
NLP and Industry: Transfer and Reuse of Technologies* 

Leo Obrst and Krishna Nanda Jha 
Boeing Defense & Space Group 
Helicopters Division 
Advanced Computing Technologies 
P.O. Box 16858, MS P29-99 
Philadelphia, PA 19142-0858 
{ leo.obrst, krishna.n.jha} @boeing.com 

Abstract  

This paper describes a useful set of NLP tools 
which has been successfully applied to many 
different kinds of industrial requirements 
spanning multiple domains and applications at 
Boeing. The tools can be combined to 
constitute a full-spectrum natural language 
system and can be customized for new 
domains relatively easily. To date, this array 
of formal and natural language processing 
technologies has been used to perform mass 
changes to legacy textual databases and to 
facilitate user interfacing to relational 
databases and software applications. 

1 Introduction 

Industry has many uses for NLP technology. Because 
the range of possible application is so varied and the 
practicality constraints which industry imposes 
sometimes quite confining, NLP components must be 
reusable and extendible. This paper describes a set of 
NLP tools which has been successfully applied to many 
different requirements at Boeing. The tools can be 
combined to constitute a full-spectrum natural language 
system and can be customized for new domains 
relatively easily. We describe the tools and a typical 
real application which uses them. 

2 Example: Mass Change of Text 

in that the procedure must search for candidate 
structured paraphrase sets (while abstracting away from 
surface noise) and then apply generation rules which are 
context dependent on the structures. The only 
alternative solution to this problem is to inspect and 
change the texts manually, a solution which is error- 
fraught and expensive. The original problem can be 
mitigated, however, by controlling the syntax and 
semantics of the text prior to populating the database by 
u s i n g a n  authoring tool (for example, Boeing's 
"simplified English" system [17]). 

In the Boeing Company, millions of manufacturing 
operations texts exist in legacy databases. These texts 
are used by an on-line planning system to stage the 
manufacturing of aircraft. Because there are many 
manufacturing process threads, with varying degrees of 
changeability, and many analysts and other personnel 
who contribute to the collection of these texts, the 
databases are in constant flux and contain significant 
noise. 

When a sequence of operations must be modified, as 
when high volatile ozone-depleting organic compounds 
need to be replaced by those having low volatility, then 
all relevant texts must be retrieved, interpreted to 
understand whether they match the relevant conditions 
of the mass change, and then modified according to 
specified rules. Such a textual modification process 
requires robust normalization, complex pattern 
recognition, syntactic parsing, and semantic 
understanding of domain reference. Furthermore, 
inference is required to generate new texts based upon 
arbitrary change criteria. 

2.1 The Problem 

On-line legacy databases are used daily by industry. 
Some of these databases consist of large amounts of 
relatively unconstrained texts constituting manufacturing 
plans and procedures, for example. These textual 
databases require periodic "mass changes" to correct 
errors and update procedures. "Mass change" means 
more than a simple "global search and replace" of text, 

2.2 The Application 

Using formal language and NLP components, we 
customized.a procedure to effect the mass change of on- 
line textual databases for the circumscribed domain of 
chemical treatment, prime, and finish operations. These 
operations (represented as texts) are performed on the 
shop floor in a precisely determined sequence, 
dependent on the aircraft design requirements and the 

* This paper has benefited greatly from discussions with Gary Coen of the ACT center at Boeing, Philadelphia. 
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part under construction. The finish and rinse operations 
include applications of anodizers, primers, overcoats, 
and topcoats of a variety of compounds, thicknesses, and 
numbers of coats, to a range of treated or untreated parts 
of diverse material composition, and describe the 
manner in which the parts must be manipulated. The 
texts refer to these materials and processes directly (i.e., 
they name the materials and processes), indirectly (i.e., 
they name documents and standards which refer to the 
materials and processes), and in manners which combine 
direct and indirect reference. Various types of temporal 
and spatial information are present in the texts, including 
duration of finish application and drying time, and the 
location of areas to be finished or protected. Also 
present in the text are references to other documents, 
color codes, and miscellanous additional operations. 
Though circumscribed, the semantics of this domain is 
richly structured. 

