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Abstract 

Simple recurrent networks were trained 
with sequences of phonemes from a cor- 
pus of Turkish words. The network's task 
was to predict the next phoneme. The aim 
of the study was to look at the represen- 
tations developed within the hidden layer 
of the network in order to investigate the 
extent to which such networks can learn 
phonological regularities from such input. 
It was found that in the different networks, 
hidden units came to correspond to detec- 
tors for natural phonological classes such as 
vowels, consonants, voiced stops, and front 
and back vowels. The initial state of the 
networks contained no information of this 
type, nor were these classes explicit in the 
input. The networks were also able to en- 
code information about the temporal dis- 
tribution of these classes. 

1 Network Architecture 
The network used is a simple recurrent network of 
the type first investigated by Elman (Elman, 1990). 
It consists of a feedforward network, supplemented 
with recurrent connections from the hidden layer. 
It was trained by the back-propagation learning al- 
gorithm (Rumelhart, Hinton and Williams, 1986). 
The ability of such networks to extract phonological 
structure is well established. For example, Gasser 
(Gasser, 1992) showed that a similar network could 
learn distributed representations for syllables when 
trained on words of an artificial language. Figure 1 
shows the architecture of the network. Within this 
network architecture, four different network config- 
urations were investigated. These all had 28 units in 
both the input and output layers; they varied only 
in the number of units in the hidden layer, ranging 
from two to five. 

Output Units 

l 

Figure 1: Network Architecture 

All connections in the network have an inherent 
time delay of one time step. This has the result that 
the recurrent connections between units in the hid- 
den layer give the network access to a copy of its 
hidden-layer activations at the previous time step. 
The delay also has the effect that it takes two time 
steps for any information to propagate from the in- 
put layer through to the output layer. The network 
is fully connected 

The input to the network is a series of sequentially 
presented phonemes from a corpus of 602 Turkish 
words. Each phoneme is represented by a 28-bit 
vector in which each of the 28 Turkish phonemes 
present in the corpus is represented by a different 
bit. Whenever a particular phoneme is present, the 
corresponding bit is flipped on. This sparse encoding 
scheme was taken from Elman (Elman, 1990), and 
ensures that each vector is orthogonal to every other 
vector. Thus the network is given no information 
about the similarity between different phonemes. 

Each word is presented to the network as a series 
of such phonemes, with each phoneme presented in 
a successive time step. Each word constitutes a dis- 
crete training item, i.e. the network is not required 
to segment words. During training, the weights are 
updated after each training item, i.e. after every 
word. 

The task of the network for each input phoneme 
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is to predict the following phoneme. Due to the two 
time delays present in the structure of the network, 
this prediction task is constructed by requiring the 
units in the output  layer to show the pattern of ac- 
tivation present at the input layer on the preced- 
ing t ime step. The network's structure ensures that  
none of this information from the preceding t ime 
step could have propagated through to the output  
units by this time, and so the task is a genuine pre- 
diction task. 

The networks are trained using the Xerion simula- 
tor, using the back-propagation learning algorithm. 
A momentum term is used to reduce the training 
time. 

2 Vowel  Harmony in Turkish 

The networks are trained on Turkish words. Turkish 
was chosen for its well-documented and interesting 
phonological structure; in particular its vowel har- 
mony (Lewis, 1967). It has already been shown by 
Hare (Hare, 1990) that  vowel harmony can be mod- 
elled successfully by using connectionist models. She 
has used recurrent networks of the type developed 
by Jordan (Jordan, 1986) to model vowel harmony 
in Hungarian. This model successfully accounts for 
many of the complexities of Hungarian vowel har- 
mony, and predicts the behaviour of both harmonic 
and transparent vowels. 

Unlike Hare, however, I am not concerned with 
the modelling of a particular phonological process. I 
am interested in investigating what information such 
a network can learn about the structure of a lan- 
guage, given minimal information. Hare's networks 
are given a featural description of the phonemes in- 
volved, and so have an inherent measure of their 
similarity, and therefore of the phonological classes. 
Further, Hare's networks are given only sequences 
of vowels. My networks are given both the vowels 
and the intervening consonants, and therefore have 
the possibility to simultaneously learn a wide range 
of phonological regularities. Despite the presence of 
intervening consonants, it was expected that  such 
networks could learn the basics of vowel harmony. 
Therefore, before discussing the networks in detail, 
let me first outline vowel harmony in Turkish. 

