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Abstract  

Statistical classification methods usually 
rely on a single best model to make ac- 
curate predictions. Such a model aims to 
maximize accuracy by balancing precision 
and recall. The Model Switching method 
as presented in this paper performs with 
higher predictive accuracy and 100% recall 
by using a set of decomposable models in- 
stead of a single one. 

The implemented system, MS1, is tested 
on a case study, predicting Prepositional 
Phrase Attachment (PPA). The results 
show that iV is more accurate than other 
statistical techniques that select single 
models for classification and competitive 
with other successful NLP approaches in 
PPA disambiguation. The Model Switch- 
ing method may be preferable to other 
methods because of its generality (i.e., wide 
range of applicability), and its competitive 
accuracy in prediction. It may also be used 
as an analytical tool to investigate the na- 
ture of the domain and the characteristics 
of the data with the help of generated mod- 
els. 

1 Introduct ion 

Decision problems are classically defined as problems 
whose answers fall in either of two classes: Yes and 
No (Garey and Johnson, 1979). Optimization prob- 
lems are another class of problems that maximize 
or minimize some value; however, they can be cast 
as decision problems as well (Cormen et al., 1990). 
Classification problems incorporate the characteris- 
tics of both: A classification problem is a decision 
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problem, in which a decision is made (a class is se- 
lected) that maximizes a utility function (yon Neu- 
mann and Morgenstern, 1953). The Model Switch- 
ing method as proposed in this paper can be used 
with any utility function (decision criterion) for any 
decision problem with categorical data that can be 
represented as a tuple (C, F1, F2, ..., Fn) of a class 
variable C and some feature variables F{1 .... }. 

In the following sections, we will describe the 
Prepositional Phrase Attachment (PPA) problem 
and various approaches to solving it. After dis- 
cussing the statistical concepts used in this work, we 
will introduce the concept of Model Switching, why 
it is needed, how it works, and our experience on the 
PPA problem with Model Switching. Comparisons 
with earlier works on corpus-based PPA prediction 
and conclusions will follow. 

2 P P A  Problem 

Resolving the PPA problem is a common problem in 
any NLP system that deals with syntactic parsing 
or text understanding. The Naive Bayes classifier 
and leading machine learning systems, such as C4.5 
(Quinlan, 1993), CN2 (Clark and Niblett, 1989) and 
PEBLS (Cost and Sahberg, 1993), fail to provide pre- 
diction with competitive accuracy rates on this prob- 
lem (see Table 4 on page 40). A sentence can be so 
ambiguous that it may not be possible to determine 
the correct attachment without extra contextual in- 
formation. (Ratnaparkhi et al., 1994) reported that 
human experts could reach an accuracy of 93%, if 
cases were given as whole sentences out of context. 

The PPA problem is illustrated by the following 
example: 

I described the problem on the paper. (1) 

This is an ambiguous sentence, which can be inter- 
preted two different ways, depending on the site of 
PPA. The prepositional phrase (PP) in the above 
sentence is "on the paper." If it is attached to 
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the (object) noun "problem," then the interpreta- 
tion would be equal to (2); on the other hand, if it 
is attached to the verb "describe," then it would be 
interpreted as (3). 

I described the problem that was on the paper(2) 

On the paper, I described the problem. (3) 

In this paper, we address only the type of PPA prob- 
lem illustrated above and don't  consider other less 
frequent PPA problems. For the linguistic details of 
the problem, the reader can refer to (Hirst, 1987). 

We use the PPA data  created by (Brill and Resnik, 
1994) and (Ratnaparkhi et al., 1994) to objectively 
compare the performances of the systems. Both data  
were extracted from the Penn Treebank Wall Street 
Journal (WSJ) Corpus (Marcus et al., 1993). In or- 
der to distinguish these data  from each other, we 
call the former one BSzR data and the latter one 
IBM data. Both PPA data were formatted in tu- 
ples with five variables (4), which denote the class 
(i.e., the PPA attachment site) and the features (i.e., 
verb, object noun, preposition and PP noun) in the 
respective order• Values of these variables for the 
above example (1) are illustrated in (5), where 

(A, B, C, D, E) (4) 

(verb lnoun , "describe", "problem", "on", "paper"X5) 

For representation convenience, we can map the val- 
ues of these variables to positive integers as in Ta- 
ble 1. Then, the examples, (2) and (3) can be con- 
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Table 1: Substitution of variable values for associ- 
ated integer labels at the Levels column. The num- 
ber of levels of five variables are 2, 3845, 5162, 81 
and 6625. 

verted to tuples (6) and (7), respectively. 