Examples of some simple plan texts from this 
domain are displayed below (excluding database key 
information): 

(1) PRIME (1) COAT ZOINC CHROMATE PRIMER 
PER VFI.1 

(2) TOUCH UP REWORK AREA ONLY APPLY (1) 
COAT OF BMS10-11 TYPE 1 PRIMER PER BAC5736 
(F18.01) REATTACH IDENTIFICATION TAG 

These examples exhibit misspellings, irregular 
punctuation and nomenclature, and direct, indirect, and 
mixed reference, which indicate the prospective 
usefulness of an NLP approach. 

2.3 The NLP Solution: a Process View 

Because these are production databases and constantly 
undergoing change, freezing these databases entails 
temporarily removing them from production use, which 
can be a very expensive undertaking. Hence, the 
automated mass-change process must be able to run 
reliably in a very small window of time. By distributing 
the processing of the texts across many Unix 
workstations, the time required for a typical run (ranging 
from 6500 to 130,000 texts) has been reduced to 
approximately 1.5 hours, thus minimizing downtime 
cost. 

Figure 1 schematically represents the mass-change 
process. Initially, a subset of the on-line database's 
records are extracted and downloaded (1). The records 
are divided into key and text portions, made unique, and 
normalized (2). The plan set is then partitioned (3) 
according to the type of operation and/or finish material, 

and these partitioned sets are distributed for subsequent 
processing across available workstations. 

Then, for each partition, the plans undergo spelling 
correction (4), driven by a mutual information model [1] 
constructed by prior exposure to and generalization over 
large amounts of test corpora. This process, discussed in 
more detail in the next section, feeds the NLP system 
proper. The NLP system spans the continuum from 
lexical tokenization (5), including the use of the two- 
level morphology tool PCKIMMO [2, 9, 8] which 
allows for a finite-state structured lexicon, through 
phrase structure parsing using a hybrid syntactic- 
semantic grammar (6), to semantic and discourse 
interpretation (8), and finally to the new plan generation 
stage (9). The tokenization and grammatical 
subprocesses are implemented in the C programming 
language. Text strings are tokenized by employing a 
subsystem built around lex, a Unix lexical analysis tool 
[1]. The grammatical processing is performed by a yacc- 
like LR(1) parser [1, 16] extended to include 
backtracking, inheritance, token-stream manipulation, 
and the use of semantic hierarchies, described in the next 
section. The semantic hierarchies (7) are also used by 
the later interpretation and generation modules. Most of 
the interpretation and generation modules are 
implemented in Prolog because robust inference is 
required. The semantic representations of those texts 
which fit the requirements of the change rules then 
undergo generation: working from the input semantic 
representation of an individual text and the generation 
rule set, a new plan is generated for each appropriate 
operation text. Once all texts in every partition have 
been fully processed, resulting in multiple sets of plans, 
the texts are reattached to their original keys (10) and 
formatted (11) to various specifications (a report to be 
inspected by analysts, etc.), including a database record 
format. The set of new database records are then 
uploaded to the mainframe database, and the database is 
again placed into production. 

3 Components 

This section describes in more detail key components of 
the NLP tool set. These include spelling correction, 
parsing, and semantic interpretation. The discussion of 
these three modules will similarly center on the mass- 
change application of the previous section, with 
additional comments on the interpretation component 
provided with respect to another application, that of a 
query interface to a project and program scheduling 
system. The mass change plan generation process is also 
described. 

t_, 
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Figure 1. Mass Change Process Flow 