Clements and Sezer (Clements and Sezer, 1982) 
describe vowel harmony as a "system of phonolog- 
ical organization according to which all vowels are 
drawn from one or the other of two (possibly over- 
lapping) sets within harmonic spans in the word". 
Turkish is an example of what Clements and Sezer 
call a "symmetrical vowel harmony system". Words 
consist of a stem and a sequence of suffixes. The 
vowels in the stem do not alternate, while the vow- 

els in the suffixes alternate such that  they agree with 
the nearest non-alternating vowel. Specifically, in 
Turkish, each word will typically only contain vow- 
els with the same value for the feature [::t=front]. The 
fronting of the stem vowels determines the fronting 
of the suffix vowel(s). The fronting of the vowels 
within the stem itself is usually uniform. There is 
also vowel harmony for the feature [:kround]. Any 
high vowel in the second syllable of the word (or 
later) has the same value for the feature [::l:round] 
as the vowel in the preceding syllable. Low vowels 
after the first syllable are all [ - round].  

Table 1: Phonological features for Turkish vowels 

I I'l°lilulil [::l=front] - + - + -- -- 
[:kround] - - + + 

Turkish also displays consonant harmony. The 
consonants /k ,  g, l / e a c h  have two phonetic shapes, 
which differ in the value of the feature [:t:front]. The 
value for this feature is determined by the fronting of 
the vowels in the word. However, this phenomenon 
of consonant harmony can clearly not be considered 
in this study, as the two allophones for these conso- 
nants are represented by the same phoneme in the 
input data. 

Clements and Sezer (Clements and Sezer, 1982) 
describe in detail a number of exceptions to these 
basic harmony rules, and provide an account for 
these irregularities in terms of the presence of opaque 
vowels and consonants in the underlying represen- 
tation of the segments. Exceptional cases include 
the existence of some disharmonic polysyllabic roots. 
Disharmonic suffixes also exist, in which at least one 
vowel fails to alternate under any circumstances. 

The corpus used for this s tudy contained 601 
Turkish words. 91% of these words showed harmony 
for the feature [::t=front]. The other 9% contained 
both front and back vowels. 

3 The Networks 

I will now discuss the results of four simulations us- 
ing networks of the type described above. The only 
difference between the architectures of the networks 
is the number of units in the hidden layer; the train- 
ing data  remained the same for all simulations. I 
will discuss in detail results from individual train- 
ing runs. It was found that  different runs starting 
with different initial randomized weights produced 
results that  were remarkably consistent. Therefore, 
for clarity, I will discuss only one set of results for 
each simulation. The networks differed in the num- 
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ber of t imes the corpus was seen in training; this 
ranged from 77 for Network 4, to 91 for Network 
1. These numbers were determined by the point 
at which the network reached a particular tolerance 
level for its error score. For each network, a value 
for the tolerance in the error was chosen that  consis- 
tently enabled the network to settle on the solutions 
described. Lowering this tolerance resulted in a fail- 
ure of the learning algorithm to converge, while in- 
creasing the tolerance resulted in the network learn- 
ing very specific regularities about  the training set. 
In such cases the regularities learnt depended on the 
initial weights. The tolerance levels were therefore 
chosen to produce networks tha t  consistently learned 
general solutions to the prediction task. 

N e t w o r k  1 

For this network, the hidden layer has only two 
units. The results of training such a network on 
the corpus are extremely clear and consistent. The 
training algorithm for the particular network I shall 
consider here converged after 54585 training exam- 
ples (i.e., each training example was seen approxi- 
mate ly  91 times). The restriction to only two hidden 
units allows the network to encode a single regularity 
in the structure of the input. The strongest phono- 
logical regularity present in Turkish, as with most  
languages, is the alternation of vowels with conso- 
nants. The  corpus contains eight vowel types, but 
very few vowel clusters. Thus, when the network 
has seen a vowel, it can be almost certain tha t  the 
following phoneme will be a consonant. Similarly, 
although consonant clusters are present in the cor- 
pus, single consonants are more frequent. Therefore 
directly after a consonant, a vowel is the best pre- 
diction. 

Consistent with this hypothesis, analysis of the 
network after training shows tha t  indeed one of the 
hidden units has learned to respond most  strongly 
to vowels, and the other to consonants. This can be 
seen by looking at the hidden-unit activation levels 
one t ime step after presentation of a single phoneme. 
The activation of units in the network was always 
positive, with an activation level of I corresponding 
to the m a x i m u m  activation of a unit. These acti- 
vation levels are shown in Figures 2 and 3, which 
clearly demonstra te  tha t  the two hidden units have 
been used by the network to classify each of the in- 
put pat terns  as either a vowel or a consonant. 

