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Abstract 

We describe an automatic process for learn- 
ing word units in Japanese. Since the 
Japanese orthography has no spaces de- 
limiting words, the first step in building a 
Japanese speech recognition system is to 
define the units that will be recognized. 
Our method applies a compound-finding 
algorithm, previously used to find word se- 
quences in English, to learning syllable se- 
quences in Japanese. We report that we 
were able not only to extract meaningful 
units, eliminating the need for possibly in- 
consistent manual segmentation, but also 
to decrease perplexity using this automatic 
procedure, which relies on a statistical, not 
syntactic, measure of relevance. Our al- 
gorithm also uncovers the kinds of envi- 
ronments that help the recognizer predict 
phonological alternations, which are often 
hidden by morphologically-motivated tok- 
enization. 

1 Introduction 

What defines a word when there are no spaces in 
a written language? Words, as they are known in 
English and other western languages, are the basic 
units of recognition in most CSR systems, but when 
a language is written as a string of characters with 
no white space, how does one go about specifying the 
fundamental units that must be recognized? Map- 
ping onto English-style words is one solution, but 
an artificial one, and may hide natural character- 
istics of Japanese that can be important in recog- 
nition. Recognizing phonemes, or short phoneme 
clusters, is another option, but recognition accuracy 
can improve when we have longer phoneme strings 
to work with; acoustic confusability decreases and a 
long word is a more useful predictor of subsequent 

words than a single syllable. Automatic segmenting 
tools eliminate an often inconsistent manual segmen- 
tation step, but are generally based on morpholog- 
ical analysis, which can produce units smaller than 
are desirable for speech recognition. Certainly, there 
exist words as can be looked up in a dictionary, but 
when a language is as heavily inflected as Japanese 
is, that only solves part of the problem. In this pa- 
per we describe an automatic process for learning 
base units in Japanese and discuss its usefulness for 
speech recognition. 

2 The problem with Japanese 

The Japanese language is written without spaces in 
between words. This means that before one can 
even start designing a recognition or translation sys- 
tem for Japanese the units that will be recognized, 
or translated, must be defined. Many sequences of 
phonemes, particularly those representing nouns, are 
clearly independent and can be designated as free- 
standing units. Japanese has a rich and fusional 
inflectional system, though, and delimiting where a 
verb ending ends and another begins, for example, 
is seldom straightforward. 

Japanese has typically been segmented in vari- 
ations on four ways for the purposes of recogni- 
tion and parsing, although since many papers on 
Japanese recognition do not specify what units they 
are using, or how they arrived at the definition of a 
"word" in Japanese, it is hard to compare systems. 

• Phrase/Bunsetsu level: (Early ASURA (Mori- 
moto et al. , 1993), QJP (Kameda, 1996)) 

-advantages:  long enough for accurate 
recognition, captures common patterns 

- disadvantages: requires dictionary entry 
for each possible phrase; vocabulary explo- 
sion 

• "Word" level: (JANUS (Schultz and Koll, 
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1997)) 

- advantages: units long enough not to cause 
confusion, but short enough to capture gen- 
eralizations 

- disadvantages: not natural for Japanese; 
easy to be inconsistent; may hide qualities 
of Japanese that  could help in recognition 

• Morpheme level: (Verbmobil (Yoshimoto and 
Nanz, 1996)) 

- advantages: mid-length units that  are nat- 
ural to Japanese 

- disadvantages: a lot of room for incon- 
sistency; "morpheme" can be interpreted 
broadly and if segmented in the strictest 
sense units can be single phonemes 

• Phoneme cluster level: (NEC demi-syllable 
(Shinoda and Watanabe, 1996)), JANUS 
KSST 1 

- advantages: only need a short dictionary 

- disadvantages: high confusability, al- 
though confusability seems less of a prob- 
lem for Japanese than some other lan- 
guages 

The bunsetsu is a unit used to segment Japanese 
which generally consists of a content component on 
the left side and a function component on the right 
side. Bunsetsu boundaries seem to be natural points 
for pausing and repetition, and most elementary 
schools include bunsetsu segmentation as a formal- 
ized part of grammar education. John-ga ("John- 
NOM"), hon-o ("book-ACC"),  and yonda ("gave") 
are all examples of bunsetsu. 