3.1 Spelling Correction 

The spelling correction process represented by node (4) 
in Figure 1 utilizes a statistical mutual information 
model [5] to detect and correct spelling errors, based on 
the observation that spelling errors are statistically 
abnormal patterns. The intent therefore of spelling 
correction is to modit3, the word sequence minimally to 
make it statistically normal. The approach we have 
pursued is to use a bigram mutual information model, 
created by pre-processing a huge domain-specific textual 
corpus (obtained perhaps, as in our case, by 
downloading an entire textual database), to guide 
spelling correction over new text within that domain 
(Figure 2). A new model is created each time the domain 
changes; this is especially important if the domains are 
narrowly circumscribed and company-specific. In the 
mass change procedure, spelling correction is applied to 
the new corpus en masse at node (4). Statistically 
unlikely words are corrected to statistically likely 
candidates. 

In general, there are problems inherent to the 
detection of spelling errors. For example, all unknown 
words encountered are not necessarily errors; they may 
simply not have been seen before. Furthermore, all 
known words are not necessarily correct; these are 
epitomized by typographic variations and incongruous 
word sequences. The mass change corpus exhibited the 
following occurrences (with intended word bracketed to 
the right): 

(3) a. Typographic Variations 
APPLY 2 COSTS OF EPOXY <COATS> 
MARK BORE AND HOLE <MASK> 

b. IncongmousWordSequences 
CLEAN ACRYLIC 
<CLEAR> FOLLOWED WITH 
<FOLLOW> 
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(Off-line Process) 

Figure 2. Spelling correction 

Other anomalies which a spelling correction routine 
must contend with are split words (with one or more 
spaces intervening) and run-on words (where no space 
separates using bigram model two words). In addition, 
there is the possibility that the error-to-correction 
mapping is non-invariant. 

A statistical approach to spelling correction has some 
advantages and some disadvantages. Among the 
advantages are: it corrects the majority of errors, those 
classified as nonwords, misspelled words, word-splits, 
and run-ons; the automated acquisition of domain- 
specific data is easily maintainable; and the use of a 
statistical model enforces consistent lexical usage. A 
disadvantage is that correlated recall and precision may 
not be high, i.e. some errors may be missed and some 
may be corrected incorrectly. However, reasonably 
good recall (>75%) coupled with very high accuracy 
(>95%) can be expected. Other disadvantages are: there 
is no clear strategy for multi-error detection and 
correction, and the tact that such a large corpus (20 
megabytes in our mass change corpus) is required to 
create a good statistical model. 

3.2 Parsing 

For parsing, we use a generalized LR(1) shift/reduce 
parser [16, 1, 10]. Like yacc (which, given a grammar, 
generates a parser for that grammar), our parser 
precompiles the CFG grammar into a state-transition 
table. The parser exercises CFG grammar rules 
annotated with syntactic and semantic action routines, 
thus allowing for synthesized and inherited attributes. In 
addition to the rules, other knowledge stores integrated 
into the parser's processing are a thematic role hierarchy 
and a semantic domain network, both of which are also 
used by lexical entries in a morphologically partitioned 
lexicon. The parser uses a linked list of structured 
tokens (displayed in 4 below), and returns only one 
parse. To facilitate robust parsing, the parser also allows 
the developer to activate grammar-directed token 
dropping, token hypothesizing, and token type coercion. 

(4) Token Structure 
<id: numerical identifier for token 

surface form (i.e. actual string) for the sulfform: 
token 
rootform: 
value: 
assertions: 
scat: 

feature: 
nexl: 

root form of the token 
value (semrep) associated with id 
[I 
subcategorization requirement for the 
token, where the scat format is 
(ext arg int_argl int_arg2 ...), and 
where each argument must be a 
grammar symbol (exception: int argl 
may be a string enclosed within # e.g. 
#into#contact~with#); ext_arg may be 
NULL/nil; 
feature associated with token 
ptr to next polysemous token> 

The parser permits arbitrary backtracking, including that 
over polysemous or composed tokens (idioms), over 
grammar rules, and over object hierarchies (entity, 
property, and predicate types in the hybrid domain 
model), though in practice time and node limits are set. 
The backtracking facility also includes the developer- 
specified cut, an operator to force the termination of a 
grammar rule. An example of backtracking over 
polysemous tokens is displayed in the following 
abbreviated trace from the mass-change process. As 
noted, we employ a hybrid syntactic-semantic grammar, 
primarily because such a hybrid permits generality (at 
higher nonterminals) and specificity (at terminals and 
lower nonterminals). 

