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Abstract 

We examine the Differential Grammar ,  
a representat ion designed to discr iminate  
which of a set of eonfusable al ternat ives is 
most  likely in the  context it  occurs in. This 
approach is useful whereever uncer ta inty  
may  exist about  the ident i ty  of a token 
or sequence of tokens, including in speech 
recognition, optical  character  recognition 
and machine t ransla t ion.  In this paper  our 
appl ica t ion  is word processing: we discuss 
mul t ip le  models  of confusion which may  
be used in the  identification of confused 
words, we show how significant contexts 
may  be identified and condensed into Dif- 
ferential  Grammars ,  and we contrast  the 
performance of our implementa t ion  with 
tha t  of two commercial  g r ammar  checkers 
which purpor t  to handle the confused word 
problem. 

1 Introduction 
In this  paper ,  we explore the  concept of a Differential 
G r a m m a r  and apply  it to the problem of g rammar  
checking - in the  sense tha t  it  is used on the box your 
W Y S I W Y G  word processor came in! A Differential 
G r a m m a r  is not a g r ammar  in the t rad i t iona l  rule- 
oriented sense, and al though it is lexically-focussed 
i t  doesn ' t  really have a concept of a rule at  all, but  
is somewhat  more specialized, and extremely sim- 
ple. We introduce a simple s ta t is t ical  preclassifica- 
tion, which we use to define a modified Ngram envi- 
ronment  for each member  of a confusion class, and 
then adjus t  the  size of our environment unti l  a pre- 
de termined significance level or d iameter  is reached. 
We also demons t ra te  several approaches to the au- 
t oma ted  generat ion of the  confusion classes. 

The  s t ructure  of the  paper  is as follows: we in- 
t roduce Differential G r a m m a r s  and mot ivate  them 

in terms of g r a mma r  checking, we discuss the  acqui- 
sition, efficiency and significance issues, we present 
an improved user interface for g r a m m a r  checkers, 
and we demonst ra te  the improvement  achieved by 
Differential G r a m m a r  based checkers compared  with 
commercial  products .  Finally,  we discuss other  ex- 
per iments  relat ing to au toma ted  acquisi t ion of dif- 
ferential grammars .  

2 Commonly Confused Words 

A word processor 's g r a m m a r  checker typ ica l ly  checks 
g rammar  in two senses, a pre- /proscr ip t ive  sense 
which should be characterized by what  are more 
proper ly  identified as style rules, and a spell- 
checking like sense which is characterized as the use 
of g rammar  rules to identify typos,  subst i tut ions ,  
omissions, dupl icat ions which occur at  the  word or 
let ter  level. 

The errors we focus on are those ' typos '  which re- 
sult in one word being subst i tu ted  by another  word " 
- both  of which are words which would be accepted 
by the spell-checker. This is closely related to the 
problems of commonly  confused words, homophones  
and near homophones,  but  the most  impor t an t  dif- 
ference between the different types  of subs t i tu t ion  
is in fact whether readers, proofreading their  own 
work, or looking at a detected error, will recognize 
tha t  it is an error or not. 

This is not  a new problem, either from the point  
of view of commercial  word processors (Johnson, 
1992) or Computa t iona l  Linguistics (Ill, 1983), and 
two aspects to the problem must  be differentiated: 
we want  to find the  typos,  but  we don ' t  want  to 
be overwhelmed with false errors. I t  is this  l a t te r  
concern which leads to people deciding not  to use 
the available g rammar  checkers - and those who do 
tend to turn off the style rules, which they  regard as 
pure noise, making the whole question of the  value 
of g rammar  checkers ra ther  controversial  (Wampler ,  

1 9 9 5 ) .  
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By targeting commonly confused words, rather 
the general problem, we have simply to search for 
contexts which differentiate the words well. Further- 
more, we only wish to distinguish words on gram- 
matical grounds - probabilistic methods which rely 
on semantic associations are simply too sensitive to 
changes in genre or topic to use as the primary dis- 
criminant. 

3 Differential  Grammars  

A differential grammar is basically a small set of en- 
vironments tha t  allows us to differentiates between 
a pair of confused words in all contexts(Kernick, 
1996). However, we want to emphasize that  the 
approach need not be limited to word confusion or 
grammar checking, and that  there is no need to 
limit it to pairs of targets. Conversely, we also want 
to strengthen the definition slightly, as we want to 
syntactic errors. We therefore define a Differential 
Grammar  as: 

Defini t ion:  Differential  Grammar  

A minimal set of syntactically significant 
environments tha t  differentiate amongst a 
set of possible targets. 