( A = I , B = I , C = I , D = I , E = I )  (6) 

(A=2,  B = I , C = I , D = I , E = I )  (7) 
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Using this convention, the PPA data  can be rep- 
resented in a contingency table (Table 2) with five 
dimensions, where each dimension is dedicated to 
a variable. The size of a contingency table is de- 
termined by the cardinality of values (a.k.a. levels) 
of these variables (8); for the IBM data, there are 
2.13 × 1013 cells in the table (9). Each cell in the 
table corresponds to a unique combination of the 
variable values and all combinations are represented 
in the table. 

C 
B 
A 

E D 

I I 
2 

2 i 
2 

1 
1 2 
1 2 1 2 

 L,1010 
0 0 0 0 

0]01010 

2 . . .  5 1 6 2  
. . .  1 . - .  3 8 4 5  
• . .  1 . . .  1 2 

• ' '  0 . . .  

• . •  0 . . •  

. - -  0 . . .  1 ] 0 
I 

0 [ 0  
0 0 

0[0 

Table 2: The PPA data can be represented in a 2 × 
3845 x 5162 x 81 × 6625 contingency table, where each 
cell contains frequency with which the corresponding 
5-tuple (i.e., a unique PPA instance) occurs in the 
data. 

(IAI =2, ]BI =3845, ICI =5162, IDI--81, IEI =6625)(8) 
2 × 3845 × 5162 × 81 × 6625 = 2.13 x 1013 (9) 

Considering that  there are 27,937 PPA observations 
in the training and test data  together, a search space 
of more than 21 trillion possible distinct cases (rep- 
resented in the cells of contingency table) indicates 
that  the data  is extremely sparse. 

To solve PPA problem, NLP researchers designed 
domain specific classifier systems. Those systems 
can be categorized in two classes: 

1. Rule based systems (Boggess et al., 1991), (Brill 
and Resnik, 1994) 

2. Statistical and information theoretic ap- 
proaches (Hindle and Rooth, 1993), (Ratna- 
parkhi et al., 1994),(Collins and Brooks, 1995), 
(Franz, 1996) 

Using lexical collocations to determine PPA with 
statistical techniques was first proposed by (Hindle 
and Rooth, 1993). They suggested a score called 
Lexical Association to predict PPA. It is a log likeli- 
hood ratio of probability estimates of two PPA sites. 

The probability of attachment was based on the 
frequencies of the 2-tuples (B, D), and (C, D), where 
B, C, D stand for the variables: verb, object noun 
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and preposition, respectively. While (Hindle and 
Rooth, 1993) stated that  this approach was not suc- 
cessful in estimating PPA using small 2-tuple fre- 
quencies, which comprised a major portion of the 
PPA data, the accuracy reported was 79.7%, which 
is a substantial improvement over the lower bound 
of 65% (10): 

tions used in the function). If all fail, the assign- 
ment is noun attachment, since 52% of the time the 
attachment site on the training data  was noun. 

I~(A]B, C, D, E) = 
I ( A , B , C , D ) +  I ( A , B , D , E ) +  ] ( A , C , D , E )  

](B, C, D) + I(B, D, E) + ](C, D, E) 
(12) 

f(A = 1) f (A  = 2) "1 
max f(A=~)+~=2)' f(A--'~)~-?~--2) 

(10) 
The lower bound for the B&R data is 63% (Brill and 
Resnik, 1994) and for the IBM data is 52% (Ratna- 
parkhi et al., 1994). 

(Ratnaparkhi et al., 1994) was the first to con- 
sidered the full four feature set defined in (4). The 
approach made use of a maximum entropy model 
(Berger et al., 1996) formulated from frequency in- 
formation for various combinations of the observed 
features. The combinations that  reduced the en- 
tropy most, were chosen. The accuracy of PPA clas- 
sification using this approach was 77.7% on the IBM 
data. (For performance comparison of various ap- 
proaches on available data, please refer to Table 4 
on page 40.) 

