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Abstract 

This pape r  presents a new view of 
ExplanatiomBased Learning (EBL) of nat- 
ural language parsing. Rather than em- 
ploying EBL for specializing parsers by in- 
ferring new ones, this paper suggests em- 
ploying EBL for learning how to reduce 
ambiguity only partially.We exemplify this 
by presenting a new EBL method that 
learns parsers that avoid spurious over- 
generation, and we show how the same 
method can be used for reducing the sizes 
of stochastic: grammars learned from tree- 
banks, e.g. (Bod, 1995, Charniak, 1996, 
Sekine and Grishman, 1995). 

The present method consists of an EBL al- 
gorithm for learning partial-parsers, and a 
parsing algorithm which combines partial- 
parsers with existing "full-parsers". The 
learned partial-parsers, implementable as 
Cascades of Finite State Transducers (CF- 
STs), recognize and combine constituents 
efficiently, prohibiting spurious overgener- 
ation. The parsing algorithm combines 
a learned partial-parser with a given full- 
parser such that the role of the full-parser 
is limited tO combining the constituents, 
recognized by the partial-parser, and to 
recognizing unrecognized portions of the 
input sentence. Besides the reduction of 
the parse-space prior to disambiguation, 
the present method provides a way for re- 
fining existing disambiguation models that 
learn stochastic grammars from tree-banks 
e.g. (Bod, 1995, Charniak, 1996, Sekine 
and Grishman, 1995). 

We exhibit encouraging empirical results 
using a pilot implementation: parse-space 
is reduced substantially with minimal loss 

of coverage. The speedup gain for disam- 
biguation models is exemplified by experi- 
ments with the DOP model (Bod, 1995). 

1 I n t roduc t i on  

Current work on natural language parsing is in large 
part directed towards eliminating overgeneration of 
grammars by employing stochastic models for dis- 
ambiguation (e.g. (Bod, 1995, Sekine and Grish- 
man, 1995, Charniak, 1996)). For many applications 
(e.g. Speech Understanding), probabilistic evalua- 
tion of the full parse-space using such models is NP- 
hard (Sima'an, 1996b), and even when it is deter- 
ministic polynomial-time, then grammar size is pro- 
hibitive. Therefore, it is necessary to develop meth- 
ods that, on the one hand, reduce the space of anal- 
yses, as much as possible prior to disambiguation, 
and on the other hand, reduce the sizes of gram- 
mars used for disambiguation. This paper presents 
a method aimed at these two forms of reduction of 
time and space costs. 

In recent work on speeding up parsing, effort is 
directed towards specializing broad-coverage gram- 
mar by EBL (e.g. (Rayner, 1988, Samuelsson, 
1994, Rayner and Carter, 1996, Srinivas and Joshi, 
1995)). Grammar-specialization, in these works, 
amounts to replacing a given parser by a fresh effi- 
cient parser learned from the tree-bank. The learned 
parser trades coverage for efficiency. Inspired by 
these works, we present a new method based on EBL 
for learning efficient parsers. Rather than special- 
izing a given full-parser by inferring a new one, the 
present method learns a partial-parser and combines 
it with the full-parser in a way that reduces ambi- 
guity. The combination is a serial construction in 
which the partial-parser is employed first for rec- 
ognizing and combining constituents. The partial- 
parser is learned such that it parses only those por- 
tions of the sentence that  are "safe" to parse, i.e. 
at the points where there is clear bias in the tree- 
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bank. These constituents are then passed through, 
together with unrecognized portions of the input, to 
the full-parser, that completes the space only where 
necessary. 

For disambiguation models such as (Bod, 1995, 
Sekine and Grishman, 1995, Charniak, 1996), the 
present method refines the cutting criteria which 
these models employ for inferring stochastic gram- 
mars. This refinement results in the inference of 
smaller, yet no less powerful, statistical grammars. 

2 T e r m i n o l o g y  

A Context-Free Grammar (CFG) derivation is a se- 
quence of one or more rewriting steps, starting with 
the start non-terminal of the grammar, employing 
the grammar productions. A subderivation is 
a subsequence of a derivation. A string of sym- 
bols which results from a CFG-derivation (of zero 
or more rewriting steps) is called a sentential-form. 
A partial-tree (also subtree) of a given tree t is a 
tree-structure which is the result of a subderiva- 
tion of a derivation represented by t. A partial- 
tree which has as its root the start non-terminal 
is called a sentential partial-tree. The string ob- 
tained from the ordered sequence of leaf nodes of 
a partial-tree is called the frontier of the partial- 
tree; the leaf nodes are called the frontier nodes of 
the partial-tree. A Context-Free rule (CF-rule) 
R=A -4 A1 . . .An  is said to appear in a tree t if 
there is a node in t, labeled A, and that node has n 
children labeled with (maintaining order from left to 
right) A1...A,~. The CFG (VN, VT, S, 7~ ) is called 
the CFG underlying a given tree-bank iff ~ is the 
set {R I rule R appears in a tree in the tree-bank} 
(and the start non-terminal S, non-terminal set VN, 
terminal set VT are exactly those of the tree-bank). 
A parser based on the CFG-underlying a tree-bank 
is called the Tree-bank parser (denoted T-parser).  