However, we do not wish to have to specify the 
differential grammars or the syntactic environments, 
but rather wish to  learn them. For the commonly 
confused word problem (in the more general and in- 
clusive sense that  encompasses everything from com- 
mon typos to near homophones), we thus have three 
aspects to the problem where we wish to do some 
kind of learning: 

1. identifying pairs of commonly confused 
words; 
2. selecting appropriate syntactically signif- 
icant environments; 
3. deciding when an error has occurred. 

This involves learning in three different senses, 
and the programs we present here have performed 
each kind of learning to varying degrees. First, we 
want to learn to select appropriate data  for applying 
our grammar building methodology to - we want to 
avoid having to provide positive and negative exam- 
ples. Second, we want to learn what is syntactically 
appropriate - we want to avoid having to provide 
tags, bracketing or parses. Third, we want to learn 
and dynamically adjust to what the user wants and 
the target text requires - we want to avoid users 
having to set parameters. 

In addition we have some further goals relating to 
optimization: 

4. minimizing the size of the differential 
grammar; 
5. ensuring the significance of the contexts 
stored; 
6. facilitating the users' interactions with 
the system. 

4 Discovery of Confused Word pairs 

We consider here the first of our six goals. We as- 
sume that  certain substitutions are more likely than 
others, and we do not aim to deal with the general 
case which includes arbitrary unlikely substitutions. 
We distinguish six different types of reasons for sub- 
sti tuted word errors: 

a. typos: keyboard proximity (knowledge 
of keyboard used); 
b. phonos: phonological proximity (phono- 
logical features used); 
c. grammos: grammatical proximity 
(grammatical features used); 
d. frequens: frequency disparity (frequency 
information used); 
e. foreignish: interlinguistic disparity (not 
targeted at present); 
f. idiosyncratic: unknown reason (some 
system or user confuses the pair). 

Note that  we do not include semantic or style er- 
rors - the latter tend to be a result of prescriptive lin- 
guists proscribing certain constructs, or maintaining 
traditional distinctions which are falling out of com- 
mon use: e.g. the distinction between 'due to '  (as 
meaning 'caused by' but not 'because of') and 'ow- 
ing to'  (as meaning 'because of'  but not 'caused by'); 
rules about prepositions at the end of sentences; split 
infinitives; deprecated passives; etc. 

In our first set of experiments (a) has been mod- 
eled by simple adjacency on the keyboard, testing in 
principle all pairs in decreasing order of frequency 
of the more frequent member. Errors are modeled 
primarily as systematic displacements of the hand 
on the keyboard, or substitutions of adjacent char- 
acters in the order 1 case. Deletions are handled 
by treating the empty string " as being adjacent to 
all characters, and insertions are handled inversely 
as deletions. Transpositions and interspersions can 
be ranked on the number of moved characters, and 
displacements by the number of substituted charac- 
ters, but in our experiment we limited both to one. 
The grammatical errors (c) are somewhat trickier to 
characterize, but a brute-force first approximation 
would simply list all morphological derivations from 
each root, ideally working at the morphological level. 

Powers 89 Diffferential Grammars 



In relation to (f) we note that  for any confusion 
pair identified by the commercial grammar checkers 
on our test texts (true error or false error), we have 
forced generation of Differential Grammars. We are 
trying to target the exact same class of substitution 
errors. This has two effects: it increases the possi- 
bility of false errors and decreases the possibility of 
missed errors. 

The frequens (d) are an interesting class (Kernick, 
1996) in tha t  we tend to make disproportionately 
more errors in which one word of the confused pair 
is very frequent and the other less so. The very 
frequent words seem to be more easily activated than 
their near homonyms, and we have tendency to type 
the frequens automatically even when it is the less 
frequent partner that  was intended. This is handled 
in our experiments by our use of the higher of the 
two frequencies ranking for grammar generation and 
evaluation. In addition, we could (but don't)  allow 
more lati tude in the search for pairings of frequent 
words in classes (a), (b) and (¢), e.g. by increasing 
the number of characters or features that  might be 
out of place, substituted or inserted. Instead, we 
have manually included pairs involving some of the 
most common words. 