(Brill and Resnik, 1994) suggested a rule based 
approach where the antecedent of each rule specifies 
values for the feature variables in (4). A typical rule 
might be as follows: 

features(B = 12, C, D = 3, E) -+ ppa(A = 1) (11) 

471 such inference rules are found useful and ordered 
to reduce the error-rate to a minimum. They re- 
ported an accuracy of 80.8% on the data  that  we 
also use. They also duplicated the experiment of 
(Hindle and Rooth, 1993), which scored around 5% 
less than the rule-based approach. 

(Collins and Brooks, 1995) proposed a specific 
heuristic computation to predict PPAs. The idea 
originated from the back-off model (Katz, 1987). If 
the combination of feature values observed for a test 
instance is also observed in the training set, then 
that  test instance is classified with the most fre- 
quent PPA site for those feature values in the train- 
ing set. Otherwise, probability estimates for the two 
PPA sites are obtained from functions(12)-(14), via 
a process similar to model switching. If the high- 
est complexity formulation, (12), cannot be used 
to classify a test instance (i.e., the required feature 
value combinations are not observed in the training 
data), then the decision process is switched to the 
next function, where functions are ranked based on 
complexity (i.e., the arity of the frequency distribu- 

f f (A]B,C,D,E)  = ] ( A , B , D )  T I ( A , C , D )  T J (A ,D,E) f l3  ~ 
I ( B , D )  + f (O,D)  + f (D,  E) " " 

I~(AID) -- ] (A,D)  (14) 
f (D)  

If a higher order function cannot classify a test in- 
stance, then the decision process is switched to the 
next function. If all fail, the guess is the noun at- 
tachment, since 52% of the time the attachment site 
on the training data was noun. 

While the probability estimates in (14) are maxi- 
mum likelihood estimates (MLEs), the estimates in 
(12) and (13) are heuristic formulations (i.e., not 
MLEs). The rationale behind these formulae are: 

1. a decision made by utilizing more feature vari- 
ables should be favorable over the others, 

2. the preposition feature D is essential; thus, it is 
better to keep it in all n-grams of the decision 
functions. 

They used IBM data, which we also use, and re- 
ported an accuracy of 84.1%. 

(Franz, 1996) proposed a new feature set, which 
provided a more compact representation of the PPA 
data. Using a hierarchical log-linear model con- 
taining only second order interactions, he achieved 
a classification performance comparable to that  of 
(Hindle and Rooth, 1993). He also designed another 
experiment with a less common PPA problem with 
three attachment sites. 

3 D e c o m p o s a b l e  M o d e l s  

In this paper, PPA is cast as a problem in supervised 
learning, where a probabilistic classifier is induced 
from tagged training data  in the form of 5-tuples 
(6) and (7). The task is to predict the value of the 
tag A given the values of the feature variables B 
through E. 

Probabilistic models (e.g., decomposable models) 
specify joint distribution functions that  assign prob- 
ability values to every unique combination of the 
model variables, where the sum of those values is 
equal to 1. We adopt a Maximum Likelihood Es- 
timation (MLE) approach. Given a decomposable 
model, MLE yields the most probable tag to each 
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test data  instance represented by a 4-tuple of fea- 
ture values. 

Decomposable models belong to the class of graph- 
ical models, 1 where variables are either interdepen- 
dent or conditionally independent of one another. 2 
All graphical models have a graphical representation 
such that  each variable in the model is mapped to a 
vertex in the graph, and there is an undirected edge 
between each pair of vertices corresponding to a pair 
of interdependent variables. While edges represent 
interactions between pairs of variables, i.e., second 
order interactions, cliques 3 with n vertices represent 
n th  order interactions. Any two vertices that  are 
not directly connected by an edge are conditionally 
independent given the values of the vertices on the 
path that  connects them. 

Decomposable models are graphical models that  
are isomorphic to chordal graphs. In chordal graphs, 
there is no cycle of four or more without a chord, 
where a cord is an edge joining two non-consecutive 
vertices on the cycle. The elementary components of 
a chordal graph are its cliques; therefore, a chordal 
graph can be represented as a set of its cliques. 

The chordM graph in Figure 1 represents a decom- 

E B 

A 

Figure 1: The decomposable model 
A B D . A B E . A C E .  Edges of the separators, 
AB and A E  (corresponding to A B D  N A B E  and 
A B E  N ACE),  are drawn thicker. A separator is a 
set of vertices whose removal disconnects the graph. 

posable model, which we can mnemonically denote 
as (15). 