Also of interest are the weights of the connections 
between the two hidden units and the output  layer. 
Intuitively, we would expect that  Hidden Unit 0, 
which responds most  strongly to consonants, would 
have the strongest connection to those output  units 
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Figure 2: Activation of Hidden Unit 0, Network 1 in 
response to single phonemes at the input layer 

0.8 

1.0 

o 
a 

o 

7 0.6 

4 0 . 4  

0.2 

0.0 

e Consonants o Vowels J 

u 0 o o  
o l i  o u f i  
e 0 ° 

0 

• p o e e e  • • 
• g e  k • s ~ t  : ~ "  • ~" e .  n r V . z  
b d f g h  1 m y 

Phonemes 

Figure 3: Activation of Hidden Unit 1, Network 1 in 
response to single phonemes at the input layer 

tha t  represent vowels. This would encode the fact 
tha t  when the network has just  seen a consonant, 
it should predict a vowel. Conversely, we would ex- 
pect Hidden Unit 1 to be most  strongly connected 
to consonants. Indeed, this general pat tern  of con- 
nectivity is found. However, the large variance in 
the frequencies of the various phonemes makes it 
hard to make direct comparisons between the val- 
ues of the connection weights. In other words, Hid- 
den Unit 1 may  be more strongly connected to some 
high-frequency vowels than to some of the conso- 
nants such a s / h / ,  which has only 23 tokens in the 
corpus of 4198 phoneme tokens. 

A clearer pat tern emerges by looking instead at 
the activation levels of the output  units, two t ime 
steps after the network was presented with partic- 
ular phonemes. This two-time-step delay is s imply 
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to account for the two t ime steps necessary for the 
information to propagate  through the network. This 
is equivalent to asking the network what  phoneme it 
expects to follow the single phoneme tha t  has been 
presented. 

These activation levels were frequency adjusted 
by dividing the activation levels for the units rep- 
resenting each phoneme by the frequency of that  
phoneme in the corpus. This adjustment  compen- 
sates for the networks'  tendency to predict more fre- 
quent phonemes, and allows us to observe any other 
trends superimposed on this frequency effect. In 
fact, rather  than absolute frequency, a proportional  
frequency measure is used. 

Figures 4 and 5 show the frequency adjusted acti- 
vation of the various units in the output  layer af- 
ter the network has been presented with /1/ and 
/ d /  (the frequency adjustment  makes the units of 
activation for these graphs arbitrary).  This vowel- 
consonant pair was chosen because they have similar 
frequencies in the corpus (176 and 177 out of a total  
of 4198 respectively). The output-layer activation 
levels for the other 25 phonemes show the same pat-  
tern, with consonants activating units representing 
vowels, and vice versa. 
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Figure 4: Frequency adjusted activation of units at 
the output  layer in response to " /1/"  in the input 
layer 

Thus we have seen that ,  given only two hid- 
den units, the recurrent network learns the differ- 
ence between the distributional properties of vowels 
and consonants. It  has divided the group of input 
phonemes into two natural  classes, and it uses these 
representations to predict the appropriate  phoneme 
in the output  layer. It  is of interest that  the conso- 
nant  tha t  is closest to the vowels in terms of activa- 
tion level is not one of the liquids, such a s / y / o r / l / ,  
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Figure 5: Frequen.cy adjusted activation of units at 
the output  layer m response to " / d / "  in the input 
layer 

which are featurally most  similar to vowels. It  is the 
stop consonant / p / .  This underlines the fact tha t  
the network is making the division on purely distri- 
butional grounds. The fact t h a t / p / i s  t reated as the 
most  "vowel-like" of the consonants s tems f rom the 
fact tha t  it is the consonant tha t  occurs as the first 
consonant of a consonant cluster in the highest pro- 
portion of its instances. This can be seen in Table 
2, which gives the total  frequencies for the differ- 
ent consonants, as well as the number  of t imes they 
part icipate in the first and second positions within 
a consonant cluster; the total  count includes conso- 
nants which part icipated in clusters, and consonants 
which appeared on their own between vowels. / p /  
occurs only 55 t imes in the corpus, and in 32 of these 
it is followed by another consonant ( / l / ,  / r /  or / t / ) .  
In this respect, its distribution is more vowel-like 
then any other consonant. 