Two common errors (which I made in typing the 
last paragraph) are 'out '  ~ 'our'  (a) and 'our' --+ 
'are' (b/d),  and the single most common error is 
' i ts / i t ' s '  - but often the confusion classes are not 
simply pairs of words, e.g: 'yaw/your /yore /you ' re '  
and ' there / thei r / they ' re ' .  

We tested around 100 pairs of words generated au- 
tomatically on the basis of keyboard proximity (a), 
as well as those proposed manually under (b) to (f). 
76 were used in our system and 55 were rejected for 
lack of either significance or discrimination. 

5 B u i l d i n g  a n  e f f i c i e n t  D i f f e r e n t i a l  
G r a m m a r  

We now refine the concept of a differential grammar 
and present the specific form we employ. The first 
thing we need to do is to define what we mean by 
'syntactically significant environments'.  Basically 
we collect Ngram statistics for each of the target 
words, but  we reduce the amount  of statistics by 
a form of syntactic preclassification, then we start 
with a minimal diameter and progressively increase 
it until a desired degree of certainty and significance 
is reached. 

We define an environment and its diameter 
straightforwardly (again generalizing (Kernick, 
1996)): 

Definition: Environment 

A sequence of contiguous units which in- 
eludes the target unit. 

Definition: Diameter  

The number of units other than the target  
which constitute the specified environment 
of the target unit. 

We note that  we have generalized the definition 
from the specific focus on words we have here: read 
'word' for 'unit '  throughout.  Also we highlight the 
fact that  there is not a unique environment for each 
target word, but  rather that  there are, in general, 
multiple environments for each possible diameter. 
Diameter 0 refers to the target word alone. It 's fre- 
quency relative to the combined frequency of the 
other members of a confused word set provides a 
0th order likelihood of the word being correct. How- 
ever, because of the phenomenon of frequens, this 
is a highly unreliable estimate and we therefore es- 
chew it no mat ter  how great the order 0 likelihood 
of error may be. However, some commercial word- 
processors seem to use an order 0 model and flag all 
occurrences of certain words (Kernick, 1996). 

We therefore look for significant environments of 
larger diameter and estimate the probability of each 
alternative in terms of their relative frequency in 
that  environment. An environment of diameter N-1 
corresponds to an N-gram and environment statis- 
tics are therefore derived from N-gram statistics. In 
practice we limit ourselves to near symmetric envi- 
ronments with the target word in the centre. This 
gives us a unique environment for each even diame- 
ter, but a pair of environments designated +N (more 
left context) and -N (more right context) for each 
odd diameter N. 

Our algorithm stores statistics only for significant 
environments and increases the diameter progres- 
sively, up to a predefined maximum diameter or un- 
til a specified certainty threshold is reached. Note 
that  we overload our term 'environment '  to mean 
not only a specific environment of a target word in 
the current text, but  the set of environments of the 
target word in the training corpus and having the 
specified diameter, as summarized in the collected 
statistics. Our usage will be clear from context, and 
will vary according to whether we are talking about  
test ing/ text  or training/corpus (respectively). 

This approach to the storing of Differential Gram- 
mars helps to keep the requirements for a given con- 
fused word set small, and thus contributes to our 
goal (4) of minimizing the size of the grammar,  with- 
out significantly affecting reliability (precision and 
detection rate). 
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6 Significance ~ l ikehood estimates 

We now discuss the different models of significance 
we have experimented with, and the issue of com- 
bining information from multiple environments. We 
will illustrate this with examples relating to the com- 
mon substi tution ' f rom'  ~ ' form' ,  and we will as- 
sume tha t  a desired minimal  level of significance s 
has been specified (0.95 in the examples).  Note that  
models which are statistically significant are also 
likely to be skewed so as to provide good discrim- 
ination, but  the reverse is not iri general true. The 
more da ta  we have, the more statistically significant 
a particular likelihood ratio is - so we also want to 
ensure 'significance' in a more application-oriented 
sense and only store information which is both sig- 
nificant and discriminative. 

Since we are training on a large corpus, and allow- 
ing for potential ly many  confusion sets from a huge 
set of possibilities, w e  want to eliminate as quickly 
as possible those pairs which can ' t  possibly be dis- 
criminated reliably. For this purpose we introduced 
a first order test based on the binary Laplacian esti- 
mator ,  and require tha t  the number  of instances of a 
specific environment Na for the confusion set satis- 
fies Na > 1 / ( 1 -  s ) -  2 (where d is its diameter).  For 
our modest  95% significance level, only 18 examples 
are required. Note that ,  as previously discussed, we 
do not ever directly use the 0-diameter environment 
alone to determine likelihoods, but rather we insist 
tha t  environments must  be more significant than the~ 
0-environment in terms of the Laplacian test. 