Bunsetsu can be quite long in terms of both 
phonemes and morphemes, however, and quite 
unique. For example, saseteitadakitaindesuga would 
be considered a single bunsetsu. This phrase con- 
tains a causative form of the verb "to do", sase-, 
a gerunditive suffix -re-, the root of a formal verb 
meaning to receive -itadaki-, a desidirative suffix - 
tai-, a complementizer -n-, a copula -desu-, and a 
softener -ga. 

3 Our approach 

Our approach, described in detail in (Ries et al., 
1996), uses a statistical tool that  automatically finds 
important  sequences. This tool was originally de- 
veloped to help mitigate the bias introduced by a 

1Korean Spontaneous Scheduling Task; SST de- 
scribed more fully in Section 4.1 

word-based orthography by explicitly modeling im- 
portant  multi-word units. The target  of the tool 
was languages for which the word seemed already 
a useful level of abstraction from which to expand, 
and experiments were first performed on English and 
German for the scheduling task. One important  mo- 
tivation for this work was the desire to capture lex- 
icalized expressions that  exhibit, in natural speech, 
markedly different pronunciation from what con- 
catenating the constituent words would predict. Ex- 
amples of such expressions are don't-know (dunno), 
i-would-have (ida), you-all (yaw). 

The objective of the phrase-finding procedure is to 
find a pair of frequently co-occuring basic units for 
which joining all occurrences in the corpus is a use- 
ful operation. Until very recently most implementa- 
tions of this idea have made use of measures of co- 
occurrence that  have been useful in other domains, 
and the pair is chosen by maximizing that  criterion. 
In contrast we assume that  we want to model the 
corpus with a statistical language model and search 
for those sequences that  increase the modeling power 
of the model by the largest amount. Our measure- 
ments are based on information theoretic principles 
and the usage of m-gram models of language, a com- 
mon practice in the speech community. The model 
described here will therefore implicitly consider the 
words surrounding the phrase candidates and use in- 
formation about the context to determine the good- 
ness of a sequence, which is in contrast to traditional 
measures. 

(Ries et al., 1996) has compared a variety of mea- 
sure as reported in the literature and has found these 
to be not competitive with the new technique if used 
in statistical language models. In a very vague state- 
ment we want to add that  this corresponds to the 
experience in eyeballing these sequences. The mea- 
sures that  were compared against in this earlier work 
have been: 

• mutual information (Magerman and Marcus, ) 

• frequency 

• iterative marking frequency (Pales et al., 1995) 

• backward bigram: p(wl[w2) 

• backward perplexity: p(wl, w~). log(p(wl [w2)) 

• Suhotin's measure (Suhotin, 1973) 

3.1 S t a t i s t i c a l  l a n 6 u a g e  m o d e l i n g  a n d  
s p e e c h  r e c o g m t i o n  

Statistical models of language are, to our knowledge, 
the type of language model used in all modern speech 
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recognition engines, especially in research systems 
but also in most commercial large vocabulary sys- 
tems that  can recognize naturally fluent spoken lan- 
guage. In principle the speech recognition problem 
is to find the most likely word sequence W given the 
acoustic A. 

a rgmaxwP(W [A) 

Using Bayes theorem and the knowledge that  p(A) 
does not change the maximization we arrive at 

argm xwp(AIW), v(w) 

p ( A I W  ) is commonly referred to as the acoustic 
model, p (W )  is the language model and the argmax 
operator is realized by specialized search procedures. 
This paper for the most part ignores the search prob- 
lem. The acoustic model is in part influenced by the 
sequences since we can change the entries in the pro- 
nunciation dictionary that  encode the phoneme se- 
quences the speech system uses to generate its mod- 
els. During this generation process most modern sys- 
tems make only partial use of neighboring words and 
the construction process is up to date also unable to 
model contractions, especially at word boundaries. 
It is therefore of great advantage to have a basic 
unit in the decoder tha t  allows for manual or au- 
tomatic  dictionary modification that  captures these 
phenomena. This has recently been reported to be 
a very promising modeling idea on several different 
speech recognition tasks in English. The underlying 
assumption is that  sequences of units that  have a 
high stickiness are by conventional usage very likely 
to show idiosyncratic pronuncations much like single 
words do: They  are for the most part lexicalized. 