3 E x p l a n a t i o n - B a s e d  L e a r n i n g  

EBL (Mitchel et ai., 1986, DeJong and Mooney, 
1986, van Harmelen and Bundy, 1988) is the name 
of a unifying framework for methods that learn from 
previously explained examples of a certain concept. 
EBL assumes a domain theory (or background the- 
ory) which provides explanations to and enables 
the definition of concepts. In existing literature, 
the main goal of EBL is much faster recognition of 
concepts than the domain-theory does; EBL learns 
"shortcuts" in computation (called macro-operators 
or "chunks"), or directives for changing the thread 
of computation. EBL stores the learned chunks in 
the form of partial-explanations to previously seen 
input instances, in order to apply them in the future 

to "similar" input instances (in EBL, also "similar- 
ity" is assumed provided by the domain-theory). 
~ The specification of EBL consists of four precon- 
ditions and one postcondition. The preconditions 
are: 1) A domain theory: A description language 
for the domain at hand together with rules and facts 
about the domain. 2) A target concept: A formal 
description, over the alfabet off the domain-theory, 
of the to-be-learned relation. 3) An Operationality 
criterion: A requirement on the form of the target 
concept. And 4) training examples: A history which 
makes explicit the explanations given by the domain- 
theory to examples that occurred in the past; the ex- 
planations consist of instances of the target concept. 
The postcondition is: Find a generalization of the in- 
stances of the target concept given in the training- 
examples that satisfies the operationality criterion. 

Past experience in Machine Learning cast doubts 
on the feasibility of improving performance by us- 
ing EBL (Minton, 1990). Minton explains that EBL 
does not guarantee better performance, since the 
cost of applying the learned knowledge might out- 
weigh the gain. Minton discusses a formula for 
computing the utility of knowledge during learning. 
Generally speaking, this formulae is neither part of 
EBL nor part of the domain-theory; it is an exten- 
sion to the EBL scheme by e.g. statistical inference 
over large sets of training examples. 

4 L e a r n i n g  p a r t i a l - p a r s e r s  

We assume a tree-bank representing a certain do- 
main of application. The tree-bank forms the 
training-examples of our EBL-based method, and 
the linguistic annotation employed for annotating 
the sentences represents the domain-theory. For the 
sake of presentation we delay the discussion of de- 
tail of the algorithm and concentrate on a simplified 
version of it. The simplest instances of the target- 
concept of our algorithm are called probably always 
subsentential-forms (PA-SSFs). 

Subsenten t ia l - form A subsentential-form (SSF) 
is a sequence of grammar-symbols which forms 
the frontier of a partial-tree. 

Probab ly  always SSF An SSF s s f  = N1 ""  Nm 
is called Probably Always SSF (PA-SSF) with 
respect to the tree-bank /f the frequency of oc- 
currence of N 1 . . . N m  in the tree-bank as SSF 
(denoted f c( N1. . . Nm ) ) is equal to the total fre- 
quency of its occurrence in the tree-bank (de- 
n o t e d  f ( N 1 .  . . N m ) ) .  

The concept PA-SSF formalizes the intuitive con- 
cept "probably always constituent". In reality, 
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as discussed below, this concept is refined to be- 
come context-sensitive and less rigid; it becomes 
"probably almost always constituent in some local- 
context". Moreover, to avoid sparse-data problems 
we exclude the words of the language from the SSFs 
which we consider; the SSFs may  consist of both 
part-of-speech tags (PoSTags) as well as phrase- 
symbols. 

A s s o c i a t e d  s u b t r e e  A partial-tree which has the 
sequence ssf as its frontier is called a subtree as- 
sociated with Ssf. The set of subtrees associated 
with ssf, with respect to a tree-bank, consists of 
all partial-trees of the tree-bank trees, which are 
subtrees associated with ssf. 

T h e  l e a r n i n g  a l g o r i t h m  

The goal of the algorithm is to learn the set of 
PA-SSFs tha t  represents the tree-bank trees in the 
fastest and least ambiguous way possible. The pred- 
icate "least ambiguous" is instantiated in two ways: 
1) the learned (almost) PA-SSFs imply brackets 
which are most  probably useful. And 2) the set 
of subtrees associated with a learned PA-SSF is as- 
sumed complete, i,e. no more structures are nec- 
essary for future sentences containing tha t  PA-SSF. 
The second goal "fastest" is implemented by select- 
ing the PA-SSFs tha t  reduce the tree-bank trees in 
the fastest way. To achieve this we employ an op- 
erationali ty criterion which measures the utility of a 
PA-SSF. A measure of how much a single PA-SSF 
contributes to reducing a sentential-form is the Re- 
duction Factor, and the "expected utility" of a PA- 
SSF is est imated as the Global Reduction Factor: 

R e d u c t i o n  F a c t o r  The Reduction Factor ( R F )  of 
a given SSFss f  is R F ( s s f )  = n ( s s f )  - 1, where 
L(ss f )  is the number of symbols which consti- 
tute ssf. 