Next we want to ensure that  the each environ- 
ment  is not only significant in its own right but is 
significantly different from the next smaller environ- 
ment.  The example of 1105 instances of ' f rom'  and 
5 of ' form'  being reduced to 47:1 (Kernick, 1996) is 
significant according to our Laplacian estimate, but 
the 1 could just  have easily been a 0 or a 2 and 
thus doesn ' t  improve on the smaller environment. 
The larger environment is not significantly different 
according to a likelihood derivative, which consid- 
ers the rate of change of the ratio (Kernick, 1996), 
and the difference between the two environments is 
also not significant by Fisher's exact test (Winston, 
1993) (or the closely related G 2 (Kilgarriff, 1996)) 
which assesses the probabil i ty tha t  the distribution 
is due to chance. 

Note tha t  we make no a t t empt  to correct or 
smooth data,  since 0% and 100% likelihoods are not 
undesirable, and the 'corrections' are as likely to dis- 
tor t  as to improve the da ta  (Church and Gale, 1991), 
rather we discard da ta  which does not reach signif- 
icance. Our current model also discounts any cases 

handled by a larger environment (see section 9). 
This leaves two further issues to discuss. The first 

is how we determine likelihoods. Normally, it is 
very simple, we take the biggest environment tha t  
matches and simply use the relative probabil i ty of 
the target  word in the sampled environment.  In the 
case of odd diameters, both  a left and a right envi- 
ronment may  exist and these may  agree or disagree. 
Here we use the rain operator to combine them - 
the min imum fits both  the case where they tend to 
agree, and is conservative, or when they tend to dif- 
fer, when if one side think it is wrong it is probably 
not correct. However, this is not always the case. 
An actual example from our experiment on Usenet 
text  is: "I don ' t  know where you 're  coming from on 
this" where the diameter  one environments strongly 
suggest "coming from" and "form on" respectively. 
With a larger corpus a significant diameter  two envi- 
ronment for ' f rom'  would form to handle this idiom. 

The second question is how to allow for the biasing 
effect of frequens, where we tend to make dispropor- 
t ionately more errors in the direction of the more fre- 
quent word, since this is also the direction our statis- 
tics are pointing. This effect however can have its 
impact  reduced by taking larger environments and 
provides support  for the intuitively and empirically 
determined threshold function of (Kernick, 1996), 
which converts the user supplied precision (¢) to a 
discrimination threshold value (/9) which increases 
as the diameter  (d) of the environment reduces, thus 
giving more credence to the larger diameter  environ- 
ments: 0 = ¢ ÷ (1 - ¢)/2d.  

7 Focussing on syntactic contexts 

Limiting our environments to a small diameter  al- 
ready biases toward correlations which express syn- 
tactic rather than semantic relationships (Finch, 
1993), which very phenomenon is responsible for the 
success of Ngram models as an alternative to a gram- 
mar  (Charniak, 1993). Semantic associations are 
normally found in larger segments in which the fre- 
quency of semantically primed words is higher than 
expected on the basis of relative frequency in the cor- 
pus or the language (this locally increased frequency 
has recently been dubbed 'c lumping '  (Church and 
Gale, 1995) and various measures have been pro- 
posed to compensate for it (Kilgarriff, 1996)). 

Another statistical a t t r ibute  which is associated 
with the syntax/semant ics  distinction is the raw fre- 
quency of a word. The most  frequent words tend to 
be syntactic in nature, and will often function words 
or closed class words. The less frequent words tend 
to be more content words or open class words, like 
nouns and verbs (Kilgarriff, 1996). Due to the ex- 
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treme skewing of the frequency distribution, varying 
inversely with rank according to Zipf's law, the first 
150 words of a corpus with a lexicon of 250,000 words 
cover over half of the corpus (Kernick, 1996). 