The statistical language modeling problem for the 
sequence of words W = W l , . . . , w n  where wn is a 
special end of sentence symbol can then be rephrased 
a s  

n 

p ( W )  = r I p ( w ~ l w l , . . . ,  w,_x) 
i = 1  

We will for most applications probably never be able 
to find enough data  to estimate p as presented above. 
An often practiced shortcut is therefore to assume 
that  each word is only dependent on the last m - 1 
words and that  this distribution is the same in all 
positions of the string. These models are called m- 
gram models and have proved to be very effective 
in a large number of applications, even though they 
are a naive model of language. 

Information theoretic measures (Cover and 
Thomas,  1991) are frequently used to describe the 
power of language models. (Cover and Thomas,  
1991) shows in chapter 4.2 that  the entropy rate of a 

random process converges, under additional assump- 
tions, to the entropy of the random source. This 
has been taken as the justification for using an ap- 
proximation of a notational difference of the entropy 
rate,dubbed perplexity, as a measure of the strength 
of the language model. Given a bigram model p and 
a test text  w l , . . . ,  w,~ the perplexity PP is defined 
a s  

P P  = 2-  ~ ~ = 1  logP(w,lw,_~) 

where we make usage of a special "start-of-sentence" 
symbol as w0. In the sequel we happily ignore this 
for notational convenience. 

Since we will be changing the basic unit during 
the sequence finding procedure it is useful to nor- 
malize the perplexity onto one standard corpus. Say 
the standard test corpus has length n and the new 
test corpus has length n' we define for the test cor- 

pus ppret = p p - ~ .  ppr~l is therefore a notational 
variant of the probability of the test text  given the 
model which is independent of the used sequences 
of words and is the only meaningful measure in this 
context. 

The calculation of the model p itself from em- 
pirical data  involves a number of estimation prob- 
lems. We are using the well understood and empir- 
ically tested backoff method, as recently described 
e.g. by (Kneser and Ney, 1995). 

3.2 A l g o r i t h m  d e s c r i p t i o n  

The idea of the algorithm is to search for sequences 
that  reduce the relative perplexity of the corpus in 
an optimal way. For example, if we were working 
with a bigram model and came across the sequence 
credit card bill, not only would we have to choose 
among words like "report," "history" and "check" as 
possible successors for "credit," but  the word "card" 
itself has many senses and "game," "shop" and "ta- 
ble" might all be more likely followers of "card" than 
"bill," if no other context is known. By creating a 
new word, credit_card, we eliminate one choice and 
decrease the surprise of seeing the next word. 

Since the new word is now treated exactly like 
other word instances in the corpus, it can in turn be 
the first or second half of a future joining operation, 
leading to multi-word compounds. 

The sequence-finding algorithm iterates over all 
word pairs in a training corpus, and in each iteration 
chooses the pair (recall that  one or both elements of 
this pair can themselves be sequences) tha t  reduces 
the bigram perplexity the most. This can be done 
by just calculating the number of times all possi- 
ble word triples appeared and going over this table 
(except for those entries that  have a count of zero) 
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once. This is i terated until no possible compound 
reduces perplexity. This technique is obviously just  
an approximat ion of an algorithm that  considers all 
word sequences at once and would allow the statisti- 
cal model to produce the components of a sequence 
separately. The clustering is therefore a bo t tom up 
procedure and during the training of our models we 
are making a variation of the Viterbi assumption in 
joining the sequences in the corpus blindly. 

For the corpora we worked with, this technique 
was sufficiently fast with the efficient implementa-  
tion described in (Ries et al., 1996), which makes 
further use of est imation tools from pat tern recogni- 
tion such as the leaving one out technique. 

Inspired by (Lauer, 1995), we have very recently 
extended this technique so that  the algorithm has 
the option of, instead of replacing a sequence of two 
units by a new symbol,  replacing it by either the 
left or right component  of that  sequence. The idea 
is tha t  the resulting model could capture head in- 
formation.  We have tested this approach on some 
of our English corpora; the resulting sequences look 
unpromising, however, and the new option was sel- 
dom used by the algorithm. 