A B D . A B E . A C E  (15) 

In this model, variables A, B, and D are stochas- 
tically dependent since they form a clique. Simi- 
lar statements can be made for the other cliques in 
the model. The interactions between AB and AE, 

1 Graphical models are a subset of log-linear models. 
2B and C are conditionally independent given A if 

P(BIC, A ) = P(BIA ). 
3A clique is a complete (sub)graph, where every ver- 

tex pair is connected with an edge. 

denoted by the corresponding edges AB, A E  are 
observed in two out of the three cliques which in- 
dicates their relative importance in describing this 
distribution. The variable A is observed in all three 
cliques of the model because we consider only those 
cliques that  contain the class variable A in defining 
the model. There are three edges missing, BC, CD, 
and DE, which distinguish this model from the sat- 
urated model A B C D E .  These missing edges denote 
three conditional independence relations: 

1. The variables D and E are conditionally inde- 
pendent given AB (intersection of two cliques, 
A B D N ABE) .  

2. The variables B and C are conditionally inde- 
pendent given A E  (ABE n ACE) .  

3. The variables C and D are conditionally inde- 
pendent given A (ABD N ACE) .  

This approach to classifying PPA is the first to make 
use of conditional independence in modeling the dis- 
tribution of feature variables. 

A well known example of a decomposable model 
is the Naive Bayes model in which all feature vari- 
ables are conditionally independent given the value 
of classification variable. For the PPA problem, the 
Naive Bayes model is AB.AC.AD.AE.  

Decomposable models are important  because they 
are those graphical models that  express the joint 
probability distributions of the variables in terms of 
the product of their marginal distributions, where 
each factor of the product corresponds to a clique 
or a separator in the graphical representation of the 
model. Because the joint distribution functions of 
decomposable models have such closed-form expres- 
sions, the parameters as Maximum Likelihood Esti- 
mates (MLEs) can be calculated directly from the 
training data  without the need for an iterative fit- 
ting procedure; hence, those MLEs are also called 
direct estimates (Bishop et al., i975). 

3.1 M a x i m u m  L i k e l i h o o d  E s t i m a t i o n  

Let the PPA variables, IAI = I, IBI = J , . . . ,  IEI = M 
resulting in an I × J x K x L x M contingency table 
(e.g., Table 2). Let the count in each cell (i.e., the 
frequency with which the corresponding 5-tuple is 
observed in the training data) be denotes as nijktrn. 
When all variables are considered to be interdepen- 
dent (i.e., the saturated decomposable model) the 
maximum likelihood estimate of the probabili ty of 
any 5-tuple is equal to the count in the correspond- 
ing cell noklm divided by the total  count N, which is 
equal to 24,840 for the IBM training da ta  (Table 2). 

15(A= i , B =  I , C =  i , D =  I , E =  i) = 
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911111 - -  r t l l l l l  2 
N - 24840 (16) 

Estimates of the marginal probability distribu- 
tions can be calculated in a similar fashion. If we 
are interested in the probability of observing a verb 
at tachment when "describe" is the noun, and "on" 
is the preposition (i.e., A = 1 ,B = 1, D = 1), re- 
gardless of the values of the other variables, it can 
be calculated as in (17) and (18). 

K M 

ni l+ i+  = E E nnkl,~ (17) 
k = l  m = l  

n n + l +  (18) 9(A=I,B=i,D=I) = p l l + l +  - N 

Let c denote the specific cell coordinates (e.g., 
11111 in (16)), and let the model .A4 = {C: U C2 U 
• . .  C O  }, where Cd denotes a clique in the graph rep- 
resentation of A//, then the direct estimates (MLEs) 
are computed as in (19). 

D ^ 
~n(c) Hd=l p(cc,,) 

- -  D ^ Hd=2 p(es ) 
(19) 

where the factors in the numerator are the marginal 
probabilities for c in the cliques {Cd}, whose union 
represents the model. The intersections of cliques 
{Cd} yield separators {Sa} and the marginal prob- 
abilities for c in {Sd} are factors in the denomi- 
nator (Lauritzen, 1996). For the saturated model, 
{,.~} = {}, and the MLE is most straightforward: 

= 9c (20) 

mllln = 911111 (21) 

MLEs of the model (15) can be computed as in 
(22), and using this model, MLEs of the examples 
(2) and (3) can be calculated as in (23) and (24), 
respectively. 