Collecting statistics based on these 150 'eigen- 
words', almost all of which are function words, gives 
us our a syntactic bias and we used the standard 
Unix l i s t / u s r / l i b / e i g n  in our initial experiments. 
Furthermore since the function words tend to act 
at fairly close quarters, these words are appropri- 
ate for smallish environments. However, we don' t  
want our statistics to be restricted to environments 
composed solely of the 150 eigenwords, and we do 
not want to have to resort to just  bigram statistics 
collected at various displacements (Finch, 1993). In- 
deed for function words, for anything but the small- 
est displacements, our experiments show that  such 
bigram statistics quickly approach corpus/author  
norms (Kernick, 1996). The obvious step is to intro- 
duce an 'open class', denoted by 'O', as a placeholder 
for the rest of the lexicon. But we can to do better 
than this by finding other useful classes which are 
easy to discover using our collected statistics. We 
therefore move our search for syntactic cues to the 
morphological level. Again, rather than seeking to 
develop a formal morphology and associate gram- 
matical information with the morphemes, we simply 
keep additional statistics for words classified by the 
most common affixes (we use 12 suffixes for English). 
Note that  our residue class now represents the null 
morph, '0'. 

After we include numbers and punctuation we end 
up with a nominal 172 'eigenunits', but irregular or 
problematic forms could usefully be added to re- 
duce the noise in these blindly recognized classes, 
e.g, classes may have multiple syntactic functions ('- 
s' and the null morph '-0' can indicate a noun or a 
verb) and/or  fortuitous mismatches ('-ed' and '-ing' 
will accept 'red' and 'ring'). 

Fortunately, such mismatches have a good chance 
of already being one of the 150 eigenwords (better 
than 50%) and a low probability of occurrence in any 
particular slot (a fraction of 1%). Those occurrences 
which are not systematic simply contribute to the 
overall noise in the method, whilst those which are 
systematic actually contribute to the success of the 
technique! 

In addition, a broad definition of affix as a word- 
initial or -final sequence can give us affixes which 
may deviate from the morphological. In our first ex- 
periment we use only 12 hand-chosen suffixes, but  in 
subsequent experiments we also split each of these 
classes according to whether they had a vowel or a 
consonant prefix, which permits us to ensure that  

we can deal with the ' a /an '  distinction. Later we 
investigate how affixes may be discovered automati-  
cally. Note that  (Entwisle and Groves, 1994) use es- 
sentially the same crude affix information to achieve 
complete parsing/validation of English sentences us- 
ing a (computationally expensive) constraint parser. 

This now allows us to complete the definition of 
our syntactic environment: The Ngram information 
is reduced to eigenunit environments by simply re- 
placing each word other than the target  by the first 
matching eigenunit (eigenwords are checked before 
affix classes, shortest first). 

8 I n t e r f a c e  

In addition to the learning of Differential Grammars  
using the pure syntactic methods defined above, and 
testing on 'known good' and 'expected bad'  text,  we 
have also paid some attention to the user interface. 
Two interfaces are available, an emacs interface - it 
works just like the spell checker - and a frame-based 
web-interface. We used the likelihoods to colour the 
words so that  the words which are more likely to 
be wrong are highlighted more strongly. Also the 
environment used to make the decision is highlighted 
contrastingly. This is useful both for the user, and 
for the developer, in evaluating and enhancing the 
performance of the system. 

We also allow the user to change the threshold at 
which notification of potential errors occurs. Nor- 
mally this is set at a relative probability 0.75 for the 
target word relative to other members of the confu- 
sion class, a precision setting of 75% (our results are 
presented for this setting). If this threshold is ex- 
ceeded the most likely replacement is automatical ly 
proposed. 

9 R e s u l t s  

Table 1 presents results from an experiment using 
100Meg of training text (TIPSTER,  1994) and three 
test texts of similar size but  different character, in 
which Differential Grammars  are trained and used to 
grammar check the test texts, which are also checked 
by two commercial systems. Our methodology is 
summarized generally in Fig. 1. 

We trained Differential Grammars  for 78 confu- 
sion pairs using 161 eigentokens and a 95% signifi- 
cance level and tested the grammar checker at the 
default 75% likelihood threshold. Performance was 
comparable with that  of the two commercial sys- 
tems, but all three systems showed individual cov- 
erage characteristics. The confusion pair ' i ts / i t ' s '  
was responsible for our poorer performance on the 
newsgroup corpus (SFB), but  we demonstrated that  
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GRAMMAR CHECKER THC-f THC-t SFK-f SFK-t SFB-f SFB-t SFB-its  
Microsof t  Nord 282 0 328 17 225 40 13 
Word P e r f e c t  75 0 116 21 77 49 9 
Differentia175~ 158 6 170 33 165 19 19 

Table 1: Initial results (Kernick, 1996) comparing three systems on three 12000 line texts of approximately 100000 
words each. The -f columns represent false errors (lower ~f better) and the -t columns show true errors (higher is 
better). Our system could not resolve 'its/~t's' which was the most common error in SFB so the final -its column 
shows the results with these errors discounted. The three corpora were chosen to be as similar as possible, including 
one published computer-related work (THC), science fiction genre text written by a member of our team (SFK), and 
text of the same genre taken from a newgroup (SFB). 