G l o b a l  R F  The global reduction factor of a given 
PA-SSF ssf with respect to the tree-bank 
is defined as G R F ( s s f )  = f c ( s s f )  x R F ( s s f ) ,  
where f c ( s s f )  is the frequency of ssf as a con- 
stituent. In case ssf is an SSF that is not a 
PA-SSF then GRF(ssf)  = - o o .  

The specification of the learning algorithm is in 
figure 2. The algorithm learns PA-SSFs by an iter- 
ative procedure which "eats" up the tree-bank trees 
from their leaves upwards. Beginning with the tree- 
bank at hand, after each iteration, the procedure 
outputs: the set of learned PA-SSFs and a new tree- 
bank obtained by reducing all subtrees associated 
with a learned PA-SSF in all trees of the tree-bank 
at hand. In the next iteration, the same procedure 

is applied to the tree-bank output  by this iteration. 
The procedure stops when there is nothing to learn 
anymore i.e. either there are no PA-SSFs to learn, 
or all tree-bank trees are fully reduced to their roots. 

C o m p e t i t o r  SSF  Let N be a node in tree t and 
let s s f  be the partial-tree with N as root. The 
frontier of a partial-tree with root node which is 
a descendent or ancestor of N in t is called a 
competi tor  of ss f .  

O p e r a t i o n a l i t y  c r i t e r i o n  At  each iteration of the 
algorithm, for each sentential partial-tree t in 
the tree-bank, for each SSF ssf in t, ssf is learned 
iff ssf is PA-SSF and G R F ( s s f )  > G R F ( x ) ,  
for all x which is a competitor of ssf in t. 

Consider again the specification in figure 2. Let 
the algorithm be at a certain iteration i and let 
each node in each partial-tree of the current tree- 
bank (TB~) have a unique address. Also define the 
global reduction factor of an address N of a node, 
G R F ( N ) ,  to be equal to GRF(ssf),  where ssf is 
the SSF on the frontier of the partial-tree under 
the node with address N.  The operat ionali ty crite- 
rion is implemented in the specification at step (2.), 
where nodes are marked. The learned PA-SSFs are 
those SSFs which form the frontiers of partial-trees 
of which the root is a node which was marked at 
some iteration. 

D e t a i l  o f  l e a r n i n g  a l g o r i t h m  

Now we present further detail of the algorithm. 
The te rm "PA-SSF" is redefined as follows: 

ssfis called PA-SSF if it fulfills ~ > 0, 
f ( s s f )  - -  

where 0 < ~ < 1 is a threshold. 

This definition of PA-SSF makes the target-concept 
of our EBL method become "with probabil i ty more 
than/~ a constituent". The algori thm employs this 
definition as follows. A threshold is set on the values 
of 8, where 0 is allowed to change during learning 
(the default value of this threshold is 0 = 1.0 unless 
stated otherwise). Suppose the threshold on ~ is 
0.75. The algorithm starts  in the first i teration with 
learning PA-SSFs of 0 = 1.0. Each t ime there are no 
more PA-SSFs to learn, under the current value of 
0, it reduces 0 by a fixed amount  (e.g. 0.05) until 

becomes equal to the threshold (0.75). Then the 
algorithm stops learning. 

We also employ a threshold (r) on the min imum 
frequency of SSFs; an SSF must  be frequent enough 
in order to qualify for the PA-SSF test. Currently 
this threshold is set at the m a x i m u m  of a fixed inte- 
ger (e.g. 10) and a percentage of the number  of trees 
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Figure 1: Two trees marked by the learning algorithm 

/ *  L e t  N d e n o t e  a u n i q u e  a d d r e s s  o f  a n o d e  o f  a t r e e  t. Also  le t  TBi  d e n o t e  t h e  
/ *  t r e e - b a n k  o b t a i n e d  a f t e r  i i t e r a t i o n s ,  w h e r e  7-B0 d e n o t e s  t h e  g i v e n  t r e e - b a n k .  
/ *  F r o n t i e r _ O f ( N )  d e n o t e s  t h e  f r o n t i e r  (i.e. an  SSF)  o f  t h e  p a r t i a l - t r e e  u n d e r  N.  
/ *  D e s c e n d e n t ( N c h , N p )  d e n o t e s  t h e  p r e d i c a t e :  t h e  n o d e  a d d r e s s e d  Nch is a 
/ *  d e s c e n d e n t  o f  t h e  n o d e  a d d r e s s e d  Np. 

1. i : = 0 ;  

R e p e a t  

2. V t 6 TB~, V node address N in t: N is marked iff  
Frontier_Of(N) is PA-SSF in TBi a n d  

v g x  ¢ g in t: (Descendent(Nx,N) or  Deseendent(N, Nx) ) 

3. i : = i + l ;  

4. TBi  := (TBi-1 after reducing all partial-trees under marked nodes); 

. /  
*/ 
*/ 
:/ 

(GRF(N) > GRF(Nx)); 

u n t i l  ((TB, = =  0) o r  (TB, == TBi-1));  

Figure 2: The Learning Algorithm 

in the tree-bank (e.g. 0.3%). However, a more prin- 
cipled way to set the threshold is by letting it be a 
function of the distribution of SSFs in the tree-bank. 