= 

~2t l : l l  I = 

m21111 

9(A, B, D) 9(A, B, E) 9(A, C, Et22) 
9(A, B) 9(A, E) 

91:+1+ 9 n + + l  P:+l+l  (23) 
911+++91+++1 

921+I+ 921++1 P2+i+i (24) 
92i+++ 92+++l 

As seen in this example, decomposable models 
provide us not only a very powerful representation 
medium but also computational efficiency in esti- 
mating parameters. 

4 Model Switching 

Let E1 and E2 be equal to MLEs in (23) and (24). 
There are four cases in determining the class based 
on these equations. 

E i = 0 A E 2 = 0  -4 A = n u l l  (25) 

El > 0 A E i = E 2  -4 A = n u l l  (26) 

El > $2 -+ A = 1 (27) 

E1 < E2 "-')" A = 2 (28) 

In cases (25) and (26), there is no classification and 
no recall for this test instance with this model. In 
(27) and (28), the classifications are noun and verb 
attachments, respectively. 

For the PPA data  with five variables, there are 
only 110 decomposable models, corresponding to all 
chordal graphs of order five or less, where every 
clique of the order two and higher contains the vertex 
that  represents the class variable. Since this num- 
ber is not large, we considered all of these models for 
classification. 4 Let all test instances be composed in 
the set T and let 

T =  % u % u . . . u T ~  (29) 

where 7~ is a set of test instances that  can be classi- 
fied with model A,4i for (1 < i < m = 110); i.e., the 
outcomes of ¢n(AI7~, .h4~) is either in (27) or in (28). 

These estimates may not always be correct, un- 
less the information in features are sufficient and the 
classification model is perfect; therefore, each set of 
estimates associated with ~ and A//i has a precision 
value: 

precision(M lT) - I cl 

T = T c  u T w  

(30) 

(31) 

where 7~c and "/~w are sets of correctly and wrongly 
classified test instances in set 7~. If we have an or- 
dered list of models (.A41, A42 , . . . ,  .A4m) as a certifi- 
cate, where 

precision(.MilT~ ) > precision(A4~+: l'/~+l) (32) 

we could use the certificate to maximize the overall 
classification accuracy. 

Since the first model .N'/1 is associated with the 
highest precision value, the probability tha t  a test in- 
stance is correctly classified with .A41 is higher than 

4 For problems with larger variable set additional tech- 
niques (Edwards and HavrAnek, 1987) or (Madigan and 
Raftery, 1994) are necessary to reduce the model space. 
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tha t  probabil i ty for any other model; therefore, .M1 
should be used to classify all possible test instances. 

T = 7 -0 = "]~ t.9 7 -1 , where ~ VI T 1 = {} (33) 

After ~ is classified, the process is repeated for 
the remaining test instances 7 -1 with M 2  tha t  is the 
most  "precise" model remaining in the model set. 
This cycle can be generalized as 

7-/-  1 = 7~ t3 7 -i, where "/~ N 7 --/= { }, and T = T O 
(34) 

and will be i terated k times, where T k = {}. The 
overall classification accuracy then be calculated as 

k 

accuracy(.A41,.M2,. .  . M k l T - ) -  i=1 (35) 
' 17-1 

The question remains now, how we can find the 
list of models (.M1, .M2 , . . . ,  . M k , . . . ,  .Mm) ordered 
by precision. Since precision is a measure tha t  can be 
acquired after classifying all test instances, how can 
we order models based on precision before testing? 

One approach is to use the error rates of the mod- 
els acquired through cross-validation. The technique 
we use here is called leave-one-out cross-validation 
(Lachenbruch and Mickey, 1968). Let the training 
da ta  set be TO, where every da ta  instance Pi E T~, 
i = 1 , 2 , . . . , r  and r = I~  I. When a m o d e l A / / j  is 
applied to a da ta  instance Pi, in this technique, all 
training instances except Pi (i.e., T¢ - pi) are used 
to compute  the direct est imate for pi. This process 
is repeated for every da ta  instance (i.e., r t imes). 
This technique is applied to all training instances 
for every model. The precision score of each model 
is collected, and based on those scores, the models 
are ordered. 

If  k (the number  of models used to classify all 
PPA instances) is small, then it is expected tha t  
after each iteration the test instances remaining to 
be classified would be decreased significantly; hence, 
the characteristics of T i-1 and T i might differ sub- 
stantially and ordering the remaining models based 
on T i, rather  than  "T 0, might  increase the overall 
accuracy. 