Ident i fy /model  p o t e n t i a l  confusion p a i r s  
Build s ignif icant lDGs f o r  them 

Ensure s u f f i c i e n t  ins tances  of p a i r  
Col lec t  l ega l  e igenuni t  environments  
Analyze c o n t e x t s  of  s i z e  one to l im i t  

i f  not s i g n i f i c a n t  data  abor t  
i f  u s e f u l  s t o r e  and cont inue  

Scan and correc t  £ext  sample 
For each p o t e n t i a l  confused  word 

C o l l e c t  maximal e i g e n c o n t e x t s  
Report b i g g e s t  contex t  above t h r e s h o l d  

Figure 1: Summary of DG methodology used. 

the statistics for this pair invalidated our assump- 
tion of ergodicity across the three different 12000 line 
test corpora used. Also our initial prototype could 
not distinguish ' a / a n '  correctly. Conversely, on sup- 
posedly correct published text,  we found six errors 
which had been missed by human proofreaders and 
commercial  systems alike. For the record, these er- 
rors consisted of four 'was/were ' ,  one 'affect/effect ' ,  
and one ' a re /our '  substitution. The first two errors 
are clear syntactic errors where the semantics is es- 
sentiMly the same. The second is a very common 
phono-frequens where, as different parts of speech, 
resolution is again straightforward. Note that  a 95% 
precision setting should have been sufficient to find 
them, but would have eliminated around 80% of the 
false errors. The most  difficult of these errors to re- 
solve is the 'was/were '  error because of the higher 
likelihood of a parenthetic intervention, which also 
contributes to the problem with ' i t s / i t ' s ' .  

An example from (THC) demonstrat ing an un- 
likely usage of ' i ts ' ,  which requires a context of more 
than ten words to resolve, illustrates the problem of 
parenthetic intervention: 

I t s  s p e c i a l t y  m a g a z i n e s ,  s u c h  
as  * T e l e p h o n y , *  *AT&T T e c h n i c a l  
J o u r n a l , *  * T e l e p h o n e  E n g i n e e r  and 
Management ,*  a r e  d e c a d e s  o l d ;  t h e y  
make computer  p u b l i c a t i o n s  l i k e  
*Macworld* and *PC Week* l o o k  l i k e  
a m a t e u r  j o h n n y - c o m e - l a t e l i e s .  

Another factor which causes severe problems with 
' i t s / i t ' s '  is the extreme sensitivity of its differential 

g rammar  to contexts. Even the raw counts illus- 
t ra te  this quite clearly, and a far more representative 
training corpus will be needed to resolve the question 
of whether an adequate differential g r a m m a r  can be 
built for this case: see Table 2. 

The method we used to cope with the ' a / a n '  pair 
is simple and effective, but increases the number  of 
additional affix classes from 13 to 26 as each is split 
according to whether it s tarts  with a vowel or not. 
This increase the size of the eigenset to 174, but in 
addition we added 20 h-words and 2 y-words which 
take 'an ' ,  giving a total  of 196 eigenunits. We il- 
lustrate what the eigenset now looks like in Table 
3, where we present the top 15 eigenunits and their 
occurrence counts. 

The affix information in Table 3 is equivalent 
to the cross-product of 26 prefixes with 13 suffixes 
(counting the 0-morph) and would have tripled the 
number of classes required if we hadn ' t  made  the 
preclassification into consonant and vowel. This is 
relevant as we go on to consider how our affix infor- 
mat ion could be derived automatically.  

One of stated our aims was to seek to learn the 
syntactic information we use, but, in fact, we have 
used a set of 12 hand-chosen syntactically significant 
suffixes in the g r ammar  checking discussed above, 
along with 150 words chosen on the basis of fre- 
quency, to which we have now added a pair of phono- 
logically motivated features. We have therefore ex- 
perimented with the au tomated  discovery of an ap- 
propriate set of words and affixes. 