3.3 A p p l i c a t i o n  t o  J a p a n e s e  

Realizing tha t  the phrase-finding procedure we used 
on English and German was producing units that  
were both statistically impor tant  and semantically 
meaningful, we decided to apply the same techniques 
to Japanese. We needed units tha t  were long enough 
for recognition and wanted to generalize on inflected 
forms tha t  are used over and over again with differ- 
ent stems, as well as longer sequences that  are fre- 
quently repeated in the domain. Other motivations 
for such a process include: 

• language model estimation 

• preserving impor tant  cross-morphological pho- 
netic environments 

• inconsistency of human transcribers 

• search sub-opt imali ty  due to poorly chosen 
units 

The approach described in Section 3.2 is a bot tom-  
up approach to sequence finding, and the segmen- 
tat ion of Japanese is more intuitively viewed as a 
top-down problem in which an input string is bro- 
ken down to some level of granularity. In apply- 
ing the algorithm in (Ries et al., 1996) to Japanese, 
we reversed the problem, first breaking the corpus 
down to the smallest possible stand-alone units in 

Japanese, and then building up again, constructing 
phrases. 

We chose the mora  as our fundamental  unit. A 
mora  is a suprasegmental  unit similar to a syllable, 
with the impor tant  distinctions tha t  a mora  does 
not need to contain a vowel (syllabic / n /  and the 
first of double consonants are considered indepen- 
dent morae) and a mora-based segmentat ion would 
t reat  long vowels as two morae. The word gakkoo 
(school) would be two syllables, but  four morae: ga- 
k-ko-o. Each kana of the Japanese syl labary repre- 
sents one mora.  In some cases kana can be combined 
and remain a single mora; kyo, as in Tokyo, is an ex- 
ample. 

There is some argument  as to whether it is natural  
to break mult i -phoneme (CV) kana down further, 
to the phoneme level; specifically, some analyses of 
Japanese verb inflections consider the root to include 
the first phoneme of the al ternating kana, as shown 
in Table 1. 

kana phoneme example 
s tem intl. s tem intl. 
hashi ra hashir a hashiranai 
hashi ri hashir i hashir imasu 
hashi ru hashir u hashiru 
hashi re hashir e hashireba 
hashi ro hashir o hashiroo 

Table 1: kana-based vs. phoneme-based analyses of 
verb stems and inflections 

The nasal consonant kana is considered an inde- 
pendent unit. 

The problem of segmentat ion is not unique to 
Japanese; there are other languages without  spaces 
in the written language, and verb conjugations and 
other inflective forms are issues in almost  any lan- 
guage. Words as defined by or thography can be 
more a curse than a blessing, as having such conve- 
nient units of abstraction at our disposal can blind 
us to more natural  representations. 

(Ito and Kohda, 1996) describes an approach sim- 
ilar to ours. Our work is different because of the 
phrase finding criterion we use, which is to maxi-  
mize the predictive power of the m-gram model di- 
rectly. The recent (Ries et al., 1996) showed tha t  
a variation of that  measure, coined bigram perplex- 
ity, outperforms classical measures often used to find 
phrases. For Chinese (Law and Chan, 1995), a sim- 
ilar measure was combined with a tagging scheme 
since the basic dictionary already consisted of 80,000 
words. The algorithm presented in (Ries et al., 
1996) is comparat ively at tract ive computat ionally,  
and avoids problems with initialization as it works 
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in pure bot tom up fashion. Ries did not find specific 
improvements from using word classes in the tasks 
under consideration. 

Masataki (Masataki and Sagisaka, 1996) describes 
work on word grouping at ATR, although what they 
describe is critically different in that  they are group- 
ing previously defined words into sequences, not 
defining new words from scratch. Nobesawa presents 
a method for segmenting strings in (Nobesawa et al. 
, 1996) which uses a mutual information criterion 
to identify meaningful strings. They  evaluate the 
correctness of the segmentation by cross-referencing 
with a dictionary, however, and seem to depend to 
a certain extent on grammar conventions. More- 
over, a breaking-down approach is less suitable for 
speech recognition applications than a building-up 
one because the risk of producing out-of-vocabulary 
strings is higher. Teller and Batchelder (Teller and 
Batchelder, 1994) describe another segmentation al- 
gorithm which uses extensively knowledge about the 
type of a character (hiragana/katakana/kanji ,  etc). 
This work, though, as well as Nobesawa's, is de- 
signed for processing Japanese text,  and not speech. 

Our process is similar to noun compounding pro- 
cedures, such as described in (Lauer, 1995), but  does 
not use a mutual  information criterion. The algo- 
r i thm was originally developed to find sequences of 
words in English, initially in order to reduce lan- 
guage model perplexity, then to predict sequences 
that  would be contracted in fast speech, again in 
English. The work described in this paper is an ap- 
plication of this algorithm to learning of word units 
in Japanese. 