The algorithm also employs a definition of PA- 
SSF conditioned on local context, rather than fully 
context-free: 

A sequence of symbols is called PA-SSF in 
context C iff the ratio between its fre- 
quency as SSF in context C and its total 
frequency in context C is > 0. 

The local context that  is employed consists of four 
fields: two grammar symbols to the left of and two 
to the right of an SSF. Since after the first round of 
the learning algorithm the training material consists 
of sentential partial-trees, this kind of local context 
may consist of PoSTags as well as phrasal symbols. 
The algorithm can use this local context in order to 
enhance learning and parsing. In the current im- 
plementation, however, we employ this local context 
only during learning and in a quite simplistic man- 
ner. 

Since currently local-context is not employed dur- 
ing parsing, the learning algorithm is tuned to pre- 
fer as general local-contexts as possible. The learn- 
ing algorithm assumes in the first place that  all four 

fields of the local-context of an SSF are wild-cards. 
In case the SSF is not a PA-SSF in that  context, 
then the algorithm retreats and assumes any three 
of the four fields to be wild-cards. In case an SSF 
is not a PA-SSF under three or more wild-cards of 
local-context then it is not learned, i.e. two or less 
wild-card local-contexts do not contribute to learn- 
ing. Future implementations, however, shall have to 
take this local-context more seriously both in learn- 
ing and in parsing. 

E x a m p l e :  In figure 1, two example trees are 
shown. The asterisks in the figure denote the borders 
of subtrees associated with PA-SSFs learned from the 
tree-bank. The sequences of symbols marked with 
an asterisk at the frontier of a subtree, which has 
a marked root, form the learned PA-SSFs. In the 
tree at the left-hand side of figure1, there is only one 
PA-SSF that reduces the tree: (p np p np~),, which 
corresponds to '~rom Amsterdam to Utrecht". In 
the right-hand side tree of figure 1, there are two 
PA-SSFs, (p up) and (per v mp infp) .  

In the first iteration, the learning algorithm re- 
duced the left tree totally and reduced the right tree 
only at the constituent 'Trom Nijmegen". In the sec- 
ond iteration, the leftovers of the right-tree, a sen- 
tential partial-tree with frontier "ik/I wil/want mp 
vertrekken/to_leave', is reduced fully. If  there are 
other partial-trees which are left over in the tree- 
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bank, after these two iterations, then the algorithm 
will attempt reducing them in subsequent iterations. 
I f  there are no more PA-SSFs to learn, the algo- 
rithm stops (possibly leaving some partial-trees not 
fully reduced). 

T h e  p a r s i n g  a l g o r i t h m  

A Tree-Substitution Grammar  (TSG) is a CFG with 
rules which are partial-trees called elementary-trees. 
Let the set of subtrees associated with the PA-SSFs, 
which the learning algorithm outputs, be the set of 
elementary-trees of a TSG; the TSG has the same 
start-symbol, terminal and non-terminal symbols as 
the CFG underlying the tree-bank. This TSG is 
employed as a partial-parser (other implementations 
are discussed below). 

The new parsing algori thm combines the partial- 
parser with a given full-parser. It has two stages: 
firstly it employs the partial-parser for parsing the 
input sentence bottom-up, resulting in a space of 
partial-parses combined from subtrees associated 
with PA-SSFs. I n t h e  second phase it employs a 
given full-parser to complete these partial parses into 
full parses. Crucially, the second phase of the al- 
gorithm takes advantage of the construction of the 
learning algorithm. It makes two assumptions con- 
cerning the space of partial parses which the partial- 
parser constructed: 

• If a sequence of symbols is recognized by the 
partial-parser then it is highly probable that  all 
its subtrees are present in the chart (as these 
are either associated subtrees or combinations 
of associated subtrees). Thus it is not necessary 
to a t tempt  reparsing portions of the sentence 
which were recognized as by the partial-parser. 

• In the default case, 0 = 1.0, a PA-SSF implies 
"sure" constituent-borders; therefore, brackets 
placed by the full-parser are not allowed to cross 
the borders of a PA-SSF. In case two PA-SSFs 
cross each other, a highly unlikely case, then 
both PA-SSFs are removed from the partial- 
parser's output.  

Thus, the task of the full-parser is limited to pars- 
ing totally uncovered portions and combining them 
with the partial-trees provided by the partial-parser 
in ways that do not cross recognized PA-SSFs with 
0 = 1.0. In this paper we employ the CFG underly- 
ing the tree-bank (iie. T-parser) as the full-parser. 

I m p l e m e n t a t i o n  o f  p a r s i n g  a l g o r i t h m  

The current pilo~ implementation of the partial- 
parser does not take local context of PA-SSFs into 
consideration. The partial-parser is implemented as 

a parser for TSGs (Sima'an, 1996a), based on an 
extension to the CYK algorithm (Younger, 1967)). 
However, the partial-parser can be implemented as a 
Cascade of Finite State Transducers (CFSTs). A Fi- 
nite State Transducer (FST) is learned at each iter- 
ation of the learning algorithm; the FST's  language 
is the set of PA-SSFs learned at that  iteration, and 
the output  of the FST on recognition of a PA-SSF 
is the set of subtrees associated with that  PA-SSF. 