(5) BacktrackingoverPolysemousTokens 
Lexicon (abbreviated): 
FINISH : FINISH_~RB 

: FINISH_NOUN 
MATERIAL) 

(isa 

P~sing: 
FINISH 1 COAT OF FINISH 
mismatched string SCAT [required: 
code] / [found: i[I]] 
. ° ° °  

Difficulty in parsing: no transition 
for token NUMBER[168] from state 83 
current stack (in reverse): state- 
stack[l]: [FINISH[124] ] 
backtrack ... 
nbar : ENTITY 
a_nbar : nbar 
a_nbar : a_nbar NUMBER 
nphrase : a_nbar 
Difficulty in parsing: no transition 
for token COMPOSITION[69] from state 
75 
current stack (in reverse): state- 
stack[2]: [COATING[62] nphrase[4109] 
] 
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current stack (in 
stack[4]: 
COMPOSITION[69] 
FINISH~TERB[126] ] 
backtrack ... 
fin_n : MATERIAL 
fin_np : fin_n 
of_np : COMPOSITION 

reverse): state- 
[FINISH[124] 

fin qfr[4126] 

fin_np 
fin_np : fin_qfr of_np 
s_imp : FINISH_VERB fin_np 
sentence : s_imp 
discourse : sentence 
top : discourse EOS 

When enabled, the token-dropping option allows a 
grammar rule to be matched by dropping a token (from a 
pre-specified set of droppable tokens), and is only 
applied when a sentence will not parse without dropping 
the token. In addition, the parser will also hypothesize a 
token when the input sentence will not parse strictly by 
using the grammar rules. Similarly, the parser will 
coerce the unexpected type of a token to a type which is 
acceptable, should the parse otherwise fail. 

3.3 Semantic Interpretation 

The mass-change procedure does not require the 
complex referential semantics that NLIs require. The 
semantics and the discourse components can be simpler 
because the application requirements are simpler. In all 
our NLP applications, however, both domain-dependent 
and -independent information constitute the semantic 
model, which is jointly used by the grammatical module 
(written in C) and the interpretation/generation module 
(written in Prolog). Each token has a semantic marker 
which acts as an index into the semantic domain model. 
The morphologically generative lexicon is the primary 
knowledge store-associating the input (surface) text 
tbrm, its tokenization, and the semantic marker. The 
grammatical module uses the lexicon to drive its work, 
but also uses the semantic model directly to enable type 
inheritance and, in some cases, the type coercion of 
semantic markers. 

The semantic domain model consists of a set of 
assertions of the form 

object(Child, [Relation, Parent]) 

where Relation is either 'isa' or 'ispart', and the three 
possible roots of the hierarchies are 'entity', 'predicate', 
and 'property'. These are defined by a developer and 
entered into a the GraphEd tool [14], a graph editor 
which outputs an ascii representation of a network. The 
ascii form can be transformed and used by both the 
parser and the backend Prolog interpretation processes. 

The output of the grammatical module is a combined 
syntactic-semantic representation of the input plan text 

in the form of a list of binary predicates capturing the 
tree structure. Each predicate is of the form: 

predicate(skolem-constant, value) 

with skolem constants representing the nodes of the tree. 
The semantic entity markers are those items which are 
the values of "instance' predicates, as 

instance(n9, person) 

asserts that 'n9' is an 'instance' of semantic class 
'person'. The syntactic-semantic representation is then 
asserted as the primary knowledge store in the finai 
interpretation and generation module. 