For this purpose we sought to derive a set of maxi-  
mal  Ngrams which were significant but were not par t  
of any larger significant Ngrams. Allowing Ngrams 
of different sizes means we are double counting some 
strings, and it is thus usual to deduct from a given 
Ngram prefix the frequencies of all N + l - g r a m s  which 
it prefixes, and similarly for suffixes. Using these as 
significance measures, however, tends to lead to us 
picking up not only frequent words and affixes, but  
frequent phrases and all proper substrings of each 
of these. Furthermore the last character of a suf- 
fix may  well be involved in many  other words and 
suffixes and thus tends to appear  more significant. 
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NORD RSV RSV-i THC THC-i SFJ SFJ-i 
its 1344 1370 179 186 210 215 
i t ' s  0 0 49 113 1138 1644 
TOTAL: 757523 757523 106433 106433 414114 414114 

Table 2: Corpus sensitivity of ' i t s / i t ' s '  shown with both case sensitive and insensitive (-i} counts taken respectively 
from the corpora RSV,  THC and SFJ. 

PERCENT COUNT NGRAN PERCENT COUNT NGRAN PERCENT COUNT NGRAN 
29 223225 C- 3 26854 C-s 1 9577 you 

8 61033 t h e  2 21046 t o  1 9140 f o r  
5 40812 and  1 13398 C-e d  1 9079 a 
4 37855 V- 1 11762 in 1 8009 i 
4 31491 of 1 9874 he 1 7837 his 

Table 3: Most significant 15 eigenunits with frequencies. 'V-~C-'  are respectively all words that a vowel/consonant 
that  are not matched as words or with specific suffixes like 'C-s C-ed'. The corpus (RSV)  was selected to be topically 
focussed and of convenient size (757523 words). 

We therefore used a related heuristic in which we 
required that  a unit be significant in both contexts 
in order to be treated as significant, and achieved 
this by double discounting - subtracting counts for 
both prefixes and suffixes. Although this method 
was intended as only a rough ranking for examining 
the results, it did indeed provide more useful infor- 
mation than either of the more principled discounts 
or their maximum or sum, for which again frequent 
words were represented multiply. With our double 
discount, words which are almost always used as part 
of a bigger significant string will end up heavily neg- 
atively weighted, and thus the heuristic is likely to 
prefer to embed it in a larger string - see Table 4. 

N RIGHT LEFT BI COUNT NGRAM 
6 2241 2241 2241 2241 # t h i s #  
6 2050 2050 2050 2050 #the#b 
6 1907 1907 1907 1907 e#and#  
5 1886 1886 1886 1886 # o f # a  
4 1840 1840 1840 1840 #me# 
5 1809 2377 1809 2377 #had#  
1 2233 2699 1801 3131 - 
3 1767 2201 1767 2201 #ba  
5 1761 2285 1761 2285 # o n e #  
7 2228 3257 1734 3751 # t h e i r #  
7 2074 1624 1624 2074 e,#and# 
4 1597 1597 1597 1597 #we# 
9 1591 2175 1591 2175 s#of# the# 
3 1588 1588 1588 1588 's# 

10 1579 1579 1579 1579 #from#the# 

Table 4: ' # '  represents space. These are the 15 most 
significant maximal strings from an experiment which 
sought to discover the eigenunits of R S V  as discounted 
Ngrams. Significance threshold was set at the 99.99% 
level, and contexts were discounted by the frequency of 
any  significant contexts which extended them to the right, 
to the left, or either. 

While our eigenwords and hand-selected suffixes 
t e n d e d  to be proposed relatively quickly, it will 

be observed that  many actually occurred as part 
of strings which crossed word boundaries. More- 
over, without some segmentation information the 
technique is sensitive to the significance thresh- 

old, which has a direct influence on the length of 
the Ngrams proposed. Limiting to maximal space- 
bounded 'words' is however reasonable in this appli- 
cation, but since we need to include punctuat ion and 
numbers in our eigenclass, we do not to filter these 
out. The top 75 candidates then consist almost en- 
tirely of Unix eigenwords, plus corpus eigenwords 
'god' and 'lord', some punctuation, some standard 
affixes, some combinations of punctuat ion and af- 
fixes, and some unexpected candidate affixes. In fact 
some of these candidates, '-e -es', are not at all un- 
reasonable: '-es' is a variant of '-s' and both can fit 
in the same slot as '-ed'. But others, 'bo- ba- ne-', 
are harder to make sense of. The next 75 strings are 
similar with a higher proportion of affixes, both syn- 
tactic (6/12 now covered) and non-syntactic (20), as 
well as two unclassifiable sequences ('rai ob'). 