5 Existing related methods 

EBL was introduced to NLP by Rayner (Rayner, 
1988); Rayner employs EBL for specializing broad- 
coverage grammars to specific domains. In (Rayner 
and Samuelsson, 1994, Rayner and Carter, 1996) 
grammar specialization is conducted by chunking 
the trees of a tree-bank according to "chunking crite- 
ria" which are manually specified e.g. chunks corre- 
spond to trees with roots which correspond to full ut- 
terances, NPs, PPs or non-recursive NPs. Samuels- 
son (Samuelsson, 1994) is the first to depart from 
manual specification of chunking criteria in NLP; 
the chunking of the tree-bank trees employs the in- 
formation theoretic measure of entropy. Samuelsson 
measures the entropy of a grammar non-terminal 
as the measure of how hard it is to decide on the 
choice of the next rule application given that  non- 
terminal. Then he marks the nodes with the largest 
entropy as cutting nodes using an iterative algo- 
rithm. In (Srinivas and Joshi, 1995) the specific 
structure of the Lexicalized Tree-Adjoining Gram- 
mar (LTAG) derivations is exploited to result in an 
EBL method specific for LTAG. This differs from 
the other efforts in that  the generalization which 
they employ is not limited only to goal-regression 
but allows generalizing the structure of explanations. 
Their method learns from the LTAG derivations of 
the training-examples all sequences of PoSTags and 
reduces those to regular-expressions by generalizing 
on sequences of adjunctions with a Kleene-star; the 
generalized LTAG-derivations are stored indexed by 
the PoSTag sequences. 

Relation to Samuelsson's EBL: The present 
method is similar to Samuelsson's in tha t  it learns 
"cutting criteria" from the data. Our method differs 
from Samuelsson's in that  the cutting criteria are 
computed from an opposite direction. Samuelsson's 
maximum entropy is aimed at maximizing coverage, 
and his approach is derivational since the entropy 
is computed on steps of derivations starting from 
the start  non-terminal. The target concept of our 
method is a PA-SSF not a non-terminM (i.e. "prob- 
ably always constituent" v s . .  "constituent" resp.). 
Our method assumes a reductive approach and re- 
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sults in a partial-parser rather than a specialized 
parser. 

Relation to LTAG's  EBL: The concept of PA- 
SSF employed by our method is a generalization of 
the sentential PoSTag sequences employed in (Srini- 
vas and Joshi, 1995). Our method can be easily 
extended to accommodate LTAG generalizations of 
derivations and of PA-SSFs; to this end it is nec- 
essary to have a tree-bank annotated with LTAG 
derivations. The subtrees associated with learned 
PA-SSFs are then generalized partial derivations of 
LTAG. 

6 Application to DOP 

This section relates the present EBL method to 
existing models of disambiguation that project 
stochastic grammars from tree-banks, e.g. (Bod, 
1995, Charniak, 1996, Sekine and Grishman, 1995). 
To this end, we firstly relate these models to EBL, 
and then show that our new EBL method refines 
these models. 

We are concerned only with models that project 
the same grammatical description as that employed 
for annotation of the tree-bank. Among these mod- 
els, the Data Oriented Parsing (DOP) model (Scha, 
1990( Bod, 1995) takes the most radical point of 
view. DOP projects all partial-trees from a tree- 
bank and employs them as a stochastic gram- 
mar called a Stochastic Tree-Substitution Gram- 
mar (STSG). Other models in the same category 
are presented in (Charniak, 1996, Sekine and Grish- 
man, 1995). Charniak (Charniak, 1996) employs the 
tree-bank for projecting Stochastic CFGs (SCFGs). 
And (Sekine and Grishman, 1995) presents a con- 
strained DOP-like model which projects STSGs; 
cutting the tree-bank trees takes place only at nodes 
labeled either with S or with N P .  In this section we 
concentrate on DOP since it constitutes a general- 
ization of the other two efforts. 

In (Bod, 1995), the specification of DOP is as fol- 
lows. A DOP model has four parameters: 

1. sentence-analyses, i.e. syntactically labeled 
phrase structure trees given in a tree-bank, 

2. sub-anMyses, i.e. partial-trees, 

3. combination-operations, i.e. substitution, and 

4. combination-probabilities. 

The rest of the definition of the DOP model con- 
cerns how to infer probabilities of partial-trees from 
the tree-bank, and how to compute probabilities of 
combinations of partial-trees. The instantiation of 
DOP as realized in (Bod, 1995) is an STSG, which 

has the set of all partial-trees of the tree-bank trees 
as elementary-trees. We shall not give further de- 
tails of DOP since this is out of the scope of this 
paper. 