A second experiment is designed to apply this re- 
cursive s t rategy to order the models via the same 
cross-validation process. First, the most  precise 
model for the entire (training) da ta  is identified. 
Then, the da ta  instances tha t  are classified with the 
first model are excluded from the original da ta  set, 
as in (33). Within the remaining da ta  instances, all 
models in {.A42, M 3 , . . . ,  Adrn} are searched for the 
current most  precise model. This model selection 

Models [[ Cor Inc Prc Acc RTC 
A B C D E  

A B D E . A C D  
A C D E . A B D  

A B D E  
A C D E . A B E  

A B C D  
A B D . A C D . A D E  

A C D E  
A B D . A C D  

A B E . A C D . A C E  
A B D  
ACD 

A B E . A C E . A D E  
A C E . A D E . A B  

A D E  
AD 

AD.AE  
A B C . A E  
AC.AD 

A 

150 17 90 89.8 2930 
145 16 90 89.9 2769 
192 10 95 91.9 2567 
46 11 81 90.8 2510 

5 0 100 90.9 2505 
293 42 87 89.6 2170 
441 73 86 88.3 1656 

51 11 82 88.0 1594 
263 50 84 87.3 1281 

3 0 100 87.4 1278 
401 107 79 85.5 770 
296 63 82 85.1 411 

0 0 0 85.1 411 
6 1 86 85.1 404 

156 47 77 84.5 201 
141 56 72 83.7 4 

0 0 0 83.7 4 
1 1 50 83.7 2 
0 0 0 83.7 2 
2 0 100 83.7 0 

Table 3: Classification with Multiple Models. Cor 
(Inc): Number  of correct (incorrect) classifications. 
Prc: Precision x l00.  Acc: Accuracy x l00 .  RTC: 
Remaining Test Cases. 

cycle is i terated exhaustively (34) until all da ta  in- 
stances are classified. The models selected for the 
IBM data  are shown in Table 3. 

The MLE algorithm is a table look up, where 
each table contains marginal  values for a clique of 
variables as defined in the graph representation. If  
those values could be stored in a memory  array, the 
t ime complexity of MLE could be O(1); however, the 
number  of values is huge, thus we have to store each 
set of clique marginals  on disk, and currently the ac- 
cess to the da ta  is through sequential file access with 
a t ime complexity O(n),  where n is the number  of 
training instances. MLEs need to be computed  for 
m models and for n training instances. During each 
recursive step a considerable par t  of the training in- 
stances are classified (around 5%); thus we may  rep- 
resent the process as 

g = rnn ~ (36) 
19 

T ( N )  : T ( ~ N )  + g (37) 

O ( N  log N) (38) 

Therefore, the average t ime complexi ty for the 
current program is O(mn  2 log(mn2)),  but  through 
memoization,  5 the overhead of the recursion will be 
drastically reduced in newer versions of the program.  

5A standard dynamic programming technique that 
stores computed information in a table, which is looked 
up when that information is needed next time. 
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The software of MS1 is developed in Perl and is 
freely available for research purposes only. Inter- 
ested parties may  contact the first author. 

5 Discuss ion 

In some of the earlier works on PPA there are as- 
pects of the model switching framework. For exam- 
ple, (Brill and Resnik, 1994) ordered rules to min- 
imize the error-rate in PPA classification. Each of 
these inference rules may  be considered a decision 
function in a decision list. Whenever a higher or- 
der rule fails, the control switches to the next rule 
to classify tha t  test instance. (Collins and Brooks, 
1995) ordered heuristic decision functions by com- 
plexity (arity) and classified test instances with the 
most  complex applicable function. 

Non-recursive Model Switching consists of two 
phases: 

1. Ordering available models (e.g., via leave-one- 
out cross-validation), 

2. Applying the model on top of the list to the test 
data; whenever tha t  model does not yield any 
estimate,  the system switches to the next model 
on the list. 

The first phase corresponds to the learning phase 
of learning systems; whereas, the. last phase can be 
conceptualized as a decision list (Rivest, 1987) and 
(Kohavi and Benson, 1993), where the control is con- 
ditioned by the availability of a direct est imate given 
a model with a test instance. 6 

In the recursive version of the Model Switching, 
however, the model list is dynamical ly changed since 
the above phases are within a loop, where in each it- 
eration all instances of the available da ta  are consid- 
ered for classification and those which are classified 
are excluded from the da ta  for the next iteration. 
The base case of recursion is reached when all in- 
stances are classified. 