Thus, it is clearly easy to obtain a fair approxima- 
tion to our list of eigenunits, and the fact tha t  10 or 
20% of them may not satisfy our syntactic expecta- 
tions does not preclude them from being useful and 
will not necessarily worsen the results. For example, 
we note that  our 24 prefixes handle resp. 33% and 
20% of the ' a /an '  cases covered by our 'V*' and 'C*' 
classes. As long as we are not overwhelmed by poor 
candidates, our eigenset will still be able to meet its 
goal. 

An automatically generated eigenset, of the same 
size as our original 172 eigenunit version, included 
80 of our original eigenwords which covered 54% (the 
Unix 150 covers 60%) of the corpus, and included 7 
of our original suffixes covering an additional 12% 
(our handpicked 12 cover 13%). On the other hand, 
it proved that  one of our hand-selected suffixes was 
not very significant in the corpus ('-ic') and occurred 
only 92 times (the .0001 threshold sets significance 
at 75 occurences). The last of the other suffixes ('- 
ble') to be proposed had rank 503, again because of 
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larger significant contexts '-able ble-', which caused 
it to be discounted as a suffix in its own right. 

Forcing a word-boundary between words and 
punctuation increases the rate at which eigenunits 
are found, as combinations of letters and punctations 
constitute the majori ty of the dross. Word-internal 
apostrophe (but not hyphen) is treated as a letter 
for this purpose. 

10 Conclusions 

Differential Grammars  allow high-order Ngram 
statistics to be focussed on the problem of decid- 
ing between the correct and one or more incorrect 
tokens, reducing Ngram contexts to environments 
based on high frequency eigentokens: words, num- 
bers, punctuation and affixes. Using the 150 Unix 
eigenwords gives us a 50% likelihood that  we will 
have a hit in any slot, while our 12 non-zero suffixes 
increases the coverage to 25%, ensuring that  good 
syntactic relevance is obtained. 

In further smaller experiments, we demonstrated 
that  the ' a / an '  distinction could be handled by split- 
ting our suffix and open eigenunits into vowel and 
consonant subclasses. We further demonstrated that  
similarly appropriate eigenunits could be automat- 
ically derived on a discounted frequency basis, us- 
ing a crude heuristic to order the potential eige- 
nunits, while restricting them to the form of lex- 
ical, space-bounded, words. Experiments involving 
training with an automatically derived eigenset have 
yet to be performed, and will focus on deciding the 
opt imum size of eigenset and development of an im- 
proved heuristic. 

The eigenset has two functions: to allow us to 
reduce the size of the tree for a given performance 
level, and to allow us to reduce the role of genre and 
semantic related fluctuations in word frequencies by 
concentrating on features of relatively high syntactic 
significance. Increasing the size of the eigenset is 
expected to decrease performance due to increased 
noise after a certain point. Similarly, increasing the 
size of the eigenset may eventually tend to increase 
the size of the stored differential grammars without 
significant gain in precision. 

The use of a significance factor in the training 
stage allowed the size of the trees generated by the 
differential grammar generator to be limited to what 
was necessary to achieve that  level of precision on the 
training corpus, whilst the likelihood values stored 
in the tree allowed the user to be informed of the 
likelihood of an error (using colour or upon query), 
and to control the threshold for which errors would 
be reported. 

Maximum diameter is another parameter of the 

training stage, and experiments on optimal size and 
the role of diameter in relation to syntactic and se- 
mantic words were undertaken early on in setting 10 
as the size beyond which environments were unlikely 
to reach significance. If generation of the grammar  
was stopped due to lack of significance, the problem 
was often lack of data. If the search was terminated 
at maximum diameter it was an indication that  the 
words were functionally similar, and most likely the 
same part of speech. 

The differential grammar approach has proven to 
be a successful way of applying statistical, Ngram- 
like, techniques for practical grammar-checking in a 
modest computing environment, with useful gram- 
mar trees requiring of the order of 100 to 1000 bytes 
of storage per confused word pair in most cases. This 
report has concentrated on presenting empirical re- 
sults for a single system, rather than on optimiza- 
tion of the system, and there remains considerable 
scope for investigation of the role of the system pa- 
rameters and optimizing the eigenset, for which only 
the primary considerations have been outlined. The 
primary deficiency of the system is its inability to 
cope with arbitrarily long parentheses or subclauses 
which separate syntactically bound elements, but it 
is also rather sensitive the genre and representative- 
ness of the training corpus. 
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