 and
IBi-IG. Concerning the method BIN-PRO, which
uses prototypes of classes, we achieved results at the
same quality level as for BIN-CAT. This is remark-
able if one considers the much more condensed rep-
resentation of the learned knowledge.

The comparison between the results for the indi-
vidual languages shows that there is no advantage
for the German test sentences. On the contrary,
the test results for German are inferior to that for
English or Japanese. This may be part ly due to
a greater deviation of the German expressions and
phrases used in the test set from the ones used in
the training set. Besides this, the restriction of ex-
tracted features during encoding the test set to those
learned from the training set certainly performs an
important filtering function. It removes language-
specific syntactic particles that do not contribute to
the meaning Of the input. This is especially true
for the case of Japanese sentences, which possess a

Winiwarter ~ I(ambayashi 131 Learning and NL Interfaces

IB1
IBI-IG

BIN-CAT
BIN-PRO

IGTree
BS-tree

C4.5
BD-tree
SE-tree

GERMAN
Success rate I 'lbp-3 rate

82% I 94%
84 % 98 %
94 % 100 %
95 % 100 %

ENGLISH
Success rate 'lbp-3 rate

98 % 99 %
97 % 100 %
99 % 100 %
97 % 100 %

J A PAN ES E
Success rate 'lbp-3 rate

94 % 98 %
90 % 99 %
99 % 100 %
97 % 100 %

Table 1: Test results for instance-based learning

GERMAN
Success rate Top-3 rate

80% 94%
86 % 97 %
94 % 100 %
93 % 99 %
94 % 97 %

ENGLISH
Success rate rlbp-3 rate

92 % I00 %
95 % 100 %
94 % 100 %
94 % 99 %
96 % 97 %

JAPANESE
Success rate Top-3 rate

86 % 97 %
90 % 96 %
89 % 100 %
91% 99 %
91% 95 %

Table 2: Test results for decision trees

completely different syntactic structure in compari-
son with English or German including many parti-
cles with no equivalent words in the other two lan-
guages.

The second part of the evaluation was the com-
parison of the four algorithms for building decision
trees: IGTree, BS-tree, C4.5, and BD-tree. Besides
this, we also included the SE-tree constructed by a
hybrid approach (see Sect. 3). The test results in Ta-
ble 2 indicate that the trees with dynamic splitting
are superior to those with static splitting and that
C4.5, BD-tree, and SE-tree produce results of simi-
lar quality. Table 3 compares the number of nodes,
leaves, and levels for the individual trees. The two
trees with dynamic splitting are much more compact
than those with static splitting, with C4.5 clearly
outperforming BD-tree. Finally, the hybrid SE-tree
is much flatter than C4.5 but possesses a larger num-
ber of nodes and leaves.

Nodes Leaves Levels
IGTree 865 433 33
BS-tree 719 360 86

C4.5 339 170 26
BD-tree 451 226 52
SE-tree 559 209 8

Table 3: Characteristics for decision trees

As last part of our comparative study we tested
the rule-based techniques FOIL, BIN-rules, and the
hybrid approach C4.5-RULES. As Table 4 shows,
FOIL produces the most compact representation of
learned knowledge, followed by C4.5-RULES and
BIN-rules. However, according to Table 5 both BIN-
rules and C4.5-RULES outperform FOIL with al-
most identical results.

Rules Literals Max. length
FOIL 215 534 5

BIN-rules 209 726 7
C4.5-1~U LES 167 677 24

Table 4: Characteristics for rule-based learning

An advantage of rule-based learning in compari-
son with other methods is tha t the learned knowl-
edge can be easily presented to the user in a clear
and understandable form. The derived rules allow a
transparent knowledge representation tha t one can
use for explaining decisions of the system to the user.
Figure 5 gives some examples of rule sets learned by
BIN-rules for several command classes.