Let us rewrite Bod's specification using the termi- 
nology of EBL. Firstly, the so called domain-theory 
consists of the annotation convention as well as the 
annotation intuitions used for the annotation of the 
tree-bank. The tree-bank contains sentences and 
their tree structures: the trees constitute "explana- 
tions" (proofs) given by the domain-theory to the 
fact that the sequences of words on their frontiers 
are sentences. The target-concept of DOP is the con- 
cept of a constituent, represented by non-terminals 
of the tree-bank trees. The sub-analysis used by 
DOP are simply partial-trees, which form instances 
of the target-concept. These partial-trees are ob- 
tained by using a simple operationality criterion, 
which states that any partial-tree obtained from 
a tree-bank tree is acceptable (in the experiments 
mentioned in (Bod, 1995), Bod limits the depth of 
partial-trees, Charniak (Charniak, 1996) limits the 
partial-trees to CFG rules, and in (Sekine and Gr- 
ishman, 1995) only a subset of the non-terminals are 
allowed to supply partial-trees). The combination- 
operation of DOP is inherent to the assumption that 
the theory (phrase structure grammar) employs that 
operation. The fourth parameter of DOP, i.e. the 
inference and the definitions of probabilities of com- 
binations of partial-trees, extends the EBL scheme. 
This extension enables DOP, and the other models 
mentioned above, to apply statistical analysis over 
large sets of trees in order to facilitate disambigua- 
tion. The interesting part of viewing these models 
in EBL terminology is the fact that these models do 
not aim at speedup, but rather at the memory-based 
behavior of EBL. 

The new EBL method can be used in order to de- 
fine the operationality criterion for DOP as follows. 

• Apply the algorithm in figure 2 to the given 
tree-bank. The result is the same tree-bank ex- 
cept that now there are marking on nodes which 
delimit the subtrees associated with the learned 
PA-SSFs. 

• Mark also all nodes which are not internal to 
any subtree associated with a learned PA-SSF. 
And mark all PosTag nodes in all tree-bank 
trees. 

If learning was successful, then only some of the 
nodes of the tree-bank trees are marked now. The 
operationality criterion for DOP is then: 

A partial-tree is projected iff its root and 
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the nodes on its frontier are marked, i.e. 
cutting the trees for DOP is not allowed at 
unmarked nodes. Crucially, this way of cut- 
ting allows the projection of partial-trees 
which are combinations of subtrees associ- 
ated with learned PA-SSFs. 

The main remaining question on this refinement of 
DOP concerns the probabilities of the partial-trees 
projected from the tree-bank. In DOP, the proba- 
bility of a partial-tree with a root labeled N is de- 
fined as the ratio between its frequency and the to- 
tal frequency of all partial-trees tha t  have N as their 
root-label. Since the space of partial-trees is smaller 
in the refinement, the probabilities will be different 
than in the original DOP. We conjecture that  due 
to reducing the number  of parameters  of the model, 
sparse-data effects should be reduced (future work 
shall address this issue). 

7 Empirical resul ts  

The present method was developed within a Dutch 
national project on a dialogue system concern- 
ing public-transportatwn information (called OVIS) 
(ht tp: / /gr id. let . rug.nh4321/) .  Within the project, 
a vast amount  of dialogues were collected, and the 
user's utterances were syntactically and semantically 
annotated (Scha et al., 1996). For experimentat ion 
we employ a tree-bank of the first 5000 syntactically 
annotated utterances. Here we only report experi- 
ments on parsing transcribed utterances I . 

____-.--~.__. vr 
* P _ E R ~  * V  " ' ' ' ' " " ~  M I ~  I N F P . . _ . . _ . . _ _ _ _ . , ~  

I N  F P  
i ~ J , p  - - ' f  N P  

wil I * N U b l - - - ' - - ' ~  *N ] o m  j I vertrekken 

~r  U r w a n t  a t  o ,c~onc k to leave 

Figure 3: Another tree from OVIS 

The annotat ion of the OVIS tree-bank is exem- 
plified by the trees in figures 1 and 3. Due to the 
fact tha t  OVIS contains answers to questions within 
a dialogue system, the sentences are often short but 
surprisingly variable in structure; many  of these sen- 
tences contain repetitions, corrections and strange 
constructions (usually rendered ungrammatical  by 
linguistic theories). Below we report on two sets 
of experiments. The first set observes the learning 
curves of the present EBL method by combining the 
learned partial-parsers with a T-parser  (i.e. CFG). 

1 The present method was apphed together with DOP 
for parsing word-graphs in a speech recognition-task and 
resulted in, compared to DOP, on average speedup of 
10 times with virtually no loss of accuracy. Average 
speedup for word-graphs containing more than 40 states 
exceeds 20 times. 