Table 2: Total  frequencies for consonants in the cor- 
pus, and the number  of t imes they appear  in conso- 
nant cluster initial (CI) and consonant cluster final 
(CF) positions 

' l o t a l  ~ 1  ~ P ' I  ' l b t a l  ~ 1  ~ P "  
b 9 4  0 3 I m 1 6 7  2 8  7 2  
c ~J t lb : n 3tJ  , 5z 1 

05 O 5 p Ob ~ ~Z t 
d 177 2 77 r 298 6b 27 
I 18 3 3 s 8~ lO lO 

b b  U 0 § 9U 41 2 
59 9 U t 167 26 49 

h 22 5 O v 23 12 3 
k 223 47 25 y l l 2  l ?  ~ 
l 311 5 2  146 z 46 I I  i 0 
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N e t w o r k  2 

This network differs from Network 1 only in that  
it has three hidden units. This network converged 
after training on 47963 examples. It was expected 
that  not only would it learn the vowel-consonant dis- 
tinction, but it should be able to use the additional 
hidden unit to encode another phonological regular- 
ity found in the corpus• It was thought that  the 
extra hidden unit might enable the network to learn 
basic vowel harmony, but this is not the case. 

As anticipated, t he  network learns the vowel- 
consonant distinction in an identical way to Network 
1. Hidden Unit 0 and Hidden Unit 2 in this simu- 
lation behave almost identically to the two hidden 
units in Network 1, Hidden Unit 0 responds maxi- 
mally to vowels, while Hidden Unit 2 responds maxi- 
mally to consonants. The graphs of their activations 
in response to single-letter inputs are extremely sim- 
ilar to Figures 2 and 3. 

This leaves the question of what Hidden Unit 1 
is being used for. Figure 6 shows the activation of 
Hidden Unit 1 in response to the presentation of sin- 
gle phonemes to the input layer. This shows that  it 
is clearly not involved in the consonant-vowel differ- 
ence; for vowels it is difficult to see any pattern in 
what it  is learning, and it is certainly not learning 
vowel harmony• I have already suggested that  there 
are differences between the consonants in terms of 
their participation in consonant clusters, and it is 
these differences that  this unit seems to be captur- 
ing. 

1.0 

0.8 

0 
"~  0.6 

0 .4  

0 .2  

1" Consonants o Vowels] 

o o 

b d e i 
" 0  • g 0 O0 

a C l Oo • u i i  

• ~ , o5 s "z 
• ee • • 

f k mn "r • t  .Y 
9 • P § v 

h • 
l 

0.0 + 

Phonemes 

Figure 6: Activation of Hidden Unit 1, Network 2 in 
response to single phonemes at the input layer 

In Turkish, voiced stop consonants are rarely fol- 
lowed by consonants. In the corpus, / b /  and / g /  
are never followed by another consonant, w h i l e / d /  
is only twice followed by a consonant. The conso- 

nant / c /  also only occurred once in such a cluster, 
although it is worth noting that  its overall frequency 
in the corpus (33 out of a total of 4198 tokens in the 
corpus) is lower than those of the three voiced stop 
consonants (see Table 2). Thus, when the network 
sees one of these consonants, is can be confident in 
its prediction of a vowel as the following phoneme. 
Indeed if we look at Figure 6, we can see that  for the 
consonants there is a cluster of high activation for 
the voiced stop c o n s o n a n t s , / b / , / d / a n d / g / ,  while 
/ c / h a s  a slightly lower activation• 

This suggests that  Hidden Unit 1 is involved in en- 
coding the fact that  some consonants are more likely 
to be followed by consonants than others, i.e. it is 
learning sonority. "Sonority" is the characteristic 
that  is involved in determining what segments may 
legitimately appear adjacent in clusters• If the role 
of this unit is to make predictions about consonant 
clusters, we would expect its activity to have the ef- 
fect of turning off the output  units corresponding to 
consonants• This is indeed the case. The connection 
weights between Hidden Unit 1 and the output  units 
are all nearly all strongly negative. The exceptions 
to this are the output  units representing the conso- 
n a n t s / 1 / , / m / a n d / n / ,  which have small negative, 
or in the case o f / n / p o s i t i v e ,  connections. The ac- 
tivation o f / 1 /  and / m /  reflects the fact that  these 
consonants are likely to occur in the final position of 
a consonant cluster, w h i l e / n / ' s  activation is proba- 
bly simply due to its high frequency• It is the most 
frequent consonant in the corpus, with 313 tokens 
(out of a total of 4198 tokens). 