If we take a final look at Table 1, Table 2, and
Table 5, we can see that independent from the ap-
plied machine learning paradigm the achieved results
reached satisfactory quality for all three groups. By
considering the three best representatives BIN-CAT,
C4.5, and BIN-rules, we obtain an average success
rate for all three languages of 94.3 % and a top-3 rate
of 98.8 %. This result is surprisingly high if one con-
siders the complexity of the task at hand. Unfortu-
nately, we had no possibility of a direct comparison
with the results of the hand-engineered interface be-
cause the previous interface had been developed only
for German based on the complete collection of 1000
sentences by using a different software. In any case,
we could show that machine learning represents a
sound alternative to manual knowledge acquisition
for the application in natural language interfaces.

Winiwarter ~4 Kambayashi 132 Learning and NL Interfaces

FOIL
BIN-rules

C4.5-RULES

GERMAN
Success rate 'lbp-3 rate

85 % 97 %
94% 97%
94 % 98 %

ENGLISH
Success rate i 'lbp-3 rate

92 % 97 %
95 % 97 %
94 % 96 %

J A PAN ES E
Success rate 'lbp-3 rate

88 % 96 %
91% 95 %
91% 96 %

Table 5: Test results for rule-based learning

Class description

update of purchase price
for material

liquidation of stock for product

Update of salary for operator

list of product orders grouped
by status

query of master data for
operator

Rule set

1 material AND 1 real

i product AND liquidate
1 product AND stock

I operator AND 1 real
I operator AND salary
1 operator AND earn

status AND product order

1 operator AND about
I operator AND data AND NOT stoppage

Figure 5: Examples of learned rules

5 Conclus ion

In this paper we have presented first results from
a comparative study of applying different inductive
learning techniques to natural language interfaces.
We have implemented a representative selection of
instance-based and model-based algorithms by mak-
ing use of deductive object-oriented database func-
tionality. The extensive case study for an inter-
face to a production planning and control system
shows the feasibility of the approach in that linguis-
tic knowledge is learned the acquisition of which nor-
mally takes a large effort of human experts.

Future work will concentrate on the important
point of increasing: the reliability of test results in
that we apply cross-validation trials and statistical
tests for the significance of performance differences
between two algorithms. Furthermore, we also want
to generate learning functions that plot success rates
as function of the size of the training collection. Be-
sides this, we plan to test our learning algorithms on
standard benchmark machine learning datasets and
other typical natural language learning datasets.

Finally, we intend to extend the implemented al-
gorithms to include also unsupervised methods as

well as connectionist and evolutionary techniques.
In addition, we will implement incremental learning
techniques, which continue the learning process dur-
ing the test phase, and adaptive boosting methods,
which apply several classifiers instead of just one.
We believe that our study is a first promising step
towards the challenging task of carrying out compar-
ative evaluations of the performance of different ma-
chine learning algorithms for specific linguistic prob-
lems.

R e f e r e n c e s

David W. Aha, Dennis Kibler, and Marc Albert.
1991. Instance-based learning algorithms. Ma-
chine Learning, 7:37-66.

Ioannis Androutsopoulos, Graeme D. Ritchie, and
Peter Thanisch. 1995. Natural language inter-
faces to databases - - an introduction. Journal
of Natural Language Engineering, 1(1) :29-81.

Chinatsu Aone and Scott W. Bennett. 1996. Apply-
ing machine learning to anaphora resolution.
In S. Wermter, E. Riloff, and G. Scheler, ed-
itors, Connectionist, Statistical, and Symbolic

Winiwarter ~ Kambayashi 133 Learning and NL Interfaces

Approaches to Learning for Natural Language
Processing, pages 302-314. Springer-Verlag,
Berlin, Germany.

Maria L. Barja, Norman W. Paton, Alvaro A.A.
Fernandes, M. Howard Williams, and Andrew
Dinn. 1994. An effective deductive object-
oriented database through language integra-
tion. In Proceedings of the 20th International
Conference on Very Large Data Bases, pages
463-474, Athens, Greece. Morgan Kaufmann,
San Mateo, California.

Walter Daelemans and Antal van den Bosch. 1992.
Generalisation performance of backpropaga-
tion learning on a syllabification task. In
M. Drossaers and A. Nijholt, editors, TWLT3:
Connectionism and Natural Language Process-
ing, pages 27-37. Twente University Press, En-
schede, Netherlands.