And the second set studies the refinement of DOP 
using the present EBL method.  All t iming experi- 
ments were conducted on SGI Indigo with 640 MB 
RAM. 
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Figure 4: Learning curves for parser-precision 
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OVIS e x p e r i m e n t s  w i t h  T-parser  

The experiments concern both coverage as well as 
size of parse-space. We employ the T-parser  un- 
derlying the tree-bank (CFG) as a full-parser. In 
table 1 we list the results of ten independent ex- 
periments, each obtained by a random split of 4500 
training-set and 500 test-set. Since the domain con- 
tains many  (easy for parsing) one word utterances 
(e.g. "yes" or "no"),  we exclude one word utter- 
ances from the results. On average, the ten test-sets 
contained 337.2 (of 500) utterances longer than one 
word. Table 1 shows the results on utterances longer 
than one word, with mean length of 5.57 words per 
utterance. For training the EBL learning algori thm 
we set a threshold on the frequency of SSFs: 0.3% 
of the size of the training-set (i.e. 14). To avoid 
problems of unknown words, we allowed the words 
of the test-set to be included with all postags with 
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Parser 
T_parser 

ParWT_parser 

Right parse in chart 
97.78% (1.1%) 
93.23% (1.1%) 

Any parse in chart Precision Active nodes 
99.62% (0.3%) 98.15% (1.2%) 135.16 (248.93) 
99.11% (0.5%) 94.06% (1.5%) 31.17 (81.45) 

Table 1: Means and STDs of ten experiments (OVIS): Par denotes Partial-Parser 

which they appear in the whole tree-bank (for both 
parsers). 

Table 1 shows the statistical means and (in brack- 
ets) the standard deviations of the ten experiments 
(always for sentences longer than 1 word). R i g h t  
pa r se  (also structural consistency) denotes the per- 
centage of test sentences for which the parser's 
chart contains the right parse (i.e. test-set parse). 
A n y  p a r s e  (also coverage) denotes the percentage 
of test sentences for which the parser's chart con- 
tained a parse. P r e c i s i o n  denotes the ratio (Right 
parse/Any parse), which expresses the precision of 
the parser as a parse-space generator. And ac t ive  
n o d e s  denotes the mean number of active items in a 
CYK parser implementation; active items are those 
items that  participate in a full parse of the sentence. 

On average the partial-parser reduces the space 
by 4.33 times on all sentence lengths. The reduc- 
tion of space reaches a mean of 7 times on sentences 
longer than 6. The degradation in precision (4%) 
is due to several reasons. Firstly, the fact that  the 
partial-parser is currently implemented as a context- 
free recognizer clearly contributes to this degrada- 
tion. Secondly, after analyzing the test-results of 
one experiment, we found out that  about half of the 
errors are due to deeper structures assigned by the 
Partial-Parser rather than really wrong structures; 
typically those were compound NPs which received 
shallow annotations in the tree-bank. Thirdly, part 
of the errors is due to tree-bank annotation mistakes. 
And finally, there is a remaining part of errors which 
is due to the assumptions of the EBL method; these 
are harder to solve than the previous three. 

In figure 4 and 5 we show the learning curves 
of the present method for six sizes of training-sets; 
five of the six training-sets were obtained randomly 
from a set of 4500 trees, and the sixth consisted 
of the whole set. For these experiments we em- 
ployed the same set of 500 test-trees randomly cho- 
sen (all length sentences). The experiments were 
repeated twice: once allowing "retreating" on local- 
context (as explained earlier), and once not allowing 
that,  during the learning phase (the two versions 
are denoted "Retreating" and "No-Retreating" re- 
spectively). The learning curves of the Retreating 
partial-parser, show that  from a certain point on 
there is some deterioration of precision but further 
gain of space-reduction. The situation is different 
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Figure 6: Number of sentences to CPU-time 

50 

with the No-Retreating version. The explanation 
for the loss of precision is that  when the training-set 
is smaller, less PA-SSFs are learned, which implies a 
larger role for the T-Parser. This situation is mag- 
nified by the fact that  the coverage of the T-Parser 
is lower on smaller training-sets. The deterioration 
of precision of the Retreating version compared to 
the No-Retreating version is due to the fact that  the 
number of learned local-context PA-SSFs becomes 
much larger; this implies reduction of parse-space 
but also some loss of precision (since the partial- 
parser does not employ the local-context). 

OVIS e x p e r i m e n t s  w i t h  D O P  

To test the present method together with DOP we 
employed the same 10 random splits which we em- 
ployed in the previous experiments. This t ime we 
did not include anything about unknown words in 
the test-sets (i.e. a sentence that  includes an un- 
known word is not parsable). DOP and EBL+DOP 
were trained employing the following parameter set- 
ting for partial-trees (cf. (Sima'an, 1996a)): for each 
projected partial-tree, a maximum was set on its 
depth (D), number of substitution-sites (N) on its 
frontier, number of words (W) and number of con- 
secutive words (C) on its frontier. The setting was 
D=4, N=2, W=7 and C=2. This reduces the num- 
ber of elementary-trees which DOP projects dras- 
tically without loss of accuracy. Furthermore, the 
EBL algorithm was trained with a threshold on the 
frequency of SSFs equal to 14. The EBL method is 
used for both specializing the T-parser, which DOP 
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S y s t e m  
DOP 

E B L + DO P 
EBL0.75+DOP 

S y s t e m  
DOP  

EBL+DOP 
P a r P a r  

EBL0.75+DOP 
ParPar0 .75  

C o v e r a g e  i A c c u r a c y  
95.00% (1.4%1 93.50% (0.1% 
94.61% (1.4%t 91.72% (0.1% 
94.96% (1.3%t 91.90% (1.4% 

n u m b e r  o f  t r e e s  
27907 (1634) 
23660 (302) 