4 E v a l u a t i o n  

Since the phrase-finding algorithm described in 3.2 
is designed to maximize bigram perplexity, the eval- 
uations described here measure this criterion. 

4.1 T a s k  

The Spontaneous Scheduling Task (SST) databases 
are a collection of dialogues in which two speak- 
ers are trying to schedule a t ime to meet together. 
Speakers are given a calendar and asked to find 
a two-hour slot given the constraints marked on 
their respective calendars. Dialogues have been col- 
lected for English (ESST), German (GSST), Spanish 
(SSST), Korean (KSST) and Japanese (JSST). 

4.2 Te s t  c o r p o r a  

Six language models were created for the schedul- 
ing task JSST (Schultz and Koll, 1997). The models 
were drawn from six different segmentations of the 
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same corpus, as described below. Segments (also 
referred to as "chunks") were found using the com- 
pounding algorithm described in Section 3.2. 

1. Corpus C1 comprised only romanized mora syl- 
lables. A romanization tool was run over the 
original kanji transcriptions; the romanized text  
was then split into kana (morae). 

2. Corpus C2 was the result of running C1 through 
the sequencer. 

3. Corpus C3 comprised chunks that  were learned 
before romanization. The chunked kanji text  
was then run through the same romanization 
tool. 

4. Corpus C4 was a hand-edited version of C3, 
where some word classes (like day of the week - 
if only "tuesday" existed in the corpus the rest 
of the days were added by hand) were fleshed 
out and superfluous chunks removed. 

5. Corpus C5 was the hand-segmented text  used 
in the current JSST system, with the errorful 
segmentations described in 5 

6. Corpus C6 was C5 + chunks from C4 

Only experiments involving romanized corpora 
were used. The choice of using romanized text over 
kana text was primarily based on the requirements 
of our language modeling toolkit; we used a one=to- 
one mapping between kana and roman characters. 
Equipped with a list of chunks (between 800 and 
900 were identified in these corpora), one can always 
reproduce kanji representations. Breaking down a 
kanji-based corpus, though, would require a dictio- 
nary entry for each individual kanji, of which there 
are over 2500 that  occur in our database. Not only 
is this difficult to do, given the 3-12 possible read- 
ings for each kanji, we would be left after the chunk- 
ing process with singleton kanji for which it is of- 
ten impossible to determine the correct reading out 
of context. One experiment combining chunks ex- 
tracted from a kanji corpus with chunks from a kana 
corpus was performed, but  the results were not en- 
couraging. Kanji are an extremely informative form 
of representation, and we will continue to look for 
ways to incorporate them in future work. However, 
experiments do show that  even without them phrase- 
building can produce significant results. 

4.3 P e r p l e x i t y  r e s u l t s  

The relative perplexities reported below are all nor- 
malized with respect to corpus C1. The result be- 
low clearly indicates that  we can do at least as good 
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or even better  than human segmentations using au- 
tomatically derived segmentations from the easily 
definable mora level. We also want to point out 
that  the sequence tr igram is better than a four-gram 
which indicates that  the sequences play a critical role 
in the calculation of the model. 

Our measure of success so far is relative perplexity, 
and for speech recognition the ultimate measure is of 
course the accuracy of the recognition results. These 
results however are in our judgement much better 
than our results on English or German and we are 
hopeful tha t  we can integrate this into our JANUS - 
Japanese speech system. 

ppret corpus vocab 
mora size size 

C1 6.1 38963 189 
C1 4-gram 4.7 39995 189 
C2 4.5 16070 1058 

kanji chunks 
C3 4.7 19400 1118 

hand-edit 
C4 4.6 19135 977  

"words" 
C5 6.3 25951 2357 
C6 6.0 25575 3286 

The dictionary size is the base dictionary size, 
without the chunks included. The mora dictionary 
has only 189 word types because it comprises only 
the legal syllables in Japanese, plus the letters of the 
alphabet, human and non-human noise, and some 
other symbols. The word dictionary, used in model- 
ing C5 and C6, had 2357 word types. 