Walter Daelemans, Antal van den Bosch, and Ton
Weijters. 1997. IGTree: Using trees for com-
pression and classification in lazy learning al-
gorithms. Artificial Intelligence Review. To
appear.

Raymond J. Mooney. 1996. Comparative experi-
ments on disambiguating word senses: An il-
lustration of the role of bias in machine learn-
ing. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Process-
ing, pages 82-91, Philadelphia, Pennsylvania,
May.

Isabelle Moulinier and Jean-Gabriel Ganascia. 1996.
Applying an existing machine learning algo-
rithm to text categorization. In S. Wermter,
E. Riloff, and G. Scheler, editors, Connec-
tionist, Statistical, and Symbolic Approaches
to Learning for Natural Language Processing,
pages 343-354. Springer-Verlag, Berlin, Ger-
many.

Stephen Muggleton, editor. 1992. Inductive Logic
Programming. Academic Press, London, Eng-
land.

J. Ross Quinlan. 1986. Induction of decision trees.
Machine Learning, 1:81-206.

J. Ross Quinlan. 1993a. Combining instance-
based and model-based learning. In Proceed-
ings of the lOth International Conference on
Machine Learning, pages 236-243, Amherst,
Massachusetts. Morgan Kaufmann, San Ma-
teo, California.

J. Ross Quinlan. 1993b. C4.5: Programs for Ma-
chine Learning. Morgan Kaufmann, San Ma-
teo, California.

J. Ross Quinlan and R. Michael Cameron-Jones.
1995. Induction of logic programs: FOIL and
related systems. New Generation Computing,
13:287-312.

J. Ross Quinlan. 1996. Learning first-order defini-
tions of functions. Journal of Artificial Intel-
ligence Research, 5:139-161.

Ellen Riloff and Wendy Lehnert. 1994. Information
extraction as a basis for high-precision text
classification. A CM Transactions on Informa-
tion Systems, 12(3):296-333.

Ron Rymon. 1993. An SE-tree-based characteri-
zation of the induction problem. In Proceed-
ings of the lOth International Conference on
Machine Learning, pages 268-275, Amherst,
Massachusetts. Morgan Kaufmann, San Ma-
teo, California.

Stephen Soderland, David Fisher, Jonathan Asel-
tine, and Wendy Lehnert. 1996. Issues in
inductive learning of domain-specific text ex-
traction rules. In S. Wermter, E. Riloff, and
G. Scheler, editors, Connectionist, Statisti-
cal, and Symbolic Approaches to Learning for
Natural Language Processing, pages 290-301.
Springer-Verlag, Berlin, Germany.

Antal van den Bosch, Walter Daelemans, and Ton
Weijters. 1996. Morphological analysis as clas-
sification: An inductive-learning approach. In
Proceedings of the Second International Con-
ference on New Methods in Language Process-
ing, Ankara, Turkey, September.

Werner Winiwarter. 1994. The Integrated Deductive
Approach to Natural Language Interfaces. PhD
thesis, University of Vienna, Austria.

Takefumi Yamazaki, Michael J. Pazzani, and
Christopher Merz. 1996. Acquiring and updat-
ing hierarchical knowledge for machine trans-
lation based on a clustering technique. In
S. Wermter, E. Riloff, and G. Scheler, edi-
tors, Connectionist, Statistical, and Symbolic
Approaches to Learning for Natural Language
Processing, pages 329-342. Springer-Verlag,
Berlin, Germany.

Winiwarter 8J Kambayashi 134 Learning and NL Interfaces

John M. Zelle and Raymond J. Mooney. 1996. Com-
parative results on using inductive logic pro-
gramming for corpus-based parser construc-
tion. In S. Wermter, E. Riloff, and G. Scheler,
editors, Connectionist, Statistical, and Sym-
bolic Approaches to Learning for Natural Lan-
guage Processing, pages 355-369. Springer-
Verlag, Berlin, Germany.

Winiwarter ~ Kambayashi 135 Learning and NL Interfaces