Although in this work we suggest a precision- 
driven model ordering scheme, the Model Switching 
method enables one to use any other utility func- 
tion such as accuracy or F-measure. There are other 
utility functions tha t  need not be acquired through 
cross-validation, but  rather can be collected by an- 
alyzing the entire training set as in statistical sig- 
nificance analysis (e.g., G 2, Pearson's X2), or infor- 
mat ion criteria (e,g., Akaike or Bayes Information 
Criteria etc.), which can be used as well. 

An advantage of this method is tha t  we make use 
of a complex and powerful set of models. Much of 

6This relevance of decision lists was indicated by Mike 
Collins in our personal discussions. 

the earlier PPA research was confined to singleclique 
models, such as A B C D  or AB, which are a small 
subset of decomposable models. 

5.1 Q u a n t i t a t i v e  A n a l y s i s  

Statistical (decomposable) model selection tech- 
niques were first applied to NLP problems by (Bruce 
and Wiebe, 1994). Those model selection techniques 
aim to find a single best model but  they alone do not 
perform as well as Model Switching, since even the 
most  accurate decomposable model, AB.AD,  had a 
classification accuracy of 77%. 

Unlike Model Switching, the methods suggested in 
earlier PPA works are usually tailored to the PPA 
problem, thus it is hard to transfer them to another 
domain. On the other hand, neither Naive Bayes 
nor the conventional machine learning tools, such as 
CN2, C4.5 and PEBLS, perform as well. These four 
symbolic classifiers are well known and are diverse 
to some extent: Naive Bayes is a simple Bayesian 
approach, CN2 is based on rule induction, C4.5 is 
based on decision trees, and PEBLS is based on near- 
est neighbor method.  A performance comparison of 
various classifiers with MS1 is given on Table 4. The 
comparison between the proposed systems solving 
PPA ambigui ty  and general machine learning sys- 
tems was always neglected in earlier articles on PPA 
problem .7 

The results of the first five classifiers presented 
in Table 4 and the performance of B&R classifier 
on IBM data  were determined as par t  of this study, 
while the other four results are benchmarks quoted 
from the authors cited above. Those benchmarks  
were produced via single trials, hence we performed 
single trial tests as well. CN2, C4.5 and PEBLS 
performances were based on their default settings. 
The only exception involved CN2 where an ordered- 
induced-rule-list is used instead of an unordered one, 
since the ordered rules yield 99.7% accuracy ver- 
sus 90.8% accuracy of unordered rules on the IBM 
training data. After the test, we checked the ac- 
curacy rates of unordered induced rules, which are 
unexpectedly bet ter  than the ordered ones: 78% on 
B ~ R  data  and 76.2% on IBM data.  Naive Bayes'  
recall values are very low: 74% for IBM da ta  and 
78% for B&R data; therefore, the remaining test 
instances are classified as the most  frequent class. 
Notice tha t  this is also a type of model switch- 
ing, where the forms of the models and the model 
list M = (AB.AC.AD.AE,  A) are predetermined as 
done by (Collins.and Brooks, 1995). 

7(Ratnaparkhi et al., 1994) reported a decision tree 
experiment using mutual information with 77.7% accu- 
racy. 
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I Classifiers ] 
Data Bayes CN2 C4.5 PEBLS MS1 I B ~R  IBM C&B 

I B & R  74.6 77.4 78.4 76.4 81.2 I 80.8 n.a. 81.9 I 
IBM 73.0 70.7 79.6 76.9 83.7 81.4 77.7 84.1 

Table 4: Performances of various classifiers on available data. CK:B:(Collins and Brooks, 1995); B~R: 
(data/classifier) by (Srill and Resnik, 1994); IBM: (data/classifier) by (Ratnaparkhi et al., 1994); Bayes: 
Naive Bayes with defaults, i.e., A/[ = (AB.AC.AD.AE, A). 

The performance differences between MS1 and 
C&B, the Back-off Model by (Collins and Brooks, 
1995), are 0.4% for IBM data and 0.7% for B ~ R  
data. With only two test trials and without any 
deviation measure these differences cannot be con- 
sidered significant, especially in this case, where the 
performances of the classifiers fluctuate 2-3% (e.g., 
C~B accuracy deviates 2.2%) within two very sim- 
ilar data sets, B~R and IBM data. As one anony- 
mous reviewer indicated, the 0.7% accuracy differ- 
ence on B&R data needs to be evaluated cautiously 
due to the size of the B~R test data, which con- 
tains only 500 test instances; whereas the IBM data 
contains 3097 test instances. 