To make the results as strong as possible we used 
a pseudo closed vocabulary for C5 and C6. This 
means that  we included all word types that  occur in 
the training and test set in the vocabulary. The dic- 
t ionary size is therefore exactly the number of word 
types found in both training and test sets and in- 
cludes the number of sequences added to the model. 
This favors C5 and C6 strongly, since words that  
are not in the dictionary cannot be predicted by the 
language model at all nor can a speech recognition 
system detect them. However this setup at least 
guarantees that  the models built for C5 and C6 pre- 
dict all words on the test set as C1-4 do. For larger 
tasks we assume that  the unknown word problem in 
Japanese will be very pronounced. 

A speech system can obviously recognize only 
words that  are in its dictionary. Therefore, every 
unknown word causes at least one word error, typ- 
ically even more since the recognizer tries to fit in 
another word with a pronounciation that  does not 

fit in well. This may lead to wrong predictions of 
the language model and to wrong segmentations of 
the acoustic signal into base units. C1-C4 have a 
closed vocabulary that  can in principle recognize all 
possible sentences and these segmentations do not 
suffer from this problem. 

In English, this would be equivalent to having 
been able to build phoneme based language models 
that  are better than word models, even if we choose 
the vocabulary such that  we have just  covered the 
training and test sets. In some pilot experiments we 
actually ran the sequence finding procedure on an 
English phoneme corpus and a letter corpus with- 
out word boundaries and found that  the algorithm 
tends to discover short words and syllables; however, 
the resulting models are not nearly as strong as word 
models. 

5 E m e r g e n c e  o f  u n i t s  

One of the exciting things about this s tudy was 
the emergence of units that  are contracted in fast 
and casual speech. A problem with morphological 
breakdowns of Japanese, which are good for the pur- 
poses of speech recognition because they are consis- 
tent and publicly available tokenizers can be used, 
is that  multi-morph units are often abbreviated in 
casual speech (as in "don ' t  know" ~ "dunno" in 
English) and segmenting purely along morphological 
boundaries hides the environment necessary to cap- 
ture these phenomena of spontaneous speech. We 
found that  the chunking process actually appeared 
to be extracting these sequences. 

5.1 R e d u c i b l e  s e q u e n c e s  c a p t u r e d  

Following is an example comparing the chunking to 
the original (termed word-based here) segmentation 
in JSST. The task, again, is appointment scheduling. 
Numbered sentences are glossed in Table 2; (1) and 
(6) correspond to (A); (2,7) to (B); (3,8) to (C), etc. 

(1) gozenchuu ni shi te itadake reba 

(2) getsuyoobi ni shi te itadakere ba to omoi masu 

(3) ukagawa shi te itadakere ba 

(4) renraku shi nakere ba to omot te 

(5) sorosoro kime nake re ba nara nai 

Sentences 1-5 are shown as segmented by human 
transcribers. Sentences 6-10 are the same three sen- 
tences, segmented by our automated process. 

(6) (gozenchuu) ni (shiteitada) (kereba) 

(7) (getsuyoobi) ni (shiteitada) (kereba) (toomoimasu) 

(8) (ukagawa) (shiteitada) (kereba) 
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(A) .gozenchuu-ni $ shite itadakereba $ 
m the morning do if I could receive the favor of 
If you would be so kind as to make it in the morning . . .  

-(B) getsuyoobi-ni $ shire itadakereba-to $ 
on monday do if I could receive the favor of-COMP 
If you would be so kind as to make it on monday . . .  

(C) ukagawashite $ itadakereba $ 
cause to humbly go if I could receive the favor of 
If you would allow me to go . . .  

omoimasu $ 
[I] think 

(D) renraku shinakereba to $ omotte 
contact if [I] don' t  COMP thinking 
I've been meaning to get in touch [with you/him. . . ]  

(E) sorosoro $ kimenakereba naranai $ 
soon if [I] don' t  decide it won't  do 
[I] have to decide soon . . .  

(F) nan tte-yuu-ka $ 
what COMP-say-QUE 
what to say . . .  