84.4 (4.8) 
23728 (138) 

80.6 (3.0) 

C P U - s e c s .  t o r  s e n t e n c e  l e n g t h  
> 2  [ _>7 [ _>10 

3.98 (11.29) 13.55 q22.84) 37.46 t41.35) 
1.28 (2.31) 2.98,4.46) 6.2118.67) 
1.33 (2.43) 3.18~ 4.69) 6.8518.97) 

n u m b e r  o f  n o d e s  in  t r e e s  
141960 (938)  
117134 (1627) 
818.5 (10.26) 
117750 (1551) 

812 (lO.4O) 

Table 2: Means and STDs of ten experiments (OVIS), ParPar  denotes Partial-Parser 

employs prior to disambiguation (Sima'an, 1996a), 
and for specifying the cut-nodes for DOP. 

Another set of experiments on the same 10 ran- 
dom splits (denoted EBL0.75 in table 2) was con- 
ducted where the threshold on 0 was set at 0.75, 
i.e. a sequence of grammar symbols was allowed to 
be learned if it was for at least 75% of the time an 
SSF. This was achieved by allowing the learning al- 
gorithm to change the threshold (0) on the definition 
of PA-SSF; each t ime there are no more PA-SSFs to 
learn, 0 was reduced by 0.03 and learning went on. 

Table 2 lists the means and standard deviation for 
the 10 experiments for all sentences of length larger 
or equal to 2 words. The average (std of) percent- 
age of the sentences that  included an unknown word 
is 2.56% (0.93%). The measures which the table lists 
are coverage and accuracy, where c o v e r a g e  is the 
percentage of sentences that received a parse, and ac- 
c u r a c y  is the percentage of parsable sentences that 
received exactly the same parse as the test-set coun- 
terpart. The p r e c i s i o n  of a method is equal to the 
multiplication of the two previous measures. 

On average, DOP "guesses" in 88.82% (i.e. pre- 
cision) of the cases exactly the same test-set parse; 
with EBL this becomes 86.77%, i.e. a loss of 2.05%. 
The speedup is on average 3.1 times but, more im- 
portantly, the standard-deviation in processing time 
is less than a fifth. On longer sentences, the speedup 
exceeds 6 times. Figure 6 shows the accumulative 
frequency of sentences to CPU-time: for x secs., the 
figure shows the number of sentences that  take at 
least x secs. in parsing. If a deadline of 5 secs. is 
set beforehand, DOP misses around the 600 cases 
(of 3372) while the EBL misses less than 100 cases. 
At 10 secs. the figures are 263 to 23, and at 20 secs. 
it's 116 to 6 cases respectively. 

The version EBL0.75 shows similar learning capa- 
bilities to the EBL, (i.e. EBL1.0) version. Its preci- 
sion is slightly better with 87.26% and its coverage 
is virtually the same as DOP's. The EBL0.75 does 
not improve speedup though (actually it's slightly 

slower). The explanation to this behavior is simple: 
EBL0.75 does not seem to learn significantly many 
more rules than EBL1.0 and, during parsing, it gives 
up the assumption that  PA-SSF borders are trust- 
worthy. This way it takes less risk but  then it slightly 
loses speed. Again we conjecture that  EBL0.75 
would provide more speedup if local-context would 
be used during partial-parsing. Table 2 shows also 
the sizes of grammars which DOP projects with and 
without EBL. The number of elementary-trees in the 
table for the Partial-Parser does not include the lex- 
icon. The sizes of the statistical grammars of DOP 
with EBL is about 1.2 times smaller than DOP's. 
This is not the reduction which we hoped for, but 
it is quite evident that  this is due to constraining 
the EBL mechanism; currently learning takes place 
only where local-context can be assumed of minor 
importance. 

8 C o n c l u s i o n s  a n d  f u t u r e  w o r k  

We described a new view of EBL methods for parsing 
aiming directly at partial-disambiguation. Speedup 
is due to fast parsing that  minimizes the parse- 
space prior to the, often, expensive probabilistic 
disambiguation. This view is exemplified by an 
EBL method, which 1) specializes parsers by infer- 
ring partial-parsers, and 2) refines existing stochas- 
tic models of disambiguation. From preliminary ex- 
periments with a pilot implementation we observe 
that  the method has the potential of speeding-up 
parsing, especially for Speech Understanding where 
the input is a word-graph. Also we see that  it is 
possible to minimize coverage loss when using EBL 
and still gain space-reduction and speed. However, 
these experiments have shown that  it is hard to gain 
speed and space-reduction without employing local- 
context and without extensive training-sets. 

Work on extending the parsing algorithm to ac- 
commodate locM-context is being carried out and 
shall be ready very soon. Further exploration will 
proceed on several fronts. We intend to test this 
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method on larger and harder tree-banks. An im- 
plementation as CSFTs will be studied and imple- 
mented. We shall also study other measures of 
utility, as mentioned earlier in this paper. And fi- 
nally, we might extend this method as in (Srinivas 
and Joshi, 1995) or employ existing similarity-based 
measures for matching PA-SSFs, instead. 
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