5.2 Qualitative Analysis  

The approach of (Collins and Brooks, 1995) is sim- 
pler than MS1, since it doesn't consist of any learn- 
ing part; the models were selected and grouped by 
its designers and ordered heuristically, which means 
classification requires prior knowledge specific to the 
domain. With the human expertise involved, the list 
of models is simpler and shorter than the list found 
by MS1 and it is heuristically grouped and weighted 
(forming a kind of mixture model), which is not the 
case in MS1 at this point in time; nevertheless, MS1 
reached to a performance level that is competitive to 
the other system supported with human expertise. 
MS1 uses neither any lexical information nor heuris- 
tics with respect to the PPA problem; hence, it can 
be adopted and applied to any other classification 
problem involving categorical data. MS1 is a ma- 
chine learning alternative to the system developed 
by (Collins and Brooks, 1995), and the ordering of 
the models that it produces may provide insight into 
the data that could aid in developing a custom mix- 
ture model. 

Unlike the other techniques, MS1 generates an 
ordered list of models where each model provides 
a graphical representation of the interdependencies 
among variables. The user can identify relevant rela- 
tions and see which features play the most significant 
roles; thus, one can not only predict the outcome of 
a classification problem with high accuracy but also 
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gain insight into the nature of the domain and the 
data under investigation. For example, MS1 iden- 
tified the fact that the preposition feature (variable 
D) is so important that all test instances (except 
the last four) were predicted by models that have 
this variable. This was one of the most important 
heuristic steps in formulating the approach used by 
(Collins and Brooks, 1995). Further analysis of the 
model list by linguists may yield other observations, 
such as, in the first 75% of the predictions, 97% of 
the test instances were identified using models con- 
taining the interaction ABD with a precision of 86%, 
and in the rest of the predictions this interaction was 
not useful. Similar model lists can be generated on 
various corpora and their comparisons may reveal 
differences in those corpora. 

MS1 and the systems by (Ratnaparkhi et al., 
1994) and (Brill and Resnik, 1994) consist of a 
training phase, where they form certain structures 
(such as rules, models, etc.) that are used with the 
available statistics to classify test instances; there- 
fore, these systems can be considered true learning 
systems. On the other hand in systems designed 
by (Hindle and Rooth, 1993), (Collins and Brooks, 
1995), and (Franz, 1996), the forms of models were 
predetermined by their designers, as in the Naive 
Bayes approach. 

5.3 Scalability 
The structure of the underlying PPA data (4) casts 
a difficult problem to learning system. When the 
number of observations grows, the levels of features 
(except that of the preposition, which is limited 
by grammar) grow proportionally. This effect was 
first identified by (Zipf, 1935). Due to this effect 
the number of cells in contingency table representa- 
tions explodes, which corresponds to an exponential 
growth in the search space. 

Three general machine learning systems cited 
above require very large main memory capacity to 
run the PPA data, which brings the scalability into 
question. MSi's implementation is based on large 
data and limited main memory assumptions, hence 
computation time has been traded with memory re- 
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quirement. The Model Switching approach is scal- 
able in computation time and memory: While the 
data size grows, the leave-one-out cross-validation 
technique may be switched to a simpler v-fold cross- 
validation technique, which is "stable" and prefer- 
able for larger data size (Breiman et al., 1984). 
There is always, a much simpler choice: Ranking 
models through statistical significance analysis or 
through information criteria, whose cost is O(I.M I). 

One problem encountered in applying Model 
Switching to other domains is that the number 
of decomposable models grows exponentially with 
the number of possible variables. The method of 
(Edwards and Havr£nek, 1987) or (Madigan and 
Raftery, 1994) for selecting a good subset of models 
for the data resolves this last concern regarding scal- 
ability. Using these techniques, the Model Switch- 
ing method may be applied to other NLP problems 
with much larger size of feature variables. Model 
Switching method is currently being applied to word 
sense disambiguation which is cast with eight fea- 
tures. The preliminary results are very encourag- 
ing, and provide evidence for the robustness of the 
methodology. 
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