(G) sono-hi-wa $ gogo-wa $ muri-desu $ 
tha t -day-TOP afternoon-TOP impossible-COP 

to-yuu-ka $ sanji-made $ 
COMP-say-QUE until-three 

kaigi-ga $ 
meeting-SUBJ 

haitte-iru-node $ sanji-ikoo-nara $ daijoubu-desu-kedo $ 
in-is-because three-after-if okay-COP-SOFTENER 

Tha t  afternoon is impossible - that  is to say, there's a meeting until three, 
so if it 's after three it would be okay 

(H) ash hayaku-to $ 
morning early-and 
early morning and evening are open 

(J) sanji made $ 
3:00 until 
[There] is a meeting until 3:00 

yuugata.nara $ aite fi)masu kedo $ 
evening-if open Is S O F T E N E R  

kaigi ga$ haitte orimasu $ 
meeting SUBJ in is 

Table 2: Glosses of sentences (1) through (17). Space boundaries vary to illustrate the specific issues being 
discussed at the point in the text where the sentences occur; dollar signs indicate bunsetsu boundaries. 

(9) (renraku) shi na (kereba) (toomo) (tte) 

(10) (sorosoro) (kime) na (kereba) (nara) (nai) 

There are two issues of importance here. First, 
the hand-segmenting, while it can be tailored to the 
task, is inconsistent; the sequence ".. .ni-shi-te-i-ta- 
da-ke-re-ba" (If I could humbly receive the favor of 
doing...) is segmented at one mora boundary in (1) 
and at another in (2). Sentences (4) and (7) show 
the same sequences as segmented by the chunker; 
the segmentation is consistent. The  same is true for 
". . .na-ke-re-ba in (4) and (5) as compared to (9) 
and (10). 

The second important  issue is the composition of 
the sequences. The sequence "kereba" in (6-10), 
while used here in a formal context, is one that  is 
often reduced to "kya" or "kerya" in casual speech. 
The knowledge that  "kereba" can be a word is very 
valuable for the speech recognizer. Once it has ac- 
cess to this information, it can train its expected 
pronunciations of the. sequence "kereba" to include 
"kya" pronunciations as they occur in the spoken 

corpus. Without  the knowledge that  these three 
morae can form one semantic unit, the recognizer 
cannot abstract the information that  when combined 
in certain contexts they can be reduced in this spe- 
cial way. 

Although the (kereba) in (6) and (7) is attached 
to a verb, itadaku, that  is very formal and would not 
be abbreviated in this way, let us consider sentences 
(D) and (E), here segmented into bunsetsu phrases: 

(11) renraku shinakereba to omotte 

(12) renraku shinakya to omotte 

(13) sorosoro kimenakereba naranai 

(14) sorosoro kimenakya naranai 

Sentence (D) is shown in (11) in full form and 
in (12) in contracted form; sentence (E) is shown 
in (13) in full form and in (14) in contracted form. 
Selection of the chunk (kereba) provides the environ- 
ment necessary for modeling the contraction "kya" 
with some verbs and adjectives in informal speech. 
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Basing a tokenizer on syntactic factors can hide pre- 
cisely such environments• 

A second example of a frequently contracted se- 
quence in Japanese is to yuu or tte yuu which be- 
comes something close to "chuu" or "tyuu" in fast 
and sloppy speech. 

(15) naN tte yuu ka 

(16) sono hi wa gogo wa muri desu, to yuu ka, sanji made 
kaigi ga haitte, iru node sanji ikoo nara daijoubu 
desu l~edo 

The to yuu sequence is recognized as a single se- 
quence in some tokenization methods and not in oth- 
ers, so the idea of treating it as a single word is not 
novel, but in order for the variant "chuu" to be con- 
sidered during recognition, it is important  that  our 
system recognize this environment• 

There are cases in which the combination to yuu 
will not collapse to "chuu:" 

(17) asa hayaku to yuugata nara aitemasu kedo 

In the scheduling domain, the word yuugata 
(evening) is common enough for it to be identified 
as a word on its own, and the utterance is correctly 
segmented as (to) (yuugata). In a different domain, 
however, the extraction of (toyuu) might take prece- 
dence over other segmentation, which would indeed 
be incorrect. 

Yet another type of contraction common in casual 
speech is blending of the participial suffix te and the 
beginning of the auxiliary oru, as in (J). 

The -te form of the verb, also often referred to as 
the participial (Shibatani, 1987) or gerundive (Mat- 
sumoto, 1990) form, is constructed by adding the 
suffix te to the verb stem plus the renyoo inflection• 
This renyoo (conjunctive) form of the verb is also 
used with the past-tense suffix ta and provisional 
suffix tara. 