Also of interest are the weights of the recurrent 
connections within the hidden layer• Hidden Unit 1 
receives inhibition from Hidden Unit 2 via a strong 
negative connection. The connection from Hidden 
Unit 0 is small but  positive• This means that  Hidden 
Unit 1 will be maximally active when the previous 
phoneme to have an influence in the hidden layer 
was a vowel. This is consistent with the idea that  
the unit is responding to the presence of a consonant 
that  was preceded by a vowel, i.e. a consonant that  
may be the start of a consonant cluster. 

This means that  the fact that  this unit is also 
strongly activated for the vowels is not a problem• 
Vowels are almost always preceded by a consonant. 
Therefore, Hidden Unit 1 will be inhibited by the 
activation of Hidden Unit 2. Thus, activation of 
Hidden Unit 1 by a vowel in the input layer will 
be insufficient to cause it to inhibit the prediction of 
a consonant as the following phoneme• 

To summarize, Hidden Unit 1 is allowing for the 
fact that  in some instances a consonant can follow 
another consonant. In general, it acts to reduce the 
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activation of post-consonant consonants, but this in- 
hibition is less in the cases where the initial conso- 
nant is not a voiced stop. There is also less inhibition 
of those consonants that  are more frequently found 
at the ends of consonant clusters, than of any of the 
other consonants. 

N e t w o r k  3 

This network was produced by adding a further unit 
to the hidden layer. Training of this network con- 
verged after 46759 training examples. Let us now 
look at the behaviour of these four hidden units in 
turn. 

The behaviour of Hidden Unit 2 is probably the 
simplest to explain. It is simply a consonant detec- 
tor such as those we have seen before. Accordingly, 
it inhibits the activation of the units representing 
consonants in the output  layer, while strongly ac- 
tivating those units representing the more frequent 
vowels. A g a i n , / p / i s  treated as the most vowel-like 
of the consonants. 

Figure 7 shows that  Hidden Unit 3 has divided 
the input space into three categories. It is most 
strongly activated for the v o w e l s / a / ,  / l / ,  / o / a n d  
/ u / ,  namely the [-front]  vowels. It also responds to 
the [+front] vowels, but  the level of response is lower 
for these vowels. Lower again is the unit 's response 
to the consonants. The activation of this unit has 
two main effects. Firstly, the unit has a strong neg- 
ative connection to Hidden Unit 1. We will return 
to the effect of this later. 
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Figure 7: Activation of Hidden Unit 3, Network 3 in 
response to single phonemes at the input layer 

The more immediate effect of this unit on the out- 
put layer is similar to that  of the vowel detectors 
already seen. It acts to reduce the activation of the 
output  units corresponding to vowels. This prevents 

the network from predicting a vowel immediately af- 
ter another vowel. The unit 's connections to conso- 
nant units in the output  layer are less strongly neg- 
ative, or in the case o f / k / ,  / l /  and / p / ,  positive. 
These consonants do appear to follow back vowels 
in a disproportionate number of cases. 

Now we come to the third hidden unit, Hidden 
Unit 1. This is possibly the most interesting. Its 
response to input, shown in Figure 8, shows no clear 
pattern. Note also that  no phoneme raises its acti- 
vation above 0.6. It responds more strongly to the 
consonants, except f o r / h / , / p / , / v / a n d / z / .  What  
makes these consonants different is tha t  they are 
disproportionately likely to begin consonant clusters 
(see Table 2). Thus, this unit is active for consonants 
that  are most likely to be followed by a vowel. 
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Figure 8: Activation of Hidden Unit 1, Network 3 in 
response to single phonemes at the input layer 

Earlier, I mentioned that  Hidden Unit 3 has an ef- 
fect within the hidden layer. The recurrent connec- 
tion within the hidden layer with the second largest 
weight is the connection from Hidden Unit 3 to Hid- 
den Unit 1, which is large and negative. Thus Hid- 
den Unit 1 is turned off when the preceding input 
was a [-front] vowel. Hidden Unit 1 is also turned 
off by Hidden Unit 2, which, as we saw earlier, is 
activated by consonants. So we have a unit whose 
response is greatest for a [+front] vowel on the pre- 
ceding t ime step, followed by a consonant tha t  is 
unlikely to be starting a consonant cluster. Hidden 
Unit 1 also has a positive self-recurrent connection, 
so that  once it has been activated it will remain ac- 
tive unless inhibited. 

The rules of Turkish vowel harmony suggest tha t  
the phoneme most likely to follow a sequence of a 
[+front] vowel and a consonant, is another [+front] 
vowel. Therefore, Hidden Unit 1 should activate 
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[+front] vowels in the output  layer. The weights 
from Hidden Unit 1 to the output  units represent- 
ing vowels are given in Table 3. This suggests that  
rather than activating [+front] vowels, its action 
is instead to reduce the activation of the [-front] 
vowel, in p a r t i c u l a r , / a / , / 1 / a n d / u / ,  which are the 
most frequent of the [-front] vowels. 