Additional knowledge sources used in the Prolog 
interpretation and generation module are: a database of 
finish codes and their associated information, including 
the number of coats of application required, color 
number, color name, and material type of each relevant 
finish Code; a set of material-specific databases which 
include the materials and the associated generation 
requirements rules; and a task-driven tree-walker that 
traverses the semantic representation of a plan to extract 
information requested by the generator. 

3.4 Plan Generation 

The text plan generator directly executes rules 
representing the output requirements of the new plans. 
Prior to executing these rules, however, the generator 
determines whether the original input plan is well- 
formed, valid, and consistent. Then, using the domain 
model, the finish code and material databases, the 
requirements rules, and the semantic tree-walker, the 
generator creates new plans. 

In other cases, the generator detects that a meta- 
constraint such as "Only one operation should exist per 
plan text" is violated. It flags the text as anomalous, 
indicating the constraint violation, but still tries to 
generate a reasonable output text. A post-generation 
process diverts constraint violations to a separate stream 
which results eventually in the creation of a special 
report. Texts which violate constraints are not changed 
and uploaded; instead, these are evaluated by a human 
domain expert, who adjudicates the suggested changes 
individually. For example, in (6) the original plan 
consists of multiple run-on sentences with no 
punctuation. The NLP system determines that there are 
actually three sentences, two of which refer to 
application of finishes. With this information, the 
generator determines that one of its meta-constraints has 
been violated, generates its best guess at an output text, 
and then annotates that text with the constraint violation 
message. 
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(6) Example of Generated Text 
Input: 
TOUCH UP REWORK AREA ONLY APPLY (I) 
COAT OF BMS10-11 TYPE 1 PRIMER PER 
BAC5736 (F18.01) REATrACH IDENTIFICATION 
TAG 

Generated Text: 
<<FOLLOWUP: MULTIPLE OPERATIONS 
SPECIFIED.>> 
TOUCH-UP FINISH REWORK AREA ONLY AS/IF 
REQUIRED PER ENG. DWG. PRIME PER F-18.01. 
REATTACH IDENTIFICATION TAG. 

3.5 Interpretation and Other 
Applications 

The mass-change application is fairly simple. More 
complicated NLP applications require ellipsis and 
pronominal resolution, and more richer referential 
semantics. An NLI to a relational database, for example, 
requires an explicit recursive semantic composition 
process. This is why our deeper semantics in Prolog 
closely parallels that which a categorial analysis would 
furnish, i.e:, using function application and composition 
over lambda forms, per treatments such as [11, 12] and 
using a semantic theory such as DRT [7]. Such an 
approach allows one to compose a semantics in a 
principled manner and to interpret with respect to the 
domain model. Nevertheless, to this point, in an 
intert:ace to a project and program scheduling system, 
we have attempted only to render semantics for scope- 
underspecified quantifiers, negation, and numerical and 
temporal constraints. Tense and aspect (e.g., [15]), 
distinctions among plural readings of noun phrases, and 
a deeper lexical semantics, have so t~  not been 
elaborated, but are planned. In [3], e.g., a lexical 
semantics based on [6] will be developed. Finally, a tool 
like [4]'s Prolog-to-SQL compiler can prove useful for 
mapping the final referential semantics to a specific 
database or domain model. 

4 Conclusion 

The NLP tools described in this paper have been used a 
number of times to effect the mass-change of on-line 
textual databases. The cost savings over other methods 
has been significant (we estimate, for example, that in 
four years, 20,000 man-hours have been saved over 
manual methods). By representing core semantic 
components in Prolog, we expect to minimize the work 
needed to accommodate radical domain changes in the 
future, though application-specific manual work must 
s011 be performed to update the lexicon, modify the 
grammar, and elaborate new referential semantics. 

These same NLP tools, modified to accommodate 
primarily lexical difl'erences, a more complicated 
semantic domain model, and deeper interpretation, have 
been employed in building NLIs to legacy databases and 
applications, in a resource-conserving manner. 
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