In the majori ty of the literature, the -te form 
seems to be analyzed either as a single unit inde- 
pendent of the auxiliary verb ( i ru /oku/a ru /morau  
etc.) (Sells, 1990) or broken down into its morpholog- 
ical constituents (Yoshimoto and Nanz, 1996). An 
exception is (Sumita and Iida, 1995)• With certain 
auxiliary verbs, though, the e in te is dropped and 
the suffix-initial t is affixed to the initial vowel of the 
auxiliary, as in hait-torimasu, shi-tokimasu. This 
phenomenon is very pronounced in some dialects and 
only slight in others• 

Our method does identify several units that  have 
the -te appended directly onto the auxiliary verb, 
creating a very useful phonetic environment for us. 

.[ 
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Figure 1: Vocabulary growth rates for English, 
Spanish, German and Korean for the Spontaneous 
Scheduling Task (SST). 

5.2 L o n g  e n o u g h  fo r  s p e e c h  r e c o g n i t i o n  

In speech recognition systems, short recognition 
units are to be avoided because they are confusible - 
it is much harder to distinguish between "bee" and 
"key" than "BMW" and "key lime pie." This is one 
reason that  we did not want to use a morphologi- 
cal breakdown of input sentences. Segmented in the 
strictest sense (Teller and Batchelder, 1994), the sen- 
tence "[I] was studying" could be written as: 

benkyoo shi te i mashi ta 
study do PART PROG POLITE PAST 

Single-phoneme units l i k e / i / a n d  s y l l a b i c / n / a r e  
so small that  they are easy to misrecognize. Even 
/ t e / a n d / t a / a r e  shorter than would normally be de- 
sired, although Japanese phonemes appear to be less 
confusible than their English and German counter- 
parts (Schultz and Koll, 1997)• Units such as (shite) 
and (imashita), as produced by our algorithm, are 
long enough to be distinguishable from other words, 
yet short enough to generalize• Since the basic unit 
from which we were building was the mora, ending 
up with units that  were too short was a concern. 
We found that  the average unit length in mora was 
comparable to that  of the hand-segmented system, 
however• 

It is also important,  though, to control the vo- 
cabulary size if a reasonable search space is desired• 
Early experiments with recognizing at the bunsetsu 
level in Korean indicated that  vocabulary did ex- 
plode, since most full bunsetsu were used only once. 
The vocabulary growth actually did level off even- 
tually, but the initial growth was unacceptable, and 
we switched to a syllable-based system in the end. 
Figure 5.2 shows vocabulary growth rates in Janus 
for different languages in the scheduling domain. 
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5.3 Undes i r ed  effects 

Since our algorithm evaluates all sequences with 
the same components identically, some compound- 
ing that is clearly wrong occurs. 

5.3.1 C o m p o n e n t  sharing 

For example, the chunk (kuno} was identified 
by the system. This was because the phrases 
daigaku-no "university-GEN" and boku-no "I/me- 
GEN" were both very common- the algorithm ab- 
stracted incorrectly that (kuno) was a meaningful 
unit before it found the word daigaku, which it even- 
tually did identify. 

5.3.2 Incomplete  sequences 

Although the point where a stem should end 
and an inflection begin can be ambiguous, most 
stems have definite starting points, and this algo- 
rithm can miss them. For example, mooshiwake- 
gozaimasen "I'm very sorry" occurs many times in 
the database, but our algorithm only extracted part: 
(shiwakegozaimaseN}. Because of the way our stop- 
ping criterion is defined, we can infer from the fact 
that the full phrase was not extracted that by form- 
ing this compound we would actually have increased 
the difficulty of the corpus; more analysis is needed 
to understand exactly why. 

6 C o n c l u s i o n  

The results reported here show that we can get sim- 
ilar entropies in our language model by using an au- 
tomatic process to segment the data. This means 
that we do not have to rely on human segmenters, 
which can be inconsistent and time consuming. We 
can also tailor the segmentation style to the task; 
the inflected forms and general word choice in ca- 
sual and formal speech are very different, and our 
method allows us to target those which are most 
relevant. This is in itself a significant result. 

Additionally, we found that our method finds se- 
quences which are likely to undergo contractions and 
reductions in casual speech. This has implications 
not only for Japanese, but also for speech recognition 
in general. If our algorithm is finding a natural base 
unit in Japanese, we should be able to use a similar 
approach to find units more natural than the word 
in other languages. 
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