Table 3: Weights to output  layer units representing 
different vowels from Hidden Unit 1 

L::t:ti-ont -- + -- + -- + ~- 
I Weight -7.1 +1.2 -7.2 -0.4 +1.3 -0.6 -3.9 -0.6 

This asymmetry between the network's treatment 
of front and back vowels has implications for its 
performance. One measure of the network's perfor- 
mance is to input a single vowel and to look at its 
predictions in the output  layer. Rather than looking 
at the output  in the t ime step when the network is 
predicting the phoneme to follow the vowel in ques- 
tion, I have looked at the output  in the following 
step. This is the t ime step when the network is re- 
quired to predict the phoneme two time steps on 
from the vowel, which is more likely to be a vowel. 
The vowels predicted most strongly should agree in 
fronting with the input vowel. 

Looking at such output  units shows that,  although 
the network shows a preference for vowels of the 
same [~front] value, there is an asymmetry in per- 
formance. The difference between the output  in the 
units representing front and back vowels is approxi- 
mately twice as large when the input is a back vowel. 
In other words, the fact that  a single unit is used to 
encode whether an input is [+front] or [-front] has 
meant that  the network has in effect learnt fronting 
harmony better for back vowels than for front vow- 
els. Looking at the training corpus reveals that  of 
the 544 harmonic words in the corpus, 50.6% contain 
only back vowels, while the remaining 49.4%contain 
only front vowels. Of the 57 disharmonic words in 
the corpus, 53% had a front vowel as the first vowel 
in the word. These small differences provide a possi- 
ble explanation for the fact that  it is the back vowels 
for which vowel harmony is better learned, but it is 
insufficient to explain the large asymmetry in the 
network's performance. This difference must there- 
fore be seen as a result of the limitations of the net- 
work architecture, and not a direct result of the data  
it was trained on. 

However, despite this, Hidden Units 1 and 3 to- 
gether have enabled the network to learn fronting 
harmony. 

This leaves us with just one hidden unit to ac- 

count for, Hidden Unit 0. Its pattern of activation 
in response to inputs of individual letters shows no 
obvious categorization. It responds highly to vow- 
els, as well as to most of the consonants, especially 
/ h / ,  / m / ,  / l / ,  / v /  and / y / .  It is difficult to see that  
this unit is contributing anything of importance to 
the straightforward mapping from input to output.  
Thus, the key to its behaviour must lie within the 
hidden layer. 

Firstly it has a strong, negative self-recurrent link. 
Thus, once the unit is activated, it will, if left to it- 
self, continually turn itself on and off at successive 
time steps. The strongest connection within the hid- 
den layer is the positively weighted connection from 
Hidden Unit 2 to Hidden Unit 0. Thus, this unit 
is on when the preceding input phoneme is a conso~ 
nant. It also has a positive link forward to Hidden 
Unit 2. This will result in Hidden Unit 2 being ac- 
tivated by a consonant, and then being reactivated 
two time steps later. Thus, Hidden unit 2 appears 
to oscillate in opposition to Hidden Unit 0. The 
behaviour of this unit is clearly complex. It is en- 
coding something about the temporal  structure of 
the input, rather that  making direct predictions on 
the basis of the last input phoneme. The exact de- 
tails of this behaviour are beyond the scope of this 
paper. However, one result of its behaviour is worth 
mentioning. 

Consider the activation of Hidden Unit 0 in re- 
sponse to the input of a single vowel phoneme at 
the input layer. In the first t ime step it responds 
with activations ranging from 0.45 for / 5 /  to 0.92 
f o r / e / .  Its activation then drops on the following 
time step in proportion to its initial activation, i.e. 
the negative self-recurrent link acts to reduce its ac- 
tivation most in those cases where it is most active. 
Then, on the following time step, its activation in- 
creases again for all the vowels. Activation levels 
range from 0.80 f o r / 5 / t o  0.96 f o r / e / .  It is prob- 
able that  Hidden Unit O's oscillatory behaviour is 
allowing the network to capture useful information 
about the vowel-consonant alternation over time. 

To summarize, this network has only four hidden 
units, and yet it shows complex behaviour. It has en- 
coded much information about vowel-consonant al- 
ternation and vowel harmony. Looking at the out- 
put layer also shows that  it has some knowledge 
about consonant clusters. For example, comparing 
the c o n s o n a n t s / d / a n d / n / , / n / i s  a more frequent 
phoneme, with a total of 313 tokens in the corpus to 
/ d / ' s  177. However, / d /  appears second in a con- 
sonant cluster 77 times, while / n /  appears in this 
position only once. If we look at the activation of 
the output  units representing these phonemes, we 
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see that ,  after consonants frequently in the cluster 
initial position, such a s / n /  itself o r / r / ,  / d / ' s  ac- 
tivation is over 20 times greater than that  o f / n / .  
Clearly, this network has also learned about which 
consonants are likely to fall in particular positions 
in consonant clusters. 

What  is also clear, however, is that  as the net- 
works become more complicated they become in- 
creasingly harder to analyse. No longer do we 
have only simple detectors for phonological natural 
classes such as consonant and vowels; i.e the network 
is able to use the recurrent links to encode complex 
temporal  properties of the input. We also see that  
the network shows behaviours that  are difficult to 
at tr ibute to individual hidden units. 

N e t w o r k  4 

This network has 5 hidden units, and saw 46157 
training examples. The hidden units show many 
of the characteristics already discussed, in terms of 
learning about the properties of consonant clusters. 
Most of the network's behaviours are extremely com- 
plex, and not sufficiently different from patterns al- 
ready seen to make them of significant interest. Of 
more interest is the ability of this network to capture 
vowel harmony, and it is to the units responsible for 
this that  I will limit my discussion. 

Hidden Unit 4 is used as a straightforward vowel 
detector such as we have seen before. It is activated 
most strongly by the input units representing the 8 
vowels. Its connections to the output  units repre- 
senting vowels have high negative weights, to pre- 
vent the prediction of a vowel after the network has 
seen a vowel. Its self-recurrent connection also has 
a large negative weight; vowel sequences were very 
rare in the corpus. 

Hidden Units 0 and 2 are involved in the network's 
learning of vowel harmony. They both respond to 
consonants as well as vowels, but for the moment let 
us consider just  their responses to the activation of 
the input units representing vowels. Hidden Unit 2 
responds strongly to the [-front] v o w e l s / a / , / 1 / , / o /  
a n d / u / ,  but shows negligible activation in response 
to the [+ front] v o w e l s / e / , / i / , / 5 / a n d / i i / .  Hidden 
Unit 0 shows the reverse pattern, except that  its 
response to the [+front] v o w e l / 5 / i s  not as large as 
tha t  to the other [+front] vowels. The most likely 
explanation for this is that  it is due simply to the 
low frequency of this vowel in the corpus. It is the 
lowest-frequency vowel, with only 44 tokens. These 
patterns are shown in Figures 9 and 10. 

Let us now look at the weights of the connec- 
tions from these two units to the output  layer. To 
showvowel harmony, we would expect to see the two 
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Figure 9: Hidden Unit 2, Network 4 activation in 
response to single phonemes at the input layer 
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Figure 10: Hidden Unit 0, Network 4 activation in 
response to single phonemes at the input layer 

hidden units activating the output  units tha t  repre- 
sent vowels of the same value of [::Lfront] as tha t  
to which they themselves are responding. The only 
output  units to which Hidden Unit 2 has a posi- 
tively weighted connection, are those representing 
the phonemes / a /  and /1/, i.e. the most frequent 
[-front]  vowels. The connections to the other two 
less frequent [-front] vowels are small and negative, 
and are smaller than the negative weights for the 
connection to the output  units representing [+front] 
vowels. Thus the unit is using the fact tha t  it has 
recently seen one of the [-front]  vowels to predict 
the presence of another [-front]  vowel, in particu- 
l a r / a / a n d / 1 / .  Hidden Unit 0 does not show such 
a distinct pattern; rather it acts to inhibit Hidden 
Unit 2, and so prevents the prediction of a [+front] 
vowel. 
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Also of interest is the activation of the units in 
the output layer when the network is presented with 
a single phoneme. When this phoneme is a vowel, 
there is an interesting change in the prediction pat- 
tern with time. Immediately after the vowel, the 
activation for all vowels is low. Thus the network, 
as before, knows that  a consonant almost always fol- 
lows a vowel, and this general inhibition of the acti- 
vation of output units representing vowels overpow- 
ers any effects of the vowel harmony units. How- 
ever on the following time step, the network shows 
a strong preference for vowels with the value for 
[~front], consistent with the previous vowel. For ex- 
ample, the two most frequent vowels in the corpus 
a r e / a / ,  a [-front] vowel, a n d / e / ,  a [+front] vowel. 
If we input one of these vowels and then look at the 
response of the output units corresponding to the 
next two most frequent vowels ( / i / a  [+front] vowel 
a n d / l / a  [-front] vowel), the pattern shown in Ta- 
ble 4 emerges. The activation of the output unit is 
clearly higher where it agrees in fronting with the in- 
put vowel. For the lower-frequency vowels, th e pat- 
tern is less strong, but still shows the vowel harmony 
effects. This and the earlier asymmetries between 
the learning of vowel harmony for the vowels of dif- 
ferent frequencies, cannot be explained in terms of a 
interaction with harmony for the feature [:£round]; 
such harmony was no t  observed to be significantly 
learned by any of ~he networks in this study. Pre- 
sumably additional hidden-layer resources are nec- 
essary for the learning of such detailed regularities 
in the corpus. 

Thus, not only are the units in the hidden layer 
successfully encoding the front-back distinction for 
vowels, but this is being translated at the appropri- 
ate time into the activation of output units consis- 
tent with vowel harmony of the feature [=t:front]. 

Table 4: Frequency adjusted output unit activation 
of v o w e l s / 1 / a n d  / i / a s  predictions two time steps 
a f t e r / a / a n d / e /  

Input Output 
Vowel [:Lfront] Vowel [: front 1 

/a/ l - - f r o n t |  /~/ [--frontJ 
/e /  L+front]` / , /  [-frontl 
/a /  I--frontl /i/ [+frontl 
/e /  [+front] : / i /  [+front] 

Output 
Activation 

6.73 
0.07 
0.01 
3.29 

This persistence of the knowledge of the fronting 
of the vowels in the current word is most easily ex- 
plained by the fact that  Hidden Unit 2 has a very 
strong positive self-recurrent connection; this en- 
ables it to retain its high activation across the in- 
tervening consonants. As previously discussed, Hid- 

den Unit 0 affects vowel prediction via Hidden Unit 
2, and so knowledge about the presence of [+front] 
vowels also persists over time. 

Therefore, unlike Network 4, Network 5 has de- 
voted two hidden units to learning the regularities 
involved in vowel harmony. These two units are act- 
ing as detectors for the phonological natural classes 
of front and back vowels. 

4 C o n c l u s i o n s  

The four networks demonstrate the ability of simple 
recurrent networks to capture the temporal struc- 
ture in phonological input. With an appropriate 
number of hidden units, these hidden units can be- 
come detectors for phonological natural classes such 
as vowels, consonants, voiced stop consonants, and 
front and back vowels. The prediction of the next 
phoneme at the output layer is based on the presence 
or absence of such classes of phonemes. However, 
unlike standard phonological theories, the classes 
are graded. For example, although the networks 
clearly treated consonants differently from vowels, 
some consonants are treated as more "vowel-like" 
than others. 

It is worth remembering that  these categories are 
derived purely on distributional grounds. The net- 
work has no knowledge of the articulatory or acous- 
tic features of the phonemes. This perhaps explains 
why phonemes such as / j /  and / w /  are tradition- 
ally classed as consonants, despite the fact that  they 
share many acoustic or articulatory features with 
vowels. On distributional grounds, their classifica- 
tion as consonants is undisputed. 

Another observation worth noting is the change 
in the functional roles of the hidden units as their 
number increases. For example in the case of conso- 
nant clusters, in Network 2, one of the three hid- 
den units is devoted to capturing the regularities 
in these clusters. In the larger networks, however, 
while their performance clearly indicates they have 
learned these regularities, it is less clear which units 
are implicated, and it appears that  the function has 
become distributed across the hidden units. 

To conclude, this study demonstrates that  simple 
recurrent networks can extract phonological regu- 
larities purely on the grounds of the distributional 
differences between different phonemes. The result- 
ing representations in the hidden layer correspond to 
groups that  are treated as natural classes in phono- 
logical theories. While I am not suggesting that  
humans perform anything like this prediction task, 
what is clear is that  the extraction of some of the 
generalizations important for the learning of phono- 
logical rules can be achieved on purely distributional 
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grounds. In other words, the process of learning 
more complex phonological rules may be facilitated 
by the extraction of basic phonological classes prior 
to the learning of these rules. 

The paper also demonstrates that while connec- 
tionist models containing many hidden units can be 
successfully used to model certain phonological pro- 
cesses in detail, restricting the number of hidden 
units allows us to investigate how representations 
for some of the basic phonological categories can be 
learned